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Summary. - -  The quantization of a scalar field obeying a fourth-order wave 
equation is described. Faster-than-light particles appearing in the process 
are treated as ghosts, with the wrong relation between spin and statistics. In 
this way, positive energy spectrum, as well as positive metric in Fock space 
are obtained. Finally, some implications of an interaction described by a 
Lagrangian symmetrized in the scalar fields are briefly discussed. 

PACS 03.70 - Theory of quantized fields. 
PACS 14.80.Kx - Others and hypothetical particles (including photons and 
tachyons). 
PACS ll.30.Pb - Supersymmetry. 

1. - Introduct ion.  

The use of h igher -order  differential  equations in part icle t heo ry  has been  
considered eve ry  now and then,  but  they  have  a lmost  a lways been  discarded due 
to the difficulties they  present .  F o r  example ,  the ene rgy  spec t rum can be 

(*) To speed up publication, the authors of this paper have agreed to not receive the 
proofs for correction. 
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unbounded from below, the Hilbert space of states could have an indefinite 
metric, the S-matrix may turn out not to be unitary, etc. (see however ref. [1]). 
The case of only one significative variable has been studied by mathe- 
maticians [2]. They establish a one-to-one correspondence between an N-th- 
order differential operator and the so-called ,,scattering data, ,  obtained as the 
discontinuities of the Jost-functions at certain rays of the complex energy plane. 
(See ref. [3] for an application to a 4th-order wave equation.) 

One can observe that these data contain physical as well as unphysical jumps 
and poles of the Jost  functions. The inverse problem, which is a generalization of 
the classical Gelfand-Levitan result [4] has also been solved (see ref. [2] and [5]). 

If  we then restrict the data to be physical, a definite (small) subset of 
differential equation emerges, which should be able to represent physical 
processes[6]. These equations have a well-defined relation between the 
coefficient functions of the different derivatives (the ,,potentials,) so they cannot 
be arbitrary. 

Recently, an extension of the Wess-Zumino supersymmetric model [7] has 
been proposed, which ties the order of the wave equation to the dimensionality of 
space-time [8]. Perhaps, the simplest case, within this proposal, is to take d = 6, 
for which a fourth-order wave equation is obeyed by the components of the chiral 
superfield. 

We have studied this case and the corresponding quantization will be 
presented in a forthcoming paper. There are some hopes that supersymmetry 
may provide the necessary relation between the different ~,potentials, 
(couplings) to have a physical wave equation. Nevertheless, we think that some 
particularities we find are interesting enough in themselves to deserve an 
independent presentation. For this reason, we decided to extract the scalar field 
(or scalar component of the chiral superfield) from the model and impose directly 
on it the fourth-order wave equation (see eq. (1)). That equation has normal 
solutions of the Klein-Gordon type together with other solutions with imaginary 
mass corresponding to ,,tachyons, (see eq. (2)). Of course, when one deals with 
faster-than-light particles one cannot help naming the pioneers in the field, who 
have clarified much of the misunderstandings on the subject[9-12]. It was 
Feinberg, in ref. [11] who gave the name ,,tachyon, to particles with spacelike 
momentum. 

In the complete model, the quantization is carried out in such a way that the 
spinor conserved charge acts as a generator of supersymmetry transformations. 
The Heisenberg equations of motion are then satisfied as a consequence of the 
supersymmetry algebra. For the simplified scalar model we are here consider- 
ing, we want the operator P ,  acting as the infinitesimal generator of space-time 
displacements. We do not suppose that the tachyonic components are observ- 
able. So we are free to impose commutation or anticommutation relations for 
them. We choose to have non-negative energy, then it follows that we should 
take anticommutation rules. Tachyons have then ghostlike behaviour. 
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On the other hand, the normal part of the scalar field should obey the usual 
commutation relations. It is possible that those characteristics remain in other 
higher-order equations. The fields are then mixed objects having normal parts 
with the usual relations between spin and statistics [13] and also abnormal parts 
with unusual commutation relations. (See, however ref.[14].) Note that 
supersymmetry transformations relate normal components to normal com- 
ponents and tachyons to tachyons, so that the inversion of statistics for all 
tachyons do not impair the symmetry. 

In sect. 2 we write the differential equation and the Lagrangian from which it 
follows. The energy momentum tensor is then evaluated. In sect. 3 we quantize 
the field. In sect. 4 we evaluate the propagator. In sect. 5 a discussion is given on 
the principal aspects of this paper. 

2. - L a g r a n g i a n .  

The complex scalar field satisfies the equation (see ref. [8]) 

(1) (772-m4)~(x)=J(x)  

o r  

(2) ([] - m2)(B + m 2) ~(x) = J(x) . 

It is clear that ~(x) has two components. One of them is related to the normal 
Klein-Gordon equation, and the other to the ,,tachyonic, Klein-Gordon equation 
(m 2 < 0). 

When ~(x) is a complex free field (J = 0), eq. (1) (or (2)) implies for the Fourier 
transform 

(3) 

that 

~(x) = ~ I d 6 k ~(k) exp [ik, x ~ ] (z=)~ 

(4)  v ( x )  = ~  

where 

l ~ f d S k [ - - ~ ( r 1 7 6 1 6 2 1 7 6  
(2=)~m 

+ 1 (r176162176 exp[ i k . x ]  

w =  v r ~  + m 2 ' = w '  v r ~  - -  m 2 . 

40 - I l  Nuovo Cimento A. 
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At this point, in ref. [11, 12] the sphere k2< m 2 is suppressed. We are not going 
to worry about the division of space into k 2 < m 2 and k 2 > m e. We will essentially 
work as if the above-mentioned prescription is followed, but finally we will take 
an analytical continuation of the physical interesting quantities to k 2 < m 2. (See 
the evaluation of the propagator in sect. 4.) 
The Lagrangian density by means of which we obtain eq. (1) is 

(5) 2 (" = ~+(x) []2 ~(x)  - m 4 ~t(x)  9 ( x ) .  

We built the canonical energy momentum density following the prescription of 
ref. [15] (see also [16]) 

(6) T; = - av[3~t(x) O~(x)  + iT~t(x) aya~(x )  - s~ ~*(x)[]a,~(x) + ~t(x) o~rTa.9(x) 

which is divergenceless 

(7) a~ T; = 0. 

Equation (7) implies the conservation of P~ given by 

(8) P~ = f dSx T ~ 

Using the Fourier components given in eq. (4) we obtain 

5 t - r r - - t (9) P, = ] d k[kv(r162 + r 1 6 2  - k~(r162 + r162 

where 

k ~ = ( w , k ) ,  k : = ( w { k ) .  

Note that one can naturally divide (9) in two parts, one corresponding to normal 
particles and the other to tachyons 

(10) Pv =/~N) + ~T). 

3.  - Q u a n t i z a t i o n .  

As we pointed out in the introduction, the complete mode] is the Wess-Zumino 
model in d = 6 .  Naturally ~(x) is one of the components of a chiral 
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superfield. The other components are two spinor fields, one vector field and one 
auxiliary scalar field[17]. (See ref. [18, 19] for another SUSY model in d = 6.) 

Supersymmetry implies the existence of a conserved fermionic current J.]. 
The fermionic charge 

(11) Q~ = f dSxJ~ 

is the generator of the transformation of supersymmetry. We quantize this 
model in such a way that the operator Q~ acts as the infinitesimal generator of 
supersymmetry. (The complete procedure will be presented elsewhere.) In other 
words, if we make an infinitesimal supersymmetry transformation with 
parameters v~ we have 

(12) ~ ( x )  = i [ v ~ Q ~ , ~ ( x ) ] .  

From (12) it follows 

(13) [ P ,  ~(x)] = - iav ~(x), 

when P~ is defined by the relation 

(14) P~ = {Q~, QZ}. 

Keeping in mind the division of ~(x) and P~ in normal and tachyonic parts we 
have (cf. (13)) 

(15a) [p~s), ~i(x)] = -- ia~ ~i(x) i = 1, 2, 

(15b) [/~W), ~i(X)] = -- ia~ ~(X) i = 3, 4. 

Equation (15a) is the usual relation implying normal quantization with the 
canonical procedure. But if in (15b) we follow the usual method we get negative- 
energy states or an indefinite metric of the Hilbert space of states. In fact, if we 
follow the usual spin statistics connection which is valid for any number of 
dimension (see ref. [13]) we should impose the commutation rules 

(16a) [r r = ~(fc - k ' )  , i=  1, 2 ,  

(16b) [r r = ~(f~ - k ' )  , i =  3, 4 .  

The minus sign in (16b) has the consequence that the operators r (i = 1, 2) 
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create negative-energy states or the metric of the Hilbert space is indefinite. 
Since tachyons would not seem to be observable physical particles, we are not 

obliged to use commutation relations for them. Therefore, we will consider the 
tachyonic component as ghostlike objects, in the sense that they have a spin- 
statistics relation opposite to the normal ones. 

It is true that the commutator of ~(x) with ~t(x) has no definite significance, 
but we will see that the vacuum expectation value of the time-ordered product is 
well defined and it has sense. So instead of (16b) we choose 

(17) {r r = ~(]~ - ]~') i= 3, 4. 

We now have Pv normally ordered 

= f  t ~  , t -  (18) P~ dSk[k~(r162 + r162 + k~(r162 + r162 

where the change of sign relative to eq. (9) is due to the change of statistics of 
the tachyonic component. In the complete supersymmetric model, this is 
the operator that we obtain defining P~ = {Q~, Q~} and imposing relations (16a) 
and (17). 

The Fock space is built up applying the creation operators to the vacuum 10 >, 
and all the states have non-negative energy and positive metric too. 

4 .  - P r o p a g a t o r .  

In the interaction picture, the perturbative solution of the states evolution 
equation is given as a function of the time-ordered products of the interaction 
Hamiltonian. The difference between time-ordered and normal-ordered products 
defines the field propagator. In other words, the propagator is the vacuum 
expectation value of the time-ordered product 

(19) A(X, y) ----- <01T[~(x) ~t(y)]10 } . 

Keeping in mind the division into normal and tachyonic parts we have 

(20) A(x, y)= <01T[~(N)(x)~(Y)t(y)]10 } + <01T[~(~(X)~(~t(y)]10 > . 

The first term of the right-hand side of (20) is the usual Feynman propagator 
of a scalar field that obeys the Klein-Gordon equation. The second term is the 
propagator of the ghost particle. 



QUANTIZATION OF A 4TH-ORDER WAVE EQUATION 603 

The Fourier transform of the sum of both terms is given by 

(21) 

i 1 1 
A ( k ) = -  ~ m ( k 2 _ i ~ _ m 2  + k 2 _ i ~ + m 2 )  ' 

i k 2 
A (k) - m2 (k 2 _ i~)2 _ m4 . 

The change in the statistic of the tachyonic part produces a change in the sign 
of the second term of (21). This is the reason behind the fact that expression (21) 
differs (by the k 2 factor) from the inverse of the differential operator acting on 
~(x). 

When one now adds to the Lagrangian (5), the self-coupling of the scalar field, 
present in the complete model, we get an interaction of the form 

(22) . ~ ' =  - gm2 ~*2(x) ~(x) + h.c. - g2Ft2(x)  ~2 (x ) ,  

where all terms should be symmetrized in the fields ~ and 9*. Due to th i s  
circumstance, no term of _~' contains more than one tachyonic component, as 
they obey anticommutation relations. In other words, tachyonic internal lines 
are always disconnected and as a consequence no tachyonic closed loop can occur 
in a diagram. 

5.  - D i s c u s s i o n .  

The scalar field ~(x) satisfies the fourth-order eq. (1). This equation implies 
that one part of the field satisfies the normal Klein-Gordon equation, while the 
other part satisfies a tachyonic one. 

By taking ~(x) to be a mixed object whose normal part obeys the usual 
connection between spin and statistics and whose tachyonic part is subject to 
anticommutation rules, the energy of the field and the matrix of the Fock space 
turn out to be positive. 

There is no conflict with supersymmetry, due to the fact that the 
transformation that maps the scalar field into the spinor field (and this into the 
scalar and vector field) maps normal components into normal components. In 
other words, the supersymmetry transformation does not mix normal and 
tachyonic parts. So the change of the statistics of all the tachyonic components 
allow us to keep supersymmetry invariance. The coupling of the scalar field 
cannot be arbitrary, because it is a component of a supersymmetric multiplet. In 
this form, apart from the self-coupling of the field, the coupling with the spinors 
and the vector fields must be present. Furthermore, due to the symmetrized 
form of the interaction Lagrangian and the remarks made at the end of sect. 4, at 
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least  some of the objections against  tachyons  pointed out in ref. [20] are  absen t  
here.  Of course, in the complete  supe r symmet r i c  model all coupling are  re la ted  
and the nonrenormal izat ion t heo rem  assures  the compensat ion of all masses  
genera ted  in se l f -energy processes.  
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�9 R I A S S U N T O  (*) 

Si descrive la quantizzazione di un campo scalare che obbedisce ad un'equazione d'onda di 
quarto ordine. Le particelle pifi veloci della luce che appaiono nel processo sono trattate 
come fantasmi con la relazione errata tra spin e statistica. In questo modo si ottengono lo 
spettro d'energia positiva nonch~ la metrica positiva nello spazio di Fock. Infine si 
discutono brevemente alcune implicazioni di un'interazione descritte da una lagrangiana 
simmetrizzata nei campi scalari. 

(*) Traduzione a cura della Redazione. 
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KBaHToBaHHe BONHOBOFO ypaBHeHHg qeTeepTorO Hop~l~Ka. 

P e 3 m M e  (*).  - -  On/4CblBaeTcg KBaHTOBaHHe cKa.rtflpHoro rtoJIfl, rlO~,tl~HgIOIIIerocR 

BOYlHOBOMy ypaBH eHmo qeTBepTorO IIOpg~Ka. tlaCTHIIbI, ~IBH)KylIII4eCg 6bICTpee CKOpOCTH 
CBCTa, KOTOpbIe IIORBYI~IIOTCg B I lpoKccce ,  TpaKTylOTCR KaK ~yxI4 C HclIpaBHYlbHOI~I CBR3bIO 
MC~K~y CIIHHOM H CTaTHCTHKOI?I. B 3TOM IIO~XO~e rloylyqalOTC~I cIIeKTp rIOJIOhXI4TeJ/bHblX 
aneprnfi, a TaKYKe IIO.rIOhKI4TeJIt, HaR MeTpI, IKa B rlpocTpaHCTBe dPOKa. B 3aKyiIOqeHl4e, 

BKpaTlle o6cy~r HeKOTOpLIe HpRMeHeHI4,q B3aHMo~eI~ICTBILr o r m c b m a e M o r o  c 

nOMOmbrO YIarpaH)KHaHa, CHMMeTpH3OBaHHOFO B CKaJI~IpHbIX HOJIgX. 

(*) Hepe~ec)eno peOatct~uefi. 


