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1
INTRODUCTION

In this digital era marked by new technologies of data reporting and collection,

more frequently than ever before, behavioral scientists and practitioners use large-

scale data sets (i.e., also known as big data) to answer their research questions.

The term "large-scale data sets" can refer to both data sets with an exceeding

number of observations (e.g., data collected from cross-national surveys) and

data sets with a large number of variables (e.g., text data extracted from social

media). This dissertation focuses on the latter, and studies novel methods and

computational tools to detect hidden clusters in data sets with a large number of

variables. As these data sets cover a broader range of features than used by be-

havioral scientists until recently, they offer unprecedented opportunities in two

important ways to identify new clusters and advance theories on understand-

ing the heterogeneity of human nature. First, these data sets integrate infor-

mation hidden in a large number of variables, thus providing unique opportu-

nities to discover novel types of clusters. For example, several studies have re-

cently emerged in clinical and biological psychology - albeit on a relatively small

scale - that identified novel psychotic subtypes through analyzing such large-

scale data sets (Chen et al., 2020). Second, as features pertaining to large-scale

data sets likely come from different sources (e.g., a combination of text, survey,

and genetic data), joint cluster analysis of these data sets can potentially uncover

1
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clusters that would only emerge from the concerted efforts of the many sources,

something that was not achievable in previous studies because the different data

sources were only considered in isolation from each other. This assertion is sub-

stantiated, for example, in Mothi et al. (2019) where the authors identified three

subtypes of psychotic patients from a collection of fMRI signals, clinical diag-

noses, and laboratory measures. Clearly, the above studies shed new light on

theories of subtyping psychological disorders and open new venues for research-

ing and developing personalized treatments for these subtypes

Despite the promising applications of clustering on data sets with a large

number of variables, there are at least two major challenges, namely selecting the

variables most relevant to the analysis and handling the diverse groups of vari-

ables collected from different sources. This dissertation aims to address these

two challenges by proposing novel clustering methods and computational tools.

The novel methods proposed in the dissertation are derived from two types of

clustering methods used in the previous literature. In what follows, we first de-

scribe the basic ideas of the two types and the cluster structures that these meth-

ods are able to identify. Then, the two challenges are presented and discussed

separately. Following the description of each challenge, we briefly propose how

the challenge is addressed in this dissertation. In the final section of the intro-

duction, we detail the content of each chapter.

This dissertation is fully committed to open science practices. In addition to

providing all of the computational code used in simulation studies and empir-

ical analyses, we have also developed three publicly accessible R packages that

implement the methods described in this dissertation and a ShinyApp that sup-

ports users in visualizing the clusters resulting from their analysis.

1.1. TWO TYPES OF CLUSTERING METHODS

This dissertation develops two types of clustering methods: methods that iden-

tify clusters based solely on their average scores across variables (which we will

refer to as the Type 1 methods) and methods that identify clusters based on

their average scores as well as subspaces underlying the within-cluster covari-

ance structures (which we will refer to as the Type 2 methods). A well-known ex-

ample of the Type 1 methods is K-means (KM), arguably one of the most widely
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Figure 1.1: Two clusters that differ in the mean structures (but not in the covari-
ance structures)

used clustering methods in psychological sciences (Jain, 2010; Steinley, 2006).

The modeling strategy in KM and other Type 1 methods is to find clusters that

maximize the total distance between cluster centroids. Here, the cluster cen-

troids are defined as the average scores of the variables per cluster. Thus, the

Type 1 methods do not model the within-cluster variances and covariances of the

variables. The sole focus on the between-cluster mean structures brings compu-

tational benefits, but it limits the range of cluster structures that these methods

can recover. Consider a hypothetical example with two variables A and B and

with two clusters. For the data structure depicted in Figure 1.1 where the obser-

vations are centered upon their corresponding centroids with minimal overlap,

the Type 1 methods are able to recover the two clusters with high accuracy. How-

ever, for the data structure displayed in Figure 1.2, where the two clusters cannot

be distinguished by cluster centroids (in fact the two clusters have identical cen-

troids), only the Type 2 methods - but not the Type 1 methods - are useful to

recover the clusters with reasonable accuracy.

In this dissertation, the specific Type 2 methods we build upon belong to a

genre of clustering methods that model within-cluster subspaces in addition to

between-cluster mean structures (some well-known examples from this genre

include D. Wang et al. (2009) and Timmerman et al. (2013)). This strategy of

modeling clusters not only offers a flexible way to identify various types of clus-

ter structures but also provides a wealth of information for interpretation: the

subspace(s) discovered for each cluster summarize, in a few dimensions, the pat-



1

4 1. INTRODUCTION

Figure 1.2: Two clusters that differ in the covariance structures (but not in the
mean structures)

terns of covariances within this cluster. Since the subspaces contain significantly

fewer dimensions than the full space spanned by all variables, the Type 2 meth-

ods are particularly promising when dealing with large data sets.

These two types of clustering methods described above serve as a starting

point for the development of novel clustering methods for complex cluster struc-

tures which contain a substantial proportion of irrelevant variables and (or) vari-

ables from different sources. We now detail the two major challenges in identi-

fying and recovering these complex cluster structures and discuss how the novel

methods proposed in this dissertation address both challenges.

1.2. FIRST CHALLENGE: VARIABLE SELECTION

When dealing with data sets with a large number of variables, many scholars

have highlighted the challenge that a large proportion of variables may be irrele-

vant to the data analysis under consideration (e.g., Adjerid & Kelley, 2018; Janssen

et al., 2017; Qiu et al., 2018; Serang et al., 2017; Waldherr et al., 2017). The ir-

relevant variables defined in the Type 1 methods are those that do not separate

clusters well and mask cluster structures (Brusco & Cradit, 2001; Raftery & Dean,

2006; Steinley & Brusco, 2008b). For the Type 2 methods, the irrelevant vari-

ables are those that are unrelated to within-cluster subspaces. Failing to iden-

tify these irrelevant variables is problematic for two reasons. First, the presence

of irrelevant variables may largely complicate the interpretation of clusters. Sec-
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ond and perhaps more importantly, since the irrelevant variables obscure true

cluster structures (i.e., between-cluster mean structures and (or) within-cluster

subspace structures), cluster analysis with these irrelevant variables is likely to

yield poor cluster recovery (Steinley & Brusco, 2008b).

To address the challenge of variable selection, this dissertation utilizes the

sparseness approach (Hastie et al., 2019) for automatic variable selection. This

approach was originally proposed to address the problem of overfitting in linear

regression: it imposes additional constraints on the regression coefficients and

reduces the smallest coefficients to 0 (Tibshirani, 1996). As a result, only a subset

of predictors have nonzero coefficients and are thus considered relevant vari-

ables (also termed signaling variables in the dissertation). Recently, the sparse-

ness approach for variable selection has been successfully implemented in other

models, including network models (Epskamp & Fried, 2018), structural equation

models (Jacobucci et al., 2016), and principal component analysis (H. Shen &

Huang, 2008). Following the footsteps of previous studies, this dissertation em-

ploys the sparseness approach to achieve variable selection in both Type 1 and

Type 2 clustering methods. More specifically, for the Type 1 methods, sparseness

is introduced in the calculation of the total distance between cluster centroids,

so that the distances pertaining to the identified irrelevant variables are excluded

from the calculation. For the Type 2 methods, sparseness is induced within the

process of extracting subspaces, so that the irrelevant variables are not related to

the identified subspaces.

1.3. SECOND CHALLENGE: DATA INTEGRATION

Aside from self-reported survey data, many behavioral studies conducted in the

digital age supplemented their analyses with novel types of data (e.g., genetic,

sensor, and GPS data, etc.,). Data sets consisting of measurements collected from

the same group of observations but from different data sources (presented as dif-

ferent data blocks) are referred to as multi-block data, and the type of analyses

that integrate information from these multiple data blocks are known as data in-

tegration (Van Deun et al., 2009; Van Deun et al., 2011) or data fusion (Lahat et al.,

2015). As pointed out in Van Deun et al. (2009) and Lock et al. (2013), a key chal-

lenge in data integration is to discern two types of variation: variation pertaining
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to the same data block or only a few data blocks (also called distinctive varia-

tion) and structural variation pertaining to all data blocks (also called common

variation). To illustrate, consider a multi-block data set that includes one block

of self-reported personality scores and one block of GPS data: while the com-

mon, structural variation may indicate the relationships between one’s person-

alities and distance traveled within a month, the distinctive variation pertaining

to self-reported data may reveal response styles underlying personality scores.

When analyzing multi-block data sets, it is desirable - and sometimes even nec-

essary - to separate common and distinctive variations for two critical reasons.

First, oftentimes, researchers are particularly interested in the joint forces of sev-

eral behavioral factors manifested in common variation (e.g., how personalities

relate to the distance traveled within a month), which can only be reliably in-

terpreted after its complete disentanglement from distinctive variation. Second,

when such multi-block data are used for predictive analysis, it is not unlikely

that only common variation or distinctive variation - but not a mix of the two -

is predictive of outcomes; therefore, separating these two sources of variation is

beneficial for accurate prediction. In this dissertation, we focus on addressing

the challenge of distinguishing common and distinctive variation in data inte-

gration for the Type 2 clustering methods.

To address the challenge of data integration, a modified version of Principal

Component Analysis or PCA (Guerra-Urzola et al., 2021; Van Deun et al., 2009;

Van Deun et al., 2011) is applied in this dissertation. PCA, one of the most well-

known methods in psychological research, summarizes the covariances of vari-

ables by a few components. Because the resulting components are correlated

with all variables, it is uncertain whether they reveal common or distinctive vari-

ation, or a mix of both types. To distinguish between these two types of variation,

Gu and Van Deun (2019) proposed Common and Distinctive Simultaneous Com-

ponent Analysis (CD-SCA) that imposes blocks of zero loadings onto the compo-

nent loading matrix: components with blocks of zero loadings indicate distinc-

tive variation because they are unrelated to the variables associated with these

zero loadings. We show that this strategy can be incorporated into the Type 2

clustering methods, allowing for accurate estimation of within-cluster subspaces

that reveal both common and distinctive variation.
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1.4. OUTLINE OF THE DISSERTATION

This dissertation aims to develop new statistical methods and computational

tools for clustering complex data structures that contain a substantial propor-

tion of irrelevant variables or variables from different sources. Chapters 2 and

3 focus on the Type 1 methods and employ the sparseness approach to address

the challenge of variable selection. Chapter 2 introduces and validates a novel

method, called Cardinality K-means or CKM, for simultaneous variable selec-

tion and clustering, whereas Chapter 3 provides a detailed, non-technical tuto-

rial for applied researchers to use CKM and elaborates on various ways to vali-

date the obtained cluster partitions. This chapter also introduces an easy-to-use

ShinyApp, called ClusterViz, for visualizing clusters. Next, Chapters 4 and 5

present the Type 2 methods that use the modified PCA approach and the sparse-

ness approach (only in Chapter 4) to address the challenges of data integration

and variable selection, respectively. It is worth noting that special cases of the

methods developed in Chapters 4 and 5 can be used to deal with single-block

data (i.e., without data integration). While the clustering algorithm proposed in

Chapter 4 only uses multi-block predictors to recover clusters, the method de-

scribed in Chapter 5 further considers an outcome outside multi-block predic-

tors such that the resulting within-cluster subspaces are predictive of the out-

come. In other words, the method in Chapter 4 is an unsupervised learning algo-

rithm, while the one in Chapter 5 is a supervised learning algorithm. Below, the

four empirical chapters are presented in greater detail.

In Chapter 2, CKM, a novel simultaneous clustering and variable selection

method, is introduced in great detail. In essence, CKM utilizes the connection

between PCA and KM to transform the simultaneous clustering and variable se-

lection problem into one that can be readily addressed by sparse principal com-

ponents analysis. In two extensive simulation studies, CKM consistently outper-

formed its predecessor Sparse K-Means (Witten & Tibshirani, 2010) and Sparse

Alternate Sum (Arias-Castro & Pu, 2017) in terms of cluster recovery and the ac-

curacy of variable selection. In addition, inspired by Brudvig et al. (2019), Chap-

ter 2 also proposes a novel model selection procedure that determines the num-

ber of clusters after extracting a small set of stable variables that are identified

as signaling variables for all potential numbers of clusters. The R package CKM
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is developed to implement the CKM method and the described model selection

procedure.

Based on CKM and the novel model selection procedure proposed in Chapter

2, Chapter 3 serves as a tutorial to illustrate how applied researchers can apply

these methods in their own research. An example of clustering subjects based

on their political attitudes is provided. More importantly, Chapter 3 delves into

the topic of cluster validation, which is an important yet often overlooked as-

pect of cluster analysis. More specifically, this chapter utilizes a recently pro-

posed framework (Ullmann et al., 2021) to discuss and illustrate three validation

approaches: visual validation, stability validation and validation by replication.

Last but not least, a new ShinyApp ClusterViz is introduced in this chapter to

aid visual validation, allowing users to visualize clusters without any program-

ming skills.

Chapter 4 proposes a clusterwise extension to CD-SCA. This method, referred

to as Clusterwise Sparse Simultaneous Component Analysis or CSSCA, employs

an alternating algorithm in conjunction with a random-start procedure to achieve

successful estimation. The partitions obtained by CSSCA allow users to identify

subjects that are driven by the same set of (common and distinctive) compo-

nents. Another desirable feature of CSSCA is that it uses the sparseness approach

for automatic variable selection, thus improving the interpretability of the re-

sults. Chapter 4 also reports two simulation studies and demonstrates the con-

ditions that are less favorable to CSSCA. CSSCA is applied to an empirical study

that identifies clusters based on a block of personality scores linked with a block

of nonverbal behaviors. Last, the R package ClusterSSCA has been developed

for readers to employ CSSCA in their own research.

While CSSCA deals with unsupervised learning tasks, Chapter 5 extends the

Type 2 methods for supervised learning tasks (i.e., prediction tasks). To this end,

inspired by the development of Principal Covariates Regression (De Jong & Kiers,

1992; Vervloet et al., 2015), Chapter 5 proposes a novel method called Cluster-

wise Simultaneous Covariates Regression or CSCR, which identifies clusters of

observations with different common and distinctive components and (or) differ-

ent regression weights when regressing the outcome on these components. Im-

portantly, CSCR is more advantageous than a conventional, two-step approach
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linking CSSCA and ordinary least squares (OLS) regression because the compo-

nents estimated from CSCR are guaranteed to be predictive of the outcome. In a

large-scale simulation study, the performance of CSCR is compared with four al-

ternative methods. The findings confirm that CSCR performs well in general, but

they also identify the conditions under which it needs to be used with great care.

Like other chapters, an R package CSCR is developed for the implementation of

CSCR.

Since the chapters were written independently as potential journal articles,

there may be some overlaps and inconsistencies in terminology across the chap-

ters.





2
SIMULTANEOUS CLUSTERING AND

VARIABLE SELECTION: A NOVEL

ALGORITHM AND MODEL

SELECTION PROCEDURE

The growing availability of high-dimensional data sets offers behavioral scientists

an unprecedented opportunity to integrate the information hidden in novel types

of data (e.g., genetic data, social media data, and GPS tracks, etc.,) and thereby

obtain a more detailed and comprehensive view towards their research questions.

In the context of clustering, analyzing the large volume of variables could poten-

tially result in an accurate estimation or a novel discovery of underlying clusters.

However, a unique challenge is that the high-dimensional data sets likely involve

a significant amount of irrelevant variables. These irrelevant variables do not con-

tribute to the separation of clusters and may mask cluster partitions. The current

paper addresses this challenge by introducing a new clustering algorithm, called

This chapter is published as Yuan, S., De Roover, K., & Van Deun, K. (in press). Simultaneous
Clustering and Variable Selection: a Novel Algorithm and Model Selection Procedure. Behavior
Research Methods

11
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Cardinality K-means or CKM, and by proposing a novel model selection strategy.

CKM is able to perform simultaneous clustering and variable selection with high

stability. In two simulation studies and an empirical demonstration with genetic

data, CKM consistently outperformed competing methods, in terms of recovering

cluster partitions and identifying signaling variables. Our proposed model selec-

tion strategy determines the number of clusters based on a subset of variables that

are most likely to be signaling variables. Through a simulation study, this strat-

egy was found to result in a more accurate estimation of the number of clusters,

compared to the conventional strategy that utilizes the full set of variables. Our

proposed CKM method and the novel model selection strategy have been imple-

mented in a freely accessible R package.
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2.1. INTRODUCTION

Recent technological developments have made it fairly easy to collect a large

number of variables within a single study in social and behavioral sciences. Ex-

amples include examinations of genetic influences in organizational psychology

(e.g., Arvey et al., 2016; Chi et al., 2016), personality psychology (e.g., Davis et al.,

2019) and social psychology (e.g., Feldman et al., 2016); studies on neuroscien-

tific foundations of behaviors in management (e.g., Waldman et al., 2019) and

psychiatry research (e.g., Sun et al., 2009); research aiming to predict personal-

ity from social media footprints (e.g., G. Park et al., 2015); questionnaire-based

studies that simply collected a comprehensive set of variables (e.g., Joel et al.,

2017); as well as a combination of all these types of data (e.g., Bzdok & Meyer-

Lindenberg, 2018).

A noteworthy advantage of data sets including many variables is that they

provide a detailed and comprehensive view. Here, the definition of “many vari-

ables” is rather subjective and depends largely on the field of research. In behav-

ioral sciences, one can think of data sets with more than 100 variables (Groen-

eveld & Rumsfeld, 2016). These types of data sets become increasingly common

due to the fact that novel types of data sources are more and more often col-

lected. Some special examples are so-called ‘high-dimensional’ data sets where

the number of variables exceeds the number of observations. In the context of

cluster analysis - where the intent is to group observations in such a way that

those in the same cluster are similar to each other - using data with many vari-

ables will likely result in a more accurate estimation of clusters and (or) a dis-

covery of novel clusters. In one of the very few reported attempts to cluster data

sets with many variables, Mothi et al. (2019) combined clinical measures, labo-

ratory measures, and measures derived from MRI scans of psychotic patients to

form a combined data set, on which they conducted a cluster analysis and iden-

tified three sub-types of psychoses. Evidently, clustering high-dimensional data

sets grants researchers an unprecedented opportunity to clarify and deepen our

understanding of the heterogeneity in various social phenomena.

Although research that exploits data sets with many variables to identify clus-

ters is promising, it also comes with challenges. One of the most compelling

challenges, as stressed by a number of scholars (e.g., Bzdok & Meyer-Lindenberg,
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2018; Waldherr et al., 2017; Yarkoni & Westfall, 2017), is that these data sets may

comprise a large amount of “irrelevant variables” (Fowlkes & Mallows, 1983).

They are variables that do not separate clusters well and therefore do not de-

fine cluster structures. These irrelevant variables may hinder cluster discovery

by masking the cluster structure under investigation (Steinley & Brusco, 2008b).

Therefore, a cluster analysis should effectively recover the cluster structure while

simultaneously filtering out irrelevant variables.

The variable selection problem in cluster analysis is not a new topic and

has been extensively studied since the 1980s. For example, Steinley and Brusco

(2008b) have compared the performance of eight different procedures to ad-

dress this problem. These approaches - most notably the Variable Selection in

K -Means (i.e., VS-KM; Brusco & Cradit, 2001), model-based variable selection

(Raftery & Dean, 2006), the Clustering Objects on Subsets of Attributes (i.e., COSA;

Friedman & Meulman, 2004) and the relative clusterability weighting method

(Steinley & Brusco, 2008a) - are well designed and have been extensively vali-

dated. However, these methods are computationally prohibitive in the presence

of many variables, as the computational demand grows exponentially with the

number of variables. For example, Steinley and Brusco (2008a) proposed to test

all subsets of variables that pass the initial screening, where the theoretical max-

imum number of tests can be as high as 2J −1 (with J indicating the number of

variables in the data set). Raftery and Dean (2006) and Brusco and Cradit (2001)

have both proposed a forward-searching strategy that starts with an initial pair

of two signaling variables and, after searching all remaining variables, adds other

signaling variables one by one. This strategy, too, becomes very inefficient when

there are more than 100 variables.

Other methods are available, however, that are able to simultaneously per-

form variable selection and clustering, with reasonable computational time for

large data sets with many variables. They are, for example, Sparse k-means (SKM;

Witten & Tibshirani, 2010) and Sparse Alternate Sum (SAS; Arias-Castro & Pu,

2017). Importantly, these methods have been verified in several simulation stud-

ies to entail a better performance than competing approaches, such as the afore-

mentioned COSA (Witten & Tibshirani, 2010).
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One of the important contributions of the current study is to present a novel

method, which we named Cardinality k-means or CKM, for simultaneous vari-

able selection and clustering (see Yamashita and Adachi (2020) for another ap-

plication of the cardinality constraint on clustering). CKM essentially exploits

the fact that principal component analysis (PCA) offers reasonable starting parti-

tions to the k-means algorithm (hereafter called KM; Ding and He, 2004; Xu et al.,

2015), especially in high-dimensional data sets. Based on this connection, CKM

approximates clustering solutions through sparse principal component analysis

(SPCA; H. Shen & Huang, 2008) and, based on the initial results of SPCA, con-

tinuously updates partitions until convergence is reached. Here, the algorithm

is considered to converge when all observations remain in the same cluster after

another iteration of cluster updates. Section 2.2 illustrates how CKM theoreti-

cally relates to SKM and SAS, while section 2.3 reports how their performance

compared.

As another important contribution, this study tackles the problem of select-

ing the correct number of clusters in the presence of (many) irrelevant variables.

To date, despite calls to research this problem (e.g., Steinley & Brusco, 2008b,

2011b), to the best of our knowledge, only Brudvig et al. (2019) has empirically

addressed this issue. Brudvig et al. (2019) argued convincingly that the selec-

tion of the number of clusters is a central issue, and, perhaps more importantly,

pointing out that the common practice of selecting the number of clusters using

all variables may be misleading, as the irrelevant variables could mask the clus-

ter separation, resulting in an erroneous estimation of the number of clusters.

Building on Steinley and Brusco (2008a), the authors have proposed a new index

to simultaneously select the number of signaling variables and the number of

clusters. Unfortunately, the calculation of this index is prone to computational

difficulties when dealing with data sets with a large number of variables. In the

current study, we aim to expand this line of research in two ways: 1) we propose a

novel strategy to select the number of clusters that might be more suitable in the

presence of a large proportion of irrelevant variables and 2) within the framework

of our novel strategy, we compare several methods to select the number of clus-

ters in a simulation study. The novel strategy is based on the idea of extracting a

“stable” set of variables that are deemed to be signaling variables given any num-
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ber of clusters. To evaluate the novel model selection strategy, we obtained the

accuracy of the novel and competing model selection strategies when applied in

conjunction with various clustering methods and with various test statistics.

The paper is organized as follows. We present the CKM model and the ac-

companying algorithm in Section 2.2, where we also discuss the novel strategy

to determine the number of clusters and several methods related to CKM. Three

simulation studies are presented in Section 2.3. In the first two simulation stud-

ies, CKM is validated and compared with SKM and SAS across various condi-

tions; while both the number of irrelevant variables and the number of clusters

are treated as known information in the first simulation, only the latter is treated

as known in the second. In the third simulation study, we illustrate the relative

performance of the novel model selection strategy that utilizes the stable set of

variables as opposed to the strategy that utilizes the full set of variables. We

then proceed to illustrate the usage of CKM on a large data set that consists of

over forty thousand variables in Section 2.4. Finally, in Section 2.5, we discuss

the practical implication of CKM and the novel model selection strategy, address

their limitations, and propose future research directions. To promote our meth-

ods, we implemented CKM and the model selection procedure in a user-friendly

R package CKM (available at https://github.com/syuanuvt/CKM).

2.2. METHODS

To develop CKM, we rely on results proven in Ding and He (2004) and Xu et al.

(2015). They have shown how principal component analysis (PCA) can be used

to obtain the subspace in which the clusters reside. A key advantage of this pro-

posal, as discussed and illustrated in Xu et al. (2015), is the stability of the clusters

obtained and improved accuracy in recovering the clusters, given that the clus-

tering process mainly operates on the reduced (i.e., low-dimensional) space. In

the current paper, we develop CKM that builds upon these results in the context

of sparse PCA (i.e., Adachi & Trendafilov, 2016; H. Shen & Huang, 2008) for effec-

tive variable selection. First, we discuss the assumed clustering model (i.e. the

KM model) and how it links up to PCA. Then, we illustrate our novel idea of in-

corporating sparseness in a PCA-like framework to filter out irrelevant variables

in the KM model. After that, we introduce an efficient algorithm designed for
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CKM, followed by an overview and comparison with related methods. Last, We

formally introduce our novel strategy to determine the number of clusters in the

presence of many irrelevant variables.

2.2.1. MODEL SPECIFICATION

A PCA APPROACH TO SOLVE THE KM PROBLEM

Prior to our discussion of CKM, we briefly show the connection between KM and

PCA. That PCA can be effectively used to find the subspace in which the clusters

reside was first shown in Ding and He (2004) and later in Xu et al. (2015). Inter-

ested readers are referred to those articles for detailed derivations and proofs of

the main results reported here.

For a variable-wise standardized data matrix X (i.e. each variable is mean-

centered and re-scaled to unit variance) with N subjects and J variables (and xi

denotes the response vector of subject i where i ∈ 1,2, ..., N ), we assume a total

number of K clusters to be present in the data. We define an indicator vector

c in such a way that c(i ) represents the cluster assignment of observation i and

c−1(k) comprises the indices of all Nk subjects in cluster k. The objective of KM

is given in

argminc

K∑
k=1

∑
i∈c−1(k)

||xi −mk ||22

wi th mk = 1

Nk

∑
i∈c−1(k)

xi ,

(2.1)

where ||.||22 refers to the squared Euclidean norm (i.e., for x = (x1, x2, ..., x J ), ||x||22 =
x2

1 +x2
2 + ...+x2

J ).

Because the optimization problem in Equation (2.1) is a discrete one, typi-

cally an alternating algorithm with multiple starts is employed where each in-

dicator vector is generated randomly and updated until convergence. From the

multiple converged solutions, the best one is retained as the final solution; how-

ever, there is no guarantee this solution is optimal.

The major contribution of Ding and He (2004) and later Xu et al. (2015) is the

proof of the equivalence between PCA and a continuous relaxation of KM and

henceforth the proposal of solving KM with the help of PCA. To see this, they first

introduced a partition matrix H (N ×K ) to specify the correspondence between
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subjects and clusters. More specifically, the element hi k , located at the i th row

and the k th column of H, is constructed as follows,

hi k =
{

1 i ∈ c−1(k)

0 i ∉ c−1(k)
(2.2)

This specification results in H having orthogonal columns. Moreover, H is

directly linked with mk , according to

mk = 1√
Nk

h′
k X (2.3)

where hk denotes the k th column of H.

Combine Equations (2.3) and (2.1), and perform some algebraic operations

(detailed in Appendix 2.A), we arrive at

argmaxH Tr H′XX′H

s.t .H′H = IK ,hi k ∈ {
0√
Nk

,
1√
Nk

}.
(2.4)

Equation (2.4) can be viewed as another way to formulate the objective of KM.

Instead of directly solving Equation (2.4), Ding and He (2004) proposed to

first address a more convenient problem by releasing the constraint that hi k

should be either 0 or 1p
Nk

. To do so, they introduced Ĥ as the continuous relax-

ation of H that satisfies Ĥ = HR where R is a rotation matrix subject to RR′ = IK .

Also, to illustrate more explicitly the connection of Equation (2.4) and PCA, Z = X′

is brought in. Then, Equation (2.4) could be rephrased in

argmaxĤ Tr Ĥ′Z′ZĤ

s.t .Ĥ′Ĥ = IK ,
(2.5)

which is the PCA formulation yet formulated on the transposed data. A solu-

tion is attained when Ĥ equals the first K left eigenvectors of Z′Z that correspond

to the K largest eigenvalues. Xu et al. (2015) proposed to estimate the partition

matrix H from this K-dimensional representation of the data with a two-step ap-

proach: (1) obtain an initial partition by employing a multi-start KM algorithm
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on Ĥ; (2) use the partition resulting from the first step as a rational start for a KM

analysis of the original data X.

We note that the objective in Equation (2.5) can also be written as

argminĤ,P||X− ĤP′||22
s.t .Ĥ′Ĥ = IK ,

(2.6)

where P serves as the loading matrix and the expression can be seen as the least-

squares formulation of PCA (for more details, the reader is referred to Guerra-

Urzola et al., 2021). In Equation (2.6), if the t th row in P contains all zero ele-

ments, the t th variable does not contribute to cluster separation and is therefore

viewed as an irrelevant variable. Therefore, the contribution of the variables can

be obtained by controlling P, e.g., by regularizing the variable contributions such

that variables that are not associated with cluster separation are regularized to

have only zero loadings. This forms the basis for the development of CKM, as

described below.

A SPARSE PCA APPROACH TO SOLVE KM IN THE PRESENCE OF IRRELEVANT VARI-

ABLES

Let us reconsider the cluster analysis of X and assume that, out of all J variables,

a total of V variables are irrelevant variables that do not separate clusters. The

remaining (J −V ) variables are therefore signaling variables. The vector g con-

tains the indices of all V irrelevant variables, while Xg and X−g denote the subsets

of the original data set that involves only the irrelevant and signaling variables,

respectively. In light of Equation (2.1) and Equation (2.3), we define the objective

of KM in the presence of V irrelevant variables:

argminc,g(||Xg||22 +
K∑

k=1

∑
i∈c−1(k)

∑
j∉g

(xi j −mk j )2

wi th mk j =
1

Nk

∑
i∈c−1(k)

xi j ,

(2.7)

where xi j and mk j are the individual score of subject i and the mean score of

cluster k on variable j , respectively. The objective represented by Equation (2.7)

is to minimize the total within-cluster sum of squares (also called within-SS)
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across all observations and variables. The first term, ||Xg||, summarizes the within-

SS over all irrelevant variables. To see this, note that a variable is considered irrel-

evant if its cluster-specific centroids are assumed equal; hence, these centroids

are further equal to the grand mean (i.e., 0, since all variables are column-wise

centered). The second term of Equation (2.7) calculates the within-SS over all

signaling variables. Note that g is added as a parameter over which Equation

(2.7) is optimized.

For the second part of Equation (2.7), with a set of operations similar to those

listed in Appendix 2.A and 2.B, we obtain an equivalent formulation

argmaxH,gTr H′X−gX−g
′H

s.t .H′H = IK ,hi k ∈ {
0√
Nk

1√
Nk

},
(2.8)

where g contains V irrelevant variables and X−g denotes the subset of the original

data set that only contains signaling variables. In the next section, We propose a

set of procedures to determine V . Again, Ĥ, the continuous relaxation of H, can

be used to replace H in Equation (2.8), resulting in

argmaxĤ,gTr Ĥ′X−gX−g
′Ĥ

s.t .Ĥ′Ĥ = IK .
(2.9)

Furthermore, in the same vein as Equation (2.6), Equation (2.9) can be re-

framed as a minimization problem. Adding the first part of Equation (2.7), we

obtain an optimization problem

argminĤ,P||X− ĤP′||22

s.t .Ĥ′Ĥ = Ik,
J∑

j=1
[row(P) j = 0] =V ,

(2.10)

where row(P) j indicates the j th row of the loading matrix P and [.] refers to the

Iverson bracket: [Q] = 1 if Q is true and [Q] = 0 if Q is false. Equation (2.10) can

be solved with a modification of the SPCA algorithm introduced by Adachi and

Trendafilov (2016). Similar to the proposal in Xu et al. (2015), a KM analysis is

then performed on Ĥ, resulting in an initial partition, c0, that is used for com-
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puting the final solution of the CKM analysis. Furthermore, the SPCA analysis

produces an initial set of irrelevant variables g by selecting variables whose load-

ings on K components all equal zero. Subsequently, following a similar strategy

as SKM and SAS, and as detailed in the next section, c and g are updated itera-

tively to solve Equation (2.7). 1

2.2.2. ALGORITHM

In this section, we present the details of the algorithm for CKM with the number

of clusters K and irrelevant variables V assumed to be known. The discussion

on how to select K and V is deferred to section 2.4. In essence, the algorithm

consists of two parts. First, the sparse PCA problem defined by Equation (2.10)

is solved with a modified version of Unpenalized Sparse Loading PCA (USLPCA;

Adachi and Trendafilov, 2016). The modified version revises the structure of the

imposed cardinality constraint so that the algorithm returns a selection of vari-

ables across all components (instead of per component). This optimization pro-

cedure is used because it has proven to be one of the most efficient algorithms

to solve the SPCA problem with loading matrices subject to a cardinality con-

straint. Therefore, the result of this modified procedure is an accurate and effi-

cient solution to the optimization problem presented in Equation (2.10). From

this procedure, the initial set of irrelevant variables g0 is obtained. Furthermore,

the initial indicator vector c0 is obtained by performing a multi-start KM analy-

sis on the component scores estimated from SPCA. In the second part, we solve

the sparse KM problem defined in Equation (2.7) by updating c and g iteratively.

Both USLPCA and the sparse KM procedure are of an alternating least squares

type and, in practice, they both converge to a local optimum. The full algorithm

is presented in the form of pseudocode in Algorithm 1. In Appendix (c), we show

the derivation behind the optimization of Ĥ.

Here are four remarks on Algorithm 1. First, we solve the sparse PCA prob-

lem formulated in Equation (2.10) with one rational start based on the singular

value decomposition of X. This choice was made because this step is compu-

tationally demanding, and, in our experiments, increasing the number of starts

1We have also tested the direct use of c and g as the partition of the samples and set of irrelevant
variables, respectively. This procedure gave unsatisfactory results.
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Algorithm 1: The CKM algorithm

Input : the data matrix X(N × J ), the number of clusters K , the number
of irrelevant variables V , the convergence criteria ϵ and the
maximal number of iterations i termax

Output: the set of irrelevant variables g and the indicator vector c

Initialize Ĥ = UK and P = VKΣK where UKΣK V′
K is the rank-k truncated

SVD solution of X
Initialize the current number of iterations i ter = 0
Initialize L =∆L = ||X− ĤP′||22
while ∆L > ϵ and i ter < i termax do

Update Ĥ = VU′ where U and V are obtained from the SVD solution of
P′X′

Update P with two steps: (1) P = X′Ĥ and (2) set the V rows of P with
the smallest sum-of-squares to zero

Update ∆L = L−||X− ĤP′||22
end
Initialize g with the indices of the rows having only zero loadings in X−g

Initialize c as the result of a KM analysis with multiple starts on Ĥ
Initialize L =∆L = argminc,g(||Xg||22 +

∑K
k=1

∑
i∈c−1(k)

∑
j∉g(xi j −mk j )2)

while ∆L > ϵ do
Update g, conditional on c, by maximizing∑K

k=1

∑
i∈c−1(k)

∑
j∉g(x2

i j − (xi j −mk j )2)
Update c, conditional on g, by a KM analysis on X−g with the current

c as the (single) informative start
Update ∆L = L− (||Xg||22 +

∑K
k=1

∑
i∈c−1(k)

∑
j∉g(xi j −mk j )2)

end
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only marginally improved the performance of the algorithm. Second, a (stan-

dard) KM analysis with 10 random starts is proposed to obtain the initial clus-

ter partition from the matrix X−g with the initial set of signaling variables (i.e.,

g) obtained from SPCA. Third, if cluster recovery - but not computational effi-

ciency - is of concern, then an additional KM analysis with 10 starts can be con-

ducted on the subset of the data set with only the selected signaling variables.

The loss value from this additional analysis can then be compared to the original

loss value and a final solution can be determined that minimizes this loss value.

Fourth, to update the index vector of the irrelevant variables g, we propose to

maximize (
∑K

k=1

∑
i∈c−1(k)

∑
j∉g(x2

i j − (xi j −mk j )2), conditional on c. This can be

conveniently solved by selecting the V variables corresponding to the V largest

values computed from
∑K

k=1

∑
i∈c−1(k)(x2

i j − (xi j −mk j )2).

2.2.3. RELATED METHODS

As discussed in the introduction, other algorithms that are developed from KM

have been proposed to perform cluster analysis in the presence of a large num-

ber of variables. These methods could be generally classified into three types:

dimension reduction, subspace clustering and variable selection. Our proposed

CKM falls into the category of variable selection methods. Therefore, in the cur-

rent paper, we only consider other methods from this category. Readers who

might be interested in a broad review of all existing methods are referred to re-

view articles and textbooks, for example, Bouveyron and Brunet-Saumard (2014)

and Bouveyron et al. (2019).

Sparse K-means (Witten & Tibshirani, 2010) was built upon the weighted k-

means framework (Tseng, 2007) where a weight is assigned to each variable to

quantify the relative importance of the variable. The objective function of SKM

can be formulated in

argmaxc,w1,...,w J

J∑
j=1

w j

K∑
k=1

∑
i∈c−1(k)

(x2
i j − (xi j −mk j )2)

s.t . w j ≥ 0, ||w||22 ≤ 1, ||w||1 ≤ s

(2.11)
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where w j denotes the weight associated with the variable j , ||w||1 = ∑J
j=1 |w j |

refers to the l1 norm, and s is the hyper-parameter that is determined during

model tuning.

As illustrated in Equation (2.11), to achieve variable selection, SKM includes

a constraint with an l1 norm and a constraint with an l2 norm on the weights. The

former enforces some of the weights to become exactly zero, indicating that the

corresponding variables of these weights do not contribute to cluster separation.

The latter prevents putting all the weights on only one or a small set of variables

for which the separation of the clusters is the largest. To solve Equation (2.11),

an alternating algorithm is developed that updates the weights and the cluster

assignments iteratively. Typically, a set of equal weights is used to initialize the

algorithm.

When tested on simulated data, SKM enjoyed a clear advantage over KM in

terms of the accuracy of cluster recoveries, for data sets with a large proportion

of irrelevant variables. However, it performed slightly worse than KM when the

vast majority of variables were signaling variables.

Inspired by SKM, Arias-Castro and Pu (2017) proposed SAS, which applies a

similar model as SKM, except for the fact that SAS uses binary weights w j : w j = 1

indicates that the j th variable is included in determining the cluster structure

(i.e., the variable is regarded as a signaling variable) while w j = 0 indicates that it

is an irrelevant variable. Similar to SKM, an alternating estimation procedure has

been proposed that updates the weights and the cluster assignments iteratively;

the authors suggested to initialize the procedure with multiple sets of randomly

selected variables. 2 In simulation studies, compared to SKM, SAS took consider-

ably less time to achieve better performance in terms of cluster recovery in most

scenarios. However, its edge over SKM in cluster recovery vanished when a vast

majority of variables were irrelevant variables. We argue this is probably because

the initial set of signaling variables used in SAS analysis is often far from the un-

derlying model. CKM, on the other hand, uses initial values that stem from a

sparse SPCA analysis of the original data; as a result, the starting set of signaling

variables should be much closer to the underlying model. Therefore, we expect

2They also reported other suggestions for initialization; yet these ways of initialization all lead to
similar results.
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CKM to outperform SAS especially when the data set under consideration in-

volves a large proportion of irrelevant variables.

2.2.4. MODEL SELECTION

One of our contributions is to propose a novel procedure to select K while taking

the presence of irrelevant variables into account; in the current section, we intro-

duce this procedure in detail. Despite the fact that numerous criteria and proce-

dures have been proposed to select K in deterministic clustering algorithms in

general (some of the best-performing algorithms include Tibshirani et al. (2001)

and J. Wang (2010); see Steinley (2006) for a comprehensive review), it is still

largely unclear how the selection of the number of clusters should be done for

these methods in the presence of irrelevant variables. In previous studies, the

common practice was to apply a specific criterion on the full data set, as if irrele-

vant variables did not influence the selection of the optimal number of clusters.

We argue, however, this procedure will likely result in selecting a wrong number

of clusters when a majority of variables are irrelevant and may therefore hamper

an accurate recovery of the clusters. Therefore, we propose a novel strategy that

filters out irrelevant variables as much as possible before selecting K . The proce-

dure applies a three-step procedure, as follows. In the first step, for each possible

number of clusters K (K = 1,2,...,Kmax ), the optimal number of irrelevant vari-

ables VK as well as the subset of signaling variables sK are determined. Second, a

set of variables - called the stable set or sst able - are obtained that are considered

signaling variables over different values of K . In the third step, the optimal value

of K (denoted by Kopt ) is determined while the associated VK and sK - computed

during the first step - are retrieved as the optimal value of V and the optimal set

of signaling variables, respectively.

We now first introduce the procedure to select VK and sK with a pre-determined

value of K . The procedure is based on the Gap Statistic (Tibshirani et al., 2001),

which has demonstrated good performance in selecting the number of clusters

in previous studies (e.g., Arias-Castro and Pu, 2017). More specifically, for each

possible value of the number of irrelevant variables V (V = 0,1,2,. . . ,J −2), a CKM

analysis is conducted on X. Note, we recommend including at least two signal-

ing variables to avoid identification problems. From the analysis, the set of sig-
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naling variables sK (V ) is selected and its corresponding between-cluster sum of

squares is calculated as O(V ). Then, B random data sets are generated based on

the subset sK (V ) by independently permuting the observations within each vari-

able. For each of the permuted data sets, a KM analysis is conducted, from which

the between-cluster sum of squares is recorded as Ob(V ). Consequently, the Gap

statistic is defined in

Gap(V ) = log O(V )−
∑B

b=1 log Ob(V )

B
. (2.12)

The intuition is that, as the permuted data contain no clusters, a larger value

of Gap(V ) indicates a more salient cluster structure. Therefore, the value of V

that maximizes Gap(V ) is selected. The corresponding set of signaling variables

is consequently picked up as sK .

As the set of estimated irrelevant variables at each value of K likely differs, we

identify a set of variables - the stable set of variables sst able - that are consistently

selected as signaling variables regardless of the value of K . More formally, sst able

is calculated as follows: sst able = ∩Kmax
K=2 sK , where ∩ denotes the operation of ex-

tracting the intersection over all vectors. The resulting subset of variables sst able

hence consists of signaling variables that were consistently identified as relevant

to cluster separation for each and every value of K .

Once the stable set of signaling variables is determined, existing criteria to

determine K can be used. Given the promising performance of the Gap statistic

in recovering the true number of clusters in previous research, the Gap statistic

is set as the default criterion in the implementation of our model selection pro-

cedure. However, other popular indices such as the KL index (Krzanowski & Lai,

1988) and the Dindex (Lebart et al., 1995) are interesting alternatives. In simu-

lation study 3 described below, we assessed the performance of these criteria in

terms of the accuracy in recovering the true number of clusters K across various

conditions.

Last, to make the selection of V more precise, an additional step is recom-

mended. This additional step determines the value of V from a set of candidates

that are located around the selected V resulting from the previous step based

on the Gap statistic. With respect to the size of the set of candidates, according
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to our experience, a set of 10 alternative values is generally sufficient for the task.

Specifically, the between-cluster sum-of-squares is calculated for each candidate

value and an elbow point is determined to be the optimal value of V . 3

A potential risk of deriving a stable set of variables in this way is that too many

variables have been left out. Nevertheless, our experience in analyzing simulated

and empirical data sets is that as long as Kmax is set at a reasonable value, the

identified sst able always contains an adequate set of variables for selecting K .

Algorithm 2 summarizes the proposed model selection procedure that con-

sists of the selection of the number of clusters K , and the set of signaling vari-

ables.

When the number of variables J is small, it is feasible to search the full grid

(i.e. from 1 to J − 2) in selecting Vopt . However, this approach is computation-

ally prohibitive with a large J (e.g., J > 100). Thus, in these cases, an adaptive

grid search algorithm that progressively zooms in on smaller areas in the solu-

tion space is employed that effectively reduces the computational demand while

maintaining reasonable accuracy. More specifically, this “zoom-in” strategy is an

iterative procedure that gradually narrows the search space for the number of

signaling variables until it converges to a single number. The algorithm starts

with 10 evenly-spaced numbers (a1 < a2 < . . . < a10), where a1 takes the small-

est possible value and a10 takes the largest possible value. For each of these 10

candidate numbers of signaling variables, a CKM solution is obtained and the

optimal number is selected with the Gap statistic. The algorithm then zooms

in to [ai−1 +1, ai+1 −1] (both sides included) and creates 10 new evenly spaced

numbers. This step is repeated until convergence.

2.3. SIMULATION STUDIES

To evaluate the performance of CKM and of the proposed model selection strat-

egy, three simulation studies were carried out. In the first two simulation studies,

we compared the performance of CKM in recovering the clusters and the status

of the variables (signaling versus irrelevant) with that of SAS and of SKM. The

3Alternatively, this optimal value can be found automatically by identifying the global or local
maximum of scree ratios. See an illustration in De Roover, Ceulemans, Timmerman, Vanstee-
landt, et al. (2012).
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Algorithm 2: Proposed procedure to determine V and K

Input : the data matrix X, the maximal number of clusters Kmax , the
number of permutation samples B

Output: the optimal number of clusters Kopt , the optimal number of
irrelevant variables Vopt , and the selected set of signaling
variables sopt

for K = 2 to Kmax do
for V = 1 to J −2 do

Run Algorithm 1 with K and V . Denote the resulting
between-cluster sum of squares by O(V ) and the set of signaling
variables by sK (V )

Obtain the subset of X that contains only the signaling variables
for b = 1 to B do

Randomly permute the values of each variable in the above
subset

Run KM on the permuted data set, resulting in Ob(V )

end

Compute Gap(V ): Gap(V ) = log O(V )−
∑B

b=1 log Ob (V )
B

end
Set VK equal to the V that maximizes Gap(V ), while sK denotes the

corresponding set of signaling variables

end

Obtain sst able : sst able =∩Kmax
K=2 sK

Determine Kopt : use a criterion (e.g., the Gap statistic) to determine the
number of clusters based on the subset of X (i.e., only those variables
whose indices are in sst able )

Update Vopt = VKopt . Update sopt = sKopt

NOTE: The following step is an optional step, and it is only
recommended when Kopt is large (e.g., > 20).

for V =Vopt −5 to V =Vopt +5 do
Run Algorithm 1 with Kopt and V, and obtain O(V ) and sKopt (V ).

end
Determine the elbow point on the resulting sets of O(V ), and update

Vopt . Update sopt = sKopt (Vopt ).
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two simulation studies differed in the amount of prior information: while both

K (i.e., the number of clusters) and V (i.e., the number of irrelevant variables)

were assumed to be known in simulation study 1, only the true value of K was

provided in simulation study 2. In addition to SAS and SKM, in simulation study

2, CKM was also compared to KM. In simulation study 3, our proposed strat-

egy that relies on the stable set of signaling variables for selecting the number of

clusters and identifying the set of signaling variables was compared to the alter-

native - and widely applied - selection strategy that selects K based on the full set

of variables.

All of the analyses were carried out in the statistical software R. We used our

self-developed package CKM for the CKM algorithm, the package stats for the

KM algorithm, and the package sparcl for the SKM algorithm. The SAS al-

gorithm was available from standalone functions that were extracted from the

Github page (see Arias-Castro and Pu, 2017). When running CKM, SAS, and

SKM in simulation studies 2 and 3, one hyper-parameter must be tuned for each

method to select the optimal number of signaling variables. For CKM, we have

elaborated the procedure to tune the cardinality constraint in section 2.2.4. The

procedure to tune the hyper-parameter for SAS is similar to that for CKM: ac-

cording to Arias-Castro and Pu (2017), here too the optimal number of signaling

variables is determined by maximizing the Gap statistic calculated from Equa-

tion (2.12). For SKM, the tuning parameter s, associated with the l1 norm, should

be decided for each of the simulations. s is tuned from a grid consisting of 200

evenly spaced values ranging from 1.001 to 10. For simulation study 1 where the

number of irrelevant variables V is known prior to data analysis, we first deter-

mine the number of irrelevant variables V0 for each value s0 on the grid. Then,

the tuning parameter s is selected such that its corresponding V0 equals V . In

case multiple V0 equal V , the average value of their associated s0 is used. For sim-

ulation studies 2 and 3 where V is determined during data analysis, the optimal

value is selected that results in the simplest model (i.e., the model with the fewest

number of signaling variables) with a Gap statistic less than 1SE away from the

maximum. In other words, the tuning procedure for SKM follows the well-known
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1SE rule, as proposed in Witten and Tibshirani (2010). 4 In the above tuning pro-

cess, the Gap statistic must be computed for each candidate value; here, we set

the number of permutation samples to 20 for all analyses.

2.3.1. SIMULATION STUDY 1

In this simulation study, we compared the accuracy of CKM in recovering the

clusters and signaling variables with SAS and SKM; where the values of K and V

were set at pre-defined values. To facilitate a systematic comparison with other

studies, we adopted, as closely as possible, the data generation procedure from

Witten and Tibshirani (2010) and Arias-Castro and Pu (2017). More specifically,

the simulation was designed as follows: (1) the number of clusters K was either

3, 5, or 30; (2) the number of observations per cluster was 50; (3) the number of

irrelevant variables V took one of the following four values: 5, 50, 250, and 1000;

(4) the number of signaling variables (i.e., J −V ) was 50 and (5) the distance of

centroids for each variable between neighboring clusters ∆µ equaled one of the

following four values: 0.6, 0.7, 0.8, 1. A fully crossed design was used, resulting in

3×1×4×1×4 = 48 conditions.

To generate the data, each observation was assigned to one of the K clusters

such that all clusters were of equal size. Then, irrelevant variables were generated

by drawing from the standard normal distribution. The responses on the signal-

ing variables were sampled independently for each cluster from a normal distri-

bution with a cluster-specific mean and a standard deviation of 1. The cluster-

specific mean values were determined such that the grand mean calculated over

all clusters was 0 while differences in neighboring clusters were fixed at ∆µ. For

example, when∆µ equaled 0.6, the cluster-specific mean values of the three clus-

ters for each variable were respectively -0.6, 0, and 0.6. Obviously, a smaller ∆µ

corresponds to closer cluster centroids, and thus results in a more difficult task

to recover the clusters.

For each condition, 40 data sets were generated. Therefore, a total of 1920

data sets were generated and analyzed by CKM, SAS, and SKM. Note that, SKM

4Note that, for SKM, we also tried in a small-scale simulation to determine the hyperparameter
by maximizing the Gap statistic; however, the results of the simulation were more in favor of the
selection with the 1SE rule.
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was eventually dropped for the data sets generated in the conditions with 30 clus-

ters because of its slow computation.

Following Chipman and Tibshirani (2006), Witten and Tibshirani (2010), and

Arias-Castro and Pu (2017), we used classification error (CE) as the evaluation

criterion of cluster recovery. By reporting CE, we hope to provide future research

with a consistent point of comparison, which is particularly beneficial for stud-

ies where different methods are synchronized and (or) compared. CE indicates

the similarity between the true cluster assignment ctrue and the assignment cest

resulting from a particular clustering algorithm. To illustrate, we introduce the

following notation: 1c(i ,i ′) equals 1 when observations i and i ′ belong to the same

cluster and 0 when they do not. Then, CE is defined as follows,

C E =
∑

i>i ′ |1ctrue(i ,i ′) −1cest(i ,i ′)|
N (N −1)/2

, (2.13)

where N is the total number of observations.

CE in Equation (2.13) takes values between 0 and 1; CE=0 indicates a perfect

agreement between ctrue and cest while a higher value indicates a larger classifi-

cation error and thus less agreement between these two partitions.

Furthermore, to quantify how well an algorithm retrieved the signaling vari-

ables, we computed the proportion of true signaling variables that were success-

fully identified by the algorithm relative to the total number of signaling variables

(e.g., if 40 of the 50 signaling variables have been identified, the success rate will

be 80%). Hence, a larger proportion suggests a better performance of the algo-

rithm in detecting the signaling variables.

The relative performance of CKM, SAS, and SKM in recovering the clusters

are visualized in Figure 2.1. Figures 2.1A and 2.1B shows that, when K equaled 3

or 5, CKM and SAS recovered the clusters equally well (for both methods, average

CE = .012 when K = 3; average CE = .014 when K = 5) and both better than SKM

(average CE = .025 when K = 3; average CE = .021 when K = 5). Furthermore,

CKM (average CE = .092) outperformed SAS (average CE = .109) when K = 30

(see Figure 2.1C; note that, as discussed earlier, SKM was dropped in these con-

ditions), i.e., in the presence of a more complex cluster structure.

Next, we examined how well the three methods were able to identify the set

of signaling variables. We found that the task of identifying the set of signaling
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Figure 2.1: A comparison of different clustering methods for cluster recovery
when both the number of clusters K and signaling variables V are given. Panel
A: K = 3; Panel B: K = 5; Panel C: K = 30.

variables proved to be relatively easy given the true values of both S and K : all

three methods were able to identify the set of signaling variables with a success

rate of at least 99%.

2.3.2. SIMULATION STUDY 2

Our objective in simulation study 2 was to further examine the relative perfor-

mance of CKM, compared to SAS and SKM, in recovering clusters and the status

of variables when only K was given; hence, V as well as the subset of signal-

ing variables had to be determined by the algorithm. Furthermore, we have also

added (standard) KM - the most commonly used algorithm that does not allow

for variable selection - to the comparison and evaluated the relative performance

of all four methods in terms of cluster recovery. The settings and the data gener-

ation procedure were identical to those used in simulation study 1.

In simulation study 2, again a total of 48 conditions were manipulated with

40 data sets each. This resulted in a total of 1920 data sets. We assessed the

performances of the four clustering algorithms primarily based on the recovery
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of clusters (indicated by CE) and the number of variables identified as signaling

variables. In addition, we also recorded and compared the average running time

for each of the methods.

Figures 2.2A and 2.2B visualize the extent of cluster recovery by the differ-

ent methods, when K equaled 3 and 5, respectively. Because the two subplots

present a similar pattern of the relative performance of the four methods (CKM,

SAS, SKM, and KM), we discuss the combined results here. Averaged over all

conditions, CKM was the winner with an average CE of .013, followed by SAS (av-

erage CE = .016) and SKM (average CE = .023). KM, on average, produced cluster

partitions with a CE equaling .10. With regard to the effect of ∆µ, the largest ad-

vantage of CKM (average CE = .035) over the other four algorithms (for SAS, av-

erage CE = .045; for SKM, average CE = .057; for KM, average CE = .16) was found

when ∆µ= .6 (i.e., the smallest distance of centroids between neighboring clus-

ters). We also examined how well these methods recovered clusters with respect

to the different numbers of irrelevant variables (i.e., V ). In accordance with our

expectation, the three methods performing simultaneous variable selection and

clustering (i.e., CKM, SAS, and SKM; for CKM, average CE = .014; for SAS, average

CE = .021; for SKM, average CE = .024) recovered the clusters considerably better

than KM (average CE = .26) in the presence of an exceedingly large proportion of

irrelevant variables (i.e. V = 1000). Last, in accordance to our expectation, the

performance advantage of CKM over SAS and KM in terms of cluster recovery

was greatest when K = 30 (see Figure 2.2C; for CKM, average CE = .08, for SAS,

average CE = .30, for KM, average CE = .70). This again illustrates that CKM is

particularly powerful to deal with a complex cluster structure. When K = 30 and

V = 1000, the difference in cluster recovery from the three methods is striking:

the average CEs for CKM, SAS, and KM were .09, .28, and .77, respectively.

We further evaluated how well the algorithms identified the set of 50 signal-

ing variables when the correct number of irrelevant variables (i.e., V ) was not

given. Since KM is not able to explicitly single out signaling variables, the com-

parison only concerns CKM, SAS, and SKM - note that the true value was always

50. The results, plotted in Figure 2.3, show that CKM was the best-performing

method in terms of successful variable selection, since the number of variables

selected by CKM was consistently close to 50, even with V = 1000. In contrast,
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Figure 2.2: A comparison of different clustering methods for cluster recovery
when only the number of clusters K is given. Panel A: K = 3; Panel B: K = 5; Panel
C: K = 30.

with a larger number of irrelevant variables (i.e., V = 250 or 1000), both SAS and

SKM experienced difficulty to recover the exact 50 signaling variables. Expressed

in numbers, CKM recovered the exact 50 variables in 92.7 % of the cases; for SAS

and SKM, this percentage of successful recoveries was only 62.9 % and 30 %, re-

spectively.

Last, we examined the average execution time for each of the clustering meth-

ods (here, we only consider K = 3 and K = 5, because these are the typical sce-

narios behavioral researchers commonly encounter). With an average execution

time of .16 seconds and 4.28 seconds, respectively, KM and SAS were the two

fastest algorithms. CKM ranked third among all four methods, taking an average

of 43.5 seconds to analyze a data set. In our opinion, its speed is acceptable for

most empirical studies. SKM, with an average of 293.6 seconds, was a lot slower

than the other three algorithms.
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Figure 2.3: A comparison of different clustering methods for variable selection
(true number of signaling variables = 50). Panel A: K = 3; Panel B: K = 5; Panel C:
K = 30.

2.3.3. SIMULATION STUDY 3

Our major objective in simulation study 3 was to evaluate and compare differ-

ent model selection procedures for deterministic clustering algorithms that per-

form simultaneous clustering and variable selection (e.g., CKM, SAS, and SKM).

To achieve this, we examined the relative accuracy of selecting K with regard to

(1) the set of variables used (i.e., either relying on a stable set of variables that

were selected consistently across all possible numbers of clusters or the full set

of variables), and (2) the selection criteria for determining the number of clus-

ters.

A key interest in the current comparison was to compare our novel strategy

that pre-selected a stable set of variables (see the previous section) with the tra-

ditional strategy that involved all variables. Our expectation was that, with a rela-

tively large proportion of irrelevant variables, the traditional strategy considered

too much noisy information and therefore resulted in a less accurate selection

compared to our novel strategy. Besides, we have also implemented and tested

another strategy - called the local selection strategy. This strategy first selects V
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conditional upon each possible value of K with the Gap(V ) statistic and then

selects K that maximizes the associated Gap(V ) statistic. However, in all condi-

tions, this strategy consistently selected the smallest value of K (i.e., 2). Because

of the poor performance of this strategy, we do not report its results any further

in the current study.

In the current study, we considered some of the most popular model se-

lection criteria, namely the “KL Index” (Krzanowski & Lai, 1988), the “DIndex”

(Lebart et al., 1995), and two versions of the Gap statistics (Tibshirani et al., 2001),

and examined which selection criteria determined K with the highest accuracy.

Specifically, in the current study, the following two Gap-based criteria were in-

vestigated: 1) selecting K that corresponded to the global maximum of the Gap

statistic, called “globalGap”; and 2) choosing K that was associated to the first

local maximal value of the Gap statistic, called “firstGap”. While the first one was

proposed in Tibshirani et al. (2001), the second one was introduced in Maechler

et al. (2012) in developing the well-known R package Cluster.

Furthermore, in the current study, to evaluate the generalizability with re-

spect to the preferred selection strategy and selection criterion, we replicated our

findings with both CKM and SAS (SKM was not involved because, as illustrated

above, it was relatively slow compared to CKM and SAS).

To summarize, in simulation study 3, we tested the accuracy of selecting K

with respect to three factors: (1) the selection strategy (i.e., the proposed strategy

that utilizes a stable set of variables versus and a strategy that utilizes the full set

of variables), (2) the selection criterion (i.e., “globalGap” v.s. “firstGap” v.s. “KL

Index” v.s. “DIndex”), and (3) the clustering algorithm (i.e., CKM v.s. SAS).

A number of factors in the data generation process were systematically ma-

nipulated. These were largely identical to those of the first two simulation stud-

ies, yet, with the following exception. Namely, the varying number of clusters K

was one of three values: 3, 5, or 15. Again, in total 3×4×4 = 48 conditions were

manipulated. For each of the conditions, again 40 replicate data sets were gener-

ated, leading to a total of 1920 data sets. For each data set, K was selected among

models with 2 up to 10 clusters when K = 3 or K = 5 and among models with 11
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up to 19 clusters when K = 15. 5 Specifically, three model selection strategies (i.e.,

utilizing the stable set of variables obtained from (1) CKM, or (2) SAS, and (3) uti-

lizing the full set of variables) combined with four model selection criteria (i.e.,

(1)“globalGap”, (2) “firstGap”, (3)“KL Index”, and (4) “DIndex”) were employed to

analyze each of the data sets. That is, for each data set, we applied a total of 12

different ways for selecting the number of clusters K .

Table 2.1 presents the results of simulation study 3. Most importantly, the

novel selection strategy for selecting the number of clusters that relies on the

stable set of variables led to an equal or higher success rate in selecting the true

number of clusters, across all criteria and conditions, and both for CKM and for

SAS, in comparison with using the full set of variables. This advantage was espe-

cially pertinent in the presence of a large proportion of irrelevant variables (i.e.

when V = 250 or V = 1000) where these irrelevant variables likely hampered the

recovery of clusters and (or) in the presence of a large number of clusters (i.e.

when K = 15). By first filtering out the irrelevant variables and only retaining the

signaling variables that clearly separate the clusters, the stable set of variables

offered a more defined structure for model selection, even in the presence of a

large number of clusters. In fact, the proposed model selection strategy, when

coupled with the selection criteria “globalGap” or “firstGap” and the CKM or SAS

algorithm, achieved a remarkable 100% recovery in all conditions examined.

5While the range for selecting K was limited by the scope of the simulations, we encourage applied
researchers to consider a wide range of candidate values.
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Table 2.1: Percentage of correct recovery of the number of clusters for 12 different strategies to determine the number of
clusters

K V Full set of Variables Stable set obtained with SAS Stable set obtained with CKM

gp fp KL Dindex gp fp KL Dindex gp fp KL Dindex

3 5 100% 100% 87.5% 94.4% 100% 100% 91.3% 100% 100% 100% 87.5% 100%

50 66.3 % 96.9% 67.5% 100% 100% 100% 90.6% 100% 100% 100% 88.8% 100%

3 250 32.5% 75% 6.3% 61.3% 100% 100% 99.4% 82.5% 100% 100% 83.8% 100%

1000 6.3% 70.6% 0% 31.3% 100% 100% 99.4% 82.5% 100% 100% 83.8% 100%

5 5 58.1% 60.6% 81.9% 96.9% 100% 100% 88.1% 97.5% 100% 100% 75.6% 97.5%

50 73.1% 95.6% 0% 19.4% 100% 100% 81.3% 93.8% 100% 100% 81.3% 93.8%

5 250 27.5% 51.9% 0% 0% 100% 100% 56.9% 80.6% 100% 100% 79.4% 91.3%

1000 0% 0% 0% 0% 100% 100% 85.6% 89.4% 100% 100% 85.6% 90%

15 5 0% 0% 19.4% 0% 100% 100% 13.1% 48.1% 100% 100% 0.6% 7.5%

50 0% 0% 40.6% 40.6% 100% 100% 12.5% 26.3% 100% 100% 0% 6.3%

15 250 0% 0% 0% 0% 100% 100% 12.5% 26.3% 100% 100% 0% 6.3%

1000 0% 0% 0% 0% 100% 100% 16.9% 10.6% 100% 100% 0% 5%

Note. Stable set refers to the proposed approach where only the stable set of signaling variables are used for selecting the

number of clusters; full set refers to the conventional approach where all variables are used. gp = "globalGap", fp = "firstGap"

(see the text for a detailed explanation of the two statistics).
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2.3.4. SUMMARY OF THE SIMULATION STUDIES

In three simulation studies, we evaluated (1) the relative performance of CKM

with respect to SAS, SKM, and KM in cluster recovery and the selection of sig-

naling variables with (simulation study 1) and without (simulation study 2) a

pre-determined number of irrelevant variables, and (2) the accuracy of select-

ing the number of clusters for all possible combinations of three variable se-

lection strategies and four indices for determining the number of clusters. Our

main findings were as follows: first, compared to the three competing methods

- namely SAS, SKM, and KM, CKM was the winner in terms of cluster recovery

across various conditions, with or without model selection. Second, in compari-

son to the other methods that are also capable of identifying signaling variables

(i.e., SAS and SKM), CKM was the most accurate one when the number of irrel-

evant variables was unknown and the cluster structure was complex. Third, SAS

enjoyed the shortest execution time in comparison to CKM and SKM. Fourth, we

found that, across all conditions, the proposed model selection strategy that uti-

lizes the stable set of variables resulted in better accuracy in selecting the number

of clusters compared to the traditional strategy that utilizes the full set of vari-

ables. Finally, the best model selection procedure consisted of the combination

of the proposed model selection strategy that relies on the stable set of signaling

variables and the index “globalGap” or “firstGap”. In our simulation setup, this

procedure led to the perfect performance of CKM and SAS.

2.4. APPLICATION

Here, we demonstrate the usefulness of CKM in analyzing an empirical data set.

We consider gene expression data of 13 autistic subjects and 14 healthy subjects

that are publicly available from the gene expression omnibus (GEO) with acces-

sion number GSE73296. For each subject, the transcription rates of 43893 probes

were analyzed. Therefore, the data used in our analyses includes a total of 27

rows (subjects) and 43893 columns (variables). According to Nishimura et al.

6The full data set as well as the associated material could be extracted from the following address:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7329. While the original data set con-
tained a total of 30 subjects, we were informed that three of the subjects (with series number
GSM176615, GSM176589, and GSM176586) were not correctly stored in the data set and were
therefore excluded from the current analysis
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(2007), only a small number of probes are associated with autism - in their re-

search, the authors selected a total of 293 probes for which the Analysis of Vari-

ance (ANOVA) tests resulted in a false discovery rate below a threshold of 5%.

Before the analysis, we pre-processed the data set such that each of the vari-

ables was mean-centered and scaled to unit sum-of-squares. Our first set of anal-

yses was based on the full set of 43893 variables. More specifically, CKM, SAS,

and KM were applied to the entire data set with K specified at 2 - to represent

the autistic group and the control group. We did not try out a larger number

of clusters considering the very small sample size. The three methods (i.e., CKM,

KM, and SAS) all resulted in the same cluster partition: the first cluster contained

the subjects with the indices 5, 6, 9, 15, 16, and 27 while the second cluster con-

tained the remaining 21 subjects. Note that this partition was different from the

assumed partition separating the patients (with the indices 1-14) and the control

group (with the indices 15-27). The disparity between the known partition and

the obtained partition is probably due to the presence of other biological mech-

anisms. To support this hypothesis, we further inspected the probes selected

by the algorithms. While CKM selected a total of 958 probes, SAS selected 1238

probes. We used the free functional annotation tool DAVID (Bioinformatics Re-

sources Version 6.8; Huang et al., 2007) to explore if the set of signaling variables

identified by CKM indeed corresponds to any meaningful biological processes.

The annotation picked up three groups of genes that were related to pathways

that play an important role in three different types of disease: 20 genes were in-

volved in the pathway of Parkinson’s Disease; 22 in the pathway of Alzheimer’s

Disease; 22 in the pathway of Huntington’s Disease. Given that the autistic sub-

jects had a single gene Mendelian disorder (either a 15q11-q13 duplication or a

fragile X mutation) and that the control subjects were composed of non-autistic

siblings, it is not unlikely that a grouping structure is present in which autistic

and control subjects are mixed. Figure 2.4 offers a visualization of cluster-specific

centroids (after pre-processing) of all 958 signaling probes, with the line linking

the two centroids of the same variable for the two clusters. Clearly, the two clus-

ters showed distinctive response patterns: while a group of variables were asso-

ciated with positive values in Cluster 1 and negative values in Cluster 2, the other

group of variables showed a directly opposite pattern. We stress that the current
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Figure 2.4: The cluster-specific centroids of the probes that were involved in key
disease-related pathways

analysis should only be regarded as an exploratory analysis and further studies

are needed to confirm the relevance of the two obtained clusters and their dis-

tinct genetic profiles.

We then conducted a second set of analyses where we used a subset of vari-

ables from the original data set. The subset consisted of two types of variables:

the 293 signaling variables that have a significant difference in means between

the autistic group and the control group and 1707 variables that were chosen

randomly from the remaining variables (the new data set thereby involved a to-

tal of 2000 variables). To determine the signaling variables, we conducted a total

of 43893 sets of linear regressions that regressed the transcription rate of each

probe on the known partition of subjects with or without autism, and chose the

293 variables with the highest values of regression coefficients. Compared to the

previous cluster analysis, we were more certain that the primary factor that di-

vided all subjects was whether they were autistic or not. Consequently, we were

able to evaluate the empirical performance of the clustering methods by examin-

ing to what extent a method successfully recovered the cluster partition and the

set of signaling variables. CKM completed the task perfectly as it identified the

exact 293 variables that were pre-defined as signaling variables. SAS also identi-

fied all of the 293 pre-defined signaling variables; however, in addition to this, it

also erroneously picked 23 of the pre-defined irrelevant variables as if they were

signaling variables.
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To summarize, although the pre-existing groups were not recovered when

the full data set was used, probably because of the existence of other biological

processes that divided the subjects, the cluster structure was successfully recov-

ered by CKM in a chosen subset of the data (with a total of 2000 probes). In

terms of the accuracy of variable selection, in accordance with our findings in

the simulation studies, CKM clearly outperformed SAS as it recovered the subset

of signaling variables perfectly.

2.5. GENERAL DISCUSSION

Although behavioral sciences have a long tradition of operating in a “theory-

driven way” and hence typically work with a small number of carefully selected

and designed variables, they are now opening up their door to an interdisci-

plinary, data-rich approach where data sets involving many variables are increas-

ingly common (Gil de Zuniga & Diehl, 2017). The growing availability of these

data sets and the adoption of a data-driven approach could largely contribute to

exploratory research (Fan et al., 2014; Yuan, Kroon, et al., 2021). In the context of

cluster analysis, for example, the application of data-driven approaches to high-

dimensional data could potentially lead to the discovery of novel clusters that

are not detectable from a traditional examination (Yuan, De Roover, Dufner, et

al., 2021). Yet, a unique challenge of this approach pertains to retaining only cru-

cial variables that truly separate the clusters and filter out irrelevant variables.

Successfully identifying these signaling variables is beneficial to the recovery as

well as the interpretation of the underlying clusters.

To address this challenge and facilitate data exploration with high-dimensional

data sets, several methods - for example, Sparse k-means (SKM) and Sparse Al-

ternate Sum (SAS) - have been proposed that perform simultaneous clustering

and variable selection. In the current study, we contributed to this line of re-

search in two important ways. First, we presented a novel method, called Car-

dinality K -means, or CKM, that exploits the connection between PCA and KM

to obtain, in a computationally efficient way, good starting values for a K-means

(KM) procedure with variable selection. Our specific contribution is to introduce

a special variant of the sparse principal component analysis (SPCA) with a car-

dinality constraint on the number of variables. As a result, CKM is a method
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that is similar to SAS, but with a much better initiation of the parameter val-

ues. Through extensive simulations that included a number of important fac-

tors (e.g., the number of clusters, the proportion of irrelevant variables, and the

distance between the centroids of adjacent clusters), we confirmed that CKM

outperformed the other clustering methods (i.e., SAS, SKM, and KM) in terms of

cluster recovery, especially in the presence of a large number of irrelevant vari-

ables. Furthermore, among the three methods with simultaneous variable se-

lection (i.e., SAS, SKM, and CKM), CKM enjoyed the highest success rate in the

identification of signaling variables. Compared to its predecessors SKM and SAS,

CKM not only recovers clusters better but also offers a more structured and flex-

ible approach to simultaneous clustering and variable selection. CKM uses the

cardinality constraint, which offers at least the following two advantages over the

l1 penalty used in SKM. First, the application of the cardinality constraint (but

not the l1 penalty) allows users to have exact control over the number of signal-

ing variables (Guerra-Urzola et al., 2021). This option is particularly helpful when

a pre-specified number of signaling variables is desired in certain applications.

Second, the l1 penalty has long been criticized as suboptimal when the primary

task is variable selection, and in such tasks, regression analysis with an l1 penalty

under-performed that with a cardinality constraint (e.g., Bertsimas et al., 2016).

Moreover, thanks to the structured SPCA step, CKM can be easily extended to ac-

count for different types of analyses, which is not possible with SAS. For example,

a researcher may want to find a specific structure of 4 clusters in which irrelevant

variables only pertain to 2 clusters, while for the other 2 clusters, all variables are

considered signaling variables. To accommodate this structure, in the first step

where SPCA is performed, the cardinality constraint can be imposed for only 2

columns of the loading matrix. Furthermore, in the second step where the model

parameters of CKM are iteratively updated, the loss function can be adjusted to

reflect this assumption.

Another important contribution to the literature is that we proposed a novel

model selection strategy to determine the number of clusters K . The proposed

strategy adopts a three-step procedure that first applies a simultaneous cluster-

ing and variable selection algorithm (e.g., CKM, SAS, or SKM) to identify the most

stable set of variables, i.e., those consistently identified as signaling variables
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given any of the considered values of K , and then rely on this subset of variables

to select the optimal value of K . Through simulation study 3, the proposed strat-

egy - using either SAS or CKM to extract the stable set of variables - recovered K

more accurately than the traditional strategy that selects K based on the full set

of variables. Furthermore, we also found that, among the four evaluated model

selection criteria (i.e., “globalGap”, “firstGap”, “KL Index”, and “DIndex”), the two

criteria developed from the Gap statistic (Tibshirani et al., 2001) recovered K with

the highest accuracy. Overall, our study indicated that the preferred procedure of

selecting K consists of two steps: (1) apply either CKM or SAS for each possible

value of K and identify a stable set of variables that are consistently estimated

as signaling variables; (2) determine K based on the stable set of variables with

either “globalGap” or “firstGap”.

To conclude, We strongly advocate the use of a simultaneous variable selec-

tion and clustering approach (e.g., CKM, SAS, and SKM) when the data contains

a large number of variables and (or) it is desirable to pick up a subset of the most

important variables - e.g., for the purpose of data exploration. When choosing

between CKM, SAS, and SKM, according to the aforementioned results, we rec-

ommend the application of CKM when the primary objective is to recover the

clusters and signaling variables as much as possible. When speed is important

(e.g., in dealing with streaming data), however, SAS is the most desirable method.

Last, the selection of the number of clusters is preferably based on a stable set of

signaling variables that partial out irrelevant variables as much as possible.

We see several interesting future directions for CKM. First, in applications,

the underlying cluster structure may be more complex than those generated in

the simulations. Here, we discuss two scenarios that researchers may encounter

and briefly elaborate on how CKM can be used in both scenarios. Consider a hy-

pothetical data set with 200 variables and 6 clusters. In the first scenario, there

is only one way of partitioning subjects, and different subsets of clusters are sep-

arated by different subsets of variables (e.g., the first 50 variables are relevant to

Cluster 1-3 but not to Cluster 4-6, the last 50 are relevant to Cluster 4-6 but not

to Cluster 1-3, and the other 100 variables are completely irrelevant to all clus-

ters). When dealing with this data set, we expect CKM to successfully recover

the 6 clusters and select variables 1-50 and 151-200 as signaling variables. Af-



2.5. GENERAL DISCUSSION

2

45

ter retrieving the full set of signaling variables, users can then inspect the cen-

troids of these variables for the 6 clusters to discover which subsets of variables

are relevant to which subsets of clusters. In the second scenario, completely dif-

ferent partitions (i.e., with hardly any agreement between the two partitions) of

the subjects pertain to different subsets of variables. In our hypothetical data set

with 200 variables, all subjects may be partitioned into 6 clusters in two different

ways: the first partition is driven by the first 50 variables, the second is driven by

the last 50 variables, and the remaining 100 variables are once again irrelevant.

To account for this scenario, users of CKM can follow an iterative procedure: after

each step of identifying clusters and selecting signaling variables, the algorithm

proceeds to apply CKM to the designated irrelevant variables. To prevent over-

fitting (i.e., finding clusters and associated signaling variables that are caused by

noise only), after each step, theoretical knowledge can be used to confirm the

clusters while resampling methods – e.g., bootstrapping and permutation test -

can be applied to examine the stability of these clusters. We encourage future

research to systematically examine the performance of these strategies in vari-

ous applications. Second, future studies could investigate how different types of

initialization affect the results of CKM. A notable limitation of the current simula-

tion study is that, when initializing the alternating procedure for estimating CKM

solutions (i.e., Step 2), we utilized only one rational start, estimated from a pro-

cedure inspired by USLPCA, yet we did not consider a multi-start procedure that

employs multiple random starts. However, we would also like to point out that,

according to Xu et al. (2015), a PCA-guided rational start likely yields comparable

performance as a multi-start procedure when estimating KM results. Third, cur-

rently, CKM is only able to deal with continuous data with no missing responses.

In future research, different imputation methods could be evaluated and com-

pared, resulting in a preferred pre-processing scheme for a CKM analysis. More-

over, an extension of CKM can be developed to tackle mixed types of data (i.e., a

combination of nominal, ordinal, and continuous variables).



APPENDICES

2.A. AN ALTERNATIVE FORMULATION OF KM
In this section, our goal is to illustrate that the objective function of a KM anal-

ysis could be re-formulated as argmaxH(Tr H′XX′H), subject to H′H = Ik and an

orthogonality constraint imposed on H.

First, we acknowledge that Equation (2.1) could be re-written in

argminC

K∑
k=1

∑
i∈C−1(k)

||xi −mk ||22 = argminC(
N∑

i=1
||xi||22 −

K∑
k=1

mk

∑
i∈C−1(k)

(2xi −mk )′)

= argminC(
N∑

i=1
||xi ||22 −

K∑
k=1

nk mk mk ′).

(2.14)

Per Equation (2.3), mk in Equation (2.14) could be further replaced by 1p
nk

h′
k X,

resulting in

argminC(
N∑

i=1
||xi ||22 −

K∑
k=1

nk mk mk ′) = argminH(
N∑

i=1

J∑
j=1

x2
i j −

K∑
k=1

h′
k XX′hk )

= argminH(||X||22 −Tr H′XX′H).

(2.15)

The last part of the equation holds because of the orthogonality of H.

2.B. THE EQUIVALENCE OF THE TWO OPTIMIZATION FORMU-

LATIONS THAT CONCERN KM WITH IRRELEVANT VARIABLES

In the current section, we discuss the equivalence between Equation (2.7) and

Equation (2.10).
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We apply the equivalence of Equation (2.6) and Equation (2.5) in Equation

(2.9) and obtain

argmaxĤ,gTr Ĥ′X−gX−g
′Ĥ ⇔ argminĤ,P,g||X−g − ĤP′

−g||22.

Therefore, Equation (2.7) could be reformulated in

argming||Xg||22 +argminĤ,P,g||X−g − ĤP′
−g||22 ⇔ argminĤ,P||X− ĤP′||22

where P contains V rows of zero entries.

2.C. PROOF FOR PROCEDURES TO UPDATE Ĥ AND P
In the current section, we provide detail derivations to support Algorithm 1. We

first show the optimization problem argminĤ||X− ĤP′||22 subject to Ĥ′Ĥ = I has

the solution

Ĥ = UV′

where U and V are obtained from the SVD of XP.

We rewrite the optimization in

h(Ĥ) = ||X− ĤP′||22
= tr PĤ′ĤP′+ tr X′X−2tr XPĤ′

= tr PP′+X′X−2tr Ĥ′XP.

Therefore, the minimization problem is equivalent to the maximization prob-

lem of tr Ĥ′XP subject to Ĥ′Ĥ = I. Such a maximization problem can be ad-

dressed with the Kristof Theorem (for a detailed description and proof of the

Kristof Theorem, please refer to ten Berge, 1993). More specifically, we realize
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tr Ĥ′XP could be rephrased in

tr Ĥ′XP = tr Ĥ′UDV′

= tr V′Ĥ′UD

= tr GD,

where XP = UDV′ represents the SVD of XP.

Since G = V′Ĥ′U and all of V, Ĥ, U are sub-orthonormal matrices (i.e. they

can be completed to orthonormal matrices), G is also a sub-orthonormal matrix.

Therefore, according to the Kristof Theorem, tr GD ≤ tr D, and the maxima is

reached when V′Ĥ′U = I. Given the orthonormality of both U and V, Ĥ = UV′.
Now consider the optimization problem argminP||X− ĤP′||22 subject to the

constraint that V rows in loading matrix P are exact zeros. The solution of P is

obtained in two steps: (1) calculate P0 = X′Ĥ and (2) impose zeros on the V rows

of P0 whose sum-of-squares are smallest.

We re-write the optimization problem in

h(P) = ||X− ĤP′||22
= tr X′X+ tr PĤ′ĤP′−2tr PĤ′X

=Const .+ tr P′P−2tr PW

=Const .+
J∑

j=1

K∑
k=1

p j k −2
J∑

j=1

K∑
k=1

p j k w j k

=
J∑

j=1

K∑
k=1

(p j k −w j k )2 −
J∑

j=1

K∑
k=1

w2
j k

=
J∑

j=1
(

K∑
k=1

(p j k −w j k )2)+Const .−
J∑

j=1

K∑
k=1

w2
j k ,

where Const . = ||X||22 is a constant and W = X′Ĥ. Note that
∑J

j=1

∑K
k=1 w2

j k is also

a constant. Hereby, we derive the solution to P.
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A TUTORIAL ON SIMULTANEOUS

CLUSTERING AND VARIABLE

SELECTION

To accurately capture the heterogeneity of human behavior, psychologists frequently

apply cluster analysis to identify clusters with distinctive behavioral profiles. Clus-

ter analysis is especially useful when dealing with data-intensive studies involving

a large number of variables, as the wealth of information covered by these data sets

can potentially lead to important discoveries about hitherto unknown subtypes.

These applications, however, face two major challenges. To begin, these large-scale

data sets are likely to contain irrelevant variables that do not contribute to cluster

separation and, in the worst case, may even prevent the accurate recovery of clus-

ters. Second, to avoid false detection of clusters, the findings should be validated

with both theory-driven and data-driven methods, but guidance for this valida-

tion process is scarce. In response to these two challenges, this tutorial describes a

recently proposed method (Cardinality K-means) that allows simultaneous vari-

able selection and clustering, and discusses a framework for cluster validation.

This chapter is submitted for publication as Yuan, S., De Roover, K., Jaime Hermsdorf, & Van Deun,
K. (Revise and resubmit). A Tutorial on Simultaneous Clustering and Variable Selection Advances
in Methods and Practices in Psychological Science
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Moreover, the tutorial provides a step-by-step guide to conduct CKM analyses and

cluster validation using the R package CKM and ShinyApp ClusterViz. An illus-

trative example of clustering citizens based on their political opinions is presented

in detail, where annotated R code is also available.
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3.1. INTRODUCTION

Cluster analysis – partitioning subjects into (unobserved) clusters where every-

one in the same group shares similar profiles – is arguably one of the most im-

portant statistical techniques in many psychology disciplines, such as organiza-

tional psychology (e.g., M. Wang & Hanges, 2011), educational psychology (e.g.,

Hayenga & Corpus, 2010), personality and social psychology (e.g., Neumann et

al., 2020), and developmental psychology (e.g., Lonigan et al., 2018). However,

the most popular clustering techniques in psychological research (e.g., K-means

clustering, latent profile analysis, etc.,) are not fit for large data sets (e.g., > 100

variables; Groeneveld and Rumsfeld, 2016), despite the exponential growth in

the use of this type of data sets in many sub-domains of psychology (Harlow and

Oswald, 2016; Adjerid and Kelley, 2018; Mõttus et al., 2020; Putka et al., 2018).

Examples of such data sets include psychological data sets that contain novel

measures (e.g., genes, GPS trackers, digital footprints) or incorporate many po-

tentially important variables to capture the complex nature of the research ques-

tion under investigation (see Putka et al., 2018, p692). The reason why classical

clustering techniques are not fit for large data sets is that they rely on the strict

assumption that all variables partition the observations well (i.e., all variables

are relevant to cluster separation). Consequently, these techniques are unable to

filter out irrelevant variables that contribute little or nothing at all to the partition

of clusters. While screening out irrelevant variables is an important - yet always

neglected - aspect of cluster analysis in general (Steinley & Brusco, 2008a), this

task is particularly pertinent for large data sets and exploratory analyses, where

many irrelevant variables are expected (Waldherr et al., 2017). For example, when

one tries to identify clinical subtypes based on genetic phenotypes or brain ac-

tivation, it is hard to believe that all genes or brain signals play an active role in

separating these subtypes. Here, the data-driven elimination of irrelevant vari-

ables not only simplifies the interpretation of cluster results but also benefits the

task of cluster recovery, as these irrelevant variables likely obscure the true clus-

ter structure (Brudvig et al., 2019).

Several simultaneous clustering and variable selection techniques (referred

to as SCVS techniques hereafter) have been proposed for filtering out irrelevant

variables in a data-driven way. The usefulness of this type of techniques has
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been well documented in a recent psychiatric study (Y. Zhang et al., 2021). In

this study, two subtypes of post-traumatic stress disorder (PTSD) and major de-

pressive disorder (MDD) have been identified based on their distinct patterns

of functional connectivity (quantified by power envelope connectivity or PEC):

among the total of 3720 PEC features, the authors identified a large subset of ir-

relevant features that were of similar values in both subtypes (see P6 of the sup-

plementary material in Y. Zhang et al., 2021). Despite the proven usefulness of

SCVS techniques, they have been neglected by most psychological studies (c.f., Y.

Zhang et al., 2021; Gharani et al., 2021,Postareff et al., 2017). One probable reason

is that many early SCVS techniques were computationally prohibitive for large

data sets, as they built on comparing cluster solutions for an exceeding number

of variable subsets. Fortunately, employing different forms of recently-proposed

regularization methods (e.g., Kang et al., 2021) 1, some recently proposed SCVS

techniques (for reviews, see Bouveyron et al. (2019) and Raymaekers and Zamar

(2020)) are capable of achieving the dual goals of clustering and variable selec-

tion without excessive computational demands. 2.

This Tutorial offers a step-by-step guide for researchers who want to em-

ploy the SCVS techniques. The complete analytical process consists of five steps

roughly divided into three parts: data preprocessing, cluster analysis, and clus-

ter validation (see Figure 3.1 for a summary of the five steps). The cluster analy-

sis part is based on Cardinality K-means or CKM (Yuan et al., 2022), a recently

proposed technique that proved to outperform a number of related methods

(e.g., Sparse K-means; Witten and Tibshirani, 2010; Sparse Alternate Sums; Arias-

Castro and Pu, 2017), yet we note that the other parts of the analytical process are

model-agnostic and can be implemented with other SCVS techniques. The clus-

ter validation part discusses and illustrates a number of approaches to validate

1In recent years, the idea of regularization has been adopted by many genres of psychological
methods, including psychological networks (Epskamp & Fried, 2018), structural equation models
(Jacobucci et al., 2016), exploratory factor analysis (Chen, 2021).

2We note that clustering techniques dealing with continuous variables can generally be divided
into two categories: model-based clustering (e.g., latent profile analysis; Gibson, 1959) and non-
model-based clustering (e.g., K-means clustering; Steinley, 2006). A comparison of these two
techniques in psychological studies is provided in Steinley and Brusco, 2011b. The methods de-
tailed in our Tutorial use the K-means clustering framework, and we recommend the excellent
review provided in Bouveyron et al., 2019 to those readers interested in model-based SCVS tech-
niques
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cluster results. Drawn from a recently proposed cluster validation framework

(Ullmann et al., 2021), these approaches include (1) visual validation, (2) cluster

stability validation with bootstrapping (Hennig, 2007), and (3) cluster replica-

tion with a hold-out sample (i.e., splitting the original data set in two, using one

half for cluster analysis and the other half for cluster validation). Visual valida-

tion is prevalent in psychological studies (for reviews, see Henry et al. (2005) and

Clatworthy et al. (2005)), but the other two approaches are rarely applied. Our

Tutorial aims to exemplify and promote the use of these other two approaches.

To facilitate visual validation on cluster results, we have developed a ShinyApp

ClusterViz, with which many types of clustering plots can be generated with

limited input from the user. Importantly, the concepts and processes of clus-

ter validation as well as the associated software are generally applicable to many

clustering methods. To offer hands-on guidance on the five steps of analysis out-

lined in Figure 3.1, this Tutorial makes use of data sets on political attitudes col-

lected by CentERdata (Tilburg University, the Netherlands) with the R package

CKM and the ShinyApp ClusterViz.

3.2. THE EMPIRICAL EXAMPLE

3.2.1. DISCLOSURES

This tutorial provides two tools to (1) estimate and validate clusters in the pres-

ence of a large number of variables with CKM and (2) visualize clusters with a

few mouse clicks. The first one is implemented in the R package CKM (Yuan et al.,

2022) and is available at https://github.com/syuanuvt/CKM. The second one

is implemented as a Shiny app and is available at https://syuan.shinyapps.io/

ClusterViz/.

3.2.2. BACKGROUND AND DATA DESCRIPTION

In this case study, we aimed to identify clusters of Dutch citizens with different

profiles of political attitudes. In the last two decades, with the rise of the radical

right (Silva, 2018), Dutch society has become more polarized than ever before

https://github.com/syuanuvt/CKM
 https://syuan.shinyapps.io/ClusterViz/
 https://syuan.shinyapps.io/ClusterViz/
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Figure 3.1: The workflow of the cluster analysis presented in the tutorial
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(Berning & Schlueter, 2016; Silva, 2018) 3. Despite the obvious significance of

understanding how and to what extent clusters of citizens hold different politi-

cal attitudes, empirical studies are unfortunately scarce and cover only a limited

range of political attitudes (e.g., attitudes towards refugees and migrants; Albada

et al., 2021). Here, using a nationally representative sample of Dutch citizens,

we extended previous research on opinion profiling by examining (1) the most

relevant political attitudes that partition citizens into different clusters and (2)

the distinctive response patterns of these clusters. We used a data set from the

Longitudinal Internet Studies for the Social Sciences (LISS) panel, collected by

CentERdata (Tilburg University, the Netherlands) between December 2020 and

March 2021. Only the 5542 observations with non-missing responses on the total

of 112 items were retained in the current analysis 4.

3.2.3. STEP 1: PACKAGE SETUP AND DATA PRE-PROCESSING

The package CKM can be downloaded and installed from the aforementioned

website with the following code.

#download and i n s t a l l the dependencies of the CKM package

i n s t a l l . packages ( " RSpectra " )

i n s t a l l . packages ( " c l u s t e r " )

i n s t a l l . packages ( " fpc " )

i n s t a l l . packages ( "NbClust" )

i n s t a l l . packages ( " ggplot2 " )

#download and i n s t a l l the CKM package and load the package

onto the current workpath

remotes : : i n s t a l l _github ( "syuanuvt /CKM" )

l ibrary (CKM)

3In the Netherlands, the far-right parties such as Partij Voor de Vrijheid (PVV; Party for Freedom)
and Forum voor Democratie (FVD; Forum for Democracy) attracted a substantial amount of votes
(about 25%) in the recent general elections

4We note that many SCVS techniques, for example, CKM used in the current analysis, cannot
handle missing responses. Except resorting to a subset consisting of all complete responses, re-
searchers can deal with missing values by ascribing imputation methods such as multiple impu-
tation (Rubin, 2004) before applying SCVS techniques.
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Prior to data analysis, a relevant - yet independent - data set should be pre-

pared for replication analysis (hereafter, we term the data set used in the original

analysis as the discovery set and the one used in the replication analysis as the

replication set). The replication analysis is essential for highly data-driven meth-

ods, such as cluster analysis, since it effectively prevents overly optimistic results

(Ullmann et al., 2021). Preferably, the replication analysis would be based on

separate data sets; yet, in many research practices, it is very difficult, if not com-

pletely impossible, to secure such a separate data set that is independent of but

closely related to the original data set. The alternative is to randomly partition

the original data set into two equally sized data sets by rows, with one serving as

the discovery set while the other as the replication set 5. Upon the creation of the

discovery and replication data sets, the two data sets are further preprocessed

by mean-centering and standardization. Overall, the re-sampling and prepro-

cessing can be implemented with the following code (note that the discovery set

train.st will only be used in Steps 2-4 and the replication set test.st will only

be used in Step 5).

t r a i n . indices <− sample ( 1 : nrow( l i s s ) ,nrow( l i s s ) / 2)

l i s s . t r a i n <− l i s s [ t r a i n . indices , ]

l i s s . t e s t <− l i s s [ − t r a i n . indices , ]

t r a i n . s t <− scale ( l i s s . t r a i n )

t e s t . s t <− scale ( l i s s . t e s t )

3.2.4. STEP 2: SELECTION OF THE NUMBER OF CLUSTERS

In the second step, the number of clusters is to be determined. Given the com-

plexity of selecting the optimal number of clusters (Jain, 2010), we advocate a

strategy that considers multiple well-established methods and makes a final de-

cision supported by the majority of these indices (see also Akhanli and Hennig,

5This way of dividing the original data set by rows is most appropriate when the aim of cluster
analysis is to identify clusters of the general population with distinct patterns of responses. This
is also the typical objective of most scientific studies. However, in applied settings, sometimes
the purpose of the analysis is to make statements about specific subjects in the original data set
(e.g., to classify all subjects into two categories of good performers and poor performers). In this
type of analysis, the discovery and replication sets can be created by dividing the original data
sets by columns.
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2020) 6. Currently, the package CKM employs a total of five methods, yet we ac-

knowledge that other methods can be considered as well. The five methods con-

sidered in the package are the Gap statistics (Tibshirani et al., 2001), the elbow

point method (Thorndike, 1953), the silhouette index (Rousseeuw, 1987), the

prediction strength (Tibshirani & Walther, 2005), and the bootstrapped cluster

instability index (Fang & Wang, 2012). These five methods were chosen because

they are among the best-performing ones and employ three different strategies

for determining the number of clusters. We now outline the basic and intuitive

principles of these five methods, and refer to the original work for a more detailed

description.

Being the computationally simplest, both the elbow point method and the

silhouette index determine the optimal number of clusters based exclusively on

the observed data set and are thus referred to as internal validation indices. The

elbow point method plots the between-cluster sum-of-squares as a function of

the number of clusters and identifies the optimal number of clusters as the turn-

ing point (also called the elbow point) where the curve turns from a steep in-

crease to a flat trend. The silhouette index essentially quantifies the difference

between the similarity of observations from the same cluster and that of obser-

vations from different clusters. A higher value of the silhouette index indicates

a stronger cluster pattern with cohesive and separated clusters; thus, the opti-

mal number of clusters is determined so that the silhouette index is maximized.

Notably, the silhouette index has been empirically proven to be the most accu-

rate method for selecting the number of clusters among more than 30 internal

validation indices (Arbelaitz et al., 2013). The next two methods, the Gap statis-

tic, and the prediction strength, bear the core premise that the optimal number

of clusters is the one in which the cluster pattern is the strongest. The strength

of the cluster pattern is defined quite differently according to the two methods.

The Gap statistic quantifies this strength as the extent to which cluster separa-

tion (as quantified by the within-cluster sum of squares) in the observed data set

differs from that in the reference data sets, which are derived from random per-

mutations of the observed data set per column. The prediction strength method

6This strategy, also referred to as the majority voting scheme in the machine learning literature,
has also been proposed in Charrad et al. (2014)
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partitions the observed data set into two halves and quantifies the similarity of

the clusters identified in both halves. In line with their definitions, higher values

of the Gap statistic and the prediction strength indicate stronger cluster patterns;

therefore, the optimal number of clusters is chosen corresponding to the largest

Gap statistic and prediction strength. Last, the bootstrapped cluster instability

index was developed based on the notion of cluster stability - the extent to which

the identified cluster patterns can be replicated on a bootstrapped replication of

the observed data set. Accordingly, the optimal number of clusters should max-

imize the stability of the cluster solution, quantified by the minimized value of

the bootstrapped cluster instability index.

Two major challenges have to be overcome before applying the above five

methods to determine the number of clusters. First, the set of irrelevant vari-

ables have to be filtered out as much as possible (Brudvig et al., 2019; Yuan et al.,

2022). Since the selection of signaling variables, as detailed in Step 3-4, in turn,

depends on the number of clusters, Yuan et al. (2022) proposed an approximate

strategy that chooses a small set of variables - coined stable variables - that are

designated as signaling variables regardless of the number of clusters. Here, CKM
implements this strategy that consists of the following steps: (1) determine the

range of possible cluster numbers, (2) identify the set of signaling variables for

each possible cluster number (see Step 3 for details), and (3) use the intersection

of the multiple sets derived from (2) as the set of stable variables.

The second challenge is to decide whether the single-cluster solution fits the

data well enough (Steinley and Brusco, 2011a). Of the five methods currently

implemented in CKM, only the Gap statistic is able to inform the choice between

1 and 2 clusters. Concretely, when the Gap statistic computed from a 2-cluster

solution is much larger than the one obtained from a single-cluster solution, we

can be convinced that the observed data set contains at least 2 clusters.

Taken all together, Step 2 can be further divided into two substeps. The first

substep involves identifying the set of stable variables and calculating the Gap

statistics to determine whether the observed data set contains at least two clus-

ters, whereas the second substep deploys the aforementioned five methods to

select the optimal number of clusters from a customized range. We now demon-

strate, with our case study, how the package CKM can be used to perform these
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two substeps. We start by defining the range of the potential number of clusters

to be between 1 and 10. The function CKMSelAll can then be used to determine

the stable set of variables and to compute the Gap statistic associated with each

number of clusters.

s e l . gap <− CKMSelAll ( t r a i n . st , minclust = 1 , maxclust = 10)

## s e l e c t only the s t a b l e variables

t r a i n . stable <− t r a i n . s t [ , s e l . gap$ stable . set ]

Figure 3.2A plots the Gap statistics as a function of the number of clusters

as well as the corresponding standard errors (indicated by red bars). Clearly, the

Gap statistic resulting from the 2-cluster solution was much larger than the one

estimated from the single-cluster solution. This meant that the observed data

set likely contained more than 1 cluster. Therefore, the range of the potential

number of clusters was reduced to between 2 and 10. In fact, according to Figure

3.2A, the optimal number of clusters that maximized the gap statistic was 10 (as

also reported in sel.gap$opt.cluster). Another important piece of informa-

tion extracted from the above analysis was the set of stable variables, which were

obtained with the code sel.gap$stable.set. The subset of the observed data

set (i.e., train.stable, which only consists of the stable variables, is used in the

second substep to determine the optimal number of clusters for the other four

methods, using the function CKMSelCluster (note that the minimal number of

clusters should be set to 2).

s e l . major <− CKMSelCluster ( t r a i n . stable , minclust = 2 ,

maxclust = 10 , method = " a l l " )
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Figure 3.2: The gap statistic and the between-cluster sum-of-squares as a func-
tion of the number of clusters

Figure 3.2B shows a smooth curve of between-cluster sum-of-squares where

the elbow point is not easily distinguishable. Following the principle that, when

no clear decision can be made from the graphs, simpler models should be fa-

vored, we concluded that the elbow point method suggests a 2-cluster solution.

The other three methods selected the optimal number of clusters automatically,

which are listed in Table 3.1. Combining these results, we can determine that the

optimal number of clusters was equal to 2 (i.e., 4 out of 5 methods selected the

2-cluster solution). Therefore, two clusters were identified that had distinct re-

sponse profiles in responding to items about political attitudes. In the next step,

we determined how many items effectively separated the two clusters.
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Table 3.1: The optimal number of clusters determined by the different selection
strategies

Selection strategy Optimal Clusters

The Gap statistic 10
The elbow method 2
The prediction strength 2
The bootstrapped cluster instability 2
The Silhoutte index 2

3.2.5. STEP 3: SELECTION OF SIGNALING VARIABLES

The main objective of Step 3 is to decide the number of signaling variables con-

ditional upon the number of clusters. This step comprises two substeps: (1) the

selection of the number of signaling variables with a modified Gap statistic (sub-

step 3A) and (2) the final selection of the set of signaling variables with stabil-

ity selection (substep 3B) 7. In substep 3A, a method derived from the original

version of the Gap statistic can be applied (Arias-Castro & Pu, 2017; Yuan et al.,

2022): the modified Gap statistic is computed for each possible number of sig-

naling variables, and just like the original version of the Gap statistic, this modi-

fied Gap statistic indicates the extent to which the cluster pattern in the observed

data set differs from those calculated from the reference data sets. Consequently,

a larger value of the modified Gap statistic reflects a stronger cluster pattern and

the number of signaling variables can be selected as corresponding to the largest

value of the Gap statistic.

While this strategy of selecting the optimal number of signaling variables

works well with small numbers of clusters (< 10) in simulation studies (Arias-

Castro & Pu, 2017; Yuan et al., 2022), its accuracy decreases as the number of

clusters increases. Yuan et al. (2022) proposed to address this shortcoming by an

additional procedure after maximizing the Gap statistic if the optimal number

of clusters exceeds 10. Specifically, the additional procedure uses a small grid

7Note that a simplified version of Step 3 has already been followed in Step 2 in the detection of
the set of stable variables. The simplified version does not include substep 3B that employs an
extensive resampling scheme.
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of candidate values, constructed from several (e.g., ± 10) neighbors of the op-

timal value located in the initial step. For each possible value on this grid, the

corresponding between-cluster sum-of-squares is estimated. Finally, the opti-

mal number of signaling variables is identified in which the scree ratio, defined

for p signaling variables as
BSSp−BSSp−1

BSSp+1−BSSp
is maximized (here BSSp refers to the

between-cluster sum-of-squares in the presence of p signaling variables; see for

example De Roover, Ceulemans, Timmerman, Nezlek, et al. (2013) for details). 8

Substep 3A is implemented in the package CKM with the function CKMSelVar,

which allows users to either include or leave out the additional procedure as de-

scribed above. In the case study reported here, since the selected number of clus-

ters equals 2 (i.e., < 10), the additional procedure is not necessary. Accordingly,

the option "sr" is set to "FALSE" to avoid this extra step.

s e l . var <− CKMSelVar( t r a i n . st , n . c l u s t e r = 2 , sr = FALSE)

The above function picked 53 as the number of signaling variables. In other

words, out of the total of 86 variables, 53 were deemed to be signaling variables

that effectively separated the two clusters whereas 33 were irrelevant variables

upon which clusters were not clearly separated.

Although substep 3A selected a set of signaling variables, this selection might

be heavily influenced by sampling variation. Therefore, in substep 3B, a resam-

pling technique called stability selection (Meinshausen and Bühlmann, 2010; Li

and Jacobucci, 2021) is employed to account for sampling variation and gener-

ate the final set of signaling variables that are consistently picked up across repli-

cations. This substep first generates a number of subsamples from the original

sample (which, according to the original proposal in Meinshausen and Bühlmann

(2010), could be 200 subsamples, each consisting of one-half of the randomly

chosen observations). Then, for each subsample, the model selection routine

detailed in substep 3A is applied, where the number of irrelevant variables is as-

8An alternative strategy is to determine the optimal number of signaling variables through the
application of a threshold: given a threshold θ specified by the user (e.g., θ = 1

3 ), the largest p
that satisfies BSSp < θ× (BSSp+1 +BSSp+2) is considered to be the optimal number of signaling
variables.
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sumed to be half the number of irrelevant variables singled out in substep 3A 9.

Therefore, in the case study reported here, for each of the subsamples, the anal-

ysis assumed a total of 16 irrelevant variables and 70 signaling variables. Last, a

final set of signaling variables was identified that appeared in more than 95% of

the sub-samples. Here, the percentage used to threshold signaling variables is

again of subjective nature, determined by the users with their own consideration

for the stability of results. In the case study, substep 3B was called by the function

CKMStableSelect of the package CKM where the threshold was set to the default

value of 95%:

s e l . f i n a l <− CKMStableSelect ( t r a i n . st , 2 , 33) #here the input

i s the number of noisy variables

signal ing . set <− t r a i n . s t [ , s e l . f i n a l $ s i g . set ]

Table 3.2 presents a frequency table of the top 60 most frequently selected

items. Two important observations should be noted. First, the top 52 variables

were selected very frequently (i.e., at least 95% of the times), indicating that they

were to a large degree the crucial variables separating the two clusters. Second,

a clear difference was found between the 52nd (item 56, selected 193 times) and

53r d (item 61, selected 188 times) most frequently selected items. This clear dis-

crepancy consolidated the conclusion that a total of 52 items were deemed to be

the most significant and robust indicators that separated the two clusters.

Last, conventional K-means analysis can be applied to the subset with only

signaling variables (i.e., signaling.set in our case study) to obtain the final

cluster partition, as follows.

c l u s t e r . p a r t i t i o n <− kmeans( signal ing . set , 2 , ns t ar t = 100)$

c l u s t e r

3.2.6. STEP 4: CLUSTER VALIDATION WITH THE ORIGINAL DATA SET

In our case study, through Steps 2 - 3, we successfully identified two clusters with

distinct profiles of political values and the set of 52 signaling items that best sep-

9We note that users are free to decide how many irrelevant (or equivalently signaling) variables are
to be identified in the subsamples. This ratio, coupled with the threshold of frequency, tends to
produce a consistent pattern of the relative importance of each variable in separating the clusters.
Here we opted for a convenient value of 1/2.
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Table 3.2: The top 60 items that were most frequently selected as relevant vari-
ables in sub-samples

Item Times Items Times Items Times

1 200 21 200 49 200
2 200 22 200 51 200
3 200 23 200 54 200
4 200 24 200 57 200
5 200 25 200 58 200
6 200 26 200 60 200
7 200 27 200 48 199
8 200 28 200 45 198
9 200 29 200 78 198
10 200 30 200 77 196
11 200 31 200 86 196
12 200 32 200 56 193
13 200 33 200 61 188
14 200 34 200 79 182
15 200 35 200 65 179
16 200 36 200 63 173
17 200 37 200 83 155
18 200 38 200 80 141
19 200 46 200 84 132
20 200 47 200 42 126

arated the two clusters. A key question that remained unanswered was whether

the findings were theoretically relevant and methodologically robust. We ad-

dressed this question in Steps 4-5, through cluster validation of the discovery

set (Step 4) and the replication set (Step 5). We first illustrate how to validate the

cluster results of the discovery set.

STEP 4A: VISUAL VALIDATION

The first way to validate cluster results is through visual validation, which exam-

ines whether the partition can be translated into easily visible and (theoretically)

meaningful patterns in the data set. Data visualization is considered essential for

many types of analysis (see Hehman and Xie (2021) for guidelines of data visual-

ization) and it is particularly informative for exploratory analyses, like clustering,

since these exploratory analyses often lack clear and well-defined expectations.
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Figure 3.3: A screenshot of the Shinyapp designed for cluster visualization

To remove the technical barriers that prevent such visualizations from being

used, we created a ShinyApp called ClusterViz that allows users to generate

various types of plots with just a few mouse clicks. Figure 3.3 shows a screen-

shot of ClusterViz, which is freely accessible via https://syuan.shinyapps.io/

ClusterViz/. Note that ClusterViz is designed in such a way that it is completely

separate from the package CKM so that users, even without coding experience,

can take advantage of the software and apply it to clustering algorithms other

than CKM. ClusterViz requires a special arrangement of data sets (in csv for-

mat) in which a column representing the cluster partition, named "Cluster", is

adjacent to the original data set to be visualized. In our case study, this data re-

formatting can be easily achieved by the following code

viz . dataset <− cbind ( s ignal ing . set , c l u s t e r . p a r t i t i o n )

#rename the l a s t column

names( v iz . dataset ) [ ncol ( v iz . dataset ) ] <− " Cluster "

In general, two types of plots can be generated depending on their purpose:

plots that directly visualize the original data sets, and plots that visualize cluster

centroids. Below, with the example of the case study, we elaborate how to use

these plots (shown in Figure 3.4) to inspect cluster partitions.

(i) Plots of individual responses on the signaling items (Figure 3.4A): this plot

offers an overview of the differences between the individual response pro-

 https://syuan.shinyapps.io/ClusterViz/
 https://syuan.shinyapps.io/ClusterViz/
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files. In our case study, to interpret the results, we inspected the content

of the signaling items. These items measure three themes: (1) one’s con-

fidence and satisfaction with important political and societal institutions

(e.g., Dutch Parliament, United Nations) and (2) one’s attitudes toward the

social integration of immigrants, and (3) one’s attitudes on gender equality.

The general response patterns of the two identified clusters were markedly

different: compared to the subjects classified in Cluster 1, those in Cluster

2 consistently scored lower in terms of confidence and satisfaction with in-

stitutions, and they were more opposed to the integration of immigrants,

European unification, as well as gender equality. The results, therefore,

coincided with political psychology findings that people with a far-right

ideology (hereafter referred to as populists), classified to Cluster 2 in the

current analysis, are characterized by an anti-establishment stance and ex-

tremely conservative views and hold fundamentally different political atti-

tudes compared to mainstreams (e.g., Wood & Gray, 2019). More interest-

ingly, the findings also clearly highlighted that, across the entire spectrum

of political themes, the core themes highlighting populists are immigration

and European unification as well as gender equality. This novel finding can

be further scrutinized in confirmatory studies.

(ii) Cluster centroids plotted on the coordinates (Figure 3.4B): the plot can be

considered as a cluster-wise summary of the individual responses. In the

case study, once again, the separation of two clusters was clearly visible. In

general, this summary plot is particularly informative because It illustrates

the variables on which clusters are most clearly discernable.

(iii) Plots of cluster separation on a single variable (Figures 3.4C1 and 3.4C2):

both plots offer a closer look at how one or a few variables separate the

clusters. In our case study, we focused on two items that separated the two

clusters to the greatest degree: (1) item 20: how confident are you for the

Dutch parliament? and (2) item 46: Where would you place yourself on a

scale from 1 to 5, where 1 means that European unification should go fur-

ther and 5 means that it has already gone too far? The two items separated

the two clusters in distinctive ways: as shown in Figure 3.4C1, compared
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Figure 3.4: The four types of visualizations from a cluster analysis

to non-populists (i.e., Cluster 1), populists (i.e., Cluster 2) were on average

much less confident in the Dutch parliament, while, cf. Figure 3.4C2, they

were to a much greater degree opposed to European unification.

(iv) Projection of clusters in lower dimensions by principal component analy-

sis (Figure 3.4D): this plot indicates the dimensions that partition the clus-

ters. In our case study, the first principal component explained the ma-

jority of the differences between the two clusters. Hence, we can conclude

that only one underlying dimension (i.e., populist ideology) effectively dis-

tinguished the responses of the two clusters

STEP 4B: STABILITY VALIDATION

Another method for validating the cluster solution is a purely data-driven ap-

proach: to examine the stability of each cluster using a clusterwise stability in-

dex, as proposed in Hennig (2007). Hennig (2007) argued that, for any cluster

result, it is important to examine whether the identified clusters disappear when

minor and non-essential changes to the data set (e.g., resampling from the same

underlying distribution or adding a small amount of noise) are made. Based on

this reasoning, Hennig (2007) developed an index to evaluate the cluster-wise
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stability of each cluster estimated from the analysis. To calculate this index in

our case study, we used the following code:

l ibrary ( fpc )

val idat ion . c l u s t e r . t r a i n <− clusterboot ( t r a i n . st , B=100 ,

bootmethod="boot" , clustermethod=kmeansCBI , krange =2)

val idat ion . c l u s t e r . t e s t <− clusterboot ( t e s t . st , B=100 ,

bootmethod="boot" , clustermethod=kmeansCBI , krange =2)

To inspect the indices, we used the command validation.cluster$bootmean.

The stability indices corresponding to the two clusters were .99 and .98, respec-

tively. These values, according to the guidelines provided in Hennig (2008) (i.e.,

values below .5 indicate "dissolved clusters", values between .6 and .75 indicate

adequate stability, and values larger than .9 represent very stable clusters), indi-

cated that two clusters obtained were very stable clusters.

3.2.7. STEP 5: CLUSTER REPLICATION

Finally, a replication analysis of the replication set is recommended to evaluate

the robustness of the findings. In this replication analysis, several aspects of the

replicability of the cluster findings are investigated. These include (1) the num-

ber of clusters (Step 2), (2) the set of signaling variables (Step 3), (3) the pattern

of clusters as depicted in various visualizations (Step 4a), and (4) the internal

stability index computed for each cluster (Step 4b). The replication analysis pro-

cedure is identical to the discovery analysis, as described in Steps 2 - 4. In our

case study, the replication set test.st was analyzed in the same way as the dis-

covery set train.st. To avoid repetitions, we only report the most important

results here.

Once again, the 2-cluster solution emerged as the optimal solution in the

replication analysis. However, this analysis identified a total of 59 signaling vari-

ables, including 52 variables that were also selected as signaling variables in the

discovery set (i.e., train.st) plus 7 additional variables. In other words, the 52

signaling variables identified from the analysis of train.st can be considered

the most robust set of items to differentiate between populists and non-populists

in the Netherlands. In terms of interpretation, the same pattern of responses

emerged, namely that the populists have less confidence in institutions, and, to
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a greater extent, oppose progressive themes such as immigration, European uni-

fication, and gender equality. Last, in terms of cluster-wise stability, the replica-

tion analysis was also able to obtain highly stable clusters (the stability indices

equaled .99 and .96 for the two clusters, respectively).

Overall, the results found in the replication analysis were very consistent with

those reported in the discovery analysis in all aspects examined.

3.2.8. SUMMARY

To summarize, our Tutorial walks readers through five major steps for CKM anal-

ysis and cluster validation. Some of these steps can be adapted in research prac-

tices to address the specific needs of the investigation (e.g., incorporating prior

knowledge of the number of clusters).

3.3. DISCUSSION

In this Tutorial, we provided a detailed guide for researchers on (1) how to ap-

ply simultaneous clustering and variable selection (SCVS) techniques and, espe-

cially, CKM and (2) how to use various methods to systematically validate cluster

results. We demonstrated the use of CKM and its validation procedure through a

case study of clustering people’s political values whereby two clusters were iden-

tified and separated by 52 signaling variables. Filtering out these irrelevant vari-

ables, which do not contribute to cluster separation, improved the interpretation

of cluster results and the accuracy of cluster recovery. To visualize cluster results,

we present a novel, user-friendly ShinyApp with a variety of plotting options. The

procedure described here can be applied to a variety of SCVS techniques devel-

oped within the K-means framework (e.g., Sparse K-means, Witten and Tibshi-

rani, 2010; Sparse Alternate Sums, Arias-Castro and Pu, 2017; Robust and Sparse

K-means, Kondo et al., 2016; Hard-thresholding K-means, Raymaekers and Za-

mar, 2020).

This tutorial is especially useful for cluster analyses with a large number of

variables (e.g., ≥ 100), because some of the variables have little theoretical rele-

vance to the clustering task at hand. However, we should point out that the anal-

ysis presented here is also very useful in research practice when the data set in

question contains a limited set of theoretically relevant variables. In such cases,
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this tutorial can assist researchers in determining which variables best separate

the clusters. Consider a hypothetical study in which an organizational psychol-

ogist aims to identify clusters of employees suffering from various health condi-

tions in order to provide personalized intervention. To this end, the psycholo-

gist can collect responses from these employees on 60 items. However, due to

the limited scope of the intervention, the psychologist must select the five most

important items for determining these employees’ assigned interventions. The

analysis procedure outlined in this tutorial can be used to choose the five most

relevant items (by fixing the number of signaling variables to 5), estimate the

cluster partition, and examine whether the results are methodologically stable

and theoretically relevant.

The tutorial emphasized the importance of validating clustering results and

illustrated three approaches for doing so. We hope that these discussions and il-

lustrations promote and facilitate the use of cluster validation, particularly when

the purpose of the study is to directly use the cluster assignment for high-stake

decisions (e.g., personnel selection, personalized treatment). For data analysts, it

is crucial to be mindful that cluster analysis is always exploratory; therefore, great

care should be taken in interpreting and applying the results. A validation analy-

sis is essential to assess the robustness of cluster solutions, and ideally, a confir-

matory analysis should be followed to empirically test the conclusions from the

previous cluster analysis.



APPENDICES

3.A. APPENDIX

The list of items used in the case study item1 ’How satisfied or dissatisfied are

you, generally speaking, about what the government has done lately?’

item2 ’Confidence: Dutch government’

item3 ’Confidence: Dutch parliament’

item4 ’Confidence: the legal system’

item5 ’Confidence: the police’

item6 ’Confidence: politicians’

item7 ’Confidence: political parties’

item8 ’Confidence: European Parliament’

item9 ’Confidence: United Nations’

item10 ’Confidence: the media’

item11 ’Confidence: the military’

item12 ’Confidence: the education system’

item13 ’Confidence: healthcare’

item14 ’Confidence: science’

item15 ’Confidence: the economy’

item16 ’Confidence: democracy’

item17 ’Confidence: shops/firms that you deal with personally (that you visit in

person)’

item18 ’Confidence: shops/firms on the Internet’

item19 ’Satisfaction: Dutch government’

item20 ’Satisfaction: Dutch parliament’

item21 ’Satisfaction: the legal system’

item22 ’Satisfaction: the police’

item23 ’Satisfaction: politicians’

item24 ’Satisfaction: political parties’

71



3

72 3. A TUTORIAL FOR CSVS METHODS

item25 ’Satisfaction: European Parliament’

item26 ’Satisfaction: United Nations’

item27 ’Satisfaction: the media’

item28 ’Satisfaction: the military’

item29 ’Satisfaction: the education system’

item30 ’Satisfaction: healthcare’

item31 ’Satisfaction: science’

item32 ’Satisfaction: the economy’

item33 ’Satisfaction: democracy’

item34 ’Satisfaction: shops/firms that you deal with personally (that you visit in

person)’

item35 ’Satisfaction: shops/firms on the Internet’

item36 ’Parliamentarians do not care about the opinions of people like me’

item37 ’Political parties are only interested in my vote and not in my opinion’

item38 ’People like me have no influence at all on government policy’

item39 ’I am well capable of playing an active role in politics’

item40 ’I have a clear picture of the most important political issues in our coun-

try’

item41 ’Politics sometimes seems so complicated that people like me can hardly

understand what is going on’

item42 ’Where would you place yourself on the scale below, where 0 means left

and 10 means right?’

item43 ’Where would you place yourself on a scale from 1 to 5, where 1 means

that euthanasia should be forbidden and 5 means that euthanasia should be per-

mitted?’

item44 ’Where would you place yourself on a scale from 1 to 5, where 1 means

that differences in income should increase and 5 means that these should de-

crease?’

item45 ’Where would you place yourself on a scale of 1 to 5, where 1 means that

immigrants can retain their own culture and 5 means that they should adapt en-

tirely?’

item46 ’Where would you place yourself on a scale from 1 to 5, where 1 means

that European unification should go further and 0 means that it has already gone
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too far’

item47 ’A working mother’s relationship with her children can be just as close

and warm as that of a non-working mother.’

item48 ’A child that is not yet attending school is likely to suffer the consequences

if his or her mother has a job.’

item49 ’Overall, family life suffers the consequences if the mother has a full-time

job.’

item50 ’Both father and mother should contribute to the family income.’

item51 ’The father should earn money, while the mother takes care of the house-

hold and the family.’

item52 ’Fathers ought to do more in terms of household work than they do at

present.’

item53 ’Fathers ought to do more in terms of childcare than they do at present.’

item54 ’It is good if society consists of people from different cultures.’

item55 ’It is difficult for a foreigner to be accepted in the Netherlands while re-

taining his/her own culture.’

item56 ’It should be made easier to obtain asylum in the Netherlands.’

item57 ’Legally residing foreigners should be entitled to the same social security

as Dutch citizens.’

item58 ’There are too many people of foreign origin or descent in the Nether-

lands.’

item59 ’People of foreign origin or descent are not accepted in the Netherlands.’

item60 ’Some sectors of the economy can only continue to function because

people of foreign origin or descent work there.’

item61 ’It does not help a neighborhood if many people of foreign origin or de-

scent move in.’

item62 ’Married people are generally happier than unmarried people.’

item63 ’People that want to have children should get married.’

item64 ’A single parent can raise a child just as well as two parents together.’

item65 ’It is perfectly fine for a couple to live together without marriage inten-

tions.’

item66 ’For a couple that wants to get married, it is good to first start living to-

gether.’
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item67 ’A divorce is generally the best solution if a married couple cannot solve

their marital problems.’

item68 ’It is all right for a married couple with children to get divorced.’

item69 ’Children ought to care for their sick parents.’

item70 ’When parents reach old age, they should be able to live with their chil-

dren.’

item71 ’Children that live close by ought to visit their parents at least once a

week.’

item72 ’Children ought to take unpaid leave in order to care for their sick par-

ents.’

item73 ’You can only do what you feel like doing after you have done your duty.’

item74 ’If someone wants to enjoy life, he/she must be prepared to work hard for

it.’

item75 ’I feel happiest after working hard.’

item76 ’Work should always come first, even if it means having less leisure time.’

item77 ’If she has a baby (a child younger than 1 year).’

item78 ’If she has a child that does not yet attend school.’

item79 ’After the youngest child starts primary school.’

item80 ’After the youngest child starts secondary school.’

item81 ’Trade unions should take a much tougher political stance, if they wish to

promote the workers’ interests.’

item82 ’Trade unions should advise their members to vote for those parties that

best promote the workers’ interests.’

item83 ’A woman is more suited to rearing young children than a man.’

item84 ’It is actually less important for a girl than for a boy to get a good educa-

tion.’

item85 ’Generally speaking, boys can be reared more liberally than girls.’

item86 ’It is unnatural for women in firms to have control over men.’



4
REVEALING SUBGROUPS THAT

DIFFER IN COMMON AND

DISTINCTIVE VARIATION IN

MULTI-BLOCK DATA: CLUSTERWISE

SPARSE SIMULTANEOUS

COMPONENT ANALYSIS

Social and behavioral studies more and more often yield multi-block data, which

consists of novel blocks of data (e.g. data from wearable devices) and traditional

blocks of data (e.g. survey data) collected from the same sample. Multi-block

data offer researchers valuable insights into complex social mechanisms where

several influences act together. Yet, such mechanisms are likely to differ among

This chapter is published as Yuan, S., De Roover, K., Dufner, M., Denissen, J. J., & Van Deun, K.
(2021). Revealing subgroups that differ in common and distinctive variation in multi-block data:
Clusterwise sparse simultaneous component analysis Social Science Computer Review, 39(5), 802-
820
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subgroups. Hence, fully revealing the composite mechanisms underlying multi-

block data is challenging, since proper clustering analysis of such data requires

a method that simultaneously detects the covariation of variables underlying all

data blocks and the group differences therein. Additionally, such a method should

be able to handle high-dimensional data sets that might include many irrelevant

variables. Here we present Clusterwise Sparse Simultaneous Component Analysis

(CSSCA), a method that groups the subjects that are driven by the same mecha-

nisms and, at the same time, extracts cluster-specific components that model these

mechanisms. By imposing structure constraints, CSSCA further recognizes com-

mon mechanisms that underlie all data blocks and distinctive mechanisms that

only underlie one or a few data blocks. In extensive simulations, CSSCA delivered

convincing results in recovering the clusters and their associated component struc-

tures across various conditions. More importantly, CSSCA showed a clear advan-

tage over existing methods when substantial cluster differences in the component

structures were present. We demonstrated the usefulness of CSSCA in an applica-

tion to data stemming from a study on personality.
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4.1. INTRODUCTION

Thanks to recent technological developments and the increasing adaption of

data-rich research in social and behavioral sciences (Gil de Zuniga & Diehl, 2017),

novel types of data such as genetic data, global positioning system coordinates,

and social media data are collected more and more often, along with traditional

sociodemographic and questionnaire data (Hofferth et al., 2017). Such linked

data that contain different types of measurements, collected from the same sam-

ple, are labeled multi-block data. In the domain of communication science, for

example, Wells and Thorson (2017) proposed and demonstrated a novel method

to examine political content flows by linking social media data with survey data.

Another example comes from Vargo and Hopp (2017), who identified the con-

nections between individuals’ political polarization and the extent of civil con-

versation with a multi-block of tweets and census data.

Studies based on multi-block data have the potential to advance social and

behavioral sciences: it offers opportunities to obtain novel insights into complex

social mechanisms where several influencing factors – each of them reflected

by a particular data block - act jointly. Let us consider an illustrative example

of multi-block data, as depicted in Figure 4.1A, with rows referring to subjects

and columns representing variables. The multi-block data consists of two blocks:

one block covering self-reported motivations (each column represents one type

of motivation) and one block covering participants’ degrees of physical activities,

measured by wearable devices and aggregated across several time intervals (each

column represents the average degree of physical activity per hour). With such

multi-block data, health psychologists would be able to investigate how different

types of motivations are related to different patterns of physical activities.

Because of a lack of theoretical knowledge about the novel types of data and

(or) their linkage with traditional data, exploratory analyses could offer impor-

tant insights into the structure of the data (Fan et al., 2014). In our illustrative

example, appropriate exploratory analyses should detect crucial yet subtle links

between motivations, as reflected by some variables in the self-report data block,

and patterns of physical activity, as reflected by several variables in the physical

activity data block. A potential outcome is illustrated in Figure 4.1B, with the

columns marked by grey implying associations between variables from different
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Note. The multi-block data includes two data blocks, with column entries referring to vari-
ables and row entries to subjects. Panel A illustrates the data structure of multi-block data.
Panel B suggests a potential outcome of a data analysis that reveals variables that are associ-
ated with the different data blocks (marked with gray color). Panel C visualizes heterogeneity
between subjects in the variables that are associated with the data blocks.

Figure 4.1: Graphic visualization of the illustrative example.

data blocks: Figure 4.1B demonstrates that the pursuit of thinness is linked with

intensive physical activities during evening hours. In essence, the aim of multi-

block data analysis is to identify the common variation – typically implying syn-

ergies between variables – underlying all data blocks (De Roover, Timmerman,

et al., 2013; Van Deun et al., 2011).

A unique feature of the multi-block data is that, in addition to the common

variation, they also contain distinctive variation, which refers to the covariation

of variables from one or a few - but not all - data blocks (Lock et al., 2013; Van

Deun et al., 2011). Concerning our illustrative example, while the researchers

mainly want to detect the common variation (i.e., the covariation of motivations

and patterns of physical activities), the multi-block data may also include dis-

tinctive variation, such as response styles underlying self-reports of motivations

(e.g., Harzing, 2006) and individual baseline levels of physical activity underly-

ing data derived from wearable devices. Hence, to extract the common varia-

tion that is typical of interest, it is necessary to partial out the distinctive varia-

tion, which, in some cases, might also contain substantive information that is of
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interest to the researchers. Because of the presence of both common and dis-

tinctive variations in the multi-block data, conventional ways of analyzing such

multi-block data might be less desirable. On the one hand, principal component

analysis (PCA; Jolliffe, 2002; Meredith & Millsap, 1985) could be applied to the

concatenated data blocks to summarize the associations between variables by a

few components. However, this analysis would only detect the components ex-

plaining the largest (co)variation across the blocks, which are likely to describe

a mixture of common and distinctive variations. Therefore, this approach is not

able to uncover both common and distinctive variations. On the other hand,

one could also first perform a separate analysis (e.g., PCA) on each data block

and then integrate the results over all data blocks. However, as pointed out by

M. Wang and Hanges (2011), this approach to data analysis has two noteworthy

shortcomings: (1) it is likely to omit the important common variation, and (2)

its performance deteriorates with increasing disparities between the results of

separate analyses.

Recently, some component-based integrative analysis methods, most notice-

ably JIVE (Lock et al., 2013) and DISCO-SCA (Schouteden et al., 2013), have been

introduced and gained substantial popularity in multi-block data analysis. A par-

ticularly useful feature of these methods is their capability to effectively discern

the common and distinctive variations. These methods have been successfully

applied in psychology (e.g., Chawarska et al., 2016; Gu & Van Deun, 2019), neuro-

science (e.g., Yu et al., 2017), biology (e.g., Wehrens & Salek, 2019), and medicine

(e.g., Sandri et al., 2018), among other research fields. Nevertheless, these meth-

ods fail to overcome two additional challenges of multi-block data analysis.

First, multi-block data frequently include data sets of a high-dimensional na-

ture (i.e., an equal or greater number of variables than subjects). With very little

theoretical guidance, researchers often, by default, include all information they

have gathered in the analysis, leading to a substantial amount of redundant in-

formation (Waldherr et al., 2017). This severely hampers the interpretation of the

components and makes it intricate to reveal the variables that are most interest-

ing for further investigation, since the components may correlate with a large

number of irrelevant variables (Zou et al., 2006). Therefore, methods are needed

that can automatically and effectively filter out irrelevant variables. Note that
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the common practice of dropping out variables with small loadings (i.e. treating

them as zero loadings) yields a sub-optimal solution, as first discussed in Cadima

and Jolliffe (1995).

Another challenge of analyzing multi-block data is the heterogeneity among

subjects: subgroups may be present in the data that differ in the patterns of co-

variation (Jung & Wickrama, 2008). In our illustrative example, the association

between motivations and degree of physical activity may differ among subjects.

For instance, as demonstrated in Figure 4.1C, the degree of physical activity in

the evening hours may be associated with the pursuit of thinness among some

subjects (the first half) and with the pursuit of pleasure among others (the sec-

ond half). The presence of subgroups is often not known to the researchers be-

forehand. Hence, a clustering method is needed that can reveal the subgroups of

subjects, with the desired result that (only) participants who belong to the same

subgroup have a similar pattern of covariation.

To respond to these challenges, we present Clusterwise Sparse Simultane-

ous Component Analysis (CSSCA), a novel method designed for multi-block data

analysis. CSSCA assigns all subjects to mutually exclusive clusters, such that the

subjects that belong to the same cluster have the same common and distinct

components, while the subjects that belong to different clusters are assumed to

vary on different common and distinctive components.

The remainder of the paper is organized into five sections: in Section 4.2, we

formally introduce CSSCA and contrast it with several existing methods. The per-

formance of CSSCA and its model selection procedure are evaluated in Section

4.3. The usefulness of CSSCA for applied psychological research is demonstrated

in Section 4.4. Finally, the implications, limitations, and a blueprint for future re-

search are elaborated in section 4.5. To increase the accessibility of the method,

we have made CSSCA, its model selection procedure, as well as other auxiliary

functions, available in the R package ClusterSSCA. The package can be down-

loaded freely from https://github.com/syuanuvt/CSSCA. On the same webpage,

we have also provided a step-by-step user guide to facilitate the usage of CSSCA

in applied research.

https://github.com/syuanuvt/CSSCA
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4.2. METHOD

In this section, we present CSSCA by specifying the assumed data generation

model and objective function. First, however, we introduce multi-block data

from a formal point of view and discuss existing methods that serve as the build-

ing blocks of CSSCA.

4.2.1. MULTI-BLOCK DATA

Multi-block data consist of multiple blocks of data containing information about

the same group of respondents (Tenenhaus & Tenenhaus, 2014). More formally,

each of the L data blocks Xl (N×Jl )(l = 1,2. . . .,L) contains values of N subjects on

Jl variables. A popular framework for analyzing multi-block data is simultaneous

component analysis (SCA; Kiers & ten Berge, 1989; Van Deun et al., 2009), from

which CSSCA originates.

4.2.2. SCA

Similar to PCA, SCA reduces the dimensions of all data blocks simultaneously

and results in a few components that maximally account for the total variation

across the data blocks. Formally, the SCA model, as proposed in Timmerman

and Kiers (2003), is represented in

Xl = TPT
l +El , (4.1)

where T with size N ×R denotes the simultaneous component scores on R com-

ponents (i.e., T is assumed to be the same for each of the data blocks), Pl with size

Jl ×R denotes the component loadings of the variables in the l th data block and

El with size N× Jl denotes the error matrix associated with the l th data matrix Xl .

For SCA-based methods, usually, all variables are mean-centered and standard-

ized (see Van Deun et al., 2009). To identify the solution, Equation 4.1 is made

subject to suitable constraints, for example, a principal axis orientation in com-

bination with the orthogonality of the component scores: TT T = I. The objective

of SCA is to minimize the sum-of-squares of residuals, given by Equation 4.2 as

follows,

argminT,Pcon ||Xcon −TPconT ||22, (4.2)
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subject to TT T = I, where Xcon of size N × J denotes the concatenated data ma-

trix (J equals the total number of variables across all data blocks) and ||Xcon −
TPconT ||22 denotes the square of the Frobenius norm of (Xcon−TPcon T ). Pcon with

size J ×R is the concatenated component loading matrix.

As pointed out in Van Deun et al. (2011), SCA fails to appropriately address

two of the most important challenges of multi-block data analysis. First, the in-

terpretation of the resulting components is daunting as it is based on the con-

tributions of all variables. Second, the components obtained by SCA do not ac-

count for the block structure; in particular, they do not separate the common

and distinctive sources of variation. Solutions have been proposed to address

the two drawbacks of SCA, resulting in SSCA (i.e. sparse SCA) with common and

distinctive components.

SSCA WITH COMMON AND DISTINCTIVE COMPONENTS

To tackle the first challenge of automatic variable selection and thus to ease the

interpretation of components, especially in dealing with high-dimensional data

sets, regularization has been used to shrink some component loadings to (exact)

zero (hereafter these entries will be called sparseness-induced zero loadings),

leading to SSCA (Van Deun et al., 2011). Different forms of regularization can

be used in SSCA; here in developing CSSCA, we adopt the l0 norm regularization

(also known as a cardinality constraint). This constraint fixes the number of zero

elements in the loading matrices to a pre-defined number with a range between

0 and J ×R and thereby allows fixing the proportion of zero loadings (called the

level of sparsity hereafter and indicated by spar ()).

To approach the challenge of discerning common and distinctive variations,

Schouteden et al. (2013) has proposed DISCO-SCA that determines the status of

components (i.e. common or distinctive components) through rotations. To fur-

ther avoid post-hoc rotations, Gu et al. (2019) directly imposed zero loadings in

a structured way, which results in an unambiguous status of each component.

Specifically, to define a distinctive component, except for the variables of the

block(s) that the component is supposed to underlie, all other loadings on this

distinctive component are fixed to zero (this type of zero loadings are hereafter

called the distinctiveness-induced zero loadings). We illustrate this structure
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Note. The compo-
nents are represented in columns, while the variables are indicated in rows. The first two
components are defined as common components while the third and fourth components are
distinctive components pertaining to block 1 and block 2, respectively. Var j = j th variable,
Comp r = r th component.

Figure 4.2: An example of common and distinctive components in a concate-
nated loading matrix.

for a loading matrix that includes both sparseness-induced zero loadings and

distinctiveness-induced zero loadings in Figure 4.2. The depicted loading matrix

includes 7 variables (rows) from 2 data blocks (the first data block has 4 variables

while the second has 3) and 4 components (columns), and zero loadings are de-

noted by “0” while non-zero loadings are denoted by “×”. In the figure, the first

two components are sparse common components, since they are associated with

variables from both data blocks. The third component, with all non-zero load-

ings associated with variables in data block 1, is a sparse distinctive component

that pertains to block 1. In the same vein, the fourth component can be regarded

as a sparse distinctive component that pertains to block 2.
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Formally, for the analysis of SSCA with common and distinctive components,

the objective function is described in

argminT,Pcon ||Xcon −TPconT ||22, (4.3)

subject to (i) TT T = I, (ii) spar (Pcon) = S, where S is a pre-defined number be-

tween 0 and 1 that indicates a pre-defined level of sparsity of the loading matri-

ces, and (iii) distinctiveness-induced zero loadings are pre-specified in Pcon to

impose common and distinctive components.

4.2.3. CLUSTERWISE SPARSE SIMULTANEOUS COMPONENT ANALYSIS

CSSCA extends SSCA to account for heterogeneity in the mean structure and the

component structure. Specifically, instead of assuming that the same compo-

nent loading matrix pertains to all subjects, a few loading matrices are assumed

to underlie the multi-block data, where each applies to a particular subgroup of

subjects. CSSCA aims to detect these subgroups (also called clusters) and their

associated mean structures and component structures.

MODEL AND OBJECTIVE FUNCTION

Formally, the cluster-specific model of CSSCA on the level of the concatenated

data is given by

Xcon
k =µcon

k +Tk PconT

k +Ek (k = 1, . . . .,K ), (4.4)

subject to (i) TT
k Tk = I and T′

k 1 = 0, (ii) Spar (Pcon
k ) = S, and (iii) distinctiveness-

induced zero loadings are pre-specified in Pcon
k to impose common and distinc-

tive components. In Equation 4.4, Xcon
k (Nk×J ), Tk (Nk×R) and Pcon

k (J×R) denote

the concatenated data, the component score matrix, and the component load-

ing matrix of Cluster k, respectively, while µcon
k (Nk × J ) with all identical rows

representing the mean structure of Cluster k. Note that, in addition to these con-

straints, CSSCA assumes the same number of common components and also the

same structure of distinctive components for each of the clusters. In other words,

the method assumes that the dimensions of the loading matrices as well as the

positions of distinctiveness-induced zero loadings are identical across clusters.

This is because we would like to keep CSSCA a simple method in terms of model
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selection and interpretation. The objective function of CSSCA is presented in

argminµk ,Tk ,Pcon
k

Pcon
K∑

k=1
||Xcon

k −µcon
k −Tk PconT

k ||22, (4.5)

subject to (i) TT
k Tk = I and and T′

k 1 = 0, (ii) spar (Pcon
k ) = S, and (iii) pre-specified

distinctiveness-induced zero loadings in Pcon
k .

4.2.4. RELATED METHODS

A number of related dimension-reduction-based clustering methods have been

developed for the analysis of single-block data: e.g., Reduced K-means (RKM;

Stute & Zhu, 1995), Factorial K-means (RKM; Vichi & Kiers, 2001), and Subspace

K-means (Timmerman et al., 2013). As argued in the introduction, the clustering

analyses carried out on the concatenated data set fail to distinguish the common

and distinctive components. Thus, they are less desirable in the analysis of multi-

block data.

Recently, some clustering methods for multi-block data have been proposed

in the field of bioinformatics. In their systematic review, D. Wang and Gu (2016)

classified all these methods into two categories, and they demonstrated the ad-

vantages of the methods with a direct integrative clustering strategy, which, in-

stead of first performing a separate clustering analysis on each data block and

then integrating all partitions, accounts for all data blocks simultaneously. CSSCA,

with its simultaneous dimension reduction of all data blocks, clearly falls into

this category.

Among the clustering methods that also employ the direct integrative ap-

proach, iCluster (R. Shen et al., 2009) is a popular choice and it also lays the basis

for several succeeding methods, including the low-rank approximation cluster-

ing method (LRAcluster; Wu et al., 2015) and Joint and Individual Clustering (JIC;

Hellton and Thoresen, 2016). In essence, iCluster projects the high-dimensional

data onto a lower-dimensional subspace by summarizing the common variation

over multiple data blocks into several latent variables. Subsequently, iCluster uti-

lizes K-means clustering to obtain cluster assignments from the resulting latent

variables. iCluster (and other mean-level-based methods) differs from CSSCA in

that iCluster does not actively model the underlying covariance structures per-
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taining to each cluster, while CSSCA allows the covariance structures to differ

across clusters. In this respect, CSSCA offers an important extension to the exist-

ing methods.

We can briefly conclude that CSSCA is the only clustering method available

so far, that, in the context of multi-block data analysis, partitions subjects based

on both mean structures and covariance structures.

4.2.5. ALGORITHM AND MODEL SELECTION

ALGORITHM

Starting from a random partition of the subjects, the CSSCA algorithm obtains

an SSCA solution for each of the initial clusters. Subsequently, the procedure it-

erates over a loop in which the subjects are re-assigned one by one: for each sub-

ject, the SSCA solution is obtained for each of the K −1 potential re-assignments

and the subject is assigned to the cluster with which the total loss is minimized

(implying that the total loss is guaranteed to be non-increasing for each update

of the cluster membership). After a complete iteration of re-assigning all sub-

jects, the algorithm starts the next iteration if and only if (1) the total decrease

in loss value of the current iteration is larger than a pre-defined value, and (2)

the number of iterations is smaller than a pre-defined maximum. Since the algo-

rithm may result in local optima, a multi-start procedure is used (e.g., De Roover,

Ceulemans, Timmerman, and Onghena, 2013; Timmerman et al., 2013). Using

pseudocode, we present in Algorithm 3 the algorithm of CSSCA (see Section 4.A

of the appendix). Embedded in Algorithm 3 is the iterative procedure to esti-

mate the cluster-specific SSCA solution, which applies an alternating strategy

first proposed in Gu and Van Deun (2019). In essence, Algorithm 4 iteratively

optimizes Pcon
k conditional on Tk , and optimizes Tk conditional on Pcon

k , using

well-established optimization routines. The procedure is detailed in Algorithm

4 in the appendix (Section 4.B), also in the form of pseudocode. Similar to Algo-

rithm 3, Algorithm 4 yields a non-increasing sequence of loss values throughout

the iterations, and thus guarantees to converge to a fixed point. In Section 4.C of

the appendix we report some technical details on the generation of the starting

partitions and on some additional requirements of the model parameters. More
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information about the implementation of the CSSCA algorithm can be found in

the R package ClusterSSCA.

MODEL SELECTION

To run the CSSCA algorithm, the actual model parameters (e.g. the number of

clusters and the level of sparsity) need to be specified. In practice, however, re-

searchers only have limited or no knowledge of the true values of these parame-

ters. To facilitate the application of CSSCA, we propose a model selection proce-

dure to determine the number of clusters and the level of sparsity with the best

balance between model fit (i.e. the total loss) and model complexity.

Wilderjans et al. (2013) showed that a sequential model selection strategy

may have several advantages. Adapted to solving the model selection problem of

CSSCA, the sequential strategy includes two steps: (1) picking the optimal num-

ber of clusters K and (2) determining the optimal level of sparsity S, given the

selected K. To illustrate our model selection procedure, assume that K and S are

selected from ascending candidate sets (K1, K2, . . . , KU ) and (S1, S2, . . . , SV ), re-

spectively. In the first step, as illustrated in Equation 4.6, the conditional scree

ratio sr (Ku |Sv ) is computed for each possible pair of Ku (K1, K2, . . . , KU ), and Sv

(S1, S2, . . . , SV )

sr (Ku |Sv ) =
Loss(Ku−1,Sv )−Loss(Ku ,Sv )

Ku−Ku−1

Loss(Ku ,Sv )−Loss(Ku+1,Sv )
Ku+1−Ku

, (4.6)

with Loss(Ku ,Sv ) referring to the total loss resulting from the CSSCA analysis

with the number of clusters set to Ku and the level of sparsity to Sv . Afterwards,

for each possible value of Ku (Ku = K2, . . . ,KU −1), the average conditional scree

ratio sr (Ku) is computed by averaging sr (Ku |Sv ) over all possible values of Sv

(Sv = S1,S2, . . . ,SV ), as

sr (Ku) =
∑

v sr (Ku |Sv )

V
. (4.7)

The optimal number of clusters Kopt is then determined by maximizing sr (Ku).

In the second step, conditional on the optimal number of clusters Kopt , the con-

ditional scree ratio sr (Sv |Kopt ) can be calculated for each Sv (Sv = S2, . . . ,SV −1),

as shown in

sr (Sv |Kopt ) =
Loss(Kopt ,Sv+1)−Loss(Kopt ,Sv )

Sv+1−Sv

Loss(Kopt ,Sv )−Loss(Kopt ,Sv−1)
Sv−Sv−1

. (4.8)
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Again, we select the optimal level of sparsity by maximizing the conditional

scree ratio.

It is important to note that, according to Equations 4.6 and 4.8, sr (Ku |Sv )

is not defined if Ku = K1 (minimum) or Ku = KU (maximum) and sr (Sv |Kopt )

is not defined when Sv = S1 (minimum) or Sv = SV (maximum). Therefore, the

sequential approach does not allow for the selection of the minimal and maximal

values of K and S.

4.3. SIMULATION STUDIES

To investigate the performance of CSSCA and its model selection procedure, we

conducted two simulation studies. In simulation study 1, the performance of

CSSCA given the correct number of clusters and level of sparsity was evaluated

and compared with the performance of iCluster in various conditions. The pro-

posed model selection procedure for CSSCA was examined in simulation study

2.

4.3.1. SIMULATION STUDY 1

DESIGN

Three model characteristics that were expected to have relatively small impacts

on the clustering performance were kept constant: the number of data blocks

L = 2, the number of common components Rc = 2, and the number of distinctive

components in each data block Rl = (1,1).

The following eight factors were used to create the various conditions:

1 The number of variables Jl : low-dimensional condition (Jl = (15,15)) and

high-dimensional condition (Jl = (15,50)). Hence, the total number of

variables J was 30 in low-dimensional conditions and 65 in high-dimensional

conditions.

2 The number of clusters K : small (K = 2) and large (K = 4).

3 The cluster size Nk : small (Nk = 50 or 30, dependent on Factor 4) and large

(Nk = 100 or 60, dependent on Factor 4).
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4 The equality of cluster size. In the equality conditions, each cluster con-

tained 50 or 100 subjects while in the inequality conditions, one cluster

contained 30 or 60 subjects, and the rest contained 50 or 100 subjects (see

Factor 3).

5 The level of sparsity S (of loading matrices): low (.3), medium (.5), and high

(.7).

6 The proportion of the structural variance accounted for by the mean struc-

ture b: small (.1), medium (.5), and large (.9). Since the mean structure

is assumed to be equal for all subjects of the same cluster, b also repre-

sents cluster differences in the mean structures. Excluding the variance

accounted for by the noise structures, the remaining 1−e of the total vari-

ance (which is also called structural variance hereafter) can be decom-

posed into variance caused by cluster differences in the mean structures

and in the component structures. As such, b(1−e) of the total variance can

be attributed to cluster differences in the mean structures. Mathematically,

b =
∑K

k=1 tr (µ′
kµk )∑K

k=1 tr (µ′
kµk )+∑K

k=1 tr (Pk T′
k Tk P′

k )

7 The proportion of the total variance accounted for by the noise structure,

or the noise level of the data, e: low (.1), medium (.2), and high (.3). Math-

ematically, e = tr (E′
kEk)∑K

k=1 tr (µ′
kµk )+∑K

k=1 tr (Pk T′
k Tk P′

k )+tr (E′
kEk)

8 The average congruence level φ of cluster-specific loadings: low (approx-

imately .2) and high (approximately .53). Here, congruence is measured

by the average Tucker congruence (Haven & ten Berge, 1977; Tucker, 1951)

between the cluster-specific loadings across all pairs of clusters.

In total, the full factorial design of the eight factors resulted in 2 x 2 x 2 x 2

x 3 x 3 x 3 x 2 = 864 conditions. In each condition, we generated 40 replications.

Hence, a total of 34,560 data sets were created and analyzed. The data generation

procedure is detailed in the appendix (Section 4.D).

RESULTS AND DISCUSSION

Over all 34,560 data sets, the average execution time of CSSCA was 774 seconds,

or around 13 minutes. In the simulation, the maximal size of the data sets was



4

90 4. CLUSTERWISE SPARSE SIMULTANEOUS COMPONENT ANALYSIS

400 rows by 65 columns when K = 4, Nk = 100, and J = 65. For each of these data

sets, CSSCA spent an average of 1900 seconds, or around 31 minutes. Overall,

taking into consideration that the computation speed can be greatly improved by

the parallel computation function available in the R package ClusterSSCA, the

execution time of CSSCA should be considered acceptable for applied research.

The main indicator of the clustering performance is the accuracy of cluster

recovery, i.e., how well the partition produced by CSSCA recovers the true parti-

tion (i.e., the partition used to generate the data sets). A widely-used measure of

cluster recovery is the Adjusted Rand Index (ARI; Hubert and Arabie, 1985). ARI

takes values between 0 and 1, with 0 indicating that the overlap between the two

cluster partitions is at the chance level and 1 suggesting a complete overlap be-

tween the two cluster partitions. In the current study, the estimated ARI of the

recovered cluster partition and true cluster partition was used as the indicator of

cluster recovery.

We expected that two of the eight factors – the mean-level cluster differences

b and the noise level of the predictor blocks e – would have the strongest impact

on the cluster recovery of CSSCA. First, a larger b means that the component

structure accounts for a smaller proportion of the structural variance, and, in

extreme cases, can become very small compared to the error variance (e.g., the

component structure accounts for 7% of the total variance while the noise ac-

counts for 30%). In such cases, it can be expected that the component structure

is masked by the noise. Second, a larger e results in the fact that the true data

structure is masked by a larger amount of noise, and the true cluster partition is

therefore more difficult to be recovered.

The results of the simulation studies fit the expectations well. We found that

both b and e were indeed among the most influential factors, and that a better

recovery of the clusters, averaged across replications, was obtained when (1) b

was smaller (ARI = .997 when b = .1, ARI = .999 when b = .5, and ARI = .986 when

b = .9), and (2) e was smaller (ARI = 1 when e = .1, ARI = .999 when e = .2, and ARI

= .984 when e = .3). The average cluster recovery of CSSCA as a function of the

other six factors is reported in the appendix (Section 4.E).

To further investigate the effects of the interactions between b and e on the

cluster recovery of CSSCA, we examine the average ARI in cross-tabulation of
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the two factors, as illustrated in Table 4.1. In all conditions, the average ARI be-

tween the resulting partitions and true partitions was above .95. Thus, in general,

CSSCA yielded an adequate cluster recovery, according to the widely-adopted

criterion proposed in Steinley (2004). When the proportion of mean-level differ-

ences was low or medium, CSSCA recovered the true clusters exceptionally well

(i.e. ARI > .99), even with relatively noisy data. Table 4.1 also reveals that the

worst ARI (ARI = .96) is obtained for the combination of large b and large e, as

expected.

Table 4.1: The means (and the standard deviations between brackets) of ARI
between the true cluster partitions and the CSSCA-recovered cluster partitions
in various conditions

Proportion of
mean-level
differences: low (b
= .1)

Proportion of
mean-level
differences:
medium (b = .5)

Proportion of
mean-level
differences: high
(b = .9)

Noise level: low
(e = .1)

1(0) 1(0) 1(0)

Noise level:
medium (e = .2)

1(0) 1(0) .99(.04)

Noise level: high
(e = .3)

.99(.02) .99(.02) .96(.18)

Figure 4.3 illustrates the results of the comparison between the average clus-

ter recovery of CSSCA and that of iCluster for various levels of b (i.e. the propor-

tion of structural variance accounted for by the mean structure). Clearly, when

the structural variance mainly pertained to the component structure (i.e. b = .1),

CSSCA drastically outperformed iCluster with an ARI of .997 compared to only

.105 for iCluster. In line with our expectations, CSSCA demonstrated an over-

whelming advantage in terms of cluster recovery when the component structure

is the predominant source of variation. The superior performance of CSSCA per-

sisted when the cluster differences in the mean structures and component struc-

tures contributed equally to the structural variance (i.e. b = .5), where CSSCA

achieved an average ARI of almost 1 (.999 to be exact) while iCluster obtained

an average ARI of .93. When b equaled .9, CSSCA could still recover the clusters
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Figure 4.3: The means and the 95% confidence intervals of the Adjusted Rand
Index between the true cluster partitions and the recovered cluster partitions of
CSSCA and iCluster with different values of b

very well (average ARI = .986), but the clusters obtained with iCluster were more

accurate (average ARI = 1). In general, CSSCA has demonstrated consistent and

convincing performance in terms of cluster recovery across all conditions. While

CSSCA achieved a good cluster recovery even in unfavorable conditions, iCluster

did not perform better than the chance level in the most difficult condition.

We also measured the correspondence between the estimated cluster-specific

loading matrices and the true loading matrices that were used to generate the

data, which we quantified by the goodness-of-cluster-loading-recovery statis-

tic (GOCL, see De Roover, Ceulemans, and Timmerman, 2012). GOCL was cal-

culated by first obtaining Tucker’s congruence coefficients between the corre-

sponding components of the true and estimated loading matrices and then av-

eraging across all components and clusters. Since iCluster only detects mean-

level cluster differences, GOCL is not available for the iCluster results. With an

average GOCL equaling .95 over all data sets, CSSCA appeared to perform very

well in recovering the cluster-specific loading matrices. Since the recovery of the

loading matrices largely depends on the recovery of the cluster partitions, we
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would expect the factors b and e to be also important in predicting CSSCA’s per-

formance in recovering the cluster-specific loading matrices. A cross-tabulation

of the average GOCL in the function of these two factors is presented in Table 4.2.

Similarly, the average GOCL reached its lowest value (GOCL = .745) for the com-

bination of a large b and large e, i.e., the condition where the true component

structure was severely masked by the noise.

Table 4.2: The means and the standard deviations (in brackets) of GOCL between
the true loading matrices and the CSSCA-recovered loading matrices in various
conditions

Proportion of
mean-level
differences: low(b
= .1)

Proportion of
mean-level
differences:
medium (b = .5)

Proportion of
mean-level
differences: high
(b = .9)

Noise level: low
(e = .1)

.99(.02) .99(.01) .96(.03)

Noise level:
medium (e = .2)

.99(.02) .98(.02) .89(.06)

Noise level: high
(e = .3)

.98(.02) .97(.03) .77(.11)

4.3.2. SIMULATION STUDY 2

We evaluated the accuracy of the model selection procedure in simulation study

2. From simulation study 1, it was clear that the two most influential factors de-

termining CSSCA’s performances were (1) the proportion of mean-level cluster

differences b, and (2) the error level e. Both factors were retained in simulation

study 2 (note that in this study, e had two levels: e = .15 or .3). Since the level of

sparsity S and the number of clusters K are to be selected, they have also been

added as varying factors in simulation study 2. The true level of sparsity Str ue

is either .3 or .7, and the true number of cluster Ktr ue is either 2 or 4. In total,

576 data sets were created. We executed the model selection procedure for all

data sets with K being selected from [1, 2, 3, 4, 5, 6, 7], and S from [.2, .3, .4,

.5, .6, .7, .8]. Over all 576 data sets, both K and S were correctly selected in 194

data sets (33.68%). In 298 data sets (51.73%), only Ktr ue (but not Str ue ) was cor-



4

94 4. CLUSTERWISE SPARSE SIMULTANEOUS COMPONENT ANALYSIS

rectly selected, while in 14 data sets (2.43%), only Str ue (but not Ktr ue ) was suc-

cessfully selected. Overall, the proposed model selection procedure performed

reasonably well in recovering the number of clusters (Ktr ue was successfully re-

covered in 492, or 85.42%, of the data sets). This procedure, however, was less

successful in determining the level of sparsity, where it only succeeded for a to-

tal of 208 data sets (36.11%). It is important to note, however, that in most cases

the selected level of sparsity differed from the actual level only by a small margin

of 0.1. Furthermore, we found that the model selection process of CSSCA was

more successful (i.e., both Ktr ue and Rtr ue were selected correctly) when (1) b

was of small-to-medium size (46.35% when b = .1 versus 47.40% when b = .5 ver-

sus 7.29% when b = .9) and (2) e was small (36.10% when e = .15 versus 31.25%

e = .3). The condition with a large proportion of mean-level cluster differences

(i.e. b = .9) and a high level of noise (i.e. e = .3), again, was the most challenging

condition with the least successful rate

4.4. APPLICATION

To demonstrate the usefulness of CSSCA, we present an analysis of personality

data from Dufner et al. (2015). As part of a large-scale investigation on motive

dispositions, the multi-block data – consisting of a total of 171 subjects - con-

tained one block of self-reported scores on motive dispositions, and one block of

observers’ ratings on participants’ nonverbal behavior in dyadic interviews. The

first data block contained a total of six sum scores of the self-reported scales with

three of them indicating the power motive while the other three indicating the

affiliation motive. The second data block included observers’ ratings on partici-

pants’ eighteen types of videotaped non-verbal behaviors (see Table 4.3 for a full

list of coded behaviors). A detailed description of the procedures and measure-

ments is available in Hagemeyer et al. (2016).

Our analysis attempted to explore the associations between motive dispo-

sitions and nonverbal behaviors and to detect subgroup differences therein. 1

1note that in the current analysis, we were only interested in how motive dispositions and nonver-
bal behaviors related differently in the two clusters (i.e., the respective subspace structures - but
not the mean structures - of the two clusters). For other research applications where the mean
structures are also of interest, the R Package ClusterSSCA also provides detailed results of the
cluster centroids.
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Previous studies that tried to reveal the connections between the nonverbal be-

haviors and the two types of motives drew inconclusive and even contradictory

conclusions (see Hall et al., 2005), probably because of the oftentimes ambigu-

ous meanings of nonverbal behaviors (e.g. Vrij et al., 2010). We postulate that

such contradictory findings might hint at the existence of subgroups, since peo-

ple belonging to different subgroups may exhibit different nonverbal behaviors

that express their motives.

We performed CSSCA on the multi-block data that consisted of the self-reported

scores on motive dispositions and the expert ratings on non-verbal behaviors.

The multi-block data was column-wise centered and re-scaled such that the sum-

of-squares of each variable equaled 1. To choose the appropriate model, the pro-

posed model selection procedure was used with the number of clusters selected

from 1, 2,. . . , 8, and the level of sparsity from .1, .2,. . . , .9. Furthermore, we fixed

the number of common components to two (i.e., the two types of motives), and

the number of distinctive components to one per block (i.e., response styles in

the first block while specific coding patterns in the second block) According to

the results of model selection, the average scree ratio achieved its highest value

when the number of clusters equaled 3, and, conditional on three clusters, the

scree ratio was maximized with the level of sparsity equaling .4. We, therefore,

inspected the CSSCA solution with 3 clusters and 40% zero loadings. The esti-

mated common component loading matrices of the three clusters, which are of

particular interest as they imply associations between motive dispositions and

nonverbal behaviors, are presented in Table 4.3.
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Table 4.3: The loading matrices of the common component for the three detected clusters in the personality data set.

Cluster 1 (N1 = 68) Cluster 2 (N2 = 58) Cluster 3 (N3 = 45)

Component

1

Component

2

Component

1

Component

2

Component

1

Component

2

Explicit power motive XMS 0 0 -.19 -.10 .21 -.10

Explicit power motive PRF -.31 0 -.17 0 .21 0

Explicit power motive UMS -.20 .12 -.19 0 .21 0

Explicit affiliation motive XMS .27 0 -.15 0 0 .18

Explicit affiliation motive PRF 0 -.28 -.21 .18 -.11 .47

Explicit affiliation motive

UMS

0 -.27 -.13 .20 -.18 .48

Wiggle 0 -.30 0 0 0 0

Overall gesture 0 -.44 -.37 0 0 0

Brash gesture 0 -.42 -.40 0 0 0

Gaze oriented to an experi-

menter

.30 -.21 -.18 .17 .35 0

Nod .41 -.24 0 0 .13 .11

Shakes head 0 -.28 0 .13 0 0

Smile 0 0 0 .31 0 0

Friendly laugh -.22 0 0 .42 0 .18

Relaxed voice -.24 0 .40 .18 .16 0
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Loud voice -.39 0 0 .09 .11 -.10

Interrupts experimenter -.35 -.60 0 0 .15 0

Tries to create a pleasant at-

mosphere

0 0 0 .56 0 .28

Mentions other persons 0 0 .18 0 .29 .54

Behaves Friendly 0 0 0 .50 0 .27

Tries to dominate the conver-

sation

-.40 -.29 -.18 0 .49 0

Boasts -.14 -.17 0 0 .62 -.17

Appears self-secure -.35 -.21 0 .18 .40 0

Touches self 0 -.17 -.26 0 0 0
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To illustrate the interpretation of the table, we consider the two common

components of Cluster 3. While Component 1 correlates with both power and

affiliation motives, Component 2 is primarily related to the affiliation motive, as

evidenced by zero or small loadings on the self-reported measurements of the

power motive. Component 1 indicates that the following non-verbal behaviors

are positively related to the self-reported power motives and negatively related

to the self-reported affiliation motives: gazing towards the experimenter, men-

tioning other persons, trying to dominate the conversation, boasting, appearing

to be self-secure, nodding, expressing relaxed and loud voice, and interrupting

the experimenter. Among these non-verbal behaviors, the first five behaviors

appear to be more closely related to self-reported motives because of their rela-

tively high loadings. In the same vein, the loadings of Component 2 indicate that,

for subjects in Cluster 3, the affiliation motive is most strongly related to trying to

create a pleasant atmosphere, mentioning other persons, and behaving friendly.

Moreover, from Table 4.3, we can also infer that the correlations between the two

motives and the non-verbal behaviors are indeed different for different clusters.

For example, although for all three clusters Component 2 primarily relates to the

affiliation motive, it is also clear from the component loadings that the affiliation

motive is linked to different sets of nonverbal behaviors for the three clusters,

although with a large overlap between the sets of Cluster 2 and Cluster 3. Over-

all, the application shows that the CSSCA approach to data analysis can reveal

interesting insights into inter-individual differences in the concerted action of

attitudinal, emotional, and behavioral indicators.

4.5. GENERAL DISCUSSION

Applied researchers more and more often make use of multiple blocks of data

to obtain insight into complex relations between those factors that influence be-

havior, often involving novel types of data that consist of a large number of vari-

ables. As discussed here, understanding the subtle relations that exist between

these influencing factors and their concerted action effectively means revealing

those variables that co-vary across data blocks. We also discussed that hetero-

geneity in such joint influences can be expected which necessitates the detection

of unknown subgroups for which these underlying common sources of variation
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show up in different sets of linked variables. As argued, to identify unknown clus-

ters and extract cluster-specific components, two challenges of multi-block data

analysis should be addressed: (1) the high-dimensionality of the data sets makes

the interpretation of the common components infeasible, and (2) multi-block

data sets might include distinctive variation underlying one or a few data blocks,

which should be set apart from the common variation.

In the current paper, we introduced CSSCA as a novel clustering method for

multi-block data analysis. This method not only accounts for cluster differences

in the mean structures but also for differences in the covariance structures. Fur-

thermore, the two challenges are tackled by automatic variable selection and si-

multaneously estimating both distinctive and common variations. CSSCA parti-

tions the subjects in such a way that subjects belonging to the same cluster pos-

sess the same set of components and cluster centroids. Through two simulation

studies, CSSCA successfully recovered clusters and component structures across

various conditions. More importantly, CSSCA clearly outperformed iCluster, a

popular clustering method that solely detects cluster differences in the mean

structures, especially in the presence of substantial cluster differences attributed

to the component structures. We further proposed and verified a model selection

procedure to select the number of clusters and level of sparsity. Last, we demon-

strated in our illustrative analysis how CSSCA could be applied to exploratory

research and how this new analysis could bring about novel insights. Concern-

ing the application of CSSCA, we would like to stress that we expect CSSCA to

also perform well in analyzing data sets with a large number of subjects (e.g. so-

cial network data), despite not being formally tested in the current paper. This is

because, with a larger cluster size, the cluster-specific components could prob-

ably be estimated more accurately; as a result, in each update, the subject has a

better chance to be assigned to the best cluster.

We propose several future directions for CSSCA. First, we believe that the op-

timization procedure and the implementation of CSSCA could still be improved

to speed up the CSSCA analysis. This is especially important when dealing with

data sets of large size. Second, we found that CSSCA was slightly less accurate

and stable in comparison to iCluster when cluster differences mainly pertained

to mean-level differences. Future research could, therefore, seek to discover a
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model selection procedure to determine whether cluster differences are mainly

differences in the component structures or in the mean structures. If indeed the

latter fits the observed data better, one could instead apply iCluster to obtain

more accurate partitions.

Although the current model selection procedure allows a data-driven selec-

tion of the number of clusters and level of sparsity, to successfully implement

CSSCA, researchers are still required to specify the number of common and dis-

tinctive components a priori. Nevertheless, further incorporation of component

selection tools could surely offer more freedom in the analysis. We refer to two

approaches that have been proposed and validated in the existing literature to

select the pattern of the components in the SCA-based methods (see Gu et al.,

2019, for technical details). The first approach detects the number of total com-

ponents with the VAF method and determines the status (i.e. common or distinc-

tive) of each component with the DISCO-SCA method. The second approach,

called the PCA-GCA method (Smilde et al., 2017), first applies PCA to determine

the number of components in each data block and then applies GCA to deter-

mine the number of common components.

The current version of CSSCA can only deal with continuous data without

missing values. Future research could extend the CSSCA framework to analyze

categorical and mixed data types and to handle missing values (Stacklies et al.,

2007). For example, a useful strategy in dealing with categorical variables is to

treat each of these variables as a host of dummy variables, much like the strategy

implemented in the categorical PCA algorithm (CATPCA; Linting et al., 2007).

Last, the currently proposed model selection procedure, by design, prohibits

the selection of the smallest possible value. As a result, the solution of one clus-

ter (i.e. no subgroups exist) and (or) that of non-sparse loading matrices can

never be selected. Not being able to select a one-cluster solution is actually a

well-known problem of many deterministic clustering methods (Milligan, 1996).

Some remedies have been provided to solve this issue, for instance, the Lower

Bound Technique (LBT) in the context of K-means clustering (Steinley & Brusco,

2008b). We encourage future research to address this issue in the context of

CSSCA.



APPENDICES

4.A. DETAILS ABOUT THE CSSCA ALGORITHM (ALGORITHM 3)
4.B. DETAILS ABOUT THE SPARSE DISCO-SCA ALGORITHM (AL-

GORITHM 4)

4.C. TECHNICAL MINUTIAE OF ALGORITHM 3

4.C.1. THE STARTING PARTITIONS OF THE ALGORITHM

As explained in the main text, to reduce the probability of ending in a local min-

imum (instead of a global one), we utilize a multi-start procedure in the algo-

rithm. The multiple starting partitions are created on the basis of the partitioning

results of the two other clustering methods: Clusterwise PCA and iCluster.

Clusterwise PCA is in principle a simplified version of CSSCA that is applied

to the concatenated data set. The major difference between Clusterwise PCA and

CSSCA is that the former estimates non-sparse loading matrices and does not

distinguish between common and distinctive components. We have noticed that

similar approaches have been proposed in statistics (for example McWilliams

and Montana, 2014), despite notable differences in estimation procedures. Be-

cause of its model configuration, we expect the resulting cluster recoveries of

Clusterwise PCA to be fairly similar to the true clusters when the component

structure accounts for a large proportion of the total variance (e.g., b = 10%). The

algorithm of Clusterwise PCA is also implemented in the package ClusterSSCA.

On the other hand, as argued in the main text, iCluster partitions the obser-

vations mainly based on the mean structure. Therefore, we expect the resulting

cluster recovery of iCluster to be similar to the true clusters when the propor-

tion of mean-level differences is large (e.g.,b = 90%). The algorithm of iCluster

is provided in the R package iCluster (H. Shen & Huang, 2008; R. Shen et al.,

2012).

To ensure that CSSCA performs well at different levels of b, we generate the

starting partitions of CSSCA based on the results of both Clusterwise PCA and

101
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Algorithm 3: CSSCA

Input: the concatenated data matrix X(N × J ), the number of clusters K ,
and the number of starts Q, the number of sparseness-induced
zeros Z (in the loading matrix), and the position vector wdi s that
indicates the positions of the distinctiveness-induced zeros.

Initialize the converge rate ϵ, the maximal number of iterations allowed
I termax and the minimal total loss Lossg l obal (initially Lossg l obal is set
to an arbitrary large number.)

Column-wise mean-center and standardize X
for q ∈ (1,2, ...,Q) do

Initialize the hq , with its i th element hq [i ] representing the cluster
assignment of observation i (see 4.C for details)

Initialize the total loss of the current start Lossq to an arbitrarily
large number, the total loss resulted from an intermediate iteration
Losscur r ent as well as the (initial) count of iterations I terq to 0

while (Lossq −Losscur r ent > ϵ) & (I terq < I termax do
Update I terq = I terq +1
if I terq == 1 then

for k ∈ (1,2, ...,K ) do
Estimate the Sparse DISCO-SCA solution with multiple

random starts and estimate Lossqk , Tqk and Pqk

Losscur r ent =∑
k Lossqk

Lossq = Losscur r ent

for i ∈ (1,2, ..., N ) do
c = hq [i ]
for k ∈ (1,2, ...,K ) do

if k == c then
Estimate the Sparse DISCO-SCA solution with a single

start Pqk and estimate Lossqs , Tqs and Pqs

Losscur r entk = Losscur r ent

if k ̸= c then
Estimate the Sparse DISCO-SCA solution with a single

start Pqk and estimate Lossqb , Tqb and Pqb

Losscur r entk =
Losscur r ent −Lossqk −Lossqc +Lossqs +Lossqb

Assign hq [i ] = b where Losscur r entb = mink Losscur r entk

Update Losscur r ent = Losscur r entb as well as the score and
loading matrices of the newly formulated clusters (i.e.
Cluster s and b)

if Losscur r ent < Lossg l obal then
Update Lossg l obal = Losscur r ent and the corresponding cluster

partitions, and score and loading matrices
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Algorithm 4: Sparse DISCO-SCA

Input: the concatenated data matrix X(N × J ), the number of clusters K ,
and the number of starts Q, the number of sparseness-induced
zeros Z (in the loading matrix), and the position vector wdi s that
indicates the positions of the distinctiveness-induced zeros.

Initialize the converge rate ϵ, the maximal number of iterations allowed
I termax and the minimal total loss Lossg l obal (initially Lossg l obal is set
to an arbitrary large number.)

Column-wise mean-center X
for q ∈ (1,2, ...,Q) do

Initialize the loss of the current start Lossq to an arbitrarily large
number, the loss calculated at a specific iteration Losscur r ent to 0,
and the number of iterations that have been executed I terq = 0

if loading matrix is expected to be randomly generated then
Initialize loading matrix Pq : each entry pkr is generated from a

uniform distribution U[−1,1]

while (Lossq –Losscur r ent ) > ϵ and (I terq < I termax ) do
Update I terq = I terq +1
if I terq > 1 then

Update Lossq = Losscur r ent

Perform singular value decomposition PT
q XT = UσVT

Update Tq : Tq = VUT

Update Pq : (1) Pq = XT Tq , (2) impose the distinctiveness-induced
zeros on Pq based on wdi s , (3) Impose the sparseness-induced
zeros on Pq : the smallest Z loadings of Pq (except for the
distinctive-induced zero loadings) are set to zero

IfLosscur r ent = Lossg l obal Update Lossg l obal = Losscur r ent and
update the corresponding score and loading matrices
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iCluster. More specifically, two of the starts (which are called “user-specified

starts”) are cluster partitions produced by Clusterwise PCA (which is labeled hc ;

we further name its resulting partition hcr ) and iCluster (which is labeled hi ; we

further name its resulting partition hi r ). The other starts (which are called “semi-

random starts”) are generated by randomly changing the cluster memberships

of a certain amount of observations in hc or hi . When the similarity between hc

and hcr is larger than the similarity between hi and hi r , the component structure

is probably more important, therefore, hc is used to generate the semi-random

starts; otherwise, hc is used to generate the semi-random starts.

4.C.2. THE STARTING PARTITIONS OF THE ALGORITHM

Some restrictions concerning model parameters apply to CSSCA. First, during

the iterations, the number of observations of every cluster should always be larger

than the number of components. If this condition is not met, the CSSCA analy-

sis with the package ClusterSSCA will automatically cease estimation following

the current starting partition, and the total loss associated with the current start-

ing partition will be set at an invalid value. We should also note that the failure

to meet the restriction indicates that the number of clusters is potentially over-

estimated.

4.D. DATA GENERATION PROCEDURE

A partition vector h with size N was first generated to represent the true clus-

ter partitions. The i th element of h, i.e., hi indicates the cluster membership of

observation i .

Equation 4.4 in the main text expresses the observed data matrix Xcon as the

addition of three parts: the component structure part Xcomp , the mean structure

part Xmean , and the noise part E. In simulations, the average variance of the vari-

ables was 1, among which e was attributable to E and a total of 1− e to Xcomp

and Xmean . Subsequently, a fraction b of the remaining variance was further at-

tributed to the mean structure and 1−b to the component structure (note that

as the average variance of all variables was equal to 1, the average variance at-

tributable to the component structure was (1− e)(1− b)). In what follows, the

data generation procedures for the three parts are detailed.
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To construct the component structure part, for each cluster k, the component

score matrix (with dimension Nk×R) was generated as follows: (1) each entry was

initially sampled from the univariate standard normal distribution, (2) the result-

ing matrix was column-wise mean-centered and (3) to ensure that the compo-

nent scores were orthonormal, the Gram-Schmidt orthonormalization was ap-

plied to each score matrix. To set the variance – rather than the sum-of-squares

– of each component equal to 1, we then multiplied each entry of the score ma-

trices by the square root of the corresponding cluster size.

We then constructed the component loading matrices (with dimension J ×
R), where we first generated a component loading matrix for each cluster, and

then imposed distinctiveness-induced zeros and sparseness-induced zeros, as

follows.

First, a different procedure was used to create the non-sparse version of the

loading matrices in the high-congruence and low-congruence conditions.

• For the low-congruence condition, each element in the cluster-specific

loading matrices was obtained initially by uniformly sampling from the

range of -1 to 1. Subsequently, the resulting matrix was rescaled such that

the sum of squares of each row equaled 1.

• For the high-congruence condition, in addition to the cluster-specific ma-

trices generated as described above, a common base matrix was also gen-

erated. The entries of the common base matrices were also uniformly sam-

pled from the range of -1 to 1. Afterward, these matrices were re-scaled

such that the sum-of-squares of each row equaled .7 for the common base

matrix and .3 for the cluster-specific matrices. The final cluster-specific

loading matrices were then obtained by adding the common base matrix

to the cluster-specific matrices.

Second, the distinctiveness-induced zero loadings were introduced to the

cluster-specific loading matrices, in order to structure the distinctive compo-

nents, as shown in Figure 4.2. More specifically, for the l th(l = 1,2) distinctive

component, the loadings of the variables that did not belong to the l th data block

were set to zero.
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Third, the sparseness-induced zero loadings were also imposed on the cluster-

specific loading matrices. The number of the sparseness-induced zero loadings

Z was jointly determined by the level of sparsity S, the block-specific number

of variables and components. In the current simulation, Z equaled 3 × J × S.

We selected Z of the remaining non-zero entries in each cluster-specific loading

matrices – after imposing the distinctive-induced zero loadings in the previous

step – and imposed these entries to zero. For the low-congruence condition, the

Z positions in each cluster-specific loading matrix were selected randomly. For

the high congruence condition, about 70%× Z (or more concretely, the largest

positive integer that is smaller than 70%× Z ) zero positions were randomly se-

lected and were identical across all clusters while the remaining zero positions

were selected randomly for each cluster.

Finally, we re-scaled the cluster-specific loading matrices such that the aver-

age sum of squares of each row equaled (1–b)(1–e).

For each cluster, the component structure part of the data was constructed

by multiplying its score matrix and the transpose of its loading matrix. Xcomp

was then created by stacking together vertically the cluster-specific component-

structure part according to the cluster assignment of each observation.

To quantify the degrees of similarities between the resulting cluster-specific

loading matrices, we computed Tucker’s congruence coefficient ϕ for each pair

of the corresponding components and averaged them across all components and

clusters. Formally, ϕ between two vectors x and y is defined as their normalized

inner product: x′yp
x′x

p
y′y

, according to Tucker (1951). In the simulated data sets,

the average congruence coefficients equaled .18 (SD = .07) in the low congruence

conditions and .53 (SD = .01) in the high congruence conditions. As the first step

in the creation of Xmean , the K × J cluster centroids matrix M was created where

each row k(k ∈ 1,2, . . . ,K ) represented the centroids of cluster k. Each entry in

M was randomly sampled from the univariate uniform distribution U(−1,1). We

then created a preliminary version of the mean structure Xmeanpr e by multiply-

ing h and M. Subsequently, we re-scaled each column of Xmeanpr e such that the

variance equaled b × (1−e) in the resulting mean-structure part Xmean .

Last, the each entry of the error matrix E was randomly sampled from a uni-

variate normal distribution N (0,
p

e)



4.E. SUPPLEMENTARY REPORT ON THE CLUSTER RECOVERY OF CSSCA

4

107

The final concatenated data was constructed by adding together Xcomp , Xmean

and E.

4.E. SUPPLEMENTARY REPORT ON THE CLUSTER RECOVERY OF

CSSCA
In addition to the results reported in the section Simulation Studies of the orig-

inal article, we report hereafter the average clustering accuracy of CSSCA as a

function of the other six factors. We found that, on average, CSSCA resulted in

better cluster recovery when (1) the total number of variables J was larger (ARI

= 1 when J = 65 and ARI = .99 when J = 30), (2) the number of clusters K was

larger (ARI = .997 when K = 4 compared to ARI = .991 when K = 2), (3) the cluster

size Nk was larger (ARI = .996 when the largest cluster includes 100 observations

and ARI = .992 when the largest cluster includes 50 observations), (4) the cluster

sizes were identical across all clusters (ARI = .995 when all clusters have the equal

number of observations compared to ARI = .993 when all clusters have an un-

equal number of observations), (5) the congruence between the cluster-specific

loading matricesϕwas lower (ARI = .997 whenϕ = about .2 , and ARI = .992 when

ϕ = about .55), and (6) the level of sparsity S was larger (ARI = .995 when S = .5 or

.7, and ARI = .985 when S = .3)
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CLUSTERWISE SIMULTANEOUS

COVARIATES REGRESSION: A

NOVEL METHOD THAT BALANCES

PREDICTION AND INTERPRETATION

WITH HIDDEN SUBGROUPS

Many behavioral scientists base their predictive analyses on multiple data sets that

are gathered from different sources (e.g., self-reports, media fingerprints) and (or)

that measure different psychological constructs (e.g., attitudes, traits, values). The

objective of this type of analysis is usually not limited to developing an accurate

prediction model, but also involves providing clear insight in terms of how predic-

tors individually and jointly relate to outcomes. Since there is often heterogeneity

regarding these relationships, predictive analyses should account for this hetero-

geneity by identifying clusters with different predictor-outcome relationships. Un-

This chapter is based on Yuan, S., De Roover, K., & Van Deun, K. (Resubmitted). Clusterwise Si-
multaneous Covariates Regression: A Novel Method that Balances Prediction and Interpretation
with Hidden Subgroups. Behavior Research Methods
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fortunately, existing methods allowing for this heterogeneity suffer from impor-

tant drawbacks (e.g., failure to deal with a high degree of multicollinearity). To

address these drawbacks, this study presents a novel method, called Clusterwise

Simultaneous Component Regression or CSCR. Inspired by Principal Covariates

Regression and incorporating the clusterwise approach, CSCR is a generic method

that encompasses several other methods as special cases. In two simulation stud-

ies, we found that CSCR outperformed four existing methods in terms of predictive

accuracy and cluster recovery and that the proposed model selection procedure re-

covered the parameters of the CSCR model well. In our illustrative analysis, we

demonstrate that CSCR can yield additional insights into how one’s attitude to-

wards immigrants is affected by personality traits and personal values for different

clusters of observations. Last, we provide some practical guidance on conducting

predictive analyses.
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5.1. INTRODUCTION

Behavioral scientists working on predictive analyses are often confronted with

heterogeneous samples: the subjects on which prediction models are built come

from unknown clusters, and to fully capture the unique characteristics of these

clusters, each cluster may require a different prediction model. For example, an

HR researcher who wants to predict leadership effectiveness has to take into ac-

count the different types of leadership profiles where effective outcomes (e.g.,

improved team performance; Doucet et al., 2015) are achieved through differ-

ent sets of behaviors (Gandolfi & Stone, 2018). In other words, for each (un-

known) cluster of leaders, a unique prediction model is required to infer leader-

ship effectiveness from leadership behaviors. To accommodate such modeling

needs, prediction methods should automatically detect hidden clusters of sub-

jects and simultaneously build cluster-specific prediction models. One of the

most popular methods belonging to this category is Clusterwise Regression (CR;

Späth, 1979), which simultaneously assigns subjects into clusters and estimates

cluster-specific regression models. However, since CR is based on Ordinary Least

Squares (OLS) regression, it suffers from the two well-known drawbacks of OLS

when dealing with a large number of predictors. First, the predictive accuracy of

CR is significantly compromised when the notorious problems of multicollinear-

ity and (or) overfitting occur (Yuan, Kroon, et al., 2021). Second, the unique and

incremental contribution of each predictor estimated in CR becomes very diffi-

cult to interpret when the number of predictors is large.

A potential remedy to address the two drawbacks is Principal Covariates Re-

gression (PCovR; De Jong and Kiers, 1992), which simultaneously summarizes

the predictors into a limited number of components (called predictive compo-

nents hereafter) and regresses the outcome on these components (Vervloet et al.,

2016). Predicting from components not only reduces model instability caused by

sampling variation (Kiers & Smilde, 2007), but also describes the joint contribu-

tions of several related predictors, which are arguably more interpretable than

the incremental contributions of individual predictors (e.g., leadership effective-

ness can be better inferred from leadership styles, composed from several lead-

ership behaviors; Nanjundeswaraswamy and Swamy, 2014). In this paper, we in-

corporate PCovR and the clusterwise approach (e.g., DeSarbo and Cron, 1988; De
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Roover, Ceulemans, Timmerman, Vansteelandt, et al., 2012; De Roover, Ceule-

mans, Timmerman, and Onghena, 2013; Durieux and Wilderjans, 2019) into a

novel method, called Clusterwise Simultaneous Covariates Regression (CSCR),

which identifies hidden clusters as well as cluster-specific predictive components.

As the name implies, CSCR originates from Simultaneous Component Analy-

sis (SCA; Kiers and ten Berge, 1994), and, just like SCA, reduces the dimensions

of multi-block data simultaneously and summarizes the observed variables in a

few components. Here, the multi-block data refers to a few homogeneous data

blocks, where each data block covers conceptually different constructs (e.g., a

block of self-reported leader behaviors and a block of self-reported leader per-

sonalities) and (or) consists of conceptually similar constructs with diverse in-

struments (e.g., a block of self-reported leader behaviors and a block of leader

behaviors measured through textual data). Last, as has become clearer in Sec-

tions 5.2 and 5.3, CSCR does not rely on the outcome to determine the cluster as-

signment of new observations, thus avoiding contaminating cluster assignment

with the information contained in the outcome - another critical drawback of

CR, first discussed in Brusco et al. (2008). Below, we briefly introduce how CSCR

extends PCovR to estimate regression models per cluster and how it deals with

multi-block data sets.

PCovR, the predecessor of CSCR, was proposed in response to the aforemen-

tioned shortcomings of OLS (i.e., inability to handle multicollinear predictors;

strong tendency to overfitting; poor interpretability in the presence of many pre-

dictors) and established itself as one of the most popular models to accurately

produce predictions and clearly describe joint contributions of predictors (Vervloet

et al., 2015). CSCR extends PCovR first by capturing underlying heterogeneity in

terms of predictive components and (or) regression coefficients with a simulta-

neous cluster analysis. For this purpose, a clusterwise approach with an iterative

algorithm is employed to simultaneously detect clusters and the associated pre-

diction models.

In addition to modeling unobserved clusters, CSCR also extends PCovR to

the setting of multi-block data and allows to identify the predictive components

indicative of the joint contributions of variables from different data blocks. The

structure of multi-block data and the investigation of underlying joint contribu-
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tions are prevalent in behavioral research. In the preceding example of predict-

ing leader effectiveness, HR researchers may want to determine the joint influ-

ences of leaders’ personalities (as indicated by a block of personality scores) and

behaviors (as indicated by a block of behavior scores). Unfortunately, PCovR in

its original form does not properly handle multi-block predictors: due to the fact

that the components identified by PCovR are subject to rotational freedom, these

(rotated) components can become predictive components associated with all

data blocks (called common predictive components) or components associated

with one or a few data blocks (called distinctive predictive components) or a com-

bination of the two (Schouteden et al., 2014). In our preceding example, the es-

timates of PCovR do not necessarily translate into the joint influences of leaders’

personalities and behaviors in determining their effectiveness (this type of joint

contribution is in many cases the focus of the research), because the identified

components can also indicate the distinctive contribution pertaining only to per-

sonalities or behaviors. To address this challenge of analyzing multi-block data,

S. Park et al. (2021) extended PCovR to incorporate both common and distinctive

predictive components, resulting in a method known as common and distinctive

covariates regression (or CD-CovR). Essentially, CD-CovR imposes blocks of zero

loadings onto a loading matrix that represents the relationships between pre-

dictors and predictive components: the components involving such zero blocks

represent distinctive predictive components because they are not related to the

variables from those data blocks with which the associated loadings are zero. In

our previous example, the distinctive predictive component pertaining to lead-

ers’ personality traits contains zero loadings on all leadership behaviors.

To benefit from the interpretative and predictive advantages of PCovR and to

further account for hidden clusters as well as common and distinctive compo-

nents, our proposed CSCR method effectively incorporates the clusterwise ap-

proach into the CD-CovR model. As such, CSCR is unique in its ability to si-

multaneously detect common and distinctive predictive components as well as

cluster differences therein. Furthermore, CSCR is a generic method that com-

prises PCovR, CD-CovR, and the clusterwise version of PCovR as its special cases.

We note that the idea of integrating the clusterwise approach into component-

based methods has also been adapted in two related methods, namely Cluster-
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wise Simultaneous Component Analysis (CSCA; Yuan, De Roover, Dufner, et al.,

2021) and Principal Covariates Clusterwise Regression (PCCR; Wilderjans et al.,

2017). However, CSCR differs from CSCA because the latter identifies clusters

and components without predicting outcomes, whereas CSCR differs from PCCR

in terms of their different objectives: while PCCR deals with multi-level data sets

and finds clusters at the level of existing groups, CSCR deals with single-level

data sets and finds clusters at the level of individuals. As far as we know, the only

methods that serve a similar purpose as CSCR are Clusterwise Multi-block Par-

tial Least Squares (CW-MBPLS) and Clusterwise Multiblock Redundancy Anal-

ysis (CW-MBRA), both have been proposed by Bougeard et al. (2018) and both

adopt a PLS-based framework. These authors concluded from a set of simula-

tion studies that CW-MBPLS was preferable to CW-MBRA since it yielded bet-

ter results in the presence of high multicollinearity between predictors. There-

fore, only CW-MBPLS is considered further as a competing method in the cur-

rent study. Theoretical and empirical comparisons between CSCR and all these

related methods are described further in Sections 5.2 and 5.3, respectively.

The remainder of this article is organized as follows. In Section 5.2, we pro-

vide a detailed description of CSCR and explain its relations to similar methods.

Section 5.3 presents two simulation studies in which the performance of CSCR

is evaluated and compared to the related methods. We then illustrate the appli-

cation of CSCR in an empirical analysis, presented in Section 5.4, in which self-

reported personality types and values are used to predict one’s attitude towards

immigrants. Finally, in Section 5.5, we discuss the implications and limitations

of CSCR, and a blueprint for future research. For users who want to use CSCR or

the closely related, clusterwise version of PCovR, a package CSCR can be obtained

from https://github.com/syuanuvt/CSCR.

5.2. METHOD

Tables 5.1 and 5.2 respectively list the most important acronyms and mathemat-

ical notations that are used throughout the article. In general, matrices are de-

noted by bold upper-case letters (e.g., X), vectors by bold lower-case letters (e.g.,

y), and scalars by italic lowercase letters (e.g., k). The superscript T indicates

matrix transposition, and the subscript k refers to cluster k. Furthermore, for

https://github.com/syuanuvt/CSCR
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Table 5.1: Cross-reference table of the full name and abbreviation for each
method

Acronyms Full names Reference

CSCR Clusterwise Simultaneous Covariates
Regression

The current study

CR Clusterwise Regression Späth, 1979
PCovR Principal Covariates Regression De Jong and Kiers, 1992
SCA Simultaneous Component Analysis Kiers and ten Berge, 1994
CD-CovR Common and Distinctive Covariates

Regression
S. Park et al., 2021

CSCA Clusterwise Simultaneous
Component Analysis

Yuan, De Roover, Dufner,
et al., 2021

CW-MBPLS Clusterwise Multiblock Partial Least
Squares

Bougeard et al., 2018

iCluster Integrative Clustering Algorithm R. Shen et al., 2009

simplicity, we assume a univariate outcome (indicated by y) throughout the arti-

cle, although CSCR is also applicable to multivariate outcomes. Throughout the

article, we assume that both X and y are column-wise mean centered. Note that

when the variances of the predictors differ significantly, it is recommended to

rescale the variables to unit variance.

5.2.1. MODEL

PCOVR MODEL

Because CSCR extends PCovR, we now first formally introduce the statistical model

of PCovR. According to PCovR, X can be decomposed by

X = TPT +E(X), (5.1)

with E(X) indicating the matrix of residuals. Simultaneously, PCovR models y as a

linear function of the component scores T,

y = Tβ+e(y), (5.2)

withβ containing R regression weights contained in the vector and e(y) denoting

the vector of residuals.
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Table 5.2: Glossary of mathematical notations

Notation Type and size Description

N a scalar the total number of observations
J a scalar the total number of variables
X a matrix of size

N × J
the concatenated predictor block

y a vector of size N the (univariate) outcome block
K a scalar the total number of clusters
l a scalar the total number of data blocks
Nk a scalar the number of observations in cluster k
R a scalar the total number of components
Rcom a scalar the number of common components
Rdi sl a scalar the number of distinctive components

pertaining to data block l
Tk a matrix of size

Nk ×R
the component score matrix of cluster k

Pk a matrix of size
J ×R

the component loading matrix of cluster k

bet ak a vector of size R the regression weights of cluster k
mk a vector of size J the cluster centroids across the predictor blocks

for cluster k
uk a scalar the intercept of cluster k
α a scalar the coefficient that balances the importance of

reconstructing X versus predicting y
g a vector of size N the partitioning vector that assigns each

observation to the corresponding cluster (e.g.,
g(i ) = k)
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To find components that simultaneously minimize the reconstruction error

in X and the prediction error in y, PCovR seeks to minimize

L =α ||X−TPT ||22
||X||22

+ (1−α)
||y−Tβ||22

||y||22
, (5.3)

with ||.||22 indicating the sum of squared elements of a vector or a matrix (i.e., the

squared Euclidean norm of a vector or the squared Frobenius norm of a matrix)

and α ranging from 0 to 1. α determines the relative weights of the two parts in

the loss function Equation (5.3); in other words, α balances the importance of

reconstructing X versus predicting y. When α = 1, the sole purpose of PCovR is

to reconstruct X and it coincides with Principal Component Regression or PCR.

Alternatively, when α= 0, the sole purpose of PCovR is to predict y and a special

case of PCovR with one component is equivalent to multiple linear regression

(S. Park et al., 2021). We refer interested readers to Vervloet et al. (2015) for a

detailed discussion of how the choice of α affects the attainment of the two ob-

jectives (i.e., prediction versus interpretation) of PCovR. To identify the optimal

solution of Equation (5.3), De Jong and Kiers (1992) suggested to impose an or-

thogonal constraint on T, such that TT T = I. Note that this constraint does not

completely resolve the indeterminacy of the solution, as T is still subject to rota-

tional freedom.

THE CSCR MODEL

So far, PCovR has been presented in its original form where it is applied to the

concatenated predictor block. However, the original PCovR model suffers from

two limitations: (1) it ignores the multi-block structure of the predictors and

gives no insight into the joint and individual sources of variation (i.e., the com-

mon and distinctive predictive components); (2) it does not account for hetero-

geneous subgroups with different components and (or) regression models.

The first limitation is addressed in CD-PCovR by imposing a block structure

on the components. Specifically, distinctive components are modeled by impos-

ing zero loadings on all variables but those from the block(s) the component is

supposed to underlie. Common components are not subject to this constraint

so they remain associated with all variables.
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Note. the red and blue dots are data points from the two clusters. Subplot A depicts the case
where the two clusters differ primarily in terms of the component structure, while Subplot B
depicts the case where the clusters differ primarily in terms of the mean structure.

Figure 5.1: The visualization of the two types of clustering differences concern-
ing multi-block predictors

The second limitation, namely the strict assumption that the same model

applies to all observations, can be effectively addressed with the clusterwise ap-

proach. Here, the relevant methods to build on are CSCA and CR that partition

observations into clusters based on components or regression models.

To illustrate the different types of cluster differences that should be accounted

for, we consider a hypothetical sample consisting of 2 clusters - each with 50 data

points - and 3 variables (2 predictors from the same data block and 1 outcome).

Figures 5.1 and 5.2 visualize the two types of cluster differences with respect to

the predictor block and the outcome, respectively. We first discuss Figure 5.1.

While the two clusters (shown in red and in blue, respectively) in Figure 5.1A

have the same centroids and different within-cluster components (the axes of

these components are depicted in lines), the clusters in Figure 5.1B only differ in

terms of their centroids.

While the original PCovR model for reconstructing X, as illustrated in Equa-

tion (5.1), fails to account for these cluster differences, the addition of a clus-

terwise approach, first adapted in CSCA (Yuan, De Roover, Dufner, et al., 2021),

allows for cluster-specific component scores and loadings. In addition, as dis-

cussed above, following CD-PCovR, blocks of zero loadings can be further im-

posed structurally on cluster-specific loading matrices to indicate common and

distinctive predictive components. Mathematically, considering the simplest case

with two data blocks, to reflect common and distinctive components, the com-
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ponent score matrix T can be defined as
[

Tcom T1 T2

]
, where Tcom are scores

of the common components and T1 and T2 are component scores pertaining to

data block 1 and 2, respectively. The component loading matrix P can be de-

fined as

[
Pcom

Pdi s1 0

0 Pdi s2

]
, where Pcom are scores of the common compo-

nents while Pdi s1 and Pdi s2 are specific to data blocks 1 and 2, respectively. This

way of defining the structure of common and distinctive components can be eas-

ily extended to conditions with more than two data blocks. Taken together, the

clusterwise model for reconstructing X can be written as

Xk = 1Nk mT
k +Tk PT

k +E(X)
k , (5.4)

and is subject to the condition that, for each k, TT
k Tk = I. Furthermore, pre-

defined blocks of zeros are imposed on Pk to model common and distinctive

components (see our previous example of structuring P). The fact that all score

and loading matrices are of equal size corresponds to the assumption of CSCR

that the same number of components pertain to all clusters. This assumption,

which has also been imposed in similar methods (e.g., Timmerman et al., 2013;

Wilderjans et al., 2017; Yuan, De Roover, Dufner, et al., 2021) is in place because

of our goal to keep the model selection process as efficient as possible. Without

this assumption, the number of components has to be selected for each cluster;

this selection procedure drastically increases computational demand, especially

with a large number of clusters.

We now turn to Figure 5.2, which illustrates the two types of cluster differ-

ences with respect to the relationship between component scores and the out-

come. In Figure 5.2A, observations from the two clusters lie around the two re-

gression lines with the same centroids. In contrast, the two clusters in Figure

5.2B have such a large mean difference in the outcome that this difference alone

permits accurate separation of the two clusters.

Again, these important cluster differences cannot be accounted for in the

original PCovR model for predicting y, as illustrated in Equation (5.2). However,

the clusterwise approach provides a useful solution, as first adapted in CR (Späth,

1979). More specifically, with uk denoting the cluster-specific intercept and βk

the cluster-specific regression weights, both of cluster k, the clusterwise model



5

120 5. CLUSTER-WISE SIMULTANEOUS COVARIATES REGRESSION

Note. the red and blue dots are data points from the two clusters. Subplot A depicts the case
where the two clusters differ primarily in terms of the component structure, while Subplot B
depicts the case where the clusters differ primarily in terms of the mean structure.

Figure 5.2: The visualization of the two types of clustering differences concern-
ing outcomes

for predicting y can be written as

yk = 1Nk uk +Tkβk +e(y)
k . (5.5)

Equations (5.4) and (5.5) are the essential models of the novel CSCR method.

We have two comments on the models. First, the cluster-specific mean structure

mk and uk are indispensable ingredients in Equations (5.4) and (5.5), as the users

typically do not know in advance which observation belongs to which cluster.

Second, for applications with single-block predictors, one can use a special form

of the CSCR model where all components are common components.

THE OBJECTIVE FUNCTION

Estimation of the CSCR model is based on minimizing the following least squares

criterion, given that the total number of clusters equals K :

L = α

||X||22

K∑
k=1

||Xk −1Nk mT
k −Tk PT

k ||22 +
(1−α)

||y||22
||

K∑
k=1

||yk −1Nk uk −Tkβk ||22, (5.6)

and is subject to: (1) for each k, TT
k Tk = I, and (2) Pk in the form of

[
Pcom

Pdi s1 0

0 Pdi s2

]
with pre-specified blocks of zeros loadings. Here, the value of α is fixed to .95,

because, according to previous research (e.g., Heij et al., 2007; Wilderjans et al.,
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2017; Vervloet et al., 2016), the predictive accuracy of PCovR and related meth-

ods is optimal when α is between .95 and .99 and, within this range, a smaller α

leads to a better balance of prediction and interpretation. Note that the obtained

solutions (i.e., the cluster-specific score and loading matrices as well as the sets

of regression weights) are not necessarily unique because each set of compo-

nents of the same status (i.e., common components, distinctive components for

the first data block, etc,) are subject to rotational freedom (also see Schouteden

et al., 2013 and Schouteden et al., 2014). The rotational freedom does not af-

fect predictions made by CSCR but does affect how within-cluster component

structures are to be interpreted. Following the suggestions in Schouteden et al.

(2013) and Schouteden et al. (2014), we recommend applying a VARIMAX rota-

tion (Kaiser, 1959) within each set of components to identify the solution.

5.2.2. ALGORITHM

Here, we present an alternating algorithm to minimize (5.6) with a prespecified

number of clusters K , common components Rcom and distinctive components

Rdi s1...Rdi sl . We defer the discussion on how to determine these parameters to

section 5.2.3. In essence, the algorithm - outlined in the following two para-

graphs and detailed in Algorithm 5 - closely follows the procedure used in CR

and CSCA where, given initial values, the cluster memberships and the cluster-

specific components and regression weights are updated iteratively.

To initialize Algorithm 5, a starting partition to determine the initial clus-

ters should be provided. A multi-start procedure (De Roover, Timmerman, et

al., 2013; Timmerman et al., 2013) with semi-rational starts is strongly recom-

mended, in order to avoid local optima. These semi-rational initial partitions

are created by randomly swapping the cluster assignments of roughly 20% of

the observations from one of the two initial partitions - resulting from a Gaus-

sian Mixture Model (GMM) analysis and a CSCA analysis on multiple blocks of

predictors. As illustrated in Yuan, De Roover, Dufner, et al. (2021), CSCA recov-

ers clusters well when differences in cluster-specific components are the main

source of cluster differences (i.e., Figure 5.1A), whereas GMM effectively recovers

clusters when cluster differences are primarily attributed to differences in clus-

ter centroids (i.e., Figure 5.1B). Therefore, to account for both types of cluster
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differences, the partitions resulting from both methods are used to create semi-

rational starting partitions.

After having obtained the initial partition of the observations, the cluster-

specific predictors are column-wise mean-centered. Subsequently, the cluster-

specific score matrices, loading matrices, and regression weights are updated in-

dependently for each cluster through an iterative procedure, which is adapted

from a PCA-like decomposition of the augmented matrix
[

y X
]

, first proposed

in Heij et al. (2007). More specifically, for each cluster k, the score matrix Tk

is updated conditional on the loading matrix Pk , the regression weights βk and

the means uk while Pk , βk , and uk are updated conditional on Tk . The iterative

procedure for updating the scores, loadings, and regression parameters stops

when the change in the loss value calculated from Equation (5.6) is smaller than

a pre-defined threshold. Then, the cluster memberships for each observation are

updated in turn. For this purpose, the observation under consideration is pro-

visionally combined with each cluster and, for each combination, the optimal

model is estimated following the iterative procedure described above. The ob-

servation is subsequently assigned to the cluster that minimizes the correspond-

ing loss value. The updating of the cluster memberships only stops when the

total reduction of the loss value for one full iteration of updating all observations

is less than a pre-specified value (or when the algorithm reaches the maximal

number of iterations). The iterative procedure proposed here has the property

that - with each step - the loss, as calculated from Equation (5.6), does not in-

crease and eventually converges to a stationary point. The proof that the loss is

non-increasing when updating Pk , βk , and Tk is provided in Gu and Van Deun

(2019).
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Algorithm 5: The CSCR Algorithm

Define: the convergence criterion conv , and the maximal number of
iterations bmax .

Perform a CSCA analysis and a GMM analysis on X, resulting in g1
0 and g2

0
for v ← 1 to 3 do

for s ← 1 to 2 do
Generate the partition g by randomly swapping the cluster

memberships of 20% of the observations in gs
0

for k ← 1 to K do
Per g, determine Xk , and then calculate mk = 1

Nk
HXk and

X∗
k = (I− 1

Nk
H)Xk , where H is an Nk ×Nk matrix of ones

Initialize Tk : Tk ← Rk where Rk consists of the first k left
singular vectors of X∗

k
Initialize the number of iterations: b ← 0, the difference in

loss: ∆L ← In f
while b < bmax and ∆L < conv do

Update Pk : (1) Pk ← X∗T

k Tk and (2) impose
distinctiveness-induced zeros on Pk to match the
pattern of common and distinctive components

Update uk and βk : regress yk on each column of Tk ; uk is
updated by the resulting intercepts and βk is updated by
the coefficients of scores

Update Tk : Tk ← WVT where W and V are respectively the
matrices that contain left and right singular vectors of

Z = α||X||22
α||X||22+(1−α)||y||22

X∗
k Pk + (1− α||X||22

α||X||22+(1−α)||y||22
)(yk −uk )βT

k

b = b +1; Calculate Lb per (5.6) and ∆L ← Lb −Lb−1
end
Record the loss value for cluster k: Lk = Lb

end
Calculate the sum of loss values for the current partition:

Lv =∑K
k=1 Lk

Initialize b ← 0 and ∆L ← Lv

while b < bmax and ∆L < conv do
b = b +1
for i ← 1 to N do

Obtain the current assignment of i : k0 ← g(i )
for k ′(k ′ ∈ 1,2, ...,K ) where k ′ ̸= k0 do

Generate a trial partition g′: g′ ← g, g′(i ) ← k ′
Conduct a full Simultaneous Covariates Regression

analysis (see Part 1) on each cluster gathered from g′,
resulting in Lv ′ and the set of estimates (i.e., Pk ,
Tk ,uk and βk )

If Lv ′ < Lv , Lv ← Lv ′, g ← g′(i ) and update the set of
estimates

end
end

end
Lv ← Lb ; ∆L ← Lb −Lb−1

end
If Lv < L, L ← Lv and update the whole set of estimations accordingly

end
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5.2.3. MODEL SELECTION

In CSCR, the values of a set of hyper-parameters have to be determined: the

number of clusters K , common components Rcom and distinctive components

Rdi s1...Rdi sl for each data block. Typically, there is limited information about

suitable values for these parameters. Here, the proposed model selection pro-

cedure consists of five steps and uses three widely applied criteria: the Bayesian

Information Criterion (step 1), the predictive accuracy in a holdout sample (steps

3 and 5), and the scree ratio test (steps 2 and 4). These five model selection steps

are described and motivated below. Note that, following previous studies (e.g.,

Gu and Van Deun, 2019; Schouteden et al., 2014), we also proposed a two-part

model selection procedure to recover common and distinctive components - the

first part determines the total number of components and the second decides

the status (i.e., common or distinctive component pertaining to one of the data

blocks) of these components. The proposed model selection strategy is evalu-

ated in simulation study 2 (see Section 5.3.2)

• In step 1, a GMM is used to analyze the concatenated block of predictors X;

a preliminary value of K (denoted as K0) is obtained by optimizing the BIC

value of the model. In this way, step 1 offers a good initial guess of K that

accounts for differences in the cluster centroids pertaining to the predictor

blocks.

• In step 2, conditional on K0, the scree ratio test, one of the most widely

used criteria for selecting the number of components (e.g., De Roover, Ceule-

mans, and Timmerman, 2012, Wilderjans and Ceulemans, 2013), is applied

to provisionally determine the total number of components R. Specifically,

the scree ratio is calculated for r ∈ [2,3, ...,Rmax −1] (where Rmax denotes

the maximum possible value of R), as follows:

srr |K0 =
Lr−1,K0 −Lr,K0

Lr,K0 −Lr+1,K0

, (5.7)

where Lr,K0 denotes the loss obtained from estimating a CSCR model with

K0 and r . An initial value for R, denoted by R0, is obtained by selecting the

value that maximizes the scree ratio defined in Equation (5.7).
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• In step 3, conditional on R0, the optimal value of K , denoted by Kopt , is

determined using a prediction based approach. Specifically, a randomly

selected training sample, consisting of 80% of the observations, is used to

train the CSCR model for each candidate value of K . Subsequently, the

trained model is applied to the holdout sample, consisting of the remain-

ing 20% of the observations, to determine the predictive accuracy. After

calculating the predictive accuracy for all possible values of K , Kopt is set

to the value that maximizes the accuracy. According to Putka et al. (2018)

and Yuan, Kroon, et al. (2021), this prediction-based approach avoids over-

fitting and promotes generalization. In addition, this prediction-based ap-

proach offers the flexibility to select from the full set of candidate values,

so it overcomes an important drawback of the scree ratio test, namely the

first and last values are impossible to be selected.

• In step 4, the procedure of step 2 is applied again to determine the optimal

value of R, referred to as Ropt . Here, Kopt is used as the number of clusters,

and when Kopt equals K0, step 4 can be skipped.

• Finally, in step 5, the numbers of common and distinctive components are

determined using the prediction-based approach with a holdout sample.

Given the total number of components Ropt , blocks of zero loadings are

imposed on Pk (k ∈ (1,2, ...,Kopt ) to reflect common and distinctive com-

ponents and the structure of the components that maximizes the predic-

tive accuracy is selected as the optimal solution.

5.2.4. RELATED METHODS

CSCR is a flexible method with a three-fold objective: to predict an outcome from

multi-block data, to describe common and distinctive predictive components,

and to account for the heterogeneity of the observations. Thanks to its generality,

CSCR encompasses PCovR and CR as special cases and is closely related to CD-

CovR and CSCA, as discussed in the introduction.

The three-fold aim of CSCR can be achieved in four alternative ways. First,

CR can be applied to the concatenated data (hereafter referred to as the CR ap-

proach). However, as discussed in the introduction, compared to CSCR, the CR
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approach has two important drawbacks: (1) it fails to deal with high-dimensional

data sets, and (2) it is more prone to over-fitting because it can be affected by

multicollinearity and the information contained in the outcome likely contami-

nates the prediction models (Brusco et al., 2008).

The second approach (called CSCA+LR) first applies CSCA to multi-block

data sets to identify clusters of observations with the same common and distinc-

tive components; in the second step, the resulting cluster-specific components

are regressed on the outcome. We expect that CSCR outperforms CSCA+LR in the

following scenarios. First, when some of the components explain a significant

amount of variance in the predictors but only little variance in the outcome),

CSCA+LR is more likely to pick up these components because the dimension re-

duction step of CSCA+LR does not account for the outcome block at all. This

may result in missing the predictive components and reduced predictive accu-

racy. Second, when cluster-specific loading matrices are highly congruent, CSCR

is also expected to outperform CSCA+LR, since CSCR uses both components and

regression weights to identify clusters while CSCA+LR only uses the former.

The third approach is also a two-step approach. In the first step, iCluster

(R. Shen et al., 2009) is used to partition the observations based on multi-block

predictors. In the second step, CD-CovR is applied per cluster, yielding cluster-

specific regression models. This approach is therefore termed iCluster+CD-CovR.

The first step identifies clusters solely on the basis of mean structure. As a result,

this step is able to recover the two clusters in Figure 5.1B well, but may not clearly

separate the two clusters in Figure 5.1A. Thanks to its ability to recover cluster-

specific components, CSCR is likely to outperform iCluster+CD-CovR in terms

of predictive accuracy in cases where the components account for most cluster

differences.

The last approach, CW-MBPLS, extends Multiblock Partial Least Squares (MB-

PLS; Wold, 1984) to account for clusters of observations that differ in both com-

ponents and regression weights. When comparing PLS-based methods and PCovR-

based methods, previous studies (e.g., Gvaladze et al., 2021, S. Park et al., 2021,

Kiers and Smilde, 2007) have consistently shown that, although PLS based meth-

ods sometimes yielded a better in-sample fit than PCovR based methods, the

former were generally more prone to overfitting and, as a result, yielded lower
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out-of-sample predictive accuracy than the latter. We expect the same pattern

in the comparison between CSCR and CW-MBPLS: CSCR generally outperforms

CW-MBPLS with respect to out-of-sample predictive accuracy.

5.3. SIMULATION STUDIES

Two simulation studies were conducted to examine the performance of CSCR as

well as the proposed model selection procedure. In simulation study 1, the set

of parameters - namely K , Rcom , and Rdi s - were regarded as known, and the

performance of CSCR was compared with the aforementioned four competing

methods (CR, CSCA+LR, iCluster+CD-CovR, and CW-MBPLS) in terms of predic-

tive accuracy and cluster recovery. In simulation study 2, the values of the set of

parameters were assumed to be unknown and we evaluated the extent to which

the proposed model selection strategy recovered these parameters.

5.3.1. SIMULATION STUDY 1

DESIGN

In simulation study 1, each simulated data set consisted of a total of 120 obser-

vations on two predictor blocks (each containing 10 variables) and one outcome

variable. The 120 observations were randomly assigned to 3 clusters of equal

size. We then randomly partitioned each simulated data set into a training set

(90 observations) and a test set (30 observations). This procedure ensures that

both the training and test sets contain clusters of unequal size.

A number of parameters were fixed in data generation. The number of pre-

dictive components was fixed to 4. The four components consist of two common

components and two distinctive ones. While both of the common components

are associated with all 20 variables, the two distinctive ones are associated with

10 variables in one of the two predictor blocks. Besides these fixed parameters, a

total of five factors were systematically manipulated in the following way:

• the relative size of the four clusters: equal (each of the three clusters con-

tained 40 observations) or unequal (the three clusters contained 30, 40,

and 50 observations, respectively)
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Table 5.3: Cluster-specific regression weights used in simulation study 1

Regression
Weights

Clusters Common
Compo-
nent 1

Common
Compo-
nent 2

Distinctive
Compo-
nent 1

Distinctive
Compo-
nent 2

large differences
in regression
weights

cluster 1 .5 .5 .5 .5
cluster 2 −.5 −.5 −.5 −.5
cluster 3 .1 .7 −.1 −.7

small differences
in regression
weights

cluster 1 .5 .5 .5 .5
cluster 2 −.5 .5 −.5 .5
cluster 3 .1 .7 −.1 −.7

• the proportion of cluster differences in predictors that is explained by between-

cluster mean structures (bx =
∑K

k=1 tr ace(m′
k mk )∑K

k=1 tr ace(m′
k mk )+∑K

k=1 tr (Pk T′
k Tk P′

k )
): 10%, 50%,

or 90%. Therefore, the cluster-specific components explained (1−bx ) of

the cluster differences in predictors.

• the proportion of cluster differences in outcomes explained by cluster-specific

intercepts (by =
∑K

k=1 tr ace(u′
k uk )∑K

k=1 tr ace(u′
k uk )+∑K

k=1 tr (bet ak T′
k Tk bet a ′

k )
): 10%, 50%, or 90%.

Therefore, the weighted sum of components explained (1−by ) of the clus-

ter differences in outcomes.

• the proportion of noise in the predictor blocks (ex ): 20% or 30%

• the proportion of noise in the outcome (ey ): 10% or 30%

• the congruence level φ of the cluster-specific loading matrices, quantified

by the average Tucker congruence (Haven and ten Berge, 1977; Tucker,

1951) between the cluster-specific loadings across all pairs of clusters: low

(approximately .7) and high (approximately .85)

• the similarity between cluster-specific regression weights associated with

the four predictive components: low or high; also see Table 5.3 for the val-

ues of these regression weights

A full factorial design that crossed the four factors was used, resulting in a to-

tal of 2×3×3×2×2×2×2 = 288 conditions. In each condition, a total of 25 data
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sets were generated and analyzed with CSCR and the aforementioned four re-

lated methods, namely CR, CSCA+LR, iCluster+CD-CovR, and CW-MBPLS. There-

fore, in total 7200 data sets were generated and analyzed.

For CSCR, a prerequisite for making predictions is to identify the cluster as-

signment of each new observation in the test set and compute their respective

component scores. Here, to determine the cluster assignment of each observa-

tion, we calculate its distance from the within-cluster component subspace of

each cluster and assign it to the closest cluster. When calculating the distance

between observations and clusters, we adopt an important assumption (also see

Yuan, De Roover, Dufner, et al. (2021) for a similar assumption) that the addition

of a new observation does not alter Pk ; therefore, when a new observation x is

paired with cluster k, its component score equals (x−mT
k)Pk (PT

k Pk )−1. The final

component score of this observation is determined by which cluster it is assigned

to.

All analyses were carried out in the software R (R core team, 2013), and we

used the following packages for our estimation: for CSCR, we used the package

CSCR that we have developed specifically for the current research; for CR, the

package flexmix (Grün & Leisch, 2007); for CSCA+LR, the package ClusterSSCA
(Yuan, De Roover, Dufner, et al., 2021) and some basic functions in base R; for

iCluster+SCD-CovR, the package iCluster (R. Shen et al., 2012) and a self-developed

function inspired by Gu and Van Deun (2019) and S. Park et al. (2021); and, last,

for CW-MBPLS, the package mbclusterwise (Bougeard et al., 2018). In addition

to CSCR and the four competing methods introduced above, we have also con-

ducted a baseline test in our simulation study 1. The baseline test utilized an in-

tuitive and simple approach: it used the average score of the outcome calculated

from the training data as the predicted value for all new observations. Despite

its simplicity, this prediction approach at times outperforms more complex and

sophisticated prediction methods (Campbell & Thompson, 2008).

The results of these methods were compared on two main performance met-

rics: cluster recovery and predictive accuracy. Here, the degree of cluster recov-

ery is quantified by the Adjusted Rand Index (ARI; Hubert and Arabie, 1985):

When ARI reaches 1, the obtained partition is considered perfectly consistent

with the true partition, while an ARI of 0 indicates that the cluster recovery is
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only at the chance level. Meanwhile, the predictive accuracy is quantified by the

mean squared error (MSE): a lower MSE indicates a better predictive accuracy.

DATA GENERATION PROCEDURE

We constructed each data set following the procedures outlined in Yuan, De Roover,

Dufner, et al. (2021) and Wilderjans et al. (2017), as detailed below. First, a clus-

ter indicator vector g was generated to represent the true cluster partition and gi

denotes the cluster assignment of observation i .

Second, we generated the concatenated block of predictors X. According to

Equations (5.4) and (5.5), it is the sum of three parts: (Tk PT
k ), (1Nk mT

k ), and (E(X)
k )

for each cluster k ∈ (1,2, ...,K ). Without loss of generality, we set the average vari-

ance to 1 across all predictors in X. Consequently, the average variance of pre-

dictors in the above three parts is, respectively, (1− ex )(1−bx ), (1− ex )(bx ), and

ex . We now elaborate on how to create each of these three parts. To create the

first part, we constructed Tk in four steps: (1) each element was initially sam-

pled from the standard normal distribution, (2) the resulting matrix was column-

wise mean-centered and standardized, (3) the matrix was further orthogonalized

such that TT
k Tk = I, and (4) each entry of Tk was multiplied by the square root of

Nk . Next, Pk was generated in the following three steps. First, a common matrix

and K cluster-specific matrices were generated whose elements were uniformly

sampled from U(−1,1). We then re-scaled these matrices in accordance with

the designated congruence level: in the low-congruence condition, the sum-of-

squares of each row of the common matrix was re-scaled to .75 and that of the

cluster-specific matrices was re-scaled to .25; in the high-congruence condition,

the two values were set to .9 and .1, respectively. Adding the common matrix

to the cluster-specific matrices resulted in the non-sparse version of the load-

ing matrix for each cluster. Second, blocks of zero loadings were imposed on

these non-sparse loading matrices to structure distinctive components, follow-

ing the definition and operationalization detailed in section 5.2.1. Last, these

loading matrices were re-scaled such that the average sum-of-squares of each

row equaled (1−ex )(1−bx ). PT
k was then multiplied by Tk to create the first part

of X. The generation of 1Nk mT
k was as follows: for each cluster k, mk was gen-

erated with each entry sampled randomly from a uniform distribution U(−1,1);

in accordance with the cluster partition as indicated in g, mk was assigned to
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each row associated with cluster k, and all rows were then aggregated to form the

complete mean structure M; M was then re-scaled to ensure the average variance

across its predictors was (1− ex )bx . Last, each entry in E(X) was generated from

a standard normal distribution, and the resulting matrix was then column-wise

centered and re-scaled so that its average variance across all columns equaled

ex .

Last, we generated the outcome vector, which was again the sum of three

parts: Tkβk , uk , and e(y). The first part was generated per cluster by multiplying

Tk and βk and then mean-centering the multiplication; without loss of gener-

alizability, we used σ to denote the variance of this part. uk was created in the

following three steps: (1) the K initial values of cluster-specific intercepts were

randomly sampled from U(−1,1); (2) these K intercepts were distributed to each

observation according to their cluster assignment; (3) the intercepts were cen-

tered and re-scaled such that their variance was σ
by

1−by
. Last, e(y) was simulated

in the following two steps: (1) each of the N entries of e(y) was sampled from a

standard normal distribution, and (2) the resulting matrix was centered and re-

scaled such that its variance equaled σ
ey

(1−ey )(1−by ) .

RESULTS AND DISCUSSION

Since a satisfactory cluster recovery underpins the proper interpretation of clus-

ter structures and cluster-specific components and is a prerequisite for accurate

predictions, we first examine which of the seven factors used in simulation study

1 had a significant impact on cluster recovery for CSCR and the four compet-

ing methods1. Three of the seven factors manipulated in simulation study 1 had

a significant impact on the extent to which CSCR was able to recover the clus-

ters accurately. More specifically, CSCR recovered the clusters significantly bet-

ter in the presence of (1) a medium-to-large proportion of cluster differences in

the predictor blocks pertaining to differences in the cluster-specific components,

i.e., when bx = 50%, ARI = .97 and when bx = 10%, ARI = .86 (as a reference: when

bx = 90%, ARI = .26), (2) a small portion of random error was added to the pre-

dictor blocks, i.e., when ex = 20%, ARI = .76 (as a reference: when ex = 30%, ARI

= .63), and (3) the average congruence of cluster-specific loadings was low, i.e,

1Appendix 5.A provides a full descriptive table summarizing the cluster recovery and predictive
accuracy for all methods at different levels of the seven factors.
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when φ = .7, ARI = .74 (as a reference: when φ = .85, ARI = .66). The other four

factors (i.e., the size of the clusters, the similarity of cluster-specific regression

weights, the portion of random error added to the outcome block (ey ), and the

portion of cluster differences in the outcome block pertaining to differences in

the weighted sum of components by ) had minimal effect on the extent of cluster

recovery achieved by CSCR - indeed, for each of these four factors, the differences

in the average ARI resulting from the different conditions were less than .05. In-

terestingly, the same results pattern can be observed for the other four methods

as well: three of the seven factors (i.e.,φ, bx , and ex as described above for CSCR)

significantly affect the accuracy of each method in recovering clusters. There-

fore, we further inspect the individual and joint effects of these three factors on

the relative performances of the six methods 2 in terms of cluster recovery and

predictive accuracy.

Figure 5.3 shows how the average ARI of each of the five methods varies with

bx and ex (subplot A), and with bx and φ (subplot B). Clearly, CSCR emerged as

the winner in all conditions when bx = 10% (CSCR: ARI = .86; iCluster+CD-CovR:

ARI = .03; CSCA +LR: ARI = .77; CR: ARI = .01; CW-MBPLS: ARI = .04) or bx = 50%

(CSCR: ARI = .97; iCluster+CD-CovR: ARI = .72; CSCA +LR: ARI = .59; CR: ARI =

.01; CW-MBPLS: ARI = .22). When bx = 90%, however, the two-step approach

iCluster+CD-CovR recovered the clusters best (CSCR: ARI = .26; iCluster+CD-

CovR: ARI = .99; CSCA +LR: ARI = .27; CR: ARI = .00; CW-MBPLS: ARI = .10).

The better performance of iCluster+CD-CovR over CSCR when bx = 90% was ex-

pected and in line with the findings in Yuan, De Roover, Dufner, et al. (2021)

where, in the absence of an outcome block, iCluster outperformed CSCA when

bx = 90%. This is because, in these scenarios, the total variance of the predic-

tors explained by the underlying components is equal to or even smaller than

the total variance explained by the random error. As a result, CSCR tends to in-

correctly treat the added random error as meaningful co-variation attributed to

the cluster-specific components. We now inspect the joint effects of the afore-

mentioned three factors (i.e., φ, bx , and ex ) on the relative performance of the

competing methods. According to Figure 5.3, compared to the four competing

methods, CSCR is most advantageous when bx = 50% with ex = 20% (CSCR: ARI

2For the baseline test, we only evaluate its predictive accuracy.
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Figure 5.3: The extent of cluster recovery (indicated by ARI) by CSCR,
iCluster+CD-CovR, CSCA+LR, CR and CW-MBPLS

= .99; iCluster+CD-CovR: ARI = .76; CSCA +LR: ARI = .70; CR: ARI = .01; CW-

MBPLS: ARI = .24) and when bx = 50% withφ= .7 (CSCR: ARI = .99; iCluster+CD-

CovR: ARI = .73; CSCA +LR: ARI = .67; CR: ARI = .01; CW-MBPLS: ARI = .20). More

importantly, the results also suggest that as long as bx ̸= 90%, even under the

most difficult conditions, CSCR led to an average ARI of at least .75 (i.e., ARI =

.79 when bx = 10% with φ = .85; ARI = .76 when bx = 10% with ex = 30%). This

level of cluster recovery is considered excellent according to the widely-adopted

criterion proposed by Steinley (2004).

The above patterns about the relative performances of the five methods in

terms of cluster recovery are generally consistent with the patterns regarding

predictive accuracy, as shown in Figure 5.4. Here too, on average, CSCR yielded

the best predictive accuracy when bx = 10% (CSCR: MSE = 2.37; iCluster+CD-

CovR: MSE = 5.69; CSCA+LR: MSE = 2.47; CR: MSE = 5.01; CW-MBPLS: MSE =

5.75; Baseline: MSE = 5.61) or bx = 50% (CSCR: MSE = 1.68; iCluste+CD-CovRr:

MSE = 2.60; CSCA+LR: MSE = 2.08; CR: MSE = 3.64; CW-MBPLS: MSE = 5.75;

Baseline: MSE = 5.62), while iCluster+CD-CovR predicted the new observations

most accurately when bx = 90% (CSCR: MSE = 3.08; iCluster+CD-CovR: MSE =

2.16; CSCA+LR: MSE = 2.38; CR: MSE = 3.62; CW-MBPLS: MSE = 3.98; Baseline:

MSE = 5.63). These findings once again confirm that CSCR excels when bx = 50%

or bx = 10% while the two-step approach combining iCluster and CD-CovR was

superior when bx = 90%. Similarly and as expected, the predictive accuracy of

CSCR was better with a lowerφ and ex . As shown in Figure 5.4, we also compared
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Figure 5.4: The extent of predictive accuracy (indicated by MSE) by CSCR,
iCluster+CD-CovR, CSCA+LR, CR, CW-MBPLS, and the baseline test

the predictive accuracy of CSCR and competing methods with the baseline test

under different conditions. Figure 5.4 illustrates that CSCR - along with CSCA+LR

and, to a lesser extent, iCluster+CD-CovR - consistently outperformed the base-

line test in terms of predictive accuracy across all conditions, while CR and CW-

MBPLS exhibited larger prediction error compared to the baseline test in some

of the conditions. Furthermore, CSCR convincingly outperformed the baseline

test even in the most challenging situations (when bx = 90% with φ= .85: MSE =

3.17 for CSCR and MSE = 5.62 for the baseline test; when bx = 90% and ex = 30%:

MSE = 3.11 for CSCR and MSE = 5.66 for the baseline test). These results proved

the stability of CSCR in terms of cluster recovery and predictive accuracy across

conditions.

5.3.2. SIMULATION STUDY 2

DESIGN AND PROCEDURE

The purpose of simulation study 2 was to examine the performance of the pro-

posed model selection method for CSCR. All parameters were set to the same val-

ues as in simulation study 1, with the following exceptions. First, to increase the

scope of this study, the number of common and distinctive components (namely

the number of common components Rcom , the number of distinctive compo-

nents for the first block Rdi s1 and the second block Rdi s2) and the number of

clusters K were varied in simulation study 2. More specifically, K was set to ei-

ther 3 or 4, and the set (Rcom , Rdi s1, and Rdi s2) could take one of the following
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four sets of values: (2,0,0), (1,1,0), (3,0,0), (1,1,1). Second, φ was fixed to a high

congruence level of .85. This decision was made because (1) the patterns of rel-

ative performances of the different methods were very similar under conditions

with low versus high congruence, and (2) the use of a relatively high level of con-

gruence allowed us to test the performance of CSCR in challenging conditions.

Third, as reported above, some of the factors manipulated in simulation study

1 (e.g., cluster sizes, ey , etc.) barely affect how well CSCR recovered the clus-

ters. Therefore, we have fixed some of these factors in order to make simulation

study 2 scalable: specifically, all clusters were assumed to be of equal size, and

ey was fixed to .1.3 Forth, as ex was one of the most important factors in simu-

lation study 1, we increased the potential range of ex to (20%, 30%, and 40%) in

order to examine the performance of the model selection procedure in a more

systematic way. Last, in simulation study 2, we set both bX and by to either .1

or .5 (but not .9). This was because the selection of the number of components

was less relevant when the mean structure explained most of the cluster differ-

ences in the predictor and outcome blocks - here, successful predictions would

be possible even without an accurate estimate of the number of components. To

summarize, six factors were systematically manipulated in simulation study 2:

• the proportion of noise in the blocks of predictors (ex ): 20%, 30% or 40%

• the number of clusters (K ): 3 or 4

• the number of common components, and distinctive components for each

predictor block (Rcom , Rdi s1, Rdi s2): (2,0,0), (1,1,0), (3,0,0) or (1,1,1)

• the proportion of cluster differences in the scores on the predictors ex-

plained by the between-cluster mean structure (bx ): 0.1 or 0.5

• the proportion of cluster differences in the scores on the outcome explained

by the between-cluster mean structure (by ): 0.1 or 0.5

• the similarity between cluster-specific regression weights that were asso-

ciated with the four predictive components: low or high; see Table 5.3 for

the values of these regression weights

3Note that the similarity of cluster-specific regression weights was not fixed, because we expected
that this factor might affect the process of selecting the correct number of clusters.
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Table 5.4: The Percentage of replications where the parameters (i.e., K , R, and
Rcom) were recovered successfully

ex bx by K R Rcom

0.2
0.1

0.1 96% 97% 55%
0.5 93% 95% 53%

0.5
0.1 79% 77% 28%
0.5 79% 79% 29%

0.3
0.1

0.1 89% 96% 50%
0.5 87% 94% 47%

0.5
0.1 61% 56% 31%
0.5 60% 56% 26%

0.4
0.1

0.1 40% 86% 38%
0.5 45% 85% 38%

0.5
0.1 46% 48% 27%
0.5 44% 54% 25%

A factorial design in which these factors were fully crossed resulted in a total

of 3×2×4×2×2×2 = 192 conditions. Each condition included 30 replications.

Therefore, a total of 5760 data sets were generated and analyzed with CSCR and

the proposed model selection procedure. Both K and R were chosen from pos-

itive integers between 2 and 6. Furthermore, simulation study 2 followed the

same procedures as simulation study 1 to generate the simulated data sets and

to partition the training and test data sets.

Since the aim of simulation study 2 was to examine the performance of the

proposed model selection procedure, we recorded the proportion of replications

that successfully recovered K , R, and Rcom . It is worth noting that, in a small-

scale simulation, we found that successful retrieval of both K and R had a strong

impact on the cluster recovery and predictive accuracy of CSCR. However, this

did not apply to Rcom : as long as R was successfully recovered, how well the

number of common components was identified only had a limited impact on

cluster recovery and predictive accuracy.
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RESULTS AND DISCUSSION

Table 5.4 summarizes the percentage of replications where the true values of K ,

R, and Rcom were successfully recovered. In general, the application of the pro-

posed model selection procedure yielded high success rates in retrieving the true

values of K and R (the average recovery rate across all conditions was 68% for K

and 77% for R). The average success rate for retrieving the less important Rcom ,

however, was 37%.

Despite the overall satisfactory performance of the proposed model selec-

tion procedure, its success became limited with the addition of a relatively large

amount of random noise to the predictor blocks (i.e., when ex = 40%). Indeed,

a higher value of ex significantly reduced the success rate of retrieving K (when

ex = .4: 44%; when ex = .3: 74%; when ex = .2: 87%), R (when ex = .4: 68%; when

ex = .3: 76%; when ex = .2: 87%), and Rcom(when ex = .4: 32%; when ex = .3:

38%; when ex = .2: 41%). The significant impact of ex on the performance of the

model selection procedure was in line with our finding that ex was one of the

most important parameters for CSCR analysis. Furthermore, corresponding to

the findings of simulation study 1, bx had a strong impact on the performance

of the model selection procedure: a smaller bx increased the success rate of re-

trieving K (when bx = .1: 75%; when bx = .5: 61%), R (when bx = .1: 92%; when

bx = .5: 62%), and Rcom (when bx = .1: 47%; when bx = .5: 28%).

5.3.3. SUMMARY

The two simulation studies reported above provided important insights into the

relative performance of CSCR compared to the competing methods, and the ex-

tent to which the proposed model selection procedure successfully recovered the

parameters of the CSCR model.

Simulation study 1 reported the superior performance of CSCR in both clus-

ter recovery and predictive accuracy, as long as a substantial part of cluster differ-

ences in the predictor blocks were accounted for by cluster-specific components

(i.e., bx = 10% or bx = 50%). When differences in these components explained

only a small fraction of cluster differences (bx = 90%), however, the two-step ap-

proach combining iCluster with CD-CovR proved to be the best method. Overall,
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if the primary goal is to achieve high predictive accuracy while gaining some in-

sights into individual and joint effects of predictors, CSCR is a promising method.

The results of simulation study 2 confirmed that the proposed model selec-

tion procedure can effectively retrieve the values of the two most important pa-

rameters: the number of clusters K and the total number of components R. The

success rate of retrieving the true number of common components Rcom was

also acceptable, although lower than that of retrieving K or R.

5.4. ILLUSTRATIVE APPLICATION

We illustrate the usefulness of CSCR in an empirical analysis where survey re-

spondents’ attitudes towards immigrants (referred to as ATI hereafter) were pre-

dicted based on their self-reported personality traits and personal values. Pre-

vious research in personality and social psychology has shown that both per-

sonality traits and personal values are important determinants of ATI (Gallego

and Pardos-Prado, 2014; Ackermann and Ackermann, 2015; Dinesen et al., 2016;

(Davidov & Meuleman, 2012)). Among the five personality traits known as the Big

Five (i.e., Extraversion, Openness, Conscientiousness, Agreeableness, and Neu-

roticism; McCrae and Costa Jr, 1989), only openness was found to be consistently

predictive of ATI (Gallego and Pardos-Prado, 2014; Ackermann and Ackermann,

2015; Dinesen et al., 2016). Meanwhile, based on Schwartz’s framework of per-

sonal values (Schwartz, 1992), Davidov and Meuleman (2012) found that valuing

security was one of the most important determinants of ATI. Therefore, in the

current illustration, we predicted ATI using one block of items measuring trait

openness and one block of items measuring the personal value of security.

Although existing literature revealed the effects of openness and security on

ATI in separate studies, an important question remains open as to whether open-

ness and security jointly affect ATI, and, if so, how. Furthermore, given that both

openness (Christensen et al., 2019) and security (Cieciuch & Schwartz, 2012) are

fairly broad concepts that encompass various facets, it is reasonable to argue

that different predictive mechanisms, separately or jointly, may apply to differ-

ent subgroups of respondents. Therefore, the proposed CSCR method allows

analysts to achieve the dual goal of predicting ATI while describing the predic-

tive mechanisms and group differences therein; this may potentially give insights
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that have not been obtained so far as suitable methods lacked. In addition, un-

like most previous research that analyzed the personality and personal values at

the level of constructs (e.g., openness and security as two dimensions) relying on

factor scores (extracted from a factor analysis) or composite scores, CSCR allows

for an analysis at the item level using item scores as predictors. As such, CSCR

responds to the recent call in personality psychology for item-level analysis to

examine the unique predictive contribution of items, beyond that of dimensions

(e.g., Mõttus et al., 2017; Mõttus et al., 2019).

The data set used in the current study comes from the Longitudinal Inter-

net Studies for the Social Sciences (LISS) panel, administrated by CenERdata

(Tilburg University, the Netherlands). The panel collects responses from a repre-

sentative sample of Dutch citizens and covers a wide range of measures, includ-

ing but not limited to personality, political values, economic conditions, house-

hold composition, etc. A detailed discussion of the panel is available in Scher-

penzeel (2018). Here we use the fourth wave of data, collected in 2018. More

specifically, we picked 10 items measuring openness (adapted from the Interna-

tional Personality Item Pool; Goldberg et al., 2006) and 4 items measuring secu-

rity value (adapted from the Rokeach Value Survey; Beatty et al., 1985). These 10

and 4 items, respectively, form the two blocks of predictor variables. For open-

ness, respondents were instructed to indicate how accurately the 10 statements

describe themselves on a 5-point Likert scale; for security, respondents were

asked about the importance of each of the 4 security values in their lives, using a

7-point Likert scale. More specifically, the 10 statements pertaining to openness

include (1) I have a rich vocabulary, (2) I have difficulty understanding abstract

ideas (reverse coding), (3) I have a vivid imagination, (4) I am not interested in

abstract ideas (reverse coding), (5) I have excellent ideas, (6) I do not have a good

imagination (reverse coding), (7) I am quick to understand things, (8) I use diffi-

cult words, (9) I spend time reflecting on things, and (10) I am full of ideas. The 4

items about security are (1) responsible, (2) family security, (3) national security,

and (4) inner harmony. Last, the dependent variable was the mean of 5 items

measuring ATI (developed by the researchers involved in the panel; α = .76; see

Appendix 5.B for details of the items).
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For illustrative purposes, the current analysis used a subset of 300 observa-

tions in which there were no missing values in the responses to the 19 selected

items. We applied CSCR to the pre-processed data set in which each variable was

mean-centered and standardized, as suggested in section 5.2. More specifically,

the five-step model selection procedure described above was used to select the

parameters (i.e., the number of clusters K , the total number of components R,

the number of common components Rcom , and the numbers of distinctive com-

ponents pertaining to each block Rdi s1 and Rdi s2). Both K and R were selected

from all integers between 1 and 8, while the values of Rcom , Rdi s1 and Rdi s2 were

determined with the condition Rcom +Rdi s1 +Rdi s2 = R.

The model selection procedure for CSCR used the following values as the op-

timal values for the parameters: 2 for both K and R, 1 for both Rcom and Rdi s1,

and 0 for Rdi s2. We report in Table 5.5 the cluster centroids of the two clusters

across all 14 variables. Table 5.6 describes the component structures of the two

clusters with each value indicating the correlation between the corresponding

component and variable (note that because the components in the CSCR model

are orthogonal, these correlations can be interpreted as ordinary correlations),

and Table 5.7 contains the cluster-specific regression weights, which indicated

the strengths of the connections between the components and outcome.

Table 5.5 reveals how the two clusters separate from each other in terms of

cluster centroids. participants in Cluster 1 (versus Cluster 2) scored lower on av-

erage on Items 2 (understand abstract ideas), 4 (be interested in abstract ideas),

and 6 (have a good imagination) from data block 1 and Item 4 (inner harmony

is important) from data block 2, while scored higher on Item 2 (family security

is important) from data block 2. Combining these results, we can conclude that

participants in Cluster 2 (versus Cluster 1) were more attentive to inner feelings

and imaginations, while participants in Cluster 1 (versus Cluster 2) focused more

on family security.

The regression weights in Table 5.7 reveal another striking difference between

the two clusters: while both components are predictive of ATI for respondents

from Cluster 1, only Component 2 - but not Component 1 - is predictive for re-

spondents from Cluster 2. We further interpret the cluster-specific components

by inspecting the correlation between the components and variables in Table 5.6.
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Table 5.5: Cluster centroids of the two clusters in the illustrative sample

Items Cluster 1 (N = 95) Cluster 2 (N = 205)

o1 0.21 -0.10
o2 -0.28 0.13
o3 0.08 -0.04
o4 -0.27 0.12
o5 0.13 -0.06
o6 -0.44 0.21
o7 -0.06 0.03
o8 0.12 -0.05
o9 0.01 -0.01

o10 0.06 0.21
sec1 0.12 -0.06
sec2 0.35 -0.16
sec3 -0.02 0.01
sec4 -0.51 0.24

Note. o1-o10 represent the 10 items from the openness scale and sec1-sec4 represent
the 4 items from the security value scale. The reported values are the centroids of the
two clusters, with values in bold indicating the items separating the two clusters to
the greatest extent.
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Table 5.6: Correlations between the components and the variables in the two-
cluster solution

Cluster 1 Cluster 2
Comp1 Comp2 Comp1 Comp2

o1 0.02 0.55 0.01 0.68
o2 0.16 0.8 -0.1 0.69
o3 -0.5 0.02 0 0.78
o4 0.29 0.62 0.08 0.65
o5 -0.01 0.29 -0.1 0.59
o6 0.35 -0.61 -0.11 0.73
o7 0.36 0.58 -0.22 0.56
o8 0 0.42 0.37 0.46
o9 -0.02 0.6 -0.19 0.2
o10 -0.4 0.17 -0.13 0.73
sec1 -0.24 0 -0.65 0
sec2 -0.46 0 -0.85 0
sec3 -0.44 0 -0.82 0
sec4 -0.96 0 -0.57 0

Note. The terms Comp1 and Comp2 refer to the first and second components for
each cluster, respectively. The reported values indicate the correlation between the
corresponding components and variables.

Table 5.7: Cluster-specific regression weights for the illustrative sample

Clusters Intercepts Comp1 Comp2

Cluster 1 −.08 .19 3.97
Cluster 2 .04 −.02 3.09

Note. The terms Comp1 and Comp2 were used to refer to the first and second com-
ponents for each cluster, respectively.
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We first discuss the interpretation of Component 1 for Cluster 1. This component

is a common component that correlates with items from both predictor blocks.

It correlates most strongly with the fourth item of security (r = −.96; inner har-

mony); it also correlates negatively with the third item of openness (r =−.5; have

a vivid imagination), as well as the second (family security) and the third item of

security (national security). Therefore, this component can be considered repre-

sentative of respondents’ imagination about how immigrants affect the security

of their own, that of their families, and that of society. For respondents classi-

fied in Cluster 1, this is one of the (relatively minor) causes of their ATI. Inter-

estingly, with the corresponding regression weight of -.02 (see Table 5.7), Com-

ponent 1 is hardly predictive of ATI for respondents from Cluster 2. For both

clusters, Component 2, the distinctive component that is only related to items

measuring openness, is positively related to ATI (see Table 5.7; for Cluster 1, B =

4.0, for Cluster 2, B = 3.1). However, a closer inspection of the correlations be-

tween the openness items and the component scores of Component 2 in Table

5.6 shows that Component 2 should be interpreted differently for the two clus-

ters. For Cluster 1, the component scores correlate positively with all items ex-

cept item 3 (r = .02; have a vivid imagination) and item 6 (r =−.61; do not have

a good imagination (reverse coded)). Therefore, Component 2 for Cluster 1 in-

cludes all facets of openness except the facet "active imagination". This fits very

well with the above finding that Component 1 for Cluster 1 can be interpreted as

a joint, negative effect of active imagination and the degree to which they value

security. However, for Cluster 2, the component score of Component 2 correlates

positively with all items, including items 3 and item 6. As such, the factors pre-

dicting ATI for respondents classified in Cluster 2 include all facets of openness

(also note that Component 2 is the only predictive factor of ATI for Cluster 2).

Taking the above two pieces of findings together, our CSCR analysis yielded

novel insights into the different joint contributions of openness and security on

ATI for the two clusters: for one cluster that placed relatively high importance

on inner feelings, abstract thoughts, and imaginations (i.e., Cluster 2), all facets

of openness were positively related to ATI. For another cluster with relatively low

levels of abstractions and imagination but a greater emphasis on family security

(i.e., Cluster 1), “active imagination”, as one of the facets pertaining to trait open-
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ness, did not directly relate to ATI. However, it is important to note that CSCR

is of an exploratory nature and that the above findings in no way reflect causal

relationships between predictors and outcomes. We encourage researchers to

conduct confirmatory analyses to validate these results.

5.5. DISCUSSION

In many behavioral studies, in order to incorporate different predictors to make

accurate predictions, researchers more and more frequently employ multi-block

data sets, which contain data collected from different sources and (or) measure

distinct constructs. In these applications, it is desirable to pursue two goals si-

multaneously: (1) predict the outcome as accurately as possible, and (2) describe

the individual and joint contributions from the diverse set of predictors. Further-

more, given the heterogeneous nature of human behavior, it is likely that these

contributions differ across the various clusters. Successful detection of the clus-

ters and their corresponding (individual and joint) contributions is a prerequisite

for accurate prediction and interpretation. To achieve this goal, the current pa-

per introduces a novel technique, called Clusterwise Simultaneous Component

Regression, or CSCR, that simultaneously identifies clusters and recovers indi-

vidual and joint contributions for each subgroup. Simulation study 1 confirmed

that CSCR outperformed all competing methods when cluster differences in pre-

dictors were largely due to differences in within-cluster components. Further-

more, our proposed model selection procedure for CSCR was positively evalu-

ated in simulation study 2. In the empirical illustration, we showed how CSCR

provided additional insights into behavioral research by predicting respondents’

attitudes towards immigrants (ATI) from a block of items measuring openness

and a second block measuring security. The CSCR analysis identified two clus-

ters of respondents where people in the first cluster were relatively more atten-

tive to family security and those in the second cluster focused more on inner

feelings and imaginations. Moreover, for those in the first cluster, their attitudes

toward immigrants were negatively related to the joint effects of active imagina-

tion and insecurity and positively related to other facets of openness. For those

in the second cluster, however, all facets of openness were positively related to

attitudes toward immigrants. These results extend current theories by propos-
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ing the potential heterogeneity of the relationships between traits/values and

personal attitudes. Although this finding is exploratory in nature, it highlights

how CSCR could contribute to both predictive analysis and theory development.

From a broader perspective, CSCR is one of the very few methods that natu-

rally blends the “person-centered approach” (i.e., describing simultaneously the

underlying clusters) and the “variable-centered approach” (i.e., identifying the

most important predicting forces summarized from all predictors). The inte-

gration of the person-centered and variable-centered approaches is particularly

useful because (1) it responds to the recent call for such methods (Morin et al.,

2018) and provides applied researchers with novel ways to detect and understand

heterogeneity in their behavioral studies, and (2) it partly addresses the concerns

raised in Brusco et al. (2019) about how to detect heterogeneous subgroups (i.e.,

clusters) in which variables interact in different ways.

An important question in the applied setting is how to choose the most ap-

propriate (prediction) method from CSCR and the series of competing methods.

Following recommendations in Grimmer et al. (2021) and Yuan, Kroon, et al.

(2021), we recommend a data-driven, model-agnostic approach to model selec-

tion: rather than settling for one specific prediction model (prior to data anal-

ysis), researchers are encouraged to apply a full set of candidate models to em-

pirical data sets and pick up the model with a relatively high predictive accuracy

while enjoying reasonable interpretability. This strategy aligns very well with the

"no free lunch theorem", which states that there is no model that fits every data

set. In determining the set of candidate models, researchers can consult previous

methodological papers that introduce and compare different prediction meth-

ods, as well as empirical papers that apply these prediction methods in their ap-

plications. They can then decide whether or not to include a specific method

based on factors such as: (1) whether the assumptions of the method hold in

the analysis (e.g., regression models assume normally distributed residuals), (2)

whether the method yields relatively good predictive accuracy in previous stud-

ies, and (3) whether the results of the method are interpretable. As discussed in

the introduction, point (3) is especially prominent when predictive mechanisms

are of interest; the proposed CSCR is one of the few prediction methods that pro-
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duce highly interpretable results (see Molnar, 2020 for an overview of other in-

terpretable prediction methods).

When interpreting the predictive models based upon CSCR, users should

keep in mind that any interpretation should be of an explanatory nature. This

means that these results should not be used directly as conclusive evidence for or

against theories or used directly to advise high-stake decisions. Instead, confir-

matory analyses should be conducted to validate the results derived from CSCR.

The current study is not without limitations. First, in the current CSCR model,

the number of components is restricted to be equal across all clusters. However,

as we noted in the Methods section, this assumption may be too stringent to re-

flect the reality of some empirical studies and the violation of this assumption

can largely complicate the interpretation of the results. Therefore, we will con-

sider the possibility of relaxing this assumption and allowing different clusters

to have a different number of components, while finding a way to retain com-

putational feasibility. Second, as discussed in the Method section, the current

method fixes the value of α, while, in a fully flexible model, α can be treated as a

tuning parameter whose value is chosen in a data-driven manner. Third, the cur-

rent version of CSCR is arguably computationally demanding. To develop a more

efficient algorithm, future research can potentially integrate newly proposed op-

timization routines (e.g., Erichson et al., 2020) that solve the Sparse Principal

Component Analysis problem in a more efficient manner.

We propose two future directions for the further development of CSCR. First,

sparsity can be introduced into the CSCR model to account for high-dimensional

data sets. For example, a cardinality constraint (Yuan, De Roover, Dufner, et al.,

2021) or a lasso penalty (Gu & Van Deun, 2019) can be introduced to impose

some loadings to be exactly zero. Second, the current study only compared the

performances of different prediction methods with simulated data sets. We en-

courage future studies to compare these prediction methods in various empirical

data sets to gain a solid understanding of their relative predictive accuracy.



APPENDICES

5.A. SUMMARY OF SIMULATION STUDY 1
See Table 5.8

5.B. DETAILS ABOUT ITEMS

Attitudes to Immigrants: What is your opinion on the following statements?

• It is good if society consists of people from different cultures

• Legally residing foreigners should be entitled to the same social security as

Dutch citizens

• There are too many people of foreign origin or descent in the Netherlands

(reverse coding)

• Some sectors of the economy can only continue to function because peo-

ple of foreign origin or descent work there

• It does not help a neighborhood if many people of foreign origin or descent

move in (reverse coding)
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Table 5.8: Percentage of data sets resulting in a successful recovery of K , R, and
Rcom

Parameters Values
CSCR iCluster+CD-CovR CSCA+LR CR CW-MBPLS Baseline

MSE ARI MSE ARI MSE ARI MSE ARI MSE ARI NSE ARI

Cluster sizes
30,40,50 2.40 .69 3.51 .58 2.30 .54 4.06 .01 4.29 .12 5.60 /
40,40,40 2.35 .71 3.46 .58 2.32 .54 4.12 .01 4.32 .12 5.65 /

bx

.1 2.37 .86 5.69 .03 2.47 .77 5.01 .01 5.75 .04 5.61 /

.5 1.68 .97 2.60 .72 2.08 .59 3.64 .01 3.18 .22 5.62 /

.9 3.08 .26 2.16 .99 2.38 .27 3.62 .00 3.98 .09 5.63 /

by

.1 1.03 .71 1.17 .58 .94 .55 1.7 .01 1.6 .13 1.43 /

.5 1.38 .70 1.79 .59 1.32 .53 2.36 .01 2.34 .12 2.60 /

.9 4.72 .68 7.51 .58 4.67 .54 8.22 .00 8.99 .10 12.80 /

ex

.2 2.13 .76 3.37 .60 1.99 .66 3.85 .01 3.94 .13 5.62 /

.3 2.62 .63 3.61 .57 2.63 .42 4.33 .01 4.67 .11 5.63 /

ey
.1 1.40 .71 2.57 .58 1.51 .56 2.94 .01 2.83 .16 4.96 /
.3 3.45 .68 4.50 .58 3.19 .52 5.37 .00 5.94 .07 6.28 /

φ
.75 2.19 .74 3.37 .59 2.09 .61 4.02 .01 4.24 .11 5.63 /
.9 2.56 .66 3.60 .58 2.52 .47 4.16 .01 4.37 .13 5.61 /

similarity of βK
low 2.35 .59 3.42 .57 2.30 .43 4.01 .01 4.24 .11 5.63 /
high 2.40 .60 3.56 .57 2.32 .44 4.18 .01 4.36 .11 5.61 /

Note. MSE quantifies the prediction error of the test set, while ARI quantifies the
accuracy of cluster recovery of the training set. The baseline test was used for predic-
tion only; therefore, no ARI was reported for the baseline test.
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DISCUSSION

In the previous four chapters of this dissertation, we presented three novel statis-

tical methods (i.e., CKM, CSSCA, and CSCR; see Table 6.1 for a brief summary of

their functionalities) and computational tools (i.e., three R packages that imple-

mented the three methods and a ShinyApp for cluster visualization) for detecting

underlying clusters in behavioral data sets with complex cluster structures (e.g.,

data sets that contain a substantial proportion of irrelevant variables and (or)

that consist of variables from different sources). In this section, we discuss how

researchers can choose from different methods (the three methods developed

here but also other related methods), as well as the opportunities these methods

and computational tools offer for behavioral research in the data-rich era.

6.1. MODEL SELECTION AND CLUSTER VALIDATION

In practice, researchers who want to use the three proposed methods (i.e., CKM,

CSSCA, and CSCR) in their research must make many decisions during the analy-

sis process. Arguably one of the most important decisions is to determine which

clustering methods are best suited to the analysis at hand. One way to make this

decision is to consider the characteristics of these methods and the criteria they

use to define clusters (see Table 6.1) and select the one that fits best the purpose

of the analysis. For example, when the data set under consideration contains an
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Table 6.1: A summary of the three methods described in the dissertation

MethodsCriteria to define clusters Multi-block
analysis

Variable
selection

Prediction

CKM Between-cluster mean
structures only

No Yes No

CSSCA Between-cluster mean
structures and within-cluster
component structures

Yes Yes No

CSCR Between-cluster mean
structures, within-cluster
component structures and
regression weights

Yes No Yes

exceeding amount of variables, CKM may be useful in generating a first impres-

sion of the cluster profiles, because (1) it is less computationally demanding than

more complex methods such as CSSCA and CSCR, and (2) it is able to select a

subset of variables that, compared to the traditional K-means algorithm, greatly

eases interpretation. In contrast, when the aim is to determine which combina-

tions of health behaviors best predict obesity, CSCR should be considered first

because it identifies within-cluster components and optimizes prediction mod-

els within each cluster.

Although considering the fit between the clustering methods and the goal

of the analysis can be very informative, it does not always provide definite an-

swers. For example, researchers may be completely unaware of the underlying

cluster structure of the data set and thus unable to determine whether within-

cluster component structures should be accounted for in addition to between-

cluster mean structures (e.g., whether CKM or CSSCR should be preferred). Clus-

ter validation, as described in Chapter 3, can be a promising, post-hoc approach

to inform these decisions. More specifically, researchers are advised to take a

model-agnostic approach (also see Grimmer et al., 2021 and Yuan, Kroon, et al.,

2021), in which they first employ all clustering methods and then determine the

most suitable one(s) - as well as the optimal cluster assignments - using theory-

guided validation and stability validation. First, theory-guided validation can be

applied to examine whether the patterns of the between-cluster mean structures

and within-cluster component structures can be understood from a theoretical
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perspective. Failure to understand these results strongly suggests a mismatch be-

tween the methods and the data set under consideration. Second, as detailed in

Chapter 3, a bootstrap-based cluster stability index can be used to infer the sta-

bility of the obtained cluster solutions. An unstable cluster structure indicates

that the identified clusters cannot be replicated upon re-sampling and (or) are

highly susceptible to random noise. Future research could use a combination

of simulation studies and empirical analysis to determine whether the model-

agnostic approach is successful in selecting the best clustering methods for the

analysis.

6.2. CHALLENGES AND FUTURE DIRECTIONS

Hopefully, it is clear that the novel methods and computational tools presented

in this dissertation offer new insights and opportunities for identifying hetero-

geneity in behavioral data sets with complex cluster structures.

Admittedly, the reported methods can be further developed and improved in

many important ways. Below, we detail three aspects in which these methods

can be further improved.

6.2.1. A MODEL-BASED CLUSTERING APPROACH TO VARIABLE SELECTION

AND COMMON AND DISTINCTIVE COMPONENTS IDENTIFICATION

We believe that the novel methods proposed in this dissertation can be flexibly

combined with other methods to inspire the creation of novel techniques for

social science research. A particularly interesting prospect would be to incor-

porate the regularization approach for variable selection (see Chapters 2 and 4)

and for common and distinctive component identification (see Chapters 4 and

5) into other clustering methods, for example, soft partitioning methods (i.e., as-

signing each subject to each cluster with a certain probability; also known as

model-based clustering). Although the hard partitioning methods described in

the dissertation (i.e., assigning each subject to one of the clusters with 100% cer-

tainty) possess many important advantages, such as computational efficiency

and unambiguous cluster assignments, they tend to yield unfavorable clustering

accuracy when clusters overlap to a large extent (Vermunt, 2011). In addition,

for K-means specifically, another unsatisfactory characteristic is that it gives the
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same weight to all variables in determining the underlying cluster structure; in

other words, K-means adopts a highly unrealistic assumption that all variables

contribute equally to cluster separation (Magidson & Vermunt, 2002). Although

CKM proposed in this dissertation partly addresses this issue by distinguishing

between signaling variables - which do effectively separate clusters - and irrel-

evant variables - which do not separate clusters at all, CKM still assumes that

all signaling variables contribute to cluster separation to the same extent. One

way to relax this stringent assumption is to incorporate the regularization ap-

proach into weighted K-Means (as implemented in Witten and Tibshirani, 2010

and Kondo et al., 2016), where each variable is assigned a specific weight indi-

cating its unique contribution to cluster separation and the weights regularized

to zero correspond to irrelevant variables. From a model-based clustering per-

spective, however, the two shortcomings mentioned above (i.e., failure to han-

dle clusters with large overlaps and the stringent assumption that all variables

separate clusters equally well) can be addressed simultaneously and naturally,

thus offering a fascinating alternative to the hard partitioning approaches used

throughout the dissertation. Below, we discuss two proposals to integrate the

regulation approach into the model-based clustering methods, such as Gaus-

sian Mixture Models (GMM; Vermunt and Magidson, 2002, McLachlan et al.,

2019, McNicholas, 2016) and Mixtures of Factor Analyzers (MFA; McLachlan et

al., 2003; Hinton and Ghahramani, 1997; Andrews and McNicholas, 2012).

First, a hybrid CKM-GMM analysis - applying GMM directly to a subset of

signaling variables selected from CKM (see Chapters 2 and 3 for details) - can be

considered as a model-based clustering algorithm with the additional support of

variable selection. While the application of CKM in the first step offers an effi-

cient way to filter out irrelevant variables, using GMM - instead of KM - in the

second step brings greater flexibility and accuracy in recovering clusters. This

hybrid approach is related to the methods proposed in Pan and Shen (2007) and

S. Wang and Zhu (2008) which both accomplished variable selection within the

GMM framework by penalizing the mean structure in the log-likelihood function

(in fact, Pan and Shen (2007) proposed to penalize with the l1 norm and Z. Zhang

et al. (2009) with the l∞ norm). Compared to these two methods that perform

simultaneous variable selection and clustering by optimizing one single likeli-
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hood criterion, this hybrid method may be more computationally efficient (be-

cause the variable selection step implemented in CKM relies on a much simpler

criterion), but less accurate (because some of the signaling(irrelevant) variables

identified within the KM framework may be irrelevant(signaling) for GMM).

Second, the idea of discerning common and distinctive variations can be po-

tentially combined with the MFA model to create a new method that finds two

types of clusters: common clusters pertaining to all data blocks and distinctive

clusters pertaining to one or only a few data blocks. First proposed in Hinton

and Ghahramani (1997) and later developed in McLachlan et al. (2003), MFA ef-

fectively assumes that the observed data set comes from a mixture of K factor an-

alyzers - K being the number of clusters - and simultaneously finds the clusters

and locally reduces the dimensions for each cluster with a likelihood function.

Since MFA transforms the original variable space into cluster-specific subspaces

(indicated by cluster-specific factors), MFA is able to handle a large number of

variables with adequate efficiency. However, the clusters estimated by MFA are

always separated by subspaces that span all variables. Therefore, when dealing

with multi-block data sets, MFA cannot identify distinctive clusters separated by

subspaces underlying one or only a few data blocks. To address this shortcom-

ing of MFA, a two-step approach can be potentially useful: in the first step, the

regularized Simultaneous Component Analysis (Gu & Van Deun, 2016, 2019) -

the method discussed extensively in Chapter 4 - can be deployed to divide the

multi-block data sets into two parts: one part with only common variation and

the other part with only distinctive variation; in the second step, MFA can be ap-

plied to these two parts separately to recover common and distinctive clusters,

respectively.

6.2.2. DEVELOPMENTS OF MORE FLEXIBLE VERSIONS OF THE METHODS

The three methods discussed in the dissertation can be improved to provide

greater flexibility for analysts. These improvements include (1) increasing the

type of data sets they can deal with and (2) lifting some of the model constraints.

Currently, the three proposed methods can only deal with continuous variables

with no missing values. In order to provide greater flexibility to users, the meth-

ods can be extended by building on the discrete PCA model (Kolenikov, Angeles,
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et al., 2004) or the mix PCA model (Anderson-Bergman et al., 2018) to accommo-

date discrete and (or) mixed types of data. Note that the most commonly used

approach to deal with discrete data in PCA, namely translating the variables with

multiple categories into a set of dummy variables (Filmer & Pritchett, 2001), is

found to be unreliable because it introduces spurious correlations (Kolenikov,

Angeles, et al., 2004). Other more complicated ways of handling discrete vari-

ables include, for example, CATegorical Principal Component Analysis (CATPCA;

Linting et al., 2007; Linting and van der Kooij, 2012) that assigns numeric val-

ues through a process of optimal scaling. Future studies can potentially evaluate

how this interesting approach fares for the newly proposed CSSCA and CSCR

methods. Furthermore, various missing data imputation methods proposed for

Principal Component Analysis (e.g., Josse et al., 2011; Malan et al., 2020) can be

examined, compared, and extended to serve as a data-prepossessing step prior

to the application of CKM, CSSCA, or CSCR.

Another important limitation of these methods is that they impose rather

stringent model constraints. Specifically, CKM defines signaling variables as those

that effectively separate all clusters, but a more realistic and flexible definition

of these signaling variables should be those that effectively separate any pair of

clusters. To develop this less constrained model, CKM can build on different

versions of SPCA that do not restrict variables to have zero loadings on all com-

ponents. Moreover, CSSCA and CSCR currently impose the constraint that all

clusters have the same number of (common and distinctive) components, which

may be too stringent in behavioral studies. To lift this constraint, future research

can develop new methods that use an extensive model selection procedure to

determine the optimal number of components for each cluster independently.

However, it should be noted that these additional model selection steps can dras-

tically increase the computational burden of the original methods.

6.2.3. STRATEGIES TO IMPROVE COMPUTATIONAL EFFICIENCY

The three methods (i.e., CKM, CSSCA and CSCR) and their associated model

selection procedures involve repeated model estimation for a large number of

re-samples and (or) several multi-start procedures. As a result, these estima-

tions can be time-consuming for applied researchers and eventually hinder the
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dissemination of the methods. To improve the computational feasibility of the

methods described in the dissertation, we present two potential solutions.

First, from a modeling perspective, the convex clustering approach can be

integrated into the three proposed methods to provide more efficient solutions

for model estimation. Convex clustering, as proposed in Pelckmans et al. (2005)

and Lindsten et al. (2011), aims to address the notorious problem inherited by

many hard partitioning methods, namely that cluster initialization has a strong

impact on the clustering results and that globally optimized solutions are diffi-

cult to achieve. To address this issue, instead of assigning each observation di-

rectly to a cluster, convex clustering assigns each observation to a point called

“cluster centroid” and later puts observations into the same cluster if their clus-

ter centroids are close enough; by doing so, convex clustering effectively trans-

forms the optimization process into a convex minimization problem (for tech-

nical details, please refer to Pelckmans et al., 2005). Consequently, convex clus-

tering enjoys the highly desirable property of always finding the unique solution

corresponding to the global minimum of the loss functions. Therefore, the de-

ployment of convex clustering effectively avoids multiple initializations and im-

proves the computational efficiency of algorithms. Recently, convex clustering

has been extended to incorporate the sparseness approach (B. Wang et al., 2018).

Based on these previous studies on convex clustering, future research can rede-

fine the optimization criteria of the proposed methods and turn the objectives of

data analysis into convex optimization problems.

Another strategy for increasing the computational efficiency of the described

methods is to program them in a more efficient programming language (e.g.,

C++) and then embed the code in a parallel computational system. The paral-

lel system synchronizes the computational power of multiple high-performance

computing facilities. With this system, the re-sampling procedures can be dis-

tributed among these computing facilities and the computational speed can be

increased by a factor of 10 or even 100.
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SUMMARY

Large-scale data sets with a large number of variables become increasingly avail-

able in behavioral research. Encompassing a wide range of measurements and

indicators, they provide behavioral scientists with unprecedented opportunities

to synthesize different pieces of information so that novel - and sometimes sub-

tle - clusters can be identified and recovered. Furthermore, because the wide

range of variables may be derived from different data sources (e.g., self-reports,

genetic data, brain signals, etc.), novel clusters can also emerge from the joint ef-

fects of the extensive and diverse set of variables. Clearly, the ever-increasing size

and complexity of behavioral data sets is a treasure trove for behavioral scientists

working on revealing crucial heterogeneity in the population.

However, just like finding jewelry in a treasure trove is never an effortless task,

to accurately recover the complex cluster structures hidden in these large data

sets, two major challenges should be overcome. First, a considerable number of

variables may be completely irrelevant to the hidden cluster structure. These

irrelevant variables may hinder the successful detection and recovery of hid-

den clusters and complicate the interpretation of cluster structures. Therefore,

they have to be completely filtered out during the data analysis process. Sec-

ond, when integrating variables from diverse data sources, it is always desirable

to discern between variable covariations underlying all data sources (defined as

the common variation) and those underlying a single or only a few data sources

(defined as the distinctive variations). Only by completely disentangling these

two types of covariations can we obtain a precise and direct understanding of

which joint and (or) individual forces effectively differentiate the clusters.

This dissertation developed new statistical models and computational tools

to address the two challenges mentioned above, and in doing so, offers new op-

portunities to detect complex cluster structures and better understand hetero-

geneity in behavioral studies.
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Chapter 2 developed a new method called Cardinality K-means or CKM. CKM

partitions observations based on the between-cluster mean structures and there-

fore enjoys excellent computational efficiency, even in the presence of a large

number of variables. More importantly, CKM finds hidden clusters while auto-

matically detecting a set of variables best separating these clusters. Therefore,

CKM can be particularly useful for exploratory studies aimed at detecting clus-

ters in novel types of data (e.g., GPS data, transaction data), which, most often

than not, contain a large number of variables with little theoretical guidance

on the relevance of these variables. The solid performance of CKM in terms of

cluster recovery and variable selection was confirmed through three simulation

studies and CKM has proven to outperform a suite of competing methods. This

chapter also proposed a novel model selection procedure that determined the

number of clusters based on a subset of variables that are constantly classified

as crucial variables for cluster separation. This strategy outperformed the tradi-

tional approach of determining the number of clusters with all variables. An R

package CKM was designed that implemented CKM and the novel model selec-

tion strategy.

Chapter 3 extended the work in Chapter 2 by offering a detailed and acces-

sible guide for researchers to use simultaneous clustering and variable selection

(SCVS) methods in their research. Specifically, this chapter elaborated on five

key steps that have to be taken for the SCVS techniques and presented readers

with an empirical example of clustering subjects based on their political atti-

tudes. The five steps can be classified into three parts: data preprocessing, clus-

ter analysis, and cluster validation. A unique contribution of this chapter was a

comprehensive discussion and demonstration of cluster validation. Three types

of cluster validation approaches were addressed in the chapter, namely visual

validation, cluster stability validation, and cluster replication. Last but not least,

to facilitate visual validation of cluster results, this chapter offered a Shinyapp

that can generate many types of visualizations with minimal user input.

Chapter 4 developed Clusterwise Sparse Simultaneous Component Analy-

sis (CSSCA), a method that performs automatic variable selection and distin-

guishes between common and distinctive (co)variations when dealing with vari-

ables coming from a wide variety of data sources. More specifically, building
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on a few previous methods, CSSCA defines clusters in such a way that only the

observations from the same cluster have the same between-cluster mean struc-

ture and within-cluster component structure. In two simulation studies, CSSCA

recovered hidden clusters and identified the associated cluster-specific compo-

nent structures with high accuracy. Furthermore, CSSCA outperformed a popu-

lar competing method (i.e., iCluster), especially when a large proportion of clus-

ter differences were attributed to differences in these within-cluster component

structures. Finally, CSSCA proved useful in an illustrative example where differ-

ent measures of personality were connected. To better disseminate the CSSCA

method, an R package ClusterSCA was developed.

Chapter 5 extended Chapter 4 by considering predictive analysis and devel-

oped a new method called Clusterwise Simultaneous Component Regression or

CSCR. CSCR was developed with the dual goal of predicting outcomes as accu-

rately as possible while simultaneously offering a clear interpretation of which

within-cluster components are important to prediction. In other words, CSCR

extracts components with the guidance of the outcomes, thus ensuring that these

components are not merely good summaries of predictors but also useful ingre-

dients for prediction. As far as we know, CSCR is the only method that combines

two desirable features of prediction: (1) for each cluster, the dimensions of the

predictors are largely reduced to prevent over-fitting, and (2) regression models

are estimated per cluster to account for heterogeneity. Like CSSCA, CSCR can

handle a diverse set of variables from different sources, thanks to its capability

to discern common and distinctive (co)variations. Two simulation studies re-

ported in this chapter demonstrated the excellent performance of CSCR in terms

of cluster recovery and predictive accuracy. Notably, the performances of CSCR

were considerably better than the performances of other competing methods

across a large number of conditions. Finally, in the illustration where partici-

pants’ attitudes toward immigrants were inferred from their personalities and

values, the application of CSCR resulted in additional insights into the different

predictive mechanisms for different clusters of observations. In addition, an R

package CSCR was developed for the estimation with CSCR.
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Concluding, in Chapter 6, we presented some thoughts on the practical ap-

plications of the methods developed in this dissertation and shed light on future

research directions.
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