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Simple Summary: The main aim of the present study was to assess the effects of acidification
(pH 6.5 vs. pH 8.0) under two salinity conditions (brackish water—BW vs. seawater—SW) on the
development and fitness (oxidative stress) of early developing seahorses (Hippocampus reidi). The
growth of juveniles reared in BW was impaired at pH 6.5, and the levels of superoxide dismutase
and DT-diaphorase, as well as the oxidative stress index, increased compared to SW juveniles.
However, survival and growth at pH 6.5 decreased in the former. These results suggest higher overall
performance and optimal fitness in juveniles reared in seawater under acidic conditions (pH = 6.5).

Abstract: Water acidification affects aquatic species, both in natural environmental conditions and in
ex situ rearing production systems. The chronic effects of acidic conditions (pH 6.5 vs. pH 8.0) in
seahorses (Hippocampus spp.) are not well known, especially when coupled with salinity interaction.
This study investigated the implications of pH on the growth and oxidative stress in the seahorse
Hippocampus reidi (Ginsburg, 1933), one of the most important seahorse species in the ornamental
trade. Two trials were carried out in juveniles (0–21 and 21–50 DAR—days after the male’s pouch
release) reared under acid (6.5) and control (8.0) pH, both in brackish water (BW—salinity 11) and
seawater (SW—salinity 33). In the first trial (0–21 DAR), there was no effect of pH on the growth
of seahorses reared in SW, but the survival rate was higher for juveniles raised in SW at pH 6.5.
However, the growth and survival of juveniles reared in BW were impaired at pH 6.5. Compared to
SW conditions, the levels of superoxide dismutase and DT-diaphorase, as well as the oxidative stress
index, increased for juveniles reared in BW. In the second trial, seahorse juveniles were reared in SW
at pH 8.0, and subsequently kept for four weeks (from 21 to 50 DAR) at pH 6.5 and 8.0. The final
survival rates and condition index were similar in both treatments. However, the growth under acidic
conditions was higher than at pH 8.0. In conclusion, this study highlights that survival, growth, and
oxidative status condition was enhanced in seahorse juveniles reared in SW under acidic conditions
(pH = 6.5). The concurrent conditions of acidic pH (6.5) and BW should be avoided due to harmful
effects on the fitness and development of seahorse juveniles.

Keywords: Hippocampus; seahorse; acidification; salinity; oxidative stress; RAS

1. Introduction

Fishes can be exposed to significant salinity and pH alterations in nature as well as
along the production cycle in captivity when the rearing facilities are located in unstable
coastal areas, or as a consequence of some management practices (i.e., prophylaxis, disease
treatments, or transportation) [1–4]. The impact of environmental acidification may be
detrimental, especially in early developmental stages (i.e., embryos, larvae, and early
juveniles) [5–8].

Animals 2022, 12, 3227. https://doi.org/10.3390/ani12223227 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12223227
https://doi.org/10.3390/ani12223227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0003-2037-9890
https://orcid.org/0000-0001-6533-1837
https://orcid.org/0000-0003-1217-5716
https://doi.org/10.3390/ani12223227
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12223227?type=check_update&version=2


Animals 2022, 12, 3227 2 of 19

Many marine ornamentals are produced far from coastal areas in order to avoid high
land costs and to improve biosecurity and commercialization [9,10]. Hence, the use of
recirculating aquaculture system (RAS) could potentially be advantageous. The use of RAS
is continuously increasing, disseminating aquaculture facilities everywhere [11]. However,
the environmental conditions in these systems may fluctuate considerably, especially pH,
which may reach undesirable levels. Salinity and pH are pivotal factors in fish cultivation
due to their implications in the physiological condition of fishes [12–16]. Water acidifica-
tion in RAS is a consequence of alkalinity reduction and H+ released by the nitrification
process [17]. Compared to biofilters in seawater, nitrification performance in freshwater
systems is at least 60% higher [11].

The production in captivity of vulnerable or endangered species, such as seahorses,
is an alternative method to reduce the exploitation of wild populations, ensuring the
traceability of the product in the market [18]. Currently, most seahorses legally traded as
ornamental specimens originate from captive breeding [19]. However, only a few species
are commercially raised in captivity for ornamental aquaria [20].

Wild populations of seahorses (Genus Hippocampus; Family Syngnathidae) are threat-
ened due to intense captures for Traditional Chinese Medicine (dried specimens) and the
aquarium trade [21]. The average annual volume of seahorse trade reported in the Conven-
tion on International Trade in Endangered Species of Wild Fauna and Flora (CITES) from
2004 to 2011 was estimated at 5,7 million dried specimens and 116,000 live individuals [19].
However, 37 million dried seahorses from bycatch are traded annually [22]. In light of
these facts, all seahorse species were considered vulnerable by the IWT (Illegal Wildlife
Trade), being included in Appendix II of CITES since 2002 [23].

Seahorses can be raised in RAS [24,25], including multi-trophic rearing systems, along
with shrimps and oysters [26]. The tropical species Hippocampus reidi (Ginsburg, 1933) is
one of the most important seahorses in the ornamental trade [27,28]. The isosmotic point of
the species is reached at 11.67 salinity. Under brackish water conditions (10–20 salinity),
the growth is enhanced compared to that when rearing in seawater (30–35 salinity) [29].
Growth and survival enhancement in brackish water has also been reported in other
seahorse species, such as H. abdominalis [30]. However, other seahorse species did not
respond similarly. For example, H. erectus displayed higher sensibility to ammonia as well
as downregulation in oxidative enzymes when exposed to low salinities [31].

In the temperate seahorse H. guttulatus, an increase in temperature resulted in in-
creased oxygen consumption at both pH 8.0 and 7.5 (normocapnia vs. hypercapnia con-
ditions) [32] as a result of the mobilization or use of energy sources for fitness mainte-
nance [33–35]. Therefore, changes in salinity and pH may also alter energy metabolism,
generating reactive oxygen species (ROS) [36–38].

Seahorses display high antioxidant activities; however, the effects of varying culture
conditions on their antioxidant state are poorly known, and deserve special assessment [39].
Changes in the biochemical status of fishes might be a consequence of environmental alter-
ations, which could promote oxidative stress (i.e., an imbalance between prooxidants and
antioxidants molecules) and damages in cellular macromolecules (e.g., lipids, proteins, and
DNA) or pathway changes [36,40,41]. In H. reidi, the oxidative status (total phenolic content,
metal chelating activity, DPPH radical scavenging activity, and ferric reducing antioxidant
power) were significantly higher at 15 and 20 salinities [39]. However, a previous investiga-
tion revealed that acute exposure to an acidic pH of 5 in brackish water (salinity 11) was
stressful to juveniles [42]. However, chronic responses and potential adaptive responses to
acidic pH and salinity alterations are still not well understood.

The present study aimed to assess the biological and physiological age-dependent
responses of H. reidi juveniles exposed to acidic environments under two salinity conditions:
brackish water and seawater. Understanding the impact of these conditions on the oxidative
status in developing juveniles will contribute to improving the rearing conditions for this
species, especially when raised in RAS.
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2. Materials and Methods
2.1. Bioethics

Animal maintenance and manipulation practices were conducted in compliance with
all bioethics standards on animal experimentation of the Spanish government (Real De-
creto 1201/2005, 10 October 2005) and the Regional Government Xunta de Galicia (REGA
ES360570202001/16/EDU-FOR07/MPO01).

2.2. Live Prey Culture

Copepods and Artemia (nauplii, enriched metanauplii, and enriched adults) were used
to feed seahorses. Copepods Acartia tonsa were cultivated in 700 L tanks at 26–27 ◦C in
seawater, at initial densities of 1 copepod/mL−1. They were fed every two days on the
microalgae Rhodomonas lens (103 cells mL−1). Siphoning of the culture tanks and water
renewals (10% of the total volume) were carried out three times per week.

Artemia cysts (MC450; Iberfrost, Spain) were incubated at 28 ◦C for 20 h in 20 L units.
Newly hatched nauplii were collected on a 125 µm mesh, then gently rinsed with tap water
and transferred to 20 L units for metanauplii production (100 Artemia mL−1). Metanauplii
of several ages (1–4 days) and sizes were enriched twice daily on a mixture consisting of live
microalgae Phaeodactylum tricornutum (107 cells mL−1), red pepper (0.015 g L−1; Bernaqua,
Belgium), and dried spirulina (0.03 g L−1; Iberfrost, Spain) [43,44]. Adult enriched Artemia
was grown in 100 L units at 26–28 ◦C with aeration and constant lightning. A long-
time enrichment (3–6 days) was carried out with adult Artemia from day 16 onwards, on
a mixture consisting of live microalgae P. tricornutum and Isochrysis galbana (107 cells mL−1),
red pepper (0.015 g L−1; Bernaqua, Belgium), and dried spirulina (0.03 g L−1;
Iberfrost, Spain) [43].

2.3. Seahorse Breeding

Adult seahorses H. reidi were maintained in ad hoc aquaria [45] at Instituto de In-
vestigaciones Marinas (IIM-CSIC) in Vigo (Spain). Three aquaria sub-units of 160 L each
(85 cm height × 75 cm length × 50 cm width) working in a RAS were used as husbandry
and breeding aquaria. The aquaria were supplied with filtered (5 µm) and UV-treated
seawater. A partial daily water exchange (10–15% of total volume) was applied. Broodstock
seahorses were maintained at 33 ± 1 salinity, pH 8.1 ± 0.1, 26 ± 1 ◦C temperature, and
a 14L:10D photoperiod [25]. The seahorses were fed twice daily on live long-time enriched
adult Artemia and frozen Mysidacea Neomysis sp. (Ocean Nutrition, Spain).

2.4. Experiments
2.4.1. Trial 1: Effect of pH and Salinity on Seahorse Juveniles

Newborn H. reidi were exposed to different pH levels (6.5 and 8.0) in brackish water
(BW; 11 salinity) and seawater (SW; 33 salinity). Since a unique brood could not provide
the necessary number of seahorses for the whole study, the trial was carried out using
two broods (one brood for each salinity level). Newborns were transferred directly from the
breeding aquaria to six pseudo-Kreisel aquaria (30 L), each one stocked with 120 fish [46].
The water conditions during the experiment are provided in Table 1, and the photoperiod
regime was set to 12L:12D. Three pseudo-Kreisel aquaria were maintained at pH 8.0,
whereas the other three were adjusted and subsequently maintained at pH 6.5. For the
maintenance of pH 6.5, water was prepared at pH 6.5 and strongly aerated for 24 h before
water renewal. The whole RAS unit was filled with water adjusted at the desired pH
level for at least 24 h before the onset of the experiment. This procedure guaranteed the
elimination of excess CO2, thus assuring that the results of the experiment reflected the
desired pH instead the toxic effect of CO2 [47]. Each group of three aquaria worked as
a RAS system, including a sump with pump, heaters, chiller, UV filtration, and biological
filters (perforated plastic bio-balls) [44,46].
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Table 1. Trial 1—water conditions (mean ± standard deviation) for the maintenance of H. reidi (age
0–21 DAR—days after the male’s pouch release) reared in seawater (SW—salinity 33) or brackish
water (BW—salinity 11) at pH 6.5 or 8.0 for 21 days.

SW BW
pH 6.5 pH 8.0 pH 6.5 pH 8.0

Salinity (‰) 33 ± 1 11 ± 1
pH 6.6 ± 0.01 8.1 ± 0.0 6.5 ± 0.01 7.8 ± 0.01

Alkalinity (mg CaCO3 L−1) 22 ± 5 b 138 ± 5 a 20 ± 5 b 62 ± 5 a

Temperature ( ◦C) 26.1 ± 0.1 26.1 ± 0.2
Oxygen (mg O2 L−1) 6.53 ± 0.03 6.56 ± 0.01

TAN (mg N- NH4
+ +NH3 L−1) 0.21 ± 0.04 0.13 ± 0.02

Nitrite (mg N-NO2 L−1) 0.02 ± 0.0 0.05 ± 0.05
Nitrate (mg N-NO3 L−1) 0.13 ± 0.03 0.11 ± 0.01

Within salinities, different letters indicate significant difference (p < 0.05) (Student’s t test).

The pH levels were regularly monitored and adjusted by adding pre-tested volumes
of HCl solutions (3% HCl, 0.36 M) to the water used for daily water renewal. Water condi-
tions were monitored twice daily, including pH (Crison, Micro pHmeter 2001, Barcelona,
Spain), salinity (Atago S/Milli-E, Tokyo, Japan), dissolved oxygen, temperature (Hach,
HQ40d, Loveland, Colorado, CO, USA), and alkalinity [48]. Total ammoniacal nitrogen
(TAN = NH4

+ + NH3
−) was measured by spectrophotometry (Cecil, spectrophotometer

CE 3040, Cambridge, UK) [49]. Nitrite (NO2
−) and nitrate (NO3

−) were analyzed by
a segmented flow analyzer (, Futura, Italy) [50]. All nitrogen compounds were checked
twice a week (Table 1).

This trial lasted for 21 days, the age at which the juveniles undergo important mor-
phological and histological changes [51], as well as epigenetic processes involved in the
transition from a planktonic to a benthonic lifestyle [52]. The juveniles were fed twice daily
(1–3 prey mL−1) on copepods A. tonsa, retained by 125 µm mesh size 1 to 5 days after the
male’s pouch release (DAR); a mixture of copepods (A. tonsa), filtered by 180 µm mesh
and Artemia nauplii (6–10 DAR); or Artemia nauplii and metanauplii enriched for 24 h
(1:1) (11–21 DAR). At days 0, 2, 7, 14, and 21 DAR, seahorse juveniles were sampled for
analytical and biochemical procedures as described below.

Dead seahorses were removed daily (8:00 am and 3:00 pm) from the aquaria and
counted. Wastes and uneaten food were removed by siphoning the bottom of the aquaria.

2.4.2. Trial 2: Effect of Acidification on Seahorse Juveniles Reared in SW at pH 8.0

This trial was carried out with 21 DAR juveniles, produced as indicated in trial
1 (SW and pH 8.0). A total of 204 juveniles were transferred to 6 pseudo-Kreisel aquaria
(34 juveniles in each aquarium; 1.1 juveniles L−1) filled with SW at pH 6.5 (acidic envi-
ronment) or pH 8.0 (control). Three aquaria were used for each pH level. Seahorses were
reared for four weeks and fed on Artemia metanauplii enriched for 48, 72, or 96 h, depend-
ing on the size of the seahorses. The feeding schedule was as follows: 48-72 h enriched
Artemia metanauplii for 21–30 DAR, 72–96 h enriched metanauplii for 31–45 DAR, and 96 h
enriched metanauplii from45 DAR onwards. The water conditions were monitored and
adjusted as described for trial 1 (see Table 2). The juveniles were measured and weighed at
the start (21 DAR), middle (two weeks; 35 DAR), and end (four weeks; 49 DAR) of the trial.



Animals 2022, 12, 3227 5 of 19

Table 2. Trial 2—Water conditions (mean ± standard deviation) for the maintenance of H. reidi
(21–49 DAR—days after the male’s pouch release) reared in seawater (SW—salinity 33) at pH 6.5 or
8.0 for four weeks.

pH 6.5 pH 8

Salinity (‰) 33 ± 1
pH 6.6 ± 0.01 8.1 ± 0.0

Alkalinity (mg CaCO3 L−1) 21 ± 4 b 142 ± 7 a

Temperature (◦C) 26.0 ± 0.5
Oxygen (mg O2 L−1) 6.5 ± 0.5

TAN (mg N-NH4
+ +NH3 L−1) 0.3 ± 0.1

Nitrite (mg N-NO2 L−1) 0.1 ± 0.05
Nitrate (mg N-NO3 L−1) 0.2 ± 0.05

Different letters indicate significant differences (p < 0.05) (Student’s t test).

2.5. Biochemical Analyses

Biochemical analyses were conducted in fish from trial 1. Seven enzymatic activities
were assayed: superoxide dismutase (SOD), DT-diaphorase (DTD), catalase (CAT), glucose
6-P dehydrogenase (G6PDH), glutathione peroxidase (GPx), glutathione reductase (GR),
and glutathione-S transferase (GST).

At 0, 2, 7, 14, and 21 DAR, samples of 40, 15, 15, 10, and 10 juveniles were taken,
respectively. The juveniles were euthanized in a MS-222 immersion (100 mg L−1), flash-
frozen in liquid nitrogen, and stored frozen (−80 ◦C). Each sample was divided into
two sub-samples. A sub-sample comprising approximately 70% of the total biomass was
homogenized (1:9—w:v) (Poly Tron, PT 2100) in ice-cold 100 mM Tris-HCl buffer containing
0.1 mM EDTA and 0.1% (v:v) Triton X-100, pH 7.8. After centrifugation (30,000 g for
30 min at 4 ◦C) (SIGMA, 3K30), the supernatant was stored at −80 ◦C for further protein,
enzymes, TBARS, and TEAC analyses. The other sub-sample (30%) was homogenized in
10 mM HCl and 1.3% SSA buffer (1:9—w:v). After centrifugation (20,000 g for 10 min at
4 ◦C), the supernatant was stored at −80 ◦C for further glutathione content (GSSG and
GSH) determination.

All analyses were performed in duplicate at 25 ± 0.5 ◦C in 96-well microplates (UVStar,
Greiner Bio-One, Frickenhausen, Germany), in a microplate reader (Bio-Tek PowerWave,
Santa Clara, CA, USA). The optimal substrate concentration to measure the maximal
specific activity for each enzyme was established in preliminary assays. The enzymatic
reaction was initiated by the addition of homogenate.

Except for SOD, one unit or milliunit of enzymatic activity was defined as the amount
of enzyme required to transform 1 µmol or nmol of substrate min−1 under the conditions
defined for each assay. Soluble protein content was determined using bovine serum
albumin as standard [53], and used to estimate enzyme-specific activity.

Superoxide dismutase (SOD) was assessed by the ferricytochrome C method using
xanthine/xanthine oxidase as the source of superoxide radicals [54]. DT-diaphorase (DTD)
activity was measured in the reaction mixture containing DCPIP (2,6-dichlorophenol in-
dophenol) and NADH (Nicotinamide adenine dinucleotide). The control reaction contained
distilled water instead of sample extract. The DTD activity was determined as the difference
between sample and control readings at 600 nm [55].

Catalase (CAT) activity was achieved by measuring the decrease in H2O2 concen-
tration in a reaction mixture containing 50 mM potassium phosphate buffer (pH 7.0) and
10.6 mM H2O2 (freshly prepared) at 240 nm [56].

Glucose 6-P dehydrogenase (G6PDH) was carried out with some modifications. The
change in absorbance of NADPH (Nicotinamide adenine dinucleotide phosphate) at 340 nm
was monitored in order to determine G6PDH, NADP, and glucose-6-phosphate [57,58].

Glutathione peroxidase (GPx) was indirectly measured using cumene hydroperoxide
as substrate and spectrophotometrically monitoring NADPH consumption at 340 nm [59].
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Glutathione reductase (GR) was assayed by measuring NADPH oxidation at 340 nm
and using glutathione oxidized (GSSG) as substrate [60].

Glutathione-S transferase (GST) activity was monitored spectrophotometrically at
340 nm by the formation of glutathione-CDNB-conjugate [61].

Glutathione (GSH) was measured by the procedure [62], partially modified [63], and
adapted to the microtiter plate [64]. In the samples, both tGSH (total glutathione) and GSSG
(oxidized glutathione) were also measured. For GSSG determination, the samples were
derivatized by 2-vinylpyridine. The reaction was initiated by quickly adding 40 µL GR
per well. The increase in absorbance was monitored at 415 nm. Standards were prepared
to contain 0–100 mM GSH for tGSH and 0–8 mM GSSG. GSH levels were calculated by
subtracting GSSG values from tGSH. The oxidative stress index (OSI) was calculated as:

OSI = (2 GSSG/tGSH) × 100

Trolox Equivalent Antioxidant Capacity (TEAC) was assayed by the neutralization
made by the extract ABTS+ at 595 nm [65]. TEAC values were expressed as µM equivalent
of Trolox (analogous to vitamin E).

Thiobarbituric Acid Reactive Substances (TBARS) were assayed considering that the
samples utilized in the assay have malondialdehyde (MDA) that reacts with thiobarbituric
acid (TBA). The reading was made in a microplate at 535 nm, using MDA as standard [66].

2.6. Treatment of Data

Six juveniles per sample were euthanized by lethal MS-222 immersion (100 mg L−1),
weighted (Sartorius, MC210P, Germany), and photographed for curved length measure-
ments [67] using NIS Elements software (Nikon). The following indices were calculated:

- Survival (S, %): (final number of fishes/initial number of fishes) × 100, accounting for
sampled juveniles

- Specific growth rate (SGR, % day−1): Ln wf–Ln wi/t × 100, where wf and wi are the
final and initial mean weight, and t is the experimental time in days.

- Fulton’s Factor Condition Index: K = W/L3 × 10, where W and L are mean weight
and length, respectively.

2.7. Statistical Analysis

The data were tested for normality and homoscedasticity using Shapiro–Wilk’s and
Levene’s tests, respectively. When those conditions were not met, a Rank transformation
was applied [68]. Mean comparisons for salinity levels on survival and growth indices were
analyzed by t-test. Biochemical indices were compared using factorial ANOVA, considering
pH and age (DAR) as fixed factors. Significant differences in ANOVA were assessed by
the Newman-Keuls test. The minimum significance level was set at 5% (p < 0.05). Data
were expressed as mean ± standard deviation. The statistical analyses were performed in
a Statistica 7.0 software package.

Principal Component Analyses (PCA) were performed in R v.3.6.1 [69] to summarize
and graphically visualize the results achieved. For this purpose, factoMineR v2.3 [70],
factoextra v1.0.7 [71] and corrplot v0.8.4 [72] packages in R were used. Data values were
standardized (mean = 0; sd = 1).

3. Results
3.1. Trial 1: Effect of pH and Salinity on Juveniles

Survival at 21 DAR was high (86.9–98.9%) in both salinity conditions (SW and BW)
(Table 3). The highest survival was achieved at pH 6.5 in SW. Growth did not differ between
pH levels in SW. However, final length, final weight, and SGR in BW were significantly
higher at pH 8.0 (Table 3).
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Table 3. Trial 1—Effects of pH and salinity on survival, growth, specific growth rate (SGR) and condi-
tion factor (K) (mean ± standard deviation) in H. reidi juveniles reared in seawater (SW—salinity 33)
or brackish water (BW—salinity 11) at pH 6.5 or 8.0 for 21 days (age 0–21 DAR—days after the male’s
pouch release).

SW BW
pH 6.5 pH 8.0 pH 6.5 pH 8.0

Survival (%) 98.9 ± 0.48 a 96.9 ± 0.96 b 86.9 ± 2.2 b 92.2 ± 2.2 a

Final length (mm) 27.5 ± 0.86 26.9 ± 1.10 19.6 ± 0.2 b 22.8 ± 0.7 a

Final weight (mg) 37.8 ± 2.7 35.8 ± 3.5 17.6 ± 0.4 b 27.9 ± 2.2 a

SGR (%) 5.1 ± 0.2 5.0 ± 0.1 4.0 ± 0.0 b 4.8 ± 0.1 a

K 0.18 ± 0.01 0.18 ± 0.01 0.23 ± 0.03 0.23 ± 0.00
Within salinities, different letters indicate significant differences (p < 0.05) (Student’s t test).

3.1.1. Biochemical Oxidative Stress Indices

Enzymatic activities and biochemical oxidative stress indices are provided in
Tables 4 and 5 for seahorses maintained in SW, and Tables 6 and 7 for those reared in
BW. Differences caused by pH were only obtained for GSH (SW and BW) and OSI (BW).

Table 4. Trial 1 (SW)—Enzymatic activities (mean ± standard deviation) in H. reidi juveniles reared
in seawater (SW—salinity 33) at pH 6.5 or 8.0 for 21 days (age 0–21 DAR—days after the male’s
pouch release).

Age (Days after Male’s Pouch Release—DAR) ANOVA (p)
pH 0 2 7 14 21 age pH Age × pH

SOD
6.5

51.5 ± 10.2
51.6 ± 19.9 45.7 ± 1.8 49.9 ± 3.2 47.4 ± 2.5

0.159 0.613 0.4788.0 47.0 ± 0.7 58.1 ± 16.4 52.2 ± 2.8 75.1 ± 11.0

DTD
6.5

3.1 ± 1.0 ab 2.7 ± 1.0 b 4.2 ± 0.5 ab 4.2 ± 0.2 ab 4.64 ± 0.3 a
0.001 0.788 0.2388.0 3.4 ± 0.2 ab 4.3 ± 0.5 ab 3.1 ± 0.1 ab 4.7 ± 0.5 a

CAT
6.5

3.6 ± 0.6 cd 2.6 ± 0.7 d 4.5 ± 1.4 c 7.7 ± 1.2 ab 11.4 ± 0.5 a
<0.001 0.252 0.4388.0 2.5 ± 0.0 d 3.6 ± 0.3 cd 5.0 ± 1.1 bc 12.1 ± 1.5 a

G6PDH
6.5

1.0 ± 0 b 1.22 ± 0.3 b SNA 2.0 ± 0.0 a 2.7 ± 0.3 a
<0.001 - 0.9588.0 1.1 ± 0.1 b 1.3 ± 0.1 b SNA 2.6 ± 0.0 a

Within enzymatic activities, different letters indicate significant differences (two-way ANOVA; Newman-Keuls
test). SNA: sample not analyzed.

Table 5. Trial 1 (SW)—Glutathione metabolism (mean ± standard deviation) in H. reidi juveniles
reared in seawater (SW—salinity 33) at pH 6.5 or 8.0 for 21 days (age 0–21 DAR—days after the
male’s pouch release).

Age (Days after Male’s Pouch Release—DAR) ANOVA (p)
pH 0 2 7 14 21 Age pH Age × pH

GPx
6.5

420 ± 240 ab 398 ± 45 a 168 ± 54 c 227 ± 22 abc 351 ± 36 ab
<0.001 0.231 0.9348.0 344 ± 53 ab 129 ± 52 c 193 ± 10 bc 342 ± 23 ab

GR
6.5

5.5 ± 0.3 c 5.2 ± 0.8 c 7.2 ± 0.3 bc 8.6 ± 0.7 ab 10.4 ± 0.8 a
<0.001 0.640 0.9018.0 5.2 ± 0.2 c 7.5 ± 0.8 bc 7.9 ± 0.9 b 10.0 ± 1.4 a

GST
6.5

5.0 ± 1.2 d 6.3 ± 0.1 d 10.6 ± 1.3 cd 18.1 ± 3.5 b 17.3 ± 2.3 bc
<0.001 0.288 0.0878.0 5.7 ± 0.1 d 12.1 ± 4.1 cd 16.0 ± 0.0 bc 24.3 ± 3.6 a

GSH
6.5

59.1 ± 2.7 ab 48.4 ± 0.5 b 57.6 ± 4.4 ab 68.5 ± 11.2 a 73.9 ± 3.5 a
<0.001 0.031 0.3038.0 45.7 ± 0.9 b 56.2 ± 3.4 ab 58.1 ± 2.6 ab 60.8 ± 9.6 ab

GSSG
6.5

2.6 ± 0.1 ab 2.3 ± 0.2 b 3.5 ± 0.3 ab 3.4 ± 0.1 ab 3.1 ± 0.4 ab
0. 006 0.379 0.1758.0 2.7 ± 0.0 ab 2.9 ± 0.7 ab 3.6 ± 0.8 ab 3.9 ± 0.2 a

OSI
6.5

8.7 ± 0.7
9.7 ± 0.8 12.3 ± 1.9 10.0 ± 1.4 8.4 ± 1.4

0.379 0.095 0.1718.0 11.9 ± 0.3 10.6 ± 3.1 12.5 ± 3.3 12.9 ± 2.7

TEAC
6.5

207 ± 27 a 183 ± 0.7 ab 76 ± 43 b 73 ± 38 b 99 ± 25 b
<0.001 0.714 0.5438.0 173 ± 32 ab 88 ± 52 b 121 ± 47 ab 76 ± 24 b

TBARS
6.5

0.00 ± 0.00 c 0.02 ± 0.02 bc 0.06 ± 0.05 bc 0.18 ± 0.11 ab 0.14 ± 0.05 ab
<0.001 0.918 0.5408.0 0.0 ± 0.0 c 0.06 ± 0.03 bc 0.17 ± 0.09 ab 0.34 ± 0.2 a

Within enzymatic activities, different letters indicate significant differences (two-way ANOVA;
Newman-Keuls test).
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Table 6. Trial 1 (BW)—Enzymatic activities (mean ± s.d.) in H. reidi juveniles reared in brackish water
(BW—salinity 11) at pH 6.5 or 8.0 for 21 days (age 0–21 DAR—days after the male’s pouch release).

Age (Days after Male’s Pouch Release—DAR) ANOVA (p)
pH 0 2 7 14 21 Age pH Age × pH

SOD
6.5

39.6 ± 17.6 b 68.5 ± 4.6 a 100.7 ± 32.4
a 91.3 ± 14.6 a 89.3 ± 33.3 a

0.012 0.311 0.331
8.0 68.9 ± 6.8 a 62.9 ± 14.4 a 71.9 ± 4.5 a 101.6 ± 25.8 a

DTD
6.5

1.9 ± 2.1 b 4.1 ± 0.6 a 4.5 ± 0.3 a 4.44 ± 0.6 a 4.3 ± 0.1 a
0.019 0.245 0.7758.0 4.3 ± 0.9 a 4.5 ± 0.1 a 5.1 ± 0.5 a 4.6 ± 0.6 a

CAT
6.5

4.7 ± 0.2 b 5.5 ± 1.2 b 8.2 ± 2.3 ab 11.9 ± 1.0 a 10.4 ± 4.7 ab
<0.001 0.288 0.3748.0 5.0 ± 0.4 b 5.3 ± 0.5 b 8.8 ± 1.8 ab 13.7 ± 4.1 a

G6PDH
6.5

2.0 ± 0.4
SNA 1.8 ± 0.3 1.8 ± 0.5 1.6 ± 0.6

0.147 - 0.1108.0 1.3 ± 0.1 1.0 ± 0.3 2.2 ± 0.5 2.2 ± 0.4

Different letters indicate significant differences (two-way ANOVA; Newman-Keuls test). SNA: sample
not analyzed.

Table 7. Trial 1 (BW)—Glutathione metabolism (mean ± standard deviation) in Hippocampus reidi
juveniles reared in brackish water (BW—salinity 11) at pH 6.5 or 8.0 for 21 days (age 0–21 DAR—days
after the male’s pouch release).

Age (Days after the Male’s Pouch Release—DAR) ANOVA (p)
pH 0 2 7 14 21 Age pH Age × pH

GPx
6.5

486 ± 110 a 271 ± 41 ab 177 ± 2 b 313 ± 21 ab 226 ± 72 b
<0.001 0.442 0.4858.0 256 ± 39 b 171 ± 31 b 323 ± 128 ab 354 ± 59 ab

GR
6.5

7.4 ± 1.8 b 7.4 ± 0.9 b 10.9 ± 2.8 ab 12.6 ± 0.9 a 11.3 ± 3.3 a
0.008 0.550 0.4628.0 7.1 ± 0.3 b 8.3 ± 0.6 ab 10.7 ± 1.9 a 13.4 ± 3.9 a

GST
6.5

13.1 ± 4.3
14.9 ± 4.5 21.0 ± 6.1 21.6 ± 8.2 14.4 ± 3.2

0.096 0.777 0.1718.0 15.3 ± 2.1 12.7 ± 2.7 23.2 ± 6.0 19.7 ± 5.7

GSH
6.5

48 ± 5.5 ab 27.3 ± 0.1 c 37.2 ± 5.7 c 32.9 ± 4.3 c 24.0 ± 0.7 c
<0.001 <0.001 <0.0018.0 31.5 ± 3.3 c 32.5 ± 3.8 c 56.5 ± 7.8 a 56.7 ± 0.3 a

GSSG
6.5

1.1 ± 1.5 d 2.5 ± 0.5 cd 2.6 ± 0.01 cd 2.0 ± 0.01 d 4.3 ± 0.4 a
<0.001 0.072 0.0098.0 2.5 ± 0.2 cd 3.2 ± 0.6 abc 2.8 ± 0.2 bc 3.4 ± 0.3 ab

OSI
6.5

4.7 ± 6.7 e 18.2 ± 3.8 bc 15.6 ± 1.4 bc 13.6 ± 2.0 bc 36.0 ± 2.1 a
<0.001 0.001 <0.0018.0 16.0 ± 0.6 bc 19.4 ± 1.6 b 10.1 ± 1.0 de 11.5 ± 0.6 cde

TEAC
6.5

210 ± 15 a 55 ± 53 abc 40 ± 22 abcd 48 ± 39 abcd 2.2 ± 3.8 cd
<0.001 0.529 0.7488.0 92 ± 0 ab 67 ± 48 ab 33 ± 23 bcd 0 ± 0 d

TBARS
6.5

1.56 ± 1.0
1.21 ± 0.1 0.15 ± 0.2 0.63 ± 0.4 0.44 ± 0.22

0.081 0.164 0.3008.0 1.25 ± 0.4 1.26 ± 0.3 0.38 ± 0.3 1.23 ± 0.94

Different letters indicate significant differences (two-way ANOVA; Newman-Keuls test). SNA: sample
not analyzed.

Seawater—SW
SOD activities in seahorses exposed to pH 6.5 and 8.0 were statistically similar and

remained rather constant thorough the whole experimental period, whereas DTD levels
increased with age from 2 DAR (Table 4).

The activity of CAT decreased in early-developing juveniles (2 DAR), but increased
afterwards, achieving the highest level at 21 DAR. However, the increase in CAT activity
at pH 6.5 occurred earlier than at pH 8.0. G6PDH activity increased slightly with age,
reaching the highest values in 21 DAR juveniles (Table 4).

The activity of GPx was not affected by pH level, but it declined significantly from
0 DAR to 7 DAR. Subsequently, GPx levels increased until the end of the experiment. GR
and GST showed a similar pattern, progressively increasing during the experimental period
as the seahorses grew older (Table 5).

Regarding glutathione metabolism, the pattern followed by GSH was similar to that
for GR and GST. Nevertheless, the increase in GSH occurred earlier, at pH 6.5. On the other
hand, GSSG levels increased from 2 DAR onwards. The relationship between glutathione
forms (OSI) remained almost constant with development (Table 5).

TEAC values were similar across ages at both pH levels (Table 5). Finally, TBARS was
not detected in newborn seahorses (0 DAR), nor in 2 DAR at pH 8.0; its value increased
with age (Table 5), but it was not significantly affected by pH.
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Brackish water—BW
The activity of SOD was affected by pH level (pH 6.5 > pH 8.0), but not by age. DTD

values increased from 0 to 2 DAR, but remained stable afterwards (Table 6).
The activity of CAT increased with age up to 7 DAR, but the raise observed at pH 6.5

occurred earlier than that at pH 8.0 (7 and 14 DAR, respectively). Excluding 2 DAR juveniles
(i.e., only one sample available), the levels in G6PDH were similar across pH levels and age
(Table 6).

The activity of GPx was higher at 0 DAR and decreased significantly until 7 DAR, but
increased afterwards. The GR activities in BW performed similarly to those in SW. There
was an increase from 0 to 2 DAR, and activities remained similar afterwards. GST showed
differences in neither pH nor age (Table 7).

GSH levels were significantly affected by both age and pH levels. GSH values at
14 and 21 DAR were significantly lower in the newborns kept at pH 6.5 than those kept
at pH 8.0. GSSG levels increased according to age, reaching the highest values in 21 DAR
juveniles. OSI was affected by both age and pH. The OSI values increased from 2 to 21 DAR
for the newborns reared at pH 6.5, whereas OSI values were rather stable in the juveniles
reared at pH 8.0 (Table 7).

TEAC was not affected by pH level, but decreased with age, being negligible in
21 DAR juveniles. TBARS was not affected by age or pH level.

3.1.2. Global Assessment: SW and BW

The Principal Component Analysis (PCA) performed on SW and BW samples showed
significant discrimination between both salinity groups on factors 1–2 representation,
which explained 45.4 and 19.5% of total variability, respectively (Figure 1a). The main
overall differences between both salinity groups corresponded to OSI, SOD, and DTD
(positively associated with BW samples), and TEAC and GSH (positively associated with
SW samples) values. Globally, TBARS and CAT levels were positively associated with age
(length and weight).

The main differences across age and salinity groups (Figure 1b) were due to devel-
opment, TBARS (especially in SW), CAT, and, to a lesser extent, GST. TEAC values were
positively associated with early developmental stages, especially in BW groups.

The PCA representation for salinity–pH combinations (Figure 1c) showed smaller
differences (smaller centroid distances) with pH in SW treatment compared to BW samples
(see also Figure 1a). At low pH levels, OSI and SOD values were higher in BW samples,
whereas SW newborns showed higher TEAC and survivals, and lower TBARS values.

3.2. Trial 2: Effect of Acidification on Juveniles

The final length and weight (49 DAR) of 21 DAR juveniles grown at pH 6.5 were 12%
and 29% higher, respectively, than for juveniles maintained at pH 8.0 (Figure 2). Juveniles
reared at pH 6.5 showed higher SGR than those reared at pH 8.0. However, survival
(82.4 ± 10.6 for pH 6.5 and 72.5 ± 7.4 for pH 8.0) and condition factor (0.16 ± 0 for pH 6.5
and 0.17 ± 0.02 for pH 8.0) were similar in both treatments.
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Figure 1. Trial 1—PCA plots of survival, enzymatic activities, and enzymatic indices in
seahorse juveniles H. reidi. Sample IDs and the variables with the highest contributions
(cos2 > 0.5) are indicated. Ellipses correspond to centroid values ± 1 s.d. (shaded areas).
(a) Seawater (SW = High—33) vs. brackish water (BW = Low—11) groups. (b) All salinity lev-
els (33 and 11) and ages (0–21 DAR). (c): All salinity (SW—33 and BW—11) and pH (6.5 and 8) levels.



Animals 2022, 12, 3227 11 of 19

Animals 2022, 12, x 11 of 20 
 

3.2. Trial 2: Effect of Acidification on Juveniles 

The final length and weight (49 DAR) of 21 DAR juveniles grown at pH 6.5 were 12% 

and 29% higher, respectively, than for juveniles maintained at pH 8.0 (Figure 2). Juveniles 

reared at pH 6.5 showed higher SGR than those reared at pH 8.0. However, survival (82.4 

± 10.6 for pH 6.5 and 72.5 ± 7.4 for pH 8.0) and condition factor (0.16 ± 0 for pH 6.5 and 

0.17 ± 0.02 for pH 8.0) were similar in both treatments. 

 

Figure 2. Trial 2—growth, (a) length and (b) weight (mean ± standard deviation) in 21 DAR seahorse 

juveniles H. reidi maintained for four weeks in SW at pH 6.5 and 8. Different letters indicate signifi-

cant differences between pH levels at each age. 

4. Discussion 

The knowledge of fish responses to stressors during their lifespan is highly relevant 

for the understanding of potential physiological alterations in animals inhabiting natural 

habitats, as well as for the management of ex situ rearing [73,74]. In the present study, we 

assessed the impact of acidic conditions on the overall fitness of early developing 

seahorses H. reidi reared in seawater (SW) or brackish water (BW), as well as in more 

developed juveniles kept in SW. Our global results indicate that survival and growth were 

hampered in individuals kept in BW under acidic conditions. Compared to BW, acidic 

conditions in seawater (SW) led to higher survival and growth in both newborns and older 

juveniles. This is a highly interesting finding regarding its applicability to rearing systems 

and to studies carried out in changing environments. 

4.1. Combined Effects of Salinity and pH on Early-Developing Juveniles 

Seahorses born from the same breeding group show similar conditions at the time of 

the male’s pouch release [75]. In captivity, newborn batch size is generally 300–600 indi-

viduals [44,75]. Since our experimental needs were much higher, the experimental design 

included two sub-trials, one for BW and another for SW. Consequently, comparisons be-

tween salinities were not performed using univariate statistics. 

Acidic pH conditions were strongly associated with changes in juvenile fitness. At 

pH 6.5, survival was enhanced in SW compared to BW. It is likely that newborn seahorses 

released at 33 salinity (at which the breeders were kept) had to deal with -challenges to 

satisfactorily perform the ion regulation process in BW compared to those in SW. Even 

though pregnant seahorses open their brooding pouches before newborn release in order 

to progressively adapt the newborns to external salinity conditions [76], the occurrence of 

ionocyte cells in H. reidi juveniles has not been observed before 6 DAR [51]. It has been 

reported in medaka (Oryzias dancena) that the complete acclimation of ionocytes to salinity 

changes requires approximately two weeks [77]. Cobia Rachycentrum canudom [78] and 

white seabass Atractoscion nobilis [79] deal with acidic exposure or ocean acidification by 

increasing the number of ionocyte cells and NKA activity, demonstrating an acid–base 

Figure 2. Trial 2—growth, (a) length and (b) weight (mean ± standard deviation) in 21 DAR seahorse
juveniles H. reidi maintained for four weeks in SW at pH 6.5 and 8. Different letters indicate significant
differences between pH levels at each age.

4. Discussion

The knowledge of fish responses to stressors during their lifespan is highly relevant
for the understanding of potential physiological alterations in animals inhabiting natural
habitats, as well as for the management of ex situ rearing [73,74]. In the present study, we
assessed the impact of acidic conditions on the overall fitness of early developing seahorses
H. reidi reared in seawater (SW) or brackish water (BW), as well as in more developed
juveniles kept in SW. Our global results indicate that survival and growth were hampered
in individuals kept in BW under acidic conditions. Compared to BW, acidic conditions in
seawater (SW) led to higher survival and growth in both newborns and older juveniles.
This is a highly interesting finding regarding its applicability to rearing systems and to
studies carried out in changing environments.

4.1. Combined Effects of Salinity and pH on Early-Developing Juveniles

Seahorses born from the same breeding group show similar conditions at the time of
the male’s pouch release [75]. In captivity, newborn batch size is generally
300–600 individuals [44,75]. Since our experimental needs were much higher, the exper-
imental design included two sub-trials, one for BW and another for SW. Consequently,
comparisons between salinities were not performed using univariate statistics.

Acidic pH conditions were strongly associated with changes in juvenile fitness. At
pH 6.5, survival was enhanced in SW compared to BW. It is likely that newborn seahorses
released at 33 salinity (at which the breeders were kept) had to deal with -challenges to
satisfactorily perform the ion regulation process in BW compared to those in SW. Even
though pregnant seahorses open their brooding pouches before newborn release in order
to progressively adapt the newborns to external salinity conditions [76], the occurrence of
ionocyte cells in H. reidi juveniles has not been observed before 6 DAR [51]. It has been
reported in medaka (Oryzias dancena) that the complete acclimation of ionocytes to salinity
changes requires approximately two weeks [77]. Cobia Rachycentrum canudom [78] and
white seabass Atractoscion nobilis [79] deal with acidic exposure or ocean acidification by
increasing the number of ionocyte cells and NKA activity, demonstrating an acid–base and
ionic regulation interaction [80]. Thus, the capacity to deal with acidic conditions is linked
with physiological effects of BW and acidic pH changes, as reported in older juveniles of
the same species which were acutely exposed to these conditions [42].

The compensation of acidosis in marine fishes is principally adjusted by differential
regulation of HCO3

− and H+– effluxes, which seems to be coupled to the influx of Na+
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and Cl− [37,81]. Thus, the acidic pH is a threat which is likely intensified by the low
concentration of Na+ and Cl− in BW conditions. This feature is also supported by the
results achieved in seabass (Dicentrarchus labrax) acclimatized to ocean acidification in
brackish water after dealing with ammonia challenges [37]. Since the ion regulation and
acid–base equilibrium are intrinsic mechanisms, these two alterations together triggered
losses in the fitness of H. reidi juveniles.

4.2. Biochemical Indices: Seawater–SW (S33) and Brackish Water–BW (S11)

The oxidative status in H. reidi juveniles was more affected by the growth/age of
seahorses than by pH level. For example, G6PDH and GR showed an age-dependent
increase. GSH is restored from GSSG by GR, which uses NADPH as a donator for H+.
The NADPH is produced by G6PDH activity; thus, the G6PDH function is essential in GR
activity [82]. In fishes, an age-dependent relationship has been reported between GPx and
GR activity to maintain intracellular GSH homeostasis [83,84], which is in accordance with
our results. In newborn seahorses, DTD displayed the same age-dependent trend as CAT,
GPx, GR, and GST, independently of salinity level or acidification conditions. DTD activity
is related to the reduction of quinones to hydroquinones through a transfer of two electrons
of reduced cofactors, NADH or NADPH [85]. DTD activity likely avoids the potential
increase of free radicals with growth, whereas other enzymes (e.g., CAT, GPx, and GST) act
to scavenge undesirable ROS levels. All age-dependent responses referred to above might
be linked to food composition, as well as to fish growth.

The oxidative balance may change with fish growth or by environmental condi-
tions [86]. However, the antioxidant compounds received by the fish from the ingested
prey may change with dietary changes [36,44,87,88], influencing the oxidative status of
juveniles. Moreover, it is known that alterations in the oxidative status are important to
determine ontogeny events, as well as for the cell signaling involved in the development of
tissues and physiological systems [89–91]. Thereby, age, feeding, and ontogenic changes
are pivotal factors in the initial development of fishes, very likely supporting the results
achieved in the present study on the oxidative status in seahorse juveniles.

Regarding growth and oxidative status, it is important to highlight that fishes facing
environmental challenges decrease their aerobic energy generation [33,34,92,93] in order to
reduce the production of free radicals [94]. These findings and our results are consistent
with a potential scenario of metabolism reduction in seahorse juveniles kept in BW with
pH 6.5. Furthermore, the resilient oxidative status revealed in SW at pH 6.5 led to slight
improvements in survival and growth in older juveniles (Trial 2). Salinity changes trigger
alterations to the immune system, which is relevant for the oxidative status, survival, and
growth of fishes [15,95–97].

Both SOD and CAT are antioxidant enzymes involved in the first line of defense
against ROS. The enzyme SOD reduces the anion superoxide (O2•−) to H2O2, which is
further transformed by CAT into harmless molecules (H2O and O2). The stable SOD activity
in juveniles from trial 1, independently of the salinity level, suggests that acidification did
not increase the production of O2•− in cellular metabolism. Stable SOD activities have
also been reported in flounder (Paralichthys olivaceus) larvae [98] and oysters (Crassostrea
gigas and C. angulata) exposed to an acidic environment [99]. Additionally, the interaction
between H+ and O2

•− was also a possible way for SOD inactivation to occur [38].
CAT activities showed an age-dependent pattern, increasing with growth and sug-

gesting that ontogeny is the main factor driving this activity in H. reidi juveniles. This
statement agrees with the results achieved regarding the first developmental stages of stur-
geon (Acipenser naccarii) [100]. In the same way, Robergs [101,102] pointed out that many
interactions can occur with H+ within a pH range from 6.0 to 7.0. Hence, we hypothesize
that H+ also enhanced NADPH production and the stability in SOD and CAT activities,
which, very likely, was the consequence of a direct interaction between H+ and O2•− [38].
On the other hand, intense alterations in H+ and other ions can lead to mitochondrial hyper-
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polarization and cell death [103]. We suggest that the same feature occurred in seahorses
kept in BW at pH 6.5.

Acidification did not affect GPx activity in trial 1. However, Cui et al. [98] registered
an increase in this activity in flounder larvae (Paralichthys olivaceus) due to acidification.
However, we observed that glutathione (GSH) increased more quickly in SW, whereas
GSH, GSSG, and OSI increased more quickly in BW.

GSH and enzymes related to its metabolism (GPx, GR, and GST) have an important
role against ROS increase [36,40]. We observed that GSH content in BW conditions was
lower at pH 6.5 than at pH 8.0, but it did not change significantly with the juveniles’ age.
However, it has been reported in other species, such as sturgeon (A. naccarii), that GSH
increased with growth during the free embryo stage and drop-stabilized once juveniles
began exogenous feeding (i.e., 21 days after fertilization) [100]. It is important to note
that seahorses are fish undergoing a large and protected embryogenesis, in which the
embryos are nourished by males until being released from the brood pouch to the external
environment [104,105]. Newly released juveniles almost completely lack a yolk sac and
show exogenous feeding. These features might explain the stability of GSH levels in
growing juveniles.

The Oxidative Stress Index (OSI) relates the proportion of GSSG to the total amount
of GSH (tGSH). Our study revealed a status of low stress in seahorses reared in SW,
independently of water acidification, and a stressful condition in seahorses kept in BW at
pH 6.5. On the other hand, OSI levels represent an inverse relation with total antioxidant
capacity (TEAC). As mitochondrial respiration (i.e., ROS production) increased with growth,
TEAC levels dropped dramatically in seahorses kept in BW, and the oxidation degree (OSI)
reached its highest levels by the end of the experimental period (Trial 1).

In our study, glutathione levels improved with age in juveniles kept in SW pH 6.5.
Hence, it is feasible that both juveniles and adults kept in acidic environments have a better
oxidative status (i.e., fitness) than individuals kept in a natural environment (pH 8.0).

We did not observe differences in TBARS levels regarding treatment conditions. How-
ever, considering the overall alterations (including growth and, to a lesser extent, survival),
it is feasible that the juveniles kept in BW pH 6.5 underwent a metabolic depression. In this
regard, low LPO values were reported in fish subjected to stress [106,107].

4.3. Global Assessment (PCA)

The multivariate approach revealed a global view of the acidic effects on juveniles
submitted to both SW and BW conditions. In juveniles from trial 1, the development of
juveniles under BW conditions showed low survival and growth compared to SW. This
finding disagrees with the optimal salinity for growth (10–20 salinity) previously assessed
in the same species [29,39]. These discrepancies in growth might rely on differences
in newborn quality, as revealed by some biochemical indices, in 0 DAR juveniles (e.g.,
TBARS = 0 ± 0 and 1.56 ± 1.0 nmol MDA mg protein−1 for SW and BW, respectively).
However, previous studies have reported small inter-batch differences in the performance
of H. reidi newborns produced at our facilities [75]. Moreover, the survival rates attained
under the worse environmental scenario in trial 1 (pH 6.5 in brackish water) were similar
to those reported in cultures performed at 10–20 salinity [29].

PCA revealed that juveniles kept in BW were more susceptible to SOD increases,
reinforcing the hypothesis of lower resilience of fish grown under acidic conditions at low
salinity. Similarly, SOD activities increased in sand smelt (Atherina presbyter) larvae kept in
slightly acidified media, but dropped under more drastic acidification [108]. Since SOD,
OSI, and DTD were associated with BW in the PCA, the interactions of these parameters
could be responsible for the mortalities and lower growth observed in BW at pH 6.5.

TEAC levels were positively correlated with survival in SW, whereas OSI was nega-
tively correlated with survival in BW. Increases in GSH could help to reduce the harmful
effect of ROS and intracellular homeostasis maintenance in stressing conditions such as
acidic environments [109]. However, the levels of GSH in BW were almost two-fold higher
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in seahorses reared at pH 8.0 compared to those reared at pH 6.5. Hence, even in an estu-
arine species such as H. reidi, acidification conditions accompanied by reduced salinities
would hardly be tolerated. This statement was already recognized in D. labrax [37].

Regarding oxidative stress, TBARS levels were correlated with age/growth. Similar
results were reported in D. labrax larvae by Maulvault et al. [107], who observed increases in
malondialdehyde (MDA) in warm and acidification conditions, accompanied by a growth
improvement. However, juveniles in SW displayed lower TBARS levels than those in BW
and acidic conditions. It is likely that the higher survivals in SW are enhanced by higher
TEAC and GSH levels.

4.4. Trial 2: Effect of pH on the Growth of Seahorse Juveniles

Since age and size are intrinsic factors to consider for the understanding of environ-
mental stress in fishes [110,111], we carried out a second experiment in older juveniles.
Given that trial 1 revealed lower resilience to acidic conditions in juveniles in BW, the
second trial was carried out only in a SW environment.

Explanations supporting growth improvement in juveniles kept in SW at pH 6.5
should consider parasitology and energy generation. Regarding the former, the effect of
acidic conditions on ectoparasites is well-documented. Ectoparasite growth is impaired
under acidic conditions. Consequently, parasitology threats would be reduced in seahorses
reared at low pH [4,112].

Regarding cell energy, pH levels may alter the matrix membrane potential in mitochon-
dria, which may enhance ATP-synthase function [113] and generate more energy (ATP). It
is important to highlight that G6PDH activity is linked to growth factors [114]. Although
enzymatic analyses were not performed in this trial, the increasing G6PDH activity with age
(Trial 1) suggests that the growth would be enhanced in older juveniles reared under acidic
conditions (Trial 2). This assumption agrees with the increase in growth induced at pH 6.3
in turbot Psetta maxima when compared to upper pH levels tested (up to pH 8.8) [115].
The good results obtained in the oxidative status and growth of juveniles raised in SW
at pH 6.5 are related to acidic chemistry, since H+ is involved in aerobic and non-aerobic
energy metabolism, affecting mitochondrial proton leak while interacting with metabolites
of non-mitochondrial energy generation [101,102,116]. This can trigger benefits for cell
energy and oxidative status.

5. Conclusions

The development of Hippocampus reidi juveniles grown at low salinity (BW) caused
SOD, DTD, OSI increases, and TEAC consumption, revealing a stressful condition. Addi-
tionally, survival and growth were hampered in juveniles grown at pH 6.5. Consequently,
our results indicate that pH oscillations should be avoided in rearing performed in BW,
since seahorses showed low resilience to acidic conditions. We suggest that H. reidi juveniles
be reared in SW under acidic conditions (pH 6.5), which increased survival and growth.
Thus, the results of the present study can be applied in order to enhance the early rearing
of H. reidi in captivity.

Author Contributions: Conceptualization, M.D.D.C.; methodology, M.D.D.C.; formal analysis,
M.D.D.C., S.G.-M. and M.P.; investigation, M.D.D.C.; data curation, L.A.S. and M.P.; writing—review
and editing, M.D.D.C., S.G.-M., L.A.S. and M.P.; supervision, L.A.S. and M.P.; project administra-
tion, M.P.; funding acquisition, M.P. All authors have read and agreed to the published version
of the manuscript.

Funding: M.D.D.C. was granted by Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior–CAPES (PDSE 88881.187275/2018-01; Ministério da Educação–MEC, Brazil). L.A.S. received
a research fellowship by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico,
Brazil) (Ref. # 307445/2016-0).



Animals 2022, 12, 3227 15 of 19

Institutional Review Board Statement: Animal maintenance and manipulation practices were con-
ducted in compliance with all bioethics standards on animal experimentation of the Spanish gov-
ernment (Real Decreto 1201/2005, 10 October 2005) and the Regional Government Xunta de Galicia
(REGA ES360570202001/16/EDU-FOR07/MPO01).

Informed Consent Statement: Not applicable, as this research did not involve any humans.

Data Availability Statement: Data not listed in this collection are available from the authors upon
reasonable request.

Acknowledgments: We are thankful to Alexandro Chamorro, Lourdes Nieto, Jesús Muras, José
Padín, Susana Bastero, and Carmen Castro for their support in fish maintenance and water quality
analyses. The authors are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e
Tecnológico) for research fellowships provided for L.A. Sampaio (# 307445/2016-0), and to CAPES
(Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) for a research grant provided
for M.D.D. Carneiro. In addition, we are very grateful to A. Pérez-Jiménez, principal of the research
group “Nutrición y alimentación en peces” (RNM-156) (University of Granada), for granting the
necessary permissions to perform analyses at Campus de Excelencia Internacional del Mar (CeiMAR),
and for financial support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Abreu, P.C.; Robaldo, R.B.; Sampaio, L.A.; Bianchini, A.; Odebrecht, C. Recurrent Amyloodiniosis on Broodstock of the

Brazilian Flounder Paralichthys orbignyanus: Dinospore Monitoring and Prophylactic Measures. J. World Aquac. Soc. 2007, 36,
42–50. [CrossRef]

2. Cohen, F.P.; Planas, M.; Valenti, W.C.; Lillebø, A.; Calado, R. Optimizing packing of live seahorses for shipping. Aquaculture 2018,
482, 57–64. [CrossRef]

3. Huang, J.; Qin, G.; Zhang, B.; Tan, S.; Sun, J.; Lin, Q. Effects of food, salinity, and ammonia-nitrogen on the physiology of juvenile
seahorse (Hippocampus erectus) in two typical culture models in China. Aquaculture 2020, 520, 734965. [CrossRef]

4. Meira-Filho, M.R.C.; Ramirez, J.R.B.; Vianna, R.T.; Júnior, J.P. Efficacy of glacial acetic acid in the control of Trichodina sp. and
Apiosoma sp. associated with Mugil liza. Aquaculture 2017, 479, 7–12. [CrossRef]

5. Heuer, R.M.; Grosell, M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Integr.
Comp. Physiol. 2014, 307, R1061–R1084. [CrossRef]

6. Ishimatsu, A.; Kikkawa, T.; Hayashi, M.; Lee, K.-S.; Kita, J. Effects of CO2 on Marine Fish: Larvae and Adults. J. Oceanogr. 2004,
60, 731–741. [CrossRef]

7. Ishimatsu, A.; Hayashi, M.; Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 2008, 373, 295–302. [CrossRef]
8. Lee, C.; Kwon, B.-O.; Hong, S.; Noh, J.; Lee, J.; Ryu, J.; Kang, S.-G.; Khim, J.S. Sub-lethal and lethal toxicities of elevated CO2 on

embryonic, juvenile, and adult stages of marine medaka Oryzias melastigma. Environ. Pollut. 2018, 241, 586–595. [CrossRef]
9. Calado, R. Location. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I., Planas, M., Holt, G.J., Eds.; Wiley Blackwell:

West Sussex, UK, 2017; pp. 75–79.
10. Tlusty, M. The benefits and risks of aquacultural production for the aquarium trade. Aquaculture 2002, 205, 203–219. [CrossRef]
11. Timmons, M.B.; Ebeling, J.M. Recirculating Aquaculture, 2nd ed.; Northeastern Regional Aquaculture Center:

College Park, MD, USA, 2010.
12. Park, M.S.; Shin, H.S.; Choi, C.Y.; Na Kim, N.; Park, D.-W.; Kil, G.-S.; Lee, J. Effect of hypoosmotic and thermal stress on gene

expression and the activity of antioxidant enzymes in the cinnamon clownfish, Amphiprion melanopus. Anim. Cells Syst. Seoul 2011,
15, 219–225. [CrossRef]

13. Copatti, C.E.; Baldisserotto, B.; de Freitas Souza, C.; Monserrat, J.M.; Garcia, L. Water pH and hardness alter ATPases and
oxidative stress in the gills and kidney of pacu (Piaractus mesopotamicus). Neotrop. Ichthyol. 2019, 17, e190032. [CrossRef]

14. Pellegrin, L.; Nitz, L.F.; Maltez, L.C.; Copatti, C.E.; Garcia, L. Alkaline water improves the growth and antioxidant responses of
pacu juveniles (Piaractus mesopotamicus). Aquaculture 2019, 519, 734713. [CrossRef]

15. Kim, J.-H.; Park, H.-J.; Kim, K.-W.; Hwang, I.-K.; Kim, D.-H.; Oh, C.W.; Lee, J.S.; Kang, J.-C. Growth performance, oxidative stress,
and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity. Fish
Physiol. Biochem. 2017, 43, 1421–1431. [CrossRef]

16. Lemos, C.H.D.P.; Ribeiro, C.V.D.M.; de Oliveira, C.P.B.; Couto, R.D.; Copatti, C.E. Effects of interaction between pH and stocking
density on the growth, haematological and biochemical responses of Nile tilapia juveniles. Aquaculture 2018, 495, 62–67. [CrossRef]

17. Ebeling, J.M.; Timmons, M.B.; Bisogni, J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and
heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 2006, 257, 346–358. [CrossRef]

http://doi.org/10.1111/j.1749-7345.2005.tb00129.x
http://doi.org/10.1016/j.aquaculture.2017.09.024
http://doi.org/10.1016/j.aquaculture.2020.734965
http://doi.org/10.1016/j.aquaculture.2017.05.014
http://doi.org/10.1152/ajpregu.00064.2014
http://doi.org/10.1007/s10872-004-5765-y
http://doi.org/10.3354/meps07823
http://doi.org/10.1016/j.envpol.2018.05.091
http://doi.org/10.1016/S0044-8486(01)00683-4
http://doi.org/10.1080/19768354.2011.604941
http://doi.org/10.1590/1982-0224-20190032
http://doi.org/10.1016/j.aquaculture.2019.734713
http://doi.org/10.1007/s10695-017-0382-z
http://doi.org/10.1016/j.aquaculture.2018.05.037
http://doi.org/10.1016/j.aquaculture.2006.03.019


Animals 2022, 12, 3227 16 of 19

18. Cohen, F.P.A.; Valenti, W.C.; Calado, R. Traceability Issues in the Trade of Marine Ornamental Species. Rev. Fish. Sci. 2013, 21,
98–111. [CrossRef]

19. Foster, S.; Wiswedel, S.; Vincent, A. Opportunities and challenges for analysis of wildlife trade using CITES data—Seahorses as a
case study. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 26, 154–172. [CrossRef]

20. Olivotto, I.; Planas, M.; Simoes, N.; Holt, G.J.; Avella, M.A.; Calado, R. Advances in Breeding and Rearing Marine Ornamentals. J.
World Aquac. Soc. 2011, 42, 135–166. [CrossRef]

21. Koldewey, H.J.; Martin-Smith, K.M. A global review of seahorse aquaculture. Aquaculture 2010, 302, 131–152. [CrossRef]
22. Kuo, T.-C.; Vincent, A. Assessing the changes in international trade of marine fishes under CITES regulations—A case study of

seahorses. Mar. Policy 2018, 88, 48–57. [CrossRef]
23. Foster, S.J.; Kuo, T.-C.; Wan, A.K.Y.; Vincent, A.C. Global seahorse trade defies export bans under CITES action and national

legislation. Mar. Policy 2019, 103, 33–41. [CrossRef]
24. Hora, M.D.S.C.D.; Joyeux, J.-C. Closing the reproductive cycle: Growth of the seahorse Hippocampus reidi (Teleostei, Syngnathidae)

from birth to adulthood under experimental conditions. Aquaculture 2009, 292, 37–41. [CrossRef]
25. Olivotto, I.; Avella, M.; Sampaolesi, G.; Piccinetti, C.; Ruiz, P.N.; Carnevali, O. Breeding and rearing the longsnout seahorse

Hippocampus reidi: Rearing and feeding studies. Aquaculture 2008, 283, 92–96. [CrossRef]
26. Fonseca, T.; David, F.S.; Ribeiro, F.A.S.; A Wainberg, A.; Valenti, W.C. Technical and economic feasibility of integrating seahorse

culture in shrimp/oyster farms. Aquac. Res. 2015, 48, 655–664. [CrossRef]
27. Cohen, F.; Valenti, W.C.; Planas, M.; Calado, R. Seahorse Aquaculture, Biology and Conservation: Knowledge Gaps and Research

Opportunities. Rev. Fish. Sci. Aquac. 2016, 25, 100–111. [CrossRef]
28. Oliver, M.P.; Burhans, R.; Simões, N. Seahorses and Pipefish. In Marine Ornamental Species Aquaculture; Calado, R., Olivotto, I.,

Planas, M., Holt, G.J., Eds.; Wiley Blackwell: West Sussex, UK, 2017; pp. 299–326.
29. Hora, M.d.S.C.d.; Joyeux, J.-C.; Rodrigues, R.V.; Sousa-Santos, L.P.d.; Gomes, L.C.; Tsuzuki, M.Y. Tolerance and growth of the

longsnout seahorse Hippocampus reidi at different salinities. Aquaculture 2016, 463, 188–193. [CrossRef]
30. Martinez-Cardenas, L.; Purser, J.G. Effect of direct transfer to different salinities on early juvenile Pot-bellied seahorse, Hippocampus

abdominalis, survival in culture conditions. J. World Aquac. Soc. 2016, 47, 201–206. [CrossRef]
31. Dong, X.; Duan, X.; Sun, Z.; Zhang, X.; Li, C.; Yang, S.; Ren, B.; Zheng, S.; Dionysiou, D.D. Natural illite-based ultra-

fine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis. Appl. Catal. B Environ. 2019,
261, 118214. [CrossRef]

32. Faleiro, F.; Baptista, M.; Santos, C.; Aurélio, M.L.; Pimentel, M.; Pegado, M.R.; Paula, J.R.; Calado, R.; Repolho, T.; Rosa, R.
Seahorses under a changing ocean: The impact of warming and acidification on the behaviour and physiology of a poor-swimming
bony-armoured fish. Conserv. Physiol. 2015, 3, cov009. [CrossRef]
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