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By introducing the concepts of quasi-spin pairing and quasi-spin seniority, the Lipkin 
model is extended to a variable number of particles. The properties of quasi-spin 
pairing are seen to be quite similar to those of ordinary pairing. The quasi-spin 
seniority allows one to obtain a simple classification of excited multiplets. A "pairing 
plus monopole" model is studied in connection with the Hartree-Fock theory. 

1. Introduction 

The Lipkin Model [1] has proved to be extremely 
useful in theoretical studies concerning the validity 
and/or usefulness of diverse theoretical approaches 
developed in order to investigate the manifold as- 
pects of the nuclear many body problem. 
This model is based on the SU2 algebra correspond- 
ing to the so-called quasi-spin operators, and pro- 
vides us with readily available exact solutions, which 
are to be compared with the results obtained by 
recourse to different types of approximations. 
Of the several multiplets assigned to the possible 
values of the relevant Casimir operator [1], only 
that corresponding to the ground state of the system 
is usually dealt with, so that not much attention has 
been paid to the study and classification of higher 
multiplets. In the present work, we present a simple 
and straighforward method to achieve this goal, 
which allows us to formulate, in quasi-spin lan- 
guage, a B CS-like theory which extends the Lipkin 
model to the case of a variable particle number, 
without going beyond an SU2 x SU2 algebra. 

2. The Model 

The model deals with N particles, distributed in two 
(2Q)-fold degenerate single-particle levels which are 
separated by the single-particle energy ~. 
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We characterize the 2s lower states by ] p , # = - 1 )  
(for p = 1,..., 2s as Lipkin et al. El]. In addition to 
the usual quasi-spin operators, 

J~=~ Z #c;,. G,, 
p , / t  

Y+ = J-+ = 2 c; ,  + cp,_, (1) 
P 

we introduce the operators, 

( ~ + = ~  + + Cp, + Cp, 
P 

O~-=~ Cp, G,+ 
P 

(~o = �89 Z Cp +, ~ Cp,, - Q, (2) 
P , #  

which are easily shown to obey angular-momentum 
commutation rules. Moreover, any Q-operator com- 
mutes with all J-operators, and vice versa (SU2 
• It is possible then, to form a complete 
orthonormal basis characterized by the eigenvalues 
of the operators j2 ~2 Jz, Q0, i.e., Id, Q, Jz, Qo)- 
Obviously, (~+ creates, and (~_ destroys, two par- 
ticles which yield zero contribution to the Jz-value, 
and which could then be said to "couple" to Jz = 0. 
In this spirit, we introduce a quasi-spin "pairing" 
Hamiltonian 

= ~-T~+U_, (3) 
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which is seen to commute with the number operator 
/V, but we shall postpone its study until Section 3. 
The minimum possible value of (2o is attained when 
N, the number of particles, is zero, and then Q0 = 
-~2. The maximum Q0 obtains when N=4s and 
then Q0=~2. In the Lipkin model one always has 
N=2s and Q0=0. Let us now consider the general 
multiplet IQ, Qo). The eigenvalues of (~o depend 
only upon the particle-number, which in a Q-multi- 
plet varies, according to (2), between 

Nmin(Q 0 = -Q)=2s (4) 

and 

Nmax(Qo=Q)= 2s + 2Q=4Y2- v. (5) 

In Equation (4) we have introduced the quasi-spin 
seniority v, which indicates the number of particles 
not "paired" to Jz=0((~ [Q,-Q)=O), i.e., v is the 
number of "unpaired" particles in a Q-multiplet. 
From (4) 

Q =�89 v). (6) 

Now, if for a given pair J, Q we have v unpaired 
particles, the minimum possible value for Jz in this 
(J, Q)-multiplet is equal to -v /2 .  
Consequently, v fixes also the value of J 

J = v/2, (7) 

J +Q=s (8) 

so that the above mentioned SU2 x SU2 multiplets 
are characterized just by v, Qo, Jz. In the case of the 
Lipkin model (N=2s the unperturbed ground 
state (no interaction) has J=s Jz = -s Q = Q o = 0  
and attention is generally restricted to the multiplet 
J=~2, Q = Q 0 = 0  (only Jz varies, from -s to +s 
For this multiplet the quasi-spin seniority is equal to 
2s The remaining multiplets are those with Q0=0 
for which v decreases from the value 2g? down to 
zero in steps of two. We have thus a seniority 
classification of the different multiplets of the Lipkin 
model. By allowing Qo to vary we can generalize the 
model to a variable number of particles. 

3. Exact Energies 

We study now the Hamiltonian of Equation (3) and 
put g= la l .  Its eigenstates are those introduced in 
the preceding section, i.e., IJ, Q, Jz, Qo), with eigen- 
values 

E(J,Q, Jz, Q o ) = J z - g  {Q(Q+ I)-Qo(Qo-1)} ,  (9) 

which can be rewritten in terms of v and N(=2Qo 
+ 2 s as follows 

E(v, Jz, N) 

 10, 

The energy of the unperturbed ground state (v =N,  
Q = Q o = 0 )  is 

Eo=  -s (11) 

The state of quasi-spin seniority zero, in which all 
particles are "paired" to Jz=O can be called the 
"superconducting" state. It is characterized by v=O 
and Q = s its energy being 

= - 2 {~(f2 + I ) -  Oo(Qo- i)} E~ 

- 2g(2g?-2N---+l) N~- (12) 

This state will represent the ground state of the 
interacting system for 

4~2 1 

g>gcri t=~ - ( 2 s  1 ) �9 (13) 

In Lipkin's case gcrit = 2/(s + 1). 
One readily sees that the energy E N_a of the state 
characterized by v = N - 2  and Jz = - v / 2  is given by 

_ _ N  ( - 3 + 1 ) .  (14) EN-2-- 2 + l - - g  s N 

This energy will be lower than E o for g > l  (inde- 
pendent of N). On the other hand, gorit is a minimum 
for N=2s and reaches a maximum value, equal to 
unity, for N=4~2 or N=2. In the latter case, the 
state with v = N - 2  is the superconducting one, 
while in the former one there is just one possible 
state for the system. Consequently, as the strength g 
of the interaction grows, the system suffers a "phase 
transition" from the state of maximum quasi-spin 
seniority to the superconducting one, at g=gcrlt" 
This behaviour is depicted in Fig. 1 for the case 
0 = 3 .  

4. The "BCS" Solution 

Following the standard BCS treatment [2], we re- 
present the ground state by the trial wave function 

2fk 
I B C S > =  ~ (%+v~ C~++ C~+,_)10>. (15) 

p = l  
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The Bogoliubov-Valatin coefficients [-23 do not de- 
pend, in the present situation, upon the quantum 
number p. As a consequence, the quasi-particle 
operators ap,, take the form 

a. + = C~- sin fl C~ ,,u cosfl ~,u--# , , 

al, _.  = cos fl Ci, _ u + # sin fi C+u 
(16) 

in order to obtain 

(BCSI ~2 __(~)2 [BCS) 1 

<BCSI(~)2IBCS) ~ N '  

as expected. 
The number-projected BCS energy is given by 

(25) 

(BCS I /~G IBCS) 
so that E N = (26) 

(BCS I PN [BCS) 
a~,u[BCS)=0 for all i,#. (17) 

The angle fi is chosen so as to minimize the expec- 
tation value 

Ep = (BCS I/] [BCS ) 

= --gf2 sin 2 fi(sin 2 f i+20 cos 2 fi), (18) 

with the restriction 

N "  (BCS] N I BCS) = 4f2 sin 2 ft. (19) 

The conservation condition (19) is usually tackled 
by introducing a Lagrange multiplier 2, which leads 
to the minimization problem [-2] 

6 { (BCS I / t  - 2 57 I BCS ) } = 0. (20) 

Within the present context, however, Equation (19) 
fixes fl, and we obtain 

g /20 N N \ N  
E p = - 2  ~ - 2  + ~ )  5"  (21) 

As a check, we verify that (21) coincides with the 
exact result (12) for the trivial case N=4f2.  For 
N = 20  (Lipkin Model) one has 

g (U + 1) (22) Ep= - ~ - n  

The number projection (or Qo-projection operator) 
is 

PN = ~ IJ, Q, Jz, Qo(N))(Qo(N),Jz, Q, JI. (27) 
J,Q,Jz 

On the other hand, we can write the ]BCS) wave 
function as a superposition of states of good particle 
number. 

Should one procceed according to the prescription 
(20), one would obtain for 2 the value 

g {N (2 f2 - 1)/8 U - f2/4}. 

If one now considers the non-negative quantity 

_g (l_ u__t N 
D = G - G = 2 \  4 ~ f 2 '  (23) 

which measures the difference between the exact 
superconducting solution and the BCS one, it is 
possible to appreciate the fact that D is a maximum 
for N=2~2, i.e., for the Lipkin case. 
One can also evaluate 

N 2 
(BCSI .~2 IBCS) =N2 + 2 N - 4 ~ ,  (24) 

IBCS)= ~ C~(Q'o)lJ=O, Q=f2,Jz=O, Q'o). (28) 
e~ 

Insertion of (28) in (26) yields, taking into account 
the fact t ha t /q  preserves Q0 

(BCSI/]PN I BCS) 

= I~(Q0)l 2 (0, n, o, (20 I~q I0, o, o, Qo). (29) 

Moreover 

(BCS j eN I BCS) = I~(Qo)l 2. (30) 

Equations (29) and (30) assure one that E N coincides 
with the exact superconducting energy. 
It may be of interest, in order to compare quasi-spin 
pairing with "ordinary"  pairing, to express the 
Hamiltonian (3) in terms of the quasi-particle oper- 
ators a. In the usual notation we write [2] 

/q=  U-I-/-I2o -~-/]11 -~/qint, (31) 

with 

U = - g  (2 sin 2 fi (sin 2 fi + 2 s cos 2 fl), (32) 

tq20 = { - g• sin fl cos fi(cos 2 f i -  sin 2 fi) 

+ -gs in3f icosf i}  x ~ ( G ,  a + + k,- +ak,-  ak,+) (33) 
k 

/qal =Jz+~A g {sin4fl+sin2ficosZfl(4f2_l)  } 

x Z (G +, + G, + + a~, _ G, )- (34) 
k 

/~int contains products of four a's and is dropped in 
the quasiparticle approximation. Further, we define 

~ q ' = / / - Z N  (35) 
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and, as expected, we now obtain for fl and 2 the 
same values as reported above if we demand that 

A! 
H 2 o = 0 ,  (36) 

in conjuction with the condition (19). 
We see that ( 3 1 -  34) quite resemble the expressions 
used in nuclear pairing theory for the so-called 
degenerate model [2]. The only difference to be 
found between that case and ours arises in con- 
nection with the one-body part of the corresponding 
Hamiltonians. In the degenerate model the single- 
particle energy can be taken to be zero, so that, for 
states of Jz=O, our expressions are identical with 
those of the referred model. This is not so, of course, 
for other values of Jz. 
The ground state energy of the degenerate model is 
[-23 

g N ( 4 ~ 2 - N + 2 ) ,  e = - ~  (37) 

which agrees with our exact energy for 

g > g c r i t  (JZ = O) 

The main formal  difference between quasi-spin pair- 
ing and ordinary pairing lies in the fact that the 
former "pairs"  particles of different s.p. energy, 
while the latter couples those of the same s.p. en- 
ergy. 

5. E x c i t e d  S t a t e s  

As an application, we shall briefly discuss two wide- 
ly applied theoretical approximations (and compare 
them with the exact solution), in connection with the 
excited states of our system. For  the sake of sim- 
plicity we shall restrict ourselves to the Jz=O mul- 
tiplet, in the Lipkin case (N=2f2),  for g>gcrit" 
The exact energies are given by 

E = - 2 Q ( Q + I  ), (38) 

where Q takes the values ~2 (ground state), f 2 -1 ,  
.... 0. We have then ~ + 1  non-degenerate states. 
Notice that (38) just gives the energy-spectrum cor- 
responding to the degenerate model for N particles 
[2], i.e., 

g (N-v) (4f2-N-v+2) ,  E(N, v)= - ~  (39) 

where the seniority v takes the values 0, 2, 4 . . . .  N. 
In the quasi-particle approximation, obtained by 

dropping/4int in (31), the excited energies are the so- 
called two quasi-particle energies [-2]. The q.p. en- 
ergies e k are, according to (34), given by 

g {sin4 fl + sin 2 flcos 2 fi(4 f 2 -  1)) _ g N  e k = 2  4 (40) 

In this approximation, then, the excited states are 
degenerate and lie at an energy of gN/2 ,  which is 
that corresponding, in the exact treatment, to the 
first excited state. Since we have N q.p. states, there 
are N ( N - 1 ) / 2  degenerate excited states. 
Next, we consider the quasi-boson approximation, 
[2], and make the definitions 

A ~ - - a  + a + 
- k ,+  k, , (43)  

^ + + a~ ak, n k = ak, + ak, + , �9 

The Hamiltonian of Eq. (31) may be written in terms 
of the A's. It contains terms of zero, first, and second 
order in the operators A and ft. In the quasi-particle 
approximation, the second-order term is ignored. It 
is the interaction between quasi-particles and may 
be written 

/ t i n t  = / J c  -~ - /~  . . . .  (44) 
g 

/4c = - ~- ~ ( c~ fl A [  - sin 2 fiAk) 
k,m 

�9 (cos 2fiA - s i n  2fiA+). 

In the quasi-boson approximation [2] one drops 
/~ .... and, further, neglects ~k in the commutator  

[Ak, A~-] = 1 --~k 3k,i. (45) 

If we write now l q ' = / t - 2 . g  we have, in this ap- 
proximation (remember that we restrict our atten- 
tion to the multiplet Jz=0) ,  in view of (33, 34) 

(46) 

In order to write (46) one must take into account 
that here sinZfl=�89 and 2 =  -g /4 .  (Obviously, H2o ^' 
=0). 
Defining now 

qi = (Ai + A[-) /] /2;  Pl = - i ( A i -  A+)/] /2 , (47) 

one obtains 

A t 
[H , q j  = - - i Z X , ~ k p m ,  

k 

A t 
E H , p,.] = i Z ymk q~, 

k 

(48) 
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with 

Xmk = 2em a,.k g 
2' 

Ymk = 2% 6., k. (49) 

Consequently, if we find a t ransformation 

Q, = ~, 2,., q., ; P~ = ~ / h . ,  pro, (50) 
rtz m 

so that 

[Q , ,Pk ]=b ,k ;  [ /~' ,  Q,]  = -iB,P~; 

[ /q ' ,  Pt] = i  C,Q z (51) 

it follows [2] that  the operator  

O , = l f ~  O, - i l f ~  Pz (521 

is such that @ [ B C S ) = 0  and that  the eigenstate 

Oz + [BCS) has an energy equal to W ~ = ~ .  The 
required t ransformation satisfies the matrix equa- 
tions 

I x ]  [211 = B z [#]~ 

[y] [# ] /=  C l [.)r (53) 

in rather obvious notation. 
By solving (53) one gets ( N - 1 )  degenerate states at 
an excitation energy of gN/2. We see that the spec- 
t rum looks like the one obtained with the quasi- 
particle approximation,  but at least we have here the 
correct order of magnitude for the number  of states. 

6. Pairing plus Monopole Interaction 

We add now to our pairing Hamil tonian  the mo- 
nopole force introduced by Lipkin et al. [1]. Our 
new Hamil tonian  reads 

+f2)-{O+O 2 z " 
(54) 

In (54) we have two competing interactions. On the 
one hand, the quasi-spin pairing, which favors states 
with J = 0 .  On the other one, the monopole  force, 
under whose action the system tries to attain the 
max imum possible value of J. We are thus reminded 
of the competi t ion between pairing and deformation 
[3] in a tomic nuclei, case in which, however, no 
exact t reatment  is available for the quadrupole  force 
[3]. Thus, the present model allows one to perform 
detailed studies concerning the reliability of different 
approximations,  specially for those values of v and g 
for which phase transitions occur. 

7L ' ' 

-E 

3 [- 3=3 

i i 

& 0.4 o.; o.} r.2 
IGI 

Fig. 1. Exact energies of the lowest states in each J-multiplet (for 
N=6)  versus coupling constant g 

The exact solution is found by diagonalizing / t  in 
the basis ]J, Jz, Q, (2o=0)  �9 The corresponding ma- 
trix elements are 

( J,J'z, Q, ol I41J, Jz, Q, O) 

=jz6sz  & +2v 3 Jk, Jz + 2 {(J-Jz) (Jz  + J + l )  

�9 ( J - J z - l ) ( J z + J + 2 ) }  ~ 

v 
-t-~Sa~,jz_ 2 { ( J - J z+  1 ) ( J z + J )  

�9 ( J - J z + 2 ) ( J z + J -  1)} ~ 

g (O-J)Cf2-J+ 1) 2 6Jz J~ (55) 

Let us consider, for a fixed value of v, the exact 
energies corresponding to the lowest state in each J-  
multiplet, as a function of g. The corresponding 
behaviour is that depicted in Figure 1 for N = 6. As v 
increases, the results for J = 0  remain unchanged, 
while the energies corresponding to the other J 
values become smaller. As a consequence, the 
ground state of the system undergoes the transition 
from J = 3  to J = 0  for larger values of g when v is 
different from zero than for v = 0. 
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Fig. 2. a Values of g and v defining the phase transition between 
the superconducting state and the J=Jmax state, b Exact energies 
of the lowest states in each J-multiplet (for N = 6) versus coupling 
constant v. g is kept fixed at the value 0.1 

F igu re  2 a  depicts ,  for each v, the  c o r r e s p o n d i n g  
value  of  g for which  this t r ans i t i on  occurs  (N = 6). 
In  F i g u r e  2b  we show the a b o v e  m e n t i o n e d  energies,  
as a func t ion  of  v for smal l  va lues  of  g ( < 0 . 3  in this  
case, as N = 6). As  g grows,  the  curve for J = 3 is no t  
affected, while the o thers  move  upwards .  The 
s t ra ight  line co r r e spond ing  to J = 0  will thus suc- 
ces ively  in tersec t  the  curves  c o r r e s p o n d i n g  to  J = 1, 
2 ,3 .  
As  an a p p l i c a t i o n  let  us cons ide r  the  p resen t  m o d e l  
f rom the po in t  of  view of  the  H a r t r e e - F o c k  (HF)  

>,, 
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21 
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Fig. 3. Binding energy of the interacting ground state versus 
coupling constant g for different values of v: v 1 =0.1, v 2 =0.3, v 3 
=0.5. The solid line corresponds to the exact treatment, the 
dashed one to the HF approach 

app roach .  W i t h i n  this context ,  the H F  t ransfor -  
m a t i o n  reads  [4]  

( cos /3 /2  - i s in /3 /2 ]  
(bb ;: -+ ) = \ -  i sin /3/2 cos/3/2 , (C::  ~ )  (56) 

and  the c o r r e s p o n d i n g  t r ia l  s ta tes  are  o b t a i n e d  by  
bu i ld ing  up in the new basis  b the t r ia l  states.  

IHF)  = I J, Jz = - J ,  Q =f2 - J, 0). (57) 

No t i ce  tha t  the  o p e r a t o r s  (~+ and  (~ are  inva r i an t  
unde r  the  t r a n s f o r m a t i o n  (56). W e  wri te  now the 
H a m i l t o n i a n  (54) in te rms of  the  b - o p e r a t o r s  and  
eva lua te  its expec t a t i on  values  wi th  respec t  to the 
s ta tes  (57) 

( H F ] / t ( b )  [ H F )  = - d  cos/3 

+ ~ j ( l _ 2 J )  �9 2 g v sm /3 ~ ( f 2 - J ) ( f 2 - J + l ) .  (58) 

This  is to be m i n i m i z e d  with  respec t  to /3. Two 
so lu t ions  exist. I f  v <  1 / ( 2 J - 1 )  we have  /3=0  and  
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EHF= - d - g  ( f2-  d) ( f2-  d + l). (59) 

For  larger values of  the m o n o p o l e  coupl ing cons tant  
one gets 

1 1 
cos f i -  v'2J----[ 1) =7;o v > 1 / ( 2 J -  1) (60) 

and 

J bJ / l \  e 
E n v =  b 2 ~ I - ~ ) - 2 ( F 2 - J ) ( Q - J + I ) "  (61) 

As in the exact case, the pair ing force does no t  
contr ibute  to the H F  energy for J = f2. On  the other  
hand, for J = 0 ,  the m o n o p o l e  H F  cont r ibut ion  is 
null. 
G r o u n d  state energies for the N = 6  case are de- 
picted in Figure  3 as a funct ion of  g, for several 
values of  v. Solid lines are exact results and dashed 
ones the H F  energies. Hor i zon ta l  lines cor respond  
to J =  3. For  J = 0  the H F  energy is identical  with 
the exact one. 

A l though  there is a not iceable difference between 
the exact and the approx imate  values for J = 3 ,  it 
must  be poin ted  out  that  the H F  theory  predicts 
fairly well the values of  g for which the phase 
t ransi t ion occurs. 
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