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The reconstruction of tree branching structures is a longstanding problem in

Computer Graphics which has been studied over several data sources, from

photogrammetry point clouds to Terrestrial and Aerial Laser Imaging Detection

and Ranging technology. However, most data sources present acquisition

errors that make the reconstruction more challenging. Among them, the

main challenge is the partial or complete occlusion of branch segments,

thus leading to disconnected components whether the reconstruction is

resolved using graph-based approaches. In this work, we propose a hybrid

method based on radius-based search andMinimum Spanning Tree for the tree

branching reconstruction by handling occlusion and disconnected branches.

Furthermore, we simplify previous work evaluating the similarity between

ground-truth and reconstructed skeletons. Using this approach, our method

is proved to be more effective than the baseline methods, regarding

reconstruction results and response time. Our method yields better results

on the complete explored radii interval, though the improvement is especially

significant on the Ground Sampling Distance In terms of latency, an outstanding

performance is achieved in comparison with the baseline method.
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1 Introduction

The geometric modeling of tree branching structures has been widely studied in the

last decades for the representation of synthetic vegetation with a high degree of realism, as

well as for the precise acquisition of real trees. Therefore, this research field has attracted

interest from several areas, including botany, Computer Graphics (CG) and Remote

Sensing (RS). Recent studies are mainly focused on the interpretation of data acquired

from RS tools rather than synthetic modeling, as some frameworks such as Speed-Tree®

are well-established as standards for generating procedural and realistic environments.

However, the modeling of vegetation covers a wide range of applications, including but

not limited to the virtual entertainment industry, design of urban landscapes, simulations

concerning natural environments as well as monitoring and management of agricultural

and forestry scenes. Hence, this field is expected to gain interest as some emerging trends

OPEN ACCESS

EDITED BY

Huikyo Lee,
NASA Jet Propulsion Laboratory (JPL),
United States

REVIEWED BY

Milad Janalipour,
Aerospace Research Institute, Iran
Eduardo Landulfo,
Instituto de Pesquisas Energéticas e
Nucleares (IPEN), Brazil

*CORRESPONDENCE

Juan M. Jurado,
jjurado@ujaen.es

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and Remote
Sensing,
a section of the journal
Frontiers in Environmental Science

RECEIVED 02 June 2022
ACCEPTED 10 October 2022
PUBLISHED 02 November 2022

CITATION

Cárdenas JL, López A, Ogayar CJ,
Feito FR and Jurado JM (2022),
Reconstruction of tree branching
structures from UAV-LiDAR data.
Front. Environ. Sci. 10:960083.
doi: 10.3389/fenvs.2022.960083

COPYRIGHT

© 2022 Cárdenas, López, Ogayar, Feito
and Jurado. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Methods
PUBLISHED 02 November 2022
DOI 10.3389/fenvs.2022.960083

https://www.frontiersin.org/articles/10.3389/fenvs.2022.960083/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.960083/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.960083&domain=pdf&date_stamp=2022-11-02
mailto:jjurado@ujaen.es
https://doi.org/10.3389/fenvs.2022.960083
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.960083


require the accurate characterization of vegetation for realistic

simulation models, such as the modeling of Earth digital twins.

There have been previous efforts on the assessment of tree

structures from the output of Remote Sensing (RS) tools. The

main data sources consist of images (Andújar et al., 2016; Li

et al., 2021; Lu et al., 2021) and point clouds (Surovy et al.,

2016; Lee et al., 2018; Jaskierniak et al., 2021), either acquired

by LiDAR (Laser Imaging Detection and Ranging) or

photogrammetry, which are simplified using voxel-based or

grid data structures (2D), as well as spatial structures, such as

octrees, k-d trees and quadtrees for 3D inputs (Cao et al., 2019;

Fu et al., 2020). Regarding the algorithmic core of previous

work, methods aimed at the reconstruction of 3D tree

skeletons from real-world data can be organized into three

main categories: 1) Procedural reconstructions, where input

data guides the tree modeling (Neubert et al., 2007; Binney and

Sukhatme, 2009; Zhang et al., 2014; Guo et al., 2020b), 2)

Geometric extraction techniques to resemble the appearance

of the branching structure through its skeleton (Gorte and

Pfeifer, 2004; Tan et al., 2007; Livny et al., 2010; Fu et al.,

2020), and 3) Image-based methods focused on the extraction

of 2D branching structures and the subsequent estimation of a

3D skeleton (Tan et al., 2008; Lopez et al., 2010). Also, the

estimation of the skeleton is frequently followed by some of the

following techniques: 1) cleaning, 2) smoothing branches and

3) removing redundant ones or providing higher realism to

straight branches. Despite manual in-field measurements of

tree properties being possible, they represent a time-

consuming task (Walter et al., 2019; Wang et al., 2021) that

can be automatized by digitizing the structure of trees. To this

end, the vegetation geometry can be acquired by previously

mentioned data sources. Firstly, Structure from Motion (SfM)

provides a robust methodology for extracting features and the

subsequent estimation of a 3D model, even using consumer-

grade digital cameras. However, SfM reconstructions present a

significant response time, yet for GPU-accelerated (Graphics

Processing Unit) solutions, and are more prone to incomplete

results derived from occlusion (López et al., 2021b).

Nevertheless, it is challenging to handle visibility

completeness for trees with dense foliage. On the other

hand, LiDAR sensors allow acquiring large and dense point

clouds that are less prone to occlusion at the expense of

appropriate planning of one or multiple scans (Shao et al.,

2020; Tu et al., 2020; Kuzelka and Surovy, 2021). Furthermore,

there exists a wide range of LiDAR sensors according to their

specifications and the platform they are operated on (Poux,

2019); thus, multiple scans from different tools can be fused

(Shao et al., 2020). Consequently, this work is focused on the

reconstruction of trees from aerial LiDAR since it leverages

acquisition facilities and precision, while also minimizing

occlusion.

Besides sensors, acquiring data from vegetation is a

cumbersome task whether we aim to cover the surface and

inner structure of trees. Accordingly, dense foliage and

overlapping branches pose several challenges regarding tree

occlusion and the subsequent skeleton estimation. Tree

occlusion can be reduced, rather than avoided, by acquiring

data from multiple viewpoints during surveys (Shao et al., 2020;

Tu et al., 2020; Kuzelka and Surovy, 2021), either aerial (mounted

on Unmanned Aerial Vehicles (UAV)) or terrestrial. Besides

occlusion, input data may also present systematic and random

errors from imprecise estimations or sensor-derived errors (Fan

et al., 2015; Pandžić et al., 2017). Consequently, trees without

foliage are easier to reconstruct and evaluate through geometric

approaches, as observed in the literature. Thus, the

reconstruction of tree skeletons must be resilient to frequent

errors observed in widespread sensors by balancing the linking of

local point neighborhoods and distant subgraphs. Regarding

evaluation, most of the previous work lacks quantitative

measures to assess the similarity of ground-truth and

estimated skeletons. Therefore, a geometrically based

algorithm is necessary for evaluating a reconstruction method

in comparison with other state-of-the-art solutions.

2 Related work

Precise estimations of tree branching structures allow

reconstructing the geometry and topology of real-world

vegetation acquired by sensors. By digitizing these structures,

manual measurements can be avoided and performed through

efficient algorithms, thus reducing the response time of in-field

monitoring. Some of the most relevant studies regarding

vegetation properties address the estimation of biomass

(Walter et al., 2019; Wang et al., 2021), phenotyping (Tefera

et al., 2022) as well as coarse-grained and leaf-related parameters

(Rosell et al., 2009). Furthermore, the reconstruction of trees

represents a baseline for predicting and modeling the state of an

environment, thus providing a background for precision

agriculture, soil, forestry (Nită, 2021) and urban management

(Gobeawan et al., 2021).

Reconstruction techniques are categorized either as

procedural, geometric or image-based. Each one presents

advantages and drawbacks, although input data is mostly

limited to TLS (Terrestrial LiDAR Scanner) and

photogrammetry. Aerial surveying is barely revised in the

literature, despite it significantly accelerates monitoring tasks

for massive tree plantations. Procedural methods are classified

into Rule-based and Particle-flow modeling, where both

categories are classical tree generation techniques (Reche

et al., 2004; Zhang et al., 2014) constrained by real data. In

this regard, most of them are based on a significant set of

parameters (e.g., ramification angles, growth length of branch

segments, etc.), whose values need to be adjusted for each

different tree specimen. Therefore, their main drawback is

given by the tuning of parameters, although there are inverse
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procedural modeling techniques aimed at computing the values

of these parameters (Stava et al., 2014) and rules (Guo et al.,

2020a). On the other hand, they usually have a high tolerance to

noise and occlusion. Image-based methodologies represent an

efficient estimation of 2D skeletons, although transferring this

knowledge to 3D environments is not trivial. When a single

image is used, the branch angles are not accurately modeled (Tan

et al., 2008). Using a 2.5D approach (Cheng et al., 2007), branch

angles are extracted from the depth information associated with

the image. Other approaches merge multiple 2D skeletons

extracted from different viewpoints into a single 3D structure

(Lopez et al., 2010). Nevertheless, some of the stages of these

solutions require user interaction (Teng and Chen, 2009). Finally,

geometrical methods refer to methods that estimate the tree

skeleton from the input data, thus obtaining the Medial Axis

(MA) as well as the tree topology. Therefore, they are highly

dependant on the input data and thus sensitive to missing parts

of branches. These are classified in three main categories: 1)

Thinning methods, 2) Clustering techniques, and 3) Spanning

Tree methods, addressing the building and simplification of a

spanning tree.

Thinning methodologies were first described as a

voxelization of the input data, where dilation and erosion

operators were later applied to fill hollow branches and reduce

tree branches, thus obtaining the topology by linking

surrounding voxels (Gorte and Pfeifer, 2004). Clustering

techniques follow a procedure based on the spatial indexing of

input data and the generation of a neighbor graph to group

points according to their distance to the root. Neighborhoods are

mainly driven by the k-nearest neighbor (KNN), either by using a

search radius (Delagrange et al., 2014) or k neighbors (Zhu et al.,

2009). Then, a geodesic graph is built by applying a distance

function, such as the Euclidean distance (Tan et al., 2007) or the

number of nodes traversed (Li et al., 2017). Measured distances

are then clustered by considering either a fixed number of bins

(Zhu et al., 2009) or equal (Xu et al., 2007) or adaptive length (Li

et al., 2017). Branching sections are then split into connected

components to differentiate branches. For that purpose, Gong

et al. (2018) proposed to find contour lines, whereas Fu et al.

(2020) exploited the cylindrical shape of branches to split them,

even for bifurcations previously assessed as a single branch.

Finally, sections are connected to form the tree skeleton. In

this stage, optimal results are achieved by methods segmenting

the point cloud to annotate branches and leaves (Li et al., 2017),

thus making them appropriate for trees with foliage. Another

relevant category within geometrical methodologies is the

Spanning tree refinement, aimed at generating a weighted

spanning tree from input data for modeling tree skeletons. To

this end, Livny et al. (2010) calculates the geodesic graph using

the Dijkstra’s algorithm, whereas Du et al. (2019) computes the

distance minimum spanning tree (DMst), i.e., a spanning tree

where the sum of all its weights must be minimum. The resulting

FIGURE 1
Overview of the proposed method for the reconstruction of tree branching structures. (A) First, a set of tree species is procedurally generated
using a virtual LiDAR scanner. (B) Next, the skeleton is modeled by branch extraction. (C) Finally, the quality of the output skeletons and the
performance of the method on real LiDAR models are measured.
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spanning tree can be further refined through local optimization,

e.g., computing a smoothed orientation field, or global

approaches, such as the discarding of points with lower

weight, corresponding to false branches (Du et al., 2019).

Although previous work has assessed occlusion on branching

structures, most of the revised studies work under nearly ideal

information. On the other hand, aerial-acquired results pose

significant challenges regarding occlusion, even without the

presence of foliage. Occluded areas can be partially avoided by

capturing trees from different viewpoints. However, recent

research has also proposed to fill gaps through procedural

modeling (Guo et al., 2020b), global optimization methods

(Wang et al., 2014) and Deep Learning models (Isokane et al.,

2018). Also, Delagrange et al. (2014) describes a semi-automatic

method where unconnected branch components require human

intervention. Other alternative methods evaluate their robustness

against partial branch occlusion (Fu et al., 2020), though the

main challenge proceeds from overlapping branches, thereby

completely omitting branch sections.

Once skeletons are reconstructed, the results ought to be

evaluated regarding the similarity between ground-truth and

digital structures. However, ground-truth data is unknown in

most cases, mainly for input data from an RS tool. Therefore,

previous work assesses the similarity and correctness through

visual inspection (Zhang et al., 2014). Quantitative evaluations

are also explored for penalizing geometrical and topological

discrepancies, although their algorithms are composed of

several complex stages (Boudon et al., 2014; Isokane et al.,

2018). Coarse-grained quantitative evaluations are also

proposed by comparing properties such as height, biomass,

trunk diameter, or Leaf Area Index (LAI) (Bournez et al.,

2017). Distance and variance-based metrics are also popular

in previous work (Lu et al., 2021). Besides measuring the

similarity, the robustness of the proposed method can be

addressed by omitting some points, thus showing the

reconstruction process in occlusion conditions (Fu et al.,

2020). Nevertheless, few studies work under the occlusion of

complete section branches, in contrast to preserving a few points.

Consequently, the main contribution of this work is the

reconstruction of tree branching structures from aerial data

combining clustering and MST approaches, thus allowing to

fuse disconnected branch components. To this end, we show that

grouping points with an intuitive radius offers a better

performance than the classical KNN approach. Therefore, the

manual connectivity repair proposed by previous research

(Delagrange et al., 2014) is performed automatically in this

work. Accordingly, our method is successfully applied to

simulated aerial LiDAR scans, although it is also suitable for

TLS point clouds acquired from a single viewpoint. Point clouds

captured with ALS (Aerial LiDAR Scanner), due to their

viewpoint from the top, have more occlusion and missing

data in the trunk and main branches than TLS-acquired point

clouds from multiple viewpoints. Finally, we simplify the

algorithm proposed by Boudon et al. (2014) for quantitatively

evaluating the result of the tree reconstruction methodology.

This paper is structured as follows. First, we generate a

synthetic LiDAR dataset based on procedural trees, consisting

FIGURE 2
Synthetic dataset of 3D trees. (A) Procedural trees generated from Sapling Tree Gen. (B) Point clouds obtained from virtual aerial LiDAR
scanning.

TABLE 1 Configuration of the virtual ALS sensor for scanning the
synthetic trees, following the specifications of a DJI Zenmuse
L1 LiDAR.

Attribute Value

Height 35 m

Horizontal FOV 70.4°

Vertical FOV 4.5°

Scanning pattern Zig-zag

Maximum returns 3

Scan frequency 10 scans/s

Pulse frequency 4,900 pulses/s

Drone speed 0.05 m/s
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of skeletons and surveyed point clouds. The proposed

methodology for reconstructing tree branching structures is

then explained. Furthermore, an evaluation method is

proposed both to measure the quality of our results and

simplify previous proposals for assessing the similarity of

ground-truth and reconstructed skeletons. Using this

approach, we provide a comparison of the described method

with respect to other state-of-the-art geometric extraction

techniques. The outcomes of the conducted tests as well as

the conclusions are finally summarised in Section Results.

FIGURE 3
Overview of our methodology involving four main steps: (A) the generation of synthetic LiDAR data from the scanning of the 3D procedural
trees, (B) the stages aimed at the construction of the starting graphs, (C) the fusion and refinementmethods based on the geodetic graph, and (D) the
reduction of the previous results to generate the final skeleton.
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3 Methods

In this section, we describe the proposed reconstruction

method that is later evaluated in Section Results. The overall

procedure of our algorithm is depicted in Figure 1.

3.1 Synthetic LiDAR data

The mesh modeling and assessment of real-world trees

digitized from LiDAR sensors poses a challenge, as the actual

skeletons of real-world data are unknown. Regarding previous

work, most evaluations were based on visual inspections or

manual-processing tasks to generate the branching structure

of trees. Accordingly, our approach is focused on using

synthetic data, which are modeled by simulating the capture

of LiDAR sensors in a virtual environment. Thus, a synthetic

scenario characterized by many procedural trees with their

corresponding skeleton is taken as input. Therefore, the

traditional process is reversed; first, the branching structure is

procedurally generated, and the triangular mesh is computed

with such a skeleton and the branching radius. Then, the

computer-generated LiDAR data of the forest is simulated. As

a result, a wide variety of procedural trees with their

corresponding skeletons are taken as input for our tree

skeletonization method.

Procedural trees are modeled using the well-known Sapling

Tree Gen plugin from Blender (Weber and Penn, 1995), which

yields both the skeleton and mesh. However, skeletons are not

provided as a fully connected graph. The result consists of several

disjoint components that cannot be directly applied to our later

evaluation. To overcome this, the point with the lowest y

coordinate is linked to the nearest edge found with KNN for

each component. Note that new vertices may be generated by

intersecting the nearest edge and the unlinked edge. The resulting

scene is built using six different tree specimens and ten distinct

seeds for each one, thus obtaining 60 uniformly distributed trees

(Figure 2).

According to the LiDAR simulation, it is performed using the

work described by López et al. (2021a), López et al. (2022) since it

FIGURE 4
Results of the stages (A–F) that are part of our methodology for a single synthetic tree. In theMST stage, branch links not detected in the radius-
search are discovered.
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allows scanning virtual environments both with terrestrial and

aerial LiDAR. Other solutions provide aerial surveys as an

extension of TLS, thus not being appropriate to study

occlusion derived from ALS. The LiDAR scanning is launched

in the GPU over an scene of 14 million triangles, with the

specifications of a DJI Zenmuse L1 sensor (Table 1. The

maximum tree height of such a scene is 18m, and the virtual

drone flight is performed at 35 m, thus requiring five different

sweeps to survey the complete scenario. The final point cloud is

composed of 148 k points from up to 3 returns.

3.2 Reconstruction of the tree skeleton

This subsection is described according to Figure 3, where six

different graphs are computed throughout the framework. The

input data for this description is based on synthetic LiDAR data

acquired from trees without foliage. Despite virtual scans being

performed over forests, the resulting point cloud is split into

individual trees. In the following, the main stages for the

construction of 3D tree skeletons are described:

Neighborhood graph (A). The first step for the tree skeleton

extraction is to build a neighborhood graph, A. Thus, points are

the graph vertices, where edges connect surrounding points. The

neighborhood search is mainly performed through a range

search, where all points below a certain distance are selected,

or a KNN search that selects the k-nearest points. Despite KNN

being robust to occlusion, the size of the neighborhood (k) does

not take into account point distances, nor can receive an intuitive

value. Therefore, it can mislead the algorithm whether the

remaining noise points are grouped in a neighborhood.

Instead, we perform a ranged search based on a radius r.

However, this approach may obtain more than one connected

component, whereas the tree skeleton is represented as a single

connected component.

To solve the aforementioned problem, we can either increase

r, or repair the connectivity of the skeleton due to using a smaller

r. The second solution is preferred over the first approach for

avoiding false branches, whereas a nearly optimal value of the

radius, r, can be derived from the scanning frequency of the

virtual LiDAR sensor. Regarding the algorithm complexity, the

main challenge of neighborhood finding proceeds from time-

consuming spatial searches. To accelerate this search, the point

cloud is organized in a k-d tree. Finally, connected components

in graph A are detected to link each vertex to its corresponding

isolated component. At the end of this stage, each vertex is known

to belong to an specific connected component, that is more likely

to be isolated from others.

Minimum Spanning Tree (MST; B). Instead of computing

the neighborhood graph, we can build the MST (B) to yield a

single connected component. For that purpose, the point cloud is

first triangulated with 3DDelaunay.With this representation, the

graph vertices are given by points, whereas tetrahedron edges are

used as graph edges for the subsequent MST computation. In our

approach, the MST is built using the Prim’s greedy algorithm to

find the minimal weighted undirected graph.

Fusion of Neighborhood and MST graphs (C). Previously

generated graphs are fused to provide an automatic repair of

disjoint connected components, while other methods perform it

manually (Delagrange et al., 2014). More complex solutions

FIGURE 5
Comparison between the ground-truth skeleton (green) and our reconstructed skeleton (blue). The distance between the two skeletons is used
as a quantitative evaluation of our method.
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based on cone searches on the tips of trunk and branches are also

explored (Xu et al., 2007), although they depend on several

parameters. During this process, each edge of graph B is

evaluated by querying the connected component of source

and destination vertices (extracted from graph A). If both

vertices belong to different components, the missing edge is

included in graph A as it is considered to be an error derived from

occlusion. Consequently, the resulting graph, C, is composed of a

single connected component once all edges are revised.

Geodesic Graph (D). Geodesic graphs have been widely used

in previous work to reduce the point cloud to a skeleton, i.e., a set of

lines starting from an origin point, also known as the base of the

trunk. With the geodesic graph, the skeleton is defined as the graph

of minimum distances to the origin point. Firstly, the origin point,

po, is selected as the point with minimum height within the graph C.

To compute the distance from each point to the root, we

apply the Dijkstra’s algorithm using the Euclidean distance for

each edge. Consequently, we can extract a subset of edges that are

part of a minimum distance path starting from the root point.

Distance clustering (E). Using the previously computed

distance, vertices can be grouped according to their distance

to the root, thus generating several bins. It can be parameterized

either by defining a fixed number of intervals or a fixed segment

length (slength). The first method limits the maximum depth of the

tree graph, whereas a fixed length defines the resolution length of

branches.

Collapsing clusters (F). We can simplify the graph by

collapsing connected components within each distance group

since a single bin may be composed of one or several

components. To this end, nodes within a component are

collapsed to its centroid. Finally, the edges of the final graph

are formed by linking each node (centroid) to others that were

previously connected.

In summary, our reconstruction requires only two

parameters: the radius of the neighborhood search, r, and the

length of branch segments for the distance clustering, slength.

Figure 4 highlights the stages being part of the proposed

methodology. Thus, the benefits of combining methods sensitive

to occlusion and omitted parts of the branch due to sensor

inaccuracies are here depicted. Accordingly, the MST stage

discovers some of the links missed by radius-based algorithms.

3.3 Evaluation method

Previous research lacks precise evaluations for validating

reconstruction results regarding both geometry and topology

features. In this work, an evaluation method is proposed to

obtain a global error measure. Our proposal is based on

previous work (Boudon et al., 2014), though it is notably

simplified by resampling skeletons. Instead of solely evaluating

the reconstructed structure, we compare it against the ground-

truth skeleton, and therefore this algorithm is better suited to

synthetic data.

The algorithm resamples both tree skeletons using a fixed

segment length (slength) that allows subdividing and comparing

similar branch segments. The distance sampling is performed in

order to transform the problem of finding the distance between

two skeletons from continuous to discrete (Figure 5). Hence,

slength is the quantization distance that we are using: the greater

the value, the less precision we have. The starting length of both

skeletons’ branches is unknown. Therefore, several casuistry

must be considered, as highlighted in the next paragraph. The

overall behavior computes the squared mean distance of each

point from the source skeleton, s, to the nearest point of the target

skeleton, t. Hence, such an error is bounded by (slength2 )2. The
highest the value of slength, the larger the error can achieve,

especially for trees whose resampled points are distributed

unevenly in the 3D space. To efficiently locate surrounding

points, the point cloud is also organized in a k-d tree.

TABLE 2 The evaluation of six tree specimens. The results for each specimen are averaged over ten different trees generatedwith a different seed. The
deviation metric for a specific specimen is also shown. The results should be interpreted in the local coordinate system of the tree models, where
the unit expressed is the meter (m).

Specimen 1 2 3 4 5 6

Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev

KNN (k = 10) 0.098 0.146 0.030 0.124 5.360 33.905 0.039 0.197 3.987 25.248 0.018 0.034

Base (r = 0.1) 23.845 61.999 6.551 25.963 39.254 33.282 0.632 0.795 8.234 43.411 8.775 21.034

Base (r = 0.2) 0.224 0.266 0.006 0.002 17.804 54.141 0.004 0.065 3.969 25.143 0.024 0.033

Base (r = 0.3) 0.091 0.151 0.014 0.003 3.585 33.516 0.005 0.073 2.223 20.658 0.018 0.014

Base (r = 0.4) 0.084 0.064 0.029 0.012 3.500 32.296 0.007 0.087 0.080 0.030 0.030 0.009

Ours (r = 0) 0.046 0.115 0.003 0.002 0.024 0.027 0.004 0.066 0.015 0.024 0.007 0.009

Ours (r = 0.1) 0.035 0.094 0.003 0.001 0.010 0.011 0.003 0.054 0.009 0.012 0.006 0.006

Ours (r = 0.2) 0.024 0.031 0.006 0.001 0.021 0.015 0.003 0.056 0.018 0.008 0.006 0.002

Ours (r = 0.3) 0.039 0.021 0.015 0.005 0.052 0.011 0.004 0.061 0.056 0.045 0.014 0.006
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The resampling procedure follows a depth traversal

approach to iterate through the graph, starting from the

base. Thus, edges are added to the search iteratively,

whereas branch segments are resampled according to slength.

Note that subdivisions may carry some exceeding length from

previous edges, as slength is not necessarily a multiple number

of every branch segment length. Indeed, it varies throughout

the skeleton and is unknown a priori. Whether slength is greater

than the edge length, it can be omitted to propagate such

length in deeper segments.

Once the source and target skeletons are resampled, the

matching operation is performed. First, each vertex from the

source skeleton is paired with the closest point on the target

skeleton and vice versa. For each of these pairings, we compute

the distance between the corresponding points. These distances are

computed from the source to the target skeleton and are akin to a

local error measure. Then, a global error metric for measuring the

similarity of two skeletons is proposed as the aggregation of squared

distances through an arithmetic mean. The bidirectional matching

enables our error metric to penalize accordingly both added

branches and deleted ones, that is, false branches that are not in

the real tree and missing branches not reconstructed.

4 Results

In this section, we present the results by applying our method

on both synthetic and real LiDAR point clouds of trees. On the one

hand, a set of simulated treemodels is used to validate the resulting

tree skeletons. Once, this tasks is carried out, our solution is tested

on real LiDAR data which was collected in a real scenario.

4.1 Evaluation with simulated LiDAR data

The proposed method has been tested and assessed using the

synthetic LiDAR point clouds, which were generated from a

virtual LiDAR simulator. We assess the fidelity of the resulting

FIGURE 6
Graphical representation of the error shown in Table 2 for the set of tree specimens evaluated with the proposed metric.
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skeleton with respect to ground-truth data from which the 3D

model of the tree is generated. For that purpose, the

aforementioned evaluation method is performed to measure

the error between the source and resulting skeletons, as

illustrated in Figure 5. The mean squared error by applying

our method is compared to the results from the baseline method

Delagrange et al. (2014) that also performs a manual topological

adjustment. The method performance has been carried out in a

PC with Intel Core i7-9700K 3.6 GHz, 16 GB RAM, GTX

1660 GPU with 6 GB RAM (Turing architecture). The

proposed algorithm is implemented in C++ along with

OpenGL (Open Graphics Library) for rendering. For the

development of graph-related algorithms, the Boost Graph

Library is used, whereas CGAL (Computational Geometry

Algorithms Library) is used for the management of the point

cloud.

FIGURE 7
Graphical overview of the accuracy obtained by applying our method (red), or the base method (blue) with different radii.
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The main parameter that determines the quality of results if

the radius for searching those points that belong to the same

branch. Therefore, both our algorithm and the baseline are tested

by considering multiple radii. As the radius increases, the

number of branches is reduced due to the merging of near

branches whose distance is less than the radius. Consequently,

TABLE 3 Performance of the proposedmethod for six different specimens of trees. The mean and standard deviation are obtained by considering ten
samples of each specimen.

Specimen 1 2 3 4 5 6

Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev

kNN (k = 10) 0.500 0.371 0.319 0.355 1.480 1.501 0.188 0.209 0.673 0.955 0.068 0.124

Base (r = 0.1) 0.730 0.907 1.074 1.705 3.169 5.095 0.809 1.269 1.440 2.555 0.086 0.203

Base (r = 0.2) 2.245 2.734 3.173 4.565 10.282 15.441 2.272 3.150 4.946 8.339 0.316 0.668

Base (r = 0.3) 4.161 5.035 5.943 8.026 24.102 32.373 4.779 5.900 11.613 15.569 1.179 1.823

Base (r = 0.4) 6.393 7.409 9.540 12.537 39.748 46.734 5.078 7.981 15.791 22.119 0.832 1.529

Ours (r = 0) 1.267 1.015 0.823 0.983 4.030 4.476 0.511 0.633 1.578 2.307 0.166 0.301

Ours (r = 0.1) 2.192 2.061 2.174 3.167 8.215 11.545 1.507 2.310 3.206 5.152 0.275 0.558

Ours (r = 0.2) 3.917 4.360 4.601 7.014 17.363 24.767 2.639 3.607 7.122 11.612 0.453 0.967

Ours (r = 0.3) 6.435 7.127 7.587 11.743 35.100 60.060 4.566 8.745 11.447 17.302 0.730 1.520

FIGURE 8
Graphical representation of the execution time shown in Table 3. Our method is compared with the base method considering different radii.
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the distance of the reconstructed branches to the ground truth

skeleton increases, thus leading to also rise the error metric.

Finally, we also report the response time of the complete

procedure regarding point clouds of different dimensionality,

following the previous algorithmic configuration.

Table 2 shows the results regarding the average and standard

deviation obtained using the described evaluation method

comparing ground-truth and reconstructed skeletons. The

maximum error is achieved by small radius values (r ← 0.1)

as it hardens the search of neighboring points within the same

branch. Furthermore, it outputs disconnected components not

reconstructed near the trunk, thus penalizing the whole tree.

Figure 6 shows a graphical overview of the our method accuracy.

Figure 7 shows the improvement in accuracy of our method

with respect to the base method in the most appropriate radius

range to detect an enough number of branches that make up the

tree structure. The negative slope in the base method at low

radii shows that there are disconnected components which are

not connected to the main trunk, i.e., it has more than one

connected component. Hence, the reconstruction is only

performed on the main component, the one connected to

the trunk base. However, the error metric also takes into

account disconnected components, characterized by a large

distance between them in the ground truth skeleton and the

reconstructed one. Our method performs the connection using

the MST, and therefore this error is reduced significantly. As the

radius approaches the point resolution of the cloud (1 point for

every 0.104m, 0.075 median, 0.07 mean), only far disconnected

branches (due to occlusion) are not detected in the base method

and thus penalized. Instead, our method connects them

minimizing the branch length. Note that the shortest edges

of the MST are contained in the neighbourhood graph. Hence,

the resulting skeleton is equivalent whether the radius is

increased both in the base and our method, and its greater

or equal than the maximum edge length of the MST. This is due

to the fact that all edges in the MST are contained in the

neighbourhood graph, and augmenting such graph with the

MST is a no-op.

FIGURE 9
Our results for the 3D reconstruction of tree skeletons from scanned data. A set of five real tree specimens that weremodeled fromUAV-LiDAR
sensors has been used.
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According to the performance of the proposed method,

Table 3 and Figure 8 show the execution time for the 3D

reconstruction of the set of trees used before. When using r ≃
0.0, our method works similarly to the base method with r ≃ 0.1,

although it produces better results, since it leads to a single

connected component. Therefore, the whole tree is

reconstructed. Furthermore, our method presents a significant

speedup for low radii, while it avoids performing the search with

a larger radius.

4.2 Test with real LiDAR data

Once the method’s capabilities have been assessed on

synthetic models, the next step is to use real 3D LiDAR data.

For this purpose, we have used the available dataset from the 3D

Forest project Trochta et al. (2017). This contains 26 trees with

terrain, deadwoods, and other natural assets that have been

generated by TLS in a small subplot (20 m × 40 m) of a

larger forest area. Figure 9 shows the proposed reconstruction

of the tree branching structures of a subset of surveyed trees.

5 Conclusion

In this work, we have presented a geometry-based method

for tree reconstruction that handles occluded branch parts.

Hence, this algorithm can be applied to ALS datasets with

notable occlusion. The reconstruction method has been

evaluated using a synthetic LiDAR point cloud dataset,

obtained by performing a virtual scanning over procedurally-

generated trees without foliage. Furthermore, the

reconstruction is assessed through a metric that significantly

simplifies previous approaches, while it yields similar results.

Accordingly, we have shown that our method is able to handle

missing branch segments, in comparison with previous work

that solves this drawback manually or is only able to handle

partial branch occlusion. Furthermore, our algorithm is solely

parameterized by two attributes, the radius of the neighborhood

search as well as the segment length for distance clustering.

In future work, we would like to extend the proposed method

to multiple trees, thus solving this problem in parallel for

multiple instances detected through hierarchical clustering

approaches that use the MST (Gower and Ross, 1969; Jana

and Naik, 2009). Furthermore, the method can be further

improved with post-processing techniques for removing false

branches, which were not covered in this work. Finally, occlusion

handling may be improved by considering both longitudinal

(complete branch segment) and spherical occlusion (partial

occlusion in a branch segment). To this end, cylindrical shape

detection could tackle the second occlusion case.
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