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Abstract

Although Deep Neural Networks (DNNs) have great generalization and prediction capabilities, their
functioning does not allow a detailed explanation of their behavior. Opaque deep learning models are
increasingly used to make important predictions in critical environments, and the danger is that they make
and use predictions that cannot be justified or legitimized. Several eXplainable Artificial Intelligence (XAI)
methods that separate explanations from machine learning models have emerged, but have shortcomings
in faithfulness to the model actual functioning and robustness. As a result, there is a widespread agreement
on the importance of endowing Deep Learning models with explanatory capabilities so that they can
themselves provide an answer to why a particular prediction was made. First, we address the problem
of the lack of universal criteria for XAI by formalizing what an explanation is. We also introduced a
set of axioms and definitions to clarify XAI from a mathematical perspective. Finally, we present the
Greybox XAI, a framework that composes a DNN and a transparent model thanks to the use of a symbolic
Knowledge Base (KB). We extract a KB from the dataset and use it to train a transparent model (i.e., a
logistic regression). An encoder-decoder architecture is trained on RGB images to produce an output
similar to the KB used by the transparent model. Once the two models are trained independently, they
are used compositionally to form an explainable predictive model. We show how this new architecture is
accurate and explainable in several datasets.

Keywords:
Explainable Artificial Intelligence, Computer Vision, Deep Learning, Part-based Object Classification,
Compositional models, Neural-symbolic learning and reasoning

1. Introduction

Deep Neural Networks (DNNs), considered as black-boxes, are being increasingly used to make
important predictions in critical contexts. At the same time, the demand for transparency from the various
stakeholders in AI [1] is also growing. The danger of using black box models would be to create and
apply decisions that are not explainable and could not be justified [2]. Common needs for requiring
interpretability in Deep Learning are the need for ethics [3], safety when using AI in critical settings [4]
and the need to enable the end user to trust the system [5]. Interpretability can be defined as the ability to
produce explanations of the model’s behavior that can be understood by a human user [6].

In [7], Miller highlighted four major findings about explanations. A prerequisite for a ”good” expla-
nation is that it does not only indicate why the model made a certain decision, but also why it made this
decision rather than another. This refers to the ability to produce counterfactuals. In addition, ”good”
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explanations are selective, meaning that focusing solely on the main causes of a decision-making process
is sufficient. Furthermore, if a causal explanation for the generalization itself is not provided, utilizing
statistical generalizations to explain why occurrences occur is insufficient. Finally, explanations are social,
meaning that they are a transfer of knowledge between an explainer and an explainee.

Deep Learning models suffer from two kind of bias. The first one is a learning bias, due to the presence
of a bias in the training data set. This can happen when associations of concepts are over- or under-
represented in the training set. For example there were cases of a dataset with women under-represented
in offices compared to men, leading a captioning algorithm to assume that a person in an office was
necessarily a man while it could also be a woman. One of the applications of XAI is highlighting this bias
to correct it [8]. The second type of bias is the human induced one, when using common sense knowledge
about the world to explain the output of a DNN or when using particular parameters, architectures or loss
functions to model a problem [9].

A large number of methods for model probing have emerged in recent years. Some have the advantage
of being model-agnostic, i.e. separating the explanation from the machine learning model. This has
the advantage of providing flexibility to the user as tools are available to extract explanatory elements
from each model [10]. Some of these methods, the best known of which are LIME [11] and SHAP [12],
are based on the use of surrogate models. These proxy models will locally mimic the behaviour of the
black-box in order to explain individual predictions. While this has the advantage of being easy to use,
there are problems of robustness [13, 14]. Moreover, it is not possible to have a global view of the model’s
behaviour since the explanation is local.

In image recognition, another family of methods widely used is based on visualization. They express
an explanation by highlighting characteristics of the image that objectively influence the output of a DNN
[15]. The best known of them, Grad-CAM [16], creates class activation map using the gradients of the
DNN’s output with respect to the last convolutional layer. This provides a visual explanation easy to
understand as it allows recognizing the important regions of the image. However it is difficult to know
whether an explanation is valid, in the sense that a human non-expert in the field does not necessarily know
what the important points of an image are, and a part of the evaluation is subjective. Furthermore, it has
been shown that some of the most used methods are insensitive to model and data [17]. In addition, there
is also a risk of introducing a human-induced bias when a user is trying to interpret the visual explanation.
His or her understanding would depend on his or her own background knowledge. Thus, it is necessary
that the explanatory elements of an AI model come directly from the data seen by the network, for it to be
faithful with respect to what it actually learned [18].

One of the goals of having interpretability in a model is to explain its reasoning by expressing it in
a way that is understandable and readable by human beings, while highlighting the biases learned by
the model, in order to validate or invalidate its decision rationale [19]. There is a trade-off between the
performance of a model and its transparency [20] but it is also possible to consider that the advocacy
for interpretability may lead to a generic performance improvement for 3 reasons: i) it will help ensure
impartiality in decision-making, i.e. to highlight, and consequently, correct from bias in the training
data-set, ii) interpretability facilitates the provision of robustness by highlighting potential adversarial
perturbations that could change the prediction, and finally, iii) interpretability can act as an insurance
that only meaningful variables infer the output, i.e., guaranteeing that an underlying truthful causality
exists in the model reasoning. Combining the prediction capabilities of connectionist models with the
transparency of symbolic ones could put aside the trade-off by increasing either the interpretability or the
performance of AI models, the challenge being to increase one without sacrificing too much of the other.
It has been proven that using background knowledge within a DNN can bring robustness to the learning
system [21, 22, 23]. The use of a Knowledge Base to learn and reason with symbolic representations has
the advantage of promoting the production of explanations while making a prediction [24]. The ability to
refer to established reasoning rules allows symbolic methods to fulfill this property.

In order to obtain a model that meets the above criteria, we introduce the Greybox XAI framework.



This new architecture is transparent by design when used for an image classification task. It combines an
encoder-decoder used for the creation of an Explainable Latent Space which is then used by a logistic
regression. The Explainable Latent Space allows knowing for which reasons an image has been classified
in a certain way with the help of logistic regression. Moreover, we propose a formalization of the notion of
explanation and we pose definitions allowing to judge its quality.

The contribution of our paper is threefold:

• A theory of explainability of deep learning models to qualify what is a ”good” explanation.

• An explainable by design compositional framework called Greybox XAI.

• We show that this new framework provides state-of-the-art results on an image classification task
regarding the explainability/accuracy trade-off in various datasets, as its accuracy is close to the
existing models while being more explainable.

This paper is organized as follows: first we present the literature around XAI and part-based classifiers
in Section 2. We present the different notions and terminology used in XAI and propose our definitions in
Section 3. We describe our framework in Section 4 and we illustrate its use by experiments on several
datasets in Section 5.

2. Related Work: Explainable AI formalization, compositional part-based classification and neural-
symbolic computation.

The literature [6, 25, 26] distinguishes Deep Learning’s XAI methods into two categories: transparent
models and opaque models that need to be explained thanks to post-hoc methods. As our model is a
composition of a transparent model and an opaque model, we will put a particular focus on compositional
models in Section 2.1. We will also talk about the use of KBs for XAI in Section 2.2.

2.1. Compositional Part-based Classification Models

Compositionality in computer vision refers to the ability to represent complex concepts by combining
simpler parts [27, 28]. Compositionality is a desirable property for CNNs as it can improve generalization
by encouraging networks to form representations that disentangle the prediction of objects from their
surroundings and from each other [29]. For example, handwritten symbols can be learned from only a few
examples using a compositional representation of strokes [30]. The compositionality of neural networks is
also seen as key to the integration of symbolism and connectionism [31, 32].

Part-based object recognition is an example of semantic compositionality and a classical paradigm
where the idea is to collect information at the local level in order to make a global classification. In [33],
the authors propose a pipeline that first groups pixels into superpixels, then performs a superpixel-level
segmentation, converts this segmentation into a feature vector, and finally classifies the global image
thanks to this feature vector. A similar method is proposed by [34], extending it to 3D data. Here, the
idea is to classify a part of the image into a predefined class and then use these intermediate predictions
to create a classification of the whole image. The authors of [35] also define intermediate-level features
that capture local structures such as vertical or horizontal edges, hair filters, and so on. However, they are
closer to dictionary learning than to the approach we propose in this paper.

One of the best known models for object part recognition is [36]. It provides object recognition
based on mixtures of deformable part models with multiple scales based on data mining of hard negative
examples with partially labeled data to train a latent SVM. The evaluation is performed in the PASCAL
object detection challenge (PASCAL VOC benchmark [37]).

Semi-supervised methods have been developed more recently, such as [38]. They propose a two-stage
neural architecture for fine-grained image classification supported by local detections. The idea is that



positive proposal regions highlight different complementary information and that all of this information
should be used. For this purpose, an unsupervised recognition model is first built by alternately applying a
CRF and a Mask-RCNN (considering an initial approximation with CAM). Then, the recognition model
and the positive region proposal are fed to a bidirectional LSTM, which generates a meaningful feature
vector that collects information about all regions and is then able to classify the image. This can be
considered as unsupervised part-based classification.

As introduced in [39], there is a need for causability in certain domains such as in the medical field
for example. Causability is the measurable extent to which an explanation to a human expert achieves a
specified level of causal understanding [40]. This notion refers to usability and must not be confused with
causality. The latter is the relationship between cause and effect [41]. Causability can be measured with
the System Causability Scale, a system to measure the quality of explanations based on causability and
usability [42].

Current methods for image classification with DNNs is to add attention mechanisms into the learning
process to automatically extract relevant features of a given input. This mechanism is designed to focus
DNNs on the most important features for a given classification task.[43]. Transformer architecture was first
introduced for machine translation but the computer vision community is working on their implementation
for computer vision [44, 45, 46]. Attention-based neural networks such as the Vision Transformer (ViT)
have recently attained state-of-the-art results, in term of accuracy, on many computer vision benchmarks
[47, 48]. Many researches have emerged to improve these transformers for computer vision, notably
working on techniques to more efficiently scale the size of vision transformers[49], to make them more
tractable for inference [50] or to improve generalization to domain shift [51]. By adding human visual
attention maps are as an input for a DNN, it has been shown that attention mechanisms in DNNs work as
human visual attention[52].

Finally, [53] proposes a methodology designed to learn both symbolic and deep representations. It
involves a compositional convolutional neural network that makes use of symbolic representations called
EXPLANet and SHAP-Backprop, an explainable AI-informed training procedure that corrects and guides
the DL process to align with such symbolic representations in form of knowledge graphs. To the best of
our knowledge, this model represents the state of the art in terms of compositional learning models.

2.2. The use of Knowledge base for Explainable AI

The use of background knowledge in the form of logical statements in KBs has shown to not only
improve explainability but also performance with respect to purely data-driven approaches [21, 23]. A
positive side effect shown is that this hybrid approach provides robustness to the learning system when
errors are present in the training data labels. Other approaches have shown to be able to jointly learn and
reason with both symbolic and sub-symbolic representations and inference [54]. The interesting aspect
is that this blend allows for expressive probabilistic-logical reasoning in an end-to-end fashion [55]. An
example of use case is on dietary recommendations, where explanations are extracted from the reasoning
behind (non deep but KB-based) models [24].

A different perspective on hybrid XAI models consists of enriching black-box models knowledge
with that one of transparent ones, as proposed in [9] and further refined in [18]. It allows the network
to express what is confident or confused about, in a context that helps to tackle bias. Other examples of
hybrid symbolic and sub-symbolic methods where a knowledge-based tool or graph-perspective enhances
the neural (e.g., language [56]) model are in [57, 58].

Another hybrid approach consists of mapping an uninterpretable black-box system to a white-box twin
that is more interpretable. For example, an opaque Artificial Neural Network (ANN) can be combined
with a transparent Case Based Reasoning (CBR) system [59, 60]. In [61], the ANN (in this case a DNN)
and the CBR (in this case a k-NN) are paired in order to improve interpretability while keeping the same
accuracy. The explanation by example consists of analyzing the feature weights of the ANN which are
then used in the CBR, in order to retrieve nearest-neighbor cases to explain the ANN’s prediction.



Description Logics [62] have successfully been used for enhancing deep learning models for image
interpretation through the use of knowledge bases [63]. It can also help detect inconsistencies in automated
knowledge representation and reasoning. An example for automated symbol design and interpretation is in
[64]. Some XAI systems consider counterfactual rule learning and causal signal extractions. Examples of
rule learning approaches can include learning from noisy or unstructured data, or learning with constraints
[65].

As it seems intuitive that the presence of a KB is useful to provide an explanation, how to use it for
image classification is not obvious because KBs use a very concrete formalism which is in opposition to
the abstract features used by networks. Some methods such as Logic Tensor Networks [22] or LYRICS, a
General Interface Layer to Integrate AI and Deep Learning [66] show promising results but we did not
find any executable implementation example of their end-to-end use in the literature.

3. XAI definitions and formalization

We first establish a common point of understanding on what the different terms stands for in the context
of XAI, based on [6]. We recall the definition of transparency and propose various criteria to judge the
quality of an explanation. Definitions of subsections 3.1 and 3.2 are not contributions but a necessary step
to properly understand our proposed Greybox XAI framework.

3.1. Definition of transparency
Transparency refers to a passive property of a model, which refers to the level at which a given model

”makes sense” to a human observer. A model is considered opaque when it is not transparent. There are 3
degrees of transparency, from the least to the most transparent [67]:

• Algorithmic Transparency. It deals with the ability of the user to understand the process followed by
the model to produce any given output from its input data.

• Decomposability. A model with algorithmic transparency is decomposable if every part of the model
is understandable by a human without the need for additional tools. It means that it is possible to
explain each of the parts of a model (input, parameter and calculation). It requires every input to be
interpretable.

• Simulatability. It denotes the ability of a model to be totally simulated by a human, meaning that its
complexity is low. A decomposable model is therefore simulatable if it self-contained enough for a
human to think and reason about it as a whole.

To conclude, these levels of transparency depend on the understandability of the model. The under-
standability of a model is its ability to make a human understand its internal structure or the algorithmic
means by which the model processes data internally [68]. The type of models considered as transparent
are Linear and Logistic Regression [69], Decision Trees [70], K-Nearest Neighbors [71], Rule Based
Learners [72], General Additive Models [73] and Bayesian Models [74]. These 6 types of models are
always algorithmically transparent. They can reach higher levels of interpretability if the variables are
understandable and not too numerous, if there are not too many rules, etc.

3.2. Clarifying the concept of Explainability
As stated in [6], explainability can be considered as an active characteristic of a model, which refers to

any action or procedure implemented in order to clarify its internal functions. The explainability of a model
thus denotes its capacity to produce an explanation. In order to make a non-transparent model explainable,
many post-hoc methods were designed. Post-hoc methods are used on a model after its training and are
designed to probe the model in order to improve its explainability.



While most of the different terms used in explainable AI have been widely debated in the literature, the
one about What constitutes an explanation has not been widely mathematized. We propose a formalization
of the notion of explanation, inspired by [75] in order to establish objective criteria to affirm that an
explanation is ”good” or not. Whether it comes from the transparency of a model or from a post-hoc
method applied on an opaque model, an explanation must meet certain indispensable characteristics to be
considered as a ”good” explanation.

3.3. Explanation Formalisation for an image classification problem

Let us denote E = {(e)|e ∈ {0, 1}∗} a set of explanations e. This set is binary in order to be able to
encode any type of communication because an explanation can be given in various forms: a text, an image,
a graph, etc.

Definition 3.1. Let f : X → Y be a classification model with X the input space and Y the label space.
The explanation function Φ on a f(x) prediction with x ∈ X is defined by:

Φ : Y → E (1)
f(x)→ Φ(f(x)) (2)

On the basis of this definition of an explanation function, we define several axioms characterizing an
explanation. These axioms intend to formally qualify what a ”good” explanation is, following desired
properties. Based on the literature [6, 9, 7] and the above definitions, we highlight 3 properties that we
consider necessary to obtain a ”good” explanation:

1. Objectivity. Explainability is firstly about humans, as it refers to the details and reasons a model
elicits to make its functioning clear or easy to understand given a certain audience [6]. The
point of producing explanations that are as objective as possible is to minimize the amount of
subjectivity a human might have when interpreting the explanations. Designing explanations based
on symbols/concepts that are known and related to the task at hand allows for an unbiased explanation
that can be understood in the same way by two different users with the same background knowledge.
In order for an explanation to be more objective, we consider that it must be expressed in such a way
that it is understood in the same way by the majority of members of a given audience. The real world
contains objects and we want compact representations of those objects [76]. We assume this can be
obtained in an explanation by the use of logical semantics, using symbols and relations that can be
conceptualized by the human user of the explanation. This implies the use of ontologies, specifying
what individuals (things, objects) and relationships are assumed to exist and what terminology is
used for them.

Definition 3.2. An explanation e of a classification model f : X → Y is said to be objective if e
does contain symbols and/or relationships.

Example 1. Objectivity Figure 1 shows the example of one explanation making use of symbols
and/or relationships and another one not making use of them. The less subjective explanation mini-
mizes the amount of interpretation left to the explainee because it uses symbols (words) commonly
employed to represent objects. Moreover the subjective explanation based on a visualization of the
attention areas of the model leaves a lot to the explainee’s interpretation. From one user to another,
some will say that the hot area is the head of the rabbit while others will talk about the color of its
muzzle, the carrot strand it is holding or its eyes.



Figure 1: Subjective and less subjective/more objective example of explanations. The subjective explanation is a superimposed
visualization of Grad-CAM’s heatmap and the input image, showing the model mostly used the center-right of the image (where the
head of the rabbit is) in order to make its prediction. The more objective explanation is a textual explanation using attributes detected
on the rabbit to categorize and describe it.

2. Intrinsicality. The complete explanation of a prediction should come directly from the model (or its
intrinsic elements) that produced the prediction. In order for the explanation to be totally faithful to
what happened in the model, it is necessary that only the inputs, parameters and operations present
in the model that we are trying to explain are used. This is essential to ensure that the explanation
that is given is what actually happened in the model during its inference rather than the expected
behavior. The value of having an intrinsic explanation is to be sure that the explanation exactly
describes how the model works, rather than an approximate or desired operation. As a matter of fact,
if the explanation depends on something that is not related to the model we wish to explain, it is
impossible to ensure that this explanation does not distort the real reasons for which a decision was
taken.

Definition 3.3. An explanation e of a classification model f : X → Y is said to be intrinsic if e
only depend of elements, parameters and operations present in f , X or Y .

Example 2. Intrinsicality
In order to produce an explanation for a black box model f , the post-hoc method LIME [11]
generates a new dataset consisting of perturbed samples and the corresponding predictions of f .
On this new dataset, LIME trains an interpretable model h, which is weighted by the proximity of
the perturbed samples to the instance of interest. The prediction of the model h should be a good
approximation of the predictions of the model f locally, but it does not have to be a good global
approximation of the model f . The produced explanation can be expressed as follows:

e = Φ(f(x)) = arg min
h

L(f, h, πx) + Ω(h) (3)

with L(f, h, πx) the local fidelity, i.e. how close the predictions from h are close to the predictions
from f . The proximity measure πx defines how large is the neighborhood around the explained
instance. Therefore, explanation e does not only depend of elements, parameters and operations
present in f , X or Y since the explanation depends on the surrogate model h. Consequently, this



explanation is not intrinsic. It is the prediction of the model h that is explained, not that of the model
f .

Example 3. Intrinsicality In opposition, the explanation resulting from a linear regression h can
be considered as intrinsic because the learned relationships between the inputs and the labels can be
written as follows:

e = Φ(f(xi)) = θf × xi (4)

with θf the set of trainable parameters of f and xi an instance.

3. Validity and Completeness. An explanation of a prediction must be valid, meaning that it should
assert that the model is Right (or wrong) for the Right Reason (RRR). It must show that the
functioning of the model is consistent, that it is not biased by the training data. The explanation
should be similar to what an expert in the field would give. To this notion of validity we could
add a desideratum notion of completeness: an explanation could be judged as incomplete if it does
not contain enough valid elements in its constitution, meaning that we want a sufficient number of
discriminating elements. However, it has been established in the literature that a ”good” explanation
is selective [7]. Selectivity means that humans are adept at selecting a few causes from a sometimes
infinite number of causes.

Definition 3.4. Given a field expert human being h : X → Y , we define Evalid as the set of valid
explanations Φ : Y → Evalid

Definition 3.5. An explanation e of a classification model f : X → Y is said to be valid if
e ∈ Evalid and complete if e is discriminative enough.

Example 4. Validity:
To illustrate this, we take the example of the image 2 of a ram rabbit that we see in its entirety, from
the front, and that the model classifies as a rabbit. We can say that the explanation is valid if it
contains elements explaining why it is rabbit, i.e. the ones that an expert looking at the image would
use to justify the fact that it is a ram rabbit.

Example 5. Completeness
To illustrate the notion of completeness, closely related to validity, we take the example on 3 of a
ram rabbit that we see in its entirety, from the front, and that the model classifies as a rabbit. We
can say that the explanation is more complete if it contains enough elements explaining why it is a
rabbit, i.e., some of the most important features that a human expert looking at the image would
notice and use to justify the fact that it is a ram rabbit. Technically, it is not ”wrong” to say that a
rabbit can be of different colors. However, colour is not a discriminating element to recognize a ram
rabbit and it would be improbable to see a human giving this explanation. If this justification on the
colors had been accompanied by discriminative elements of the rabbit, such as its big droopy ears,
the explanation would have been more complete.



Figure 2: Valid and invalid examples of explanations. The valid explanation contains elements that are present in the expert
explanation set and that are therefore ”good” reasons to justify why a rabbit is present in the picture. On the contrary, the invalid
explanation contains elements out of the expert explanation set.

Figure 3: Valid and invalid examples of explanations. The valid explanation contains elements that are present in the expert
explanation set and that are therefore ”good” reasons to justify why a rabbit is present in the picture. On the contrary, the invalid
explanation contains elements out of the expert explanation set.



4. Greybox XAI: Greybox eXplainable Artificial Intelligence framework

In this section we present the Greybox XAI framework. It is designed to be transparent according to the
definition of transparency proposed above. This framework is also made to produce ”good” explanations in
relation to the 3 criteria of objectivity, intrinsicality and validity. The goal of this framework is to perform
compositional image classification and to explain its predictions by the different parts-of the object that
has been classified. It consists of two separately trained models:

• A Deep Neural Network trained to predict a segmentation map from an RGB image input. Its
purpose is to detect the different parts-of objects that constitute the image.

• A transparent model trained to predict an object, using as input a vector encoding the presence and
absence of parts-of objects.

These two models are linked in a sequential manner: the output of the DNN is transformed into a vector
serving as input to the transparent model. We call the space in which the transformation is carried out the
Explainable Latent Space. In this space, the predicted segmentation map is transformed into a one-hot
vector. This vector indicates all the parts-of objects present in the segmentation map. The transparent
model classifies this vector. It gives a prediction of the object present on the RGB image according to
the different parts-of. It is then possible to produce an explanation of this classification based on the
Explainable Latent Space and the transparent model computation. In the rest of the article, parts-of object
are called attributes and objects are called classes.

First, in Section 4.1 we describe the architecture of our framework and the required data to exploit
its full potential. Then, in Section 4.2 we explain how we sequentially train the different parts of the
framework. Finally, we prove in Section 4.3 how this Greybox XAI framework is explainable with regard
to the definitions proposed in Section 3.

4.1. Greybox Architecture and Data Requirements
Let us denote X and Y two random variables, with X ∼ PX and Y ∼ PY . Without loss of generality

we consider the observed samples {xi}Ni=1 ∈ XN as vectors and the corresponding labels {yi}Ni=1 ∈ YN
as scalars. From the set of observations XN and the set of corresponding labels YN we derive a training
set denoted D = {(xi, yi)}Ni=1 with N the number of pair elements (xi, yi) of dataset D. The elements of
dataset D are assumed to be independent and identically distributed (i.i.d.) according to an unknown joint
distribution PX,Y .

Let us denote f a DNN. We assume that a DNN is a function that takes two inputs. The first input is
the input data xi and the second input is the set of trainable weights θ = {θk}Kk=1 with K the number of
weights of the DNN. Hence we denote f(xi, θ) the DNN f applied on xi with the set of weights θ.

We can consider that a DNN has a probabilistic representation [77]; hence a DNN outputs a likelihood
probability function of the random variable Y given X parametrized by θ : f(x, θ) = P (y|x, θ).

Using the fact that the training data is independent and identically distributed according to PXY , the
set of training weights θ are optimized by Maximum Likelihood Estimation (MLE) over the training data
D.

θMLE = arg max
θ

P (D|θ) (5)

= arg max
θ

N∏
i=1

P (yi|xi, θ) (6)

= arg max
θ

N∑
i=1

logP (yi|xi, θ) (7)



Since the arg max of a function does not change if we multiply it by a strictly positive scalar, it is
possible to write:

θMLE = arg max
θ

1

N

N∑
i=1

logP (yi|xi, θ) (8)

in order to get to the definition of Cross Entropy (CE). As a reminder, the CE between P (yi) and
P (yi|xi, θ) in the discrete case is equal to:

CE(P (yi), P (yi|xi, θ)) = − 1

N

N∑
i=1

P (yi) logP (yi|xi, θ) (9)

with P (yi) = 1 for the labels yi ∈ D whence:

θMLE = arg max
θ

−CE(P (yi), P (yi|xi, θ)) (10)

= arg min
θ

CE(P (yi), P (yi|xi, θ)) (11)

The Greybox XAI framework is compositional. Hence, let us decompose f into 2 sub-models g and h
such that f = h ◦ g. Let us write g a first model that extracts an Explainable Latent Space Z from the
observations {xi}Ni=1 and h a second model that maps this Latent Space Z to labels {yi}Ni=1. Hence we
have:

f : X → Y, f(xi) = h(g(xi, θg), θh) = yi (12)
g : X → Z, g(xi, θg) = zi (13)
h : Z → Y, h(zi, θh) = yi (14)

with θg and θh representing the set of trainable weights of g and h.
Our goal is to map the internal representation of the first model to an Explainable Latent Space that

will be explainable. In addition, since the prediction of h rely on this Explainable Latent Space, we can
ensure the prediction to be explainable.

This requires not only to have couplesDcouple = {(xi, yi)}Ni=1, directly linking images and classes, but
rather triples Dtriplet = {(xi, zi, yi)}Ni=1 with {zi}Ni=1 ∈ ZN with Z being an intermediate Explainable
Latent Space serving as a bridge between X and Y . Moreover, it is necessary that each element belonging
to Z is a concept that can be expressed in natural language, and thus that this set Z represents nameable
features. This is necessary in order to obtain objective explanations.

The architecture we propose is therefore a compositional model consisting of two elements. First,
an opaque DNN called Latent Space Predictor denoted g capable of predicting an Explainable Latent
Space Z . Second, a transparent model called Transparent Classifier denoted h able of moving from
this Explainable Latent Space Z to a final prediction Y . It results in a framework able, for any image
xi, to predict which label yi it corresponds to. This prediction is justified by an objective and intrinsic
explanation based on zi and on the transparent model’s simulatability, due to the composition of both
models via Z being the output of g and the input of h. It is worth noting that while this framework allows
explaining the final prediction yi, based on zi that acts as the rationale, is not able to explain why zi was
predicted. The Greybox XAI framework is therefore a transparent classifier that uses input features from an
opaque detector.



Fig. 4 shows the Greybox XAI framework used for an image classification task. Here, the dataset
Dtriplet = {(xi, zi, yi)}Ni=1 consists of triples from a set X of RGB images, a set Z of semantic segmen-
tation masks and a set Y of labels. From Z we extract a second subset Zatt, which we will call the set of
attributes. This set contains a list of all attributes, i.e. all different segmentation masks. These are all the
part-of objects that can be detected by the Latent Space Predictor.

Here the Latent Space Predictor that constitutes the model g is an Encoder-Decoder model. Its role is
to predict from an image xi a segmentation map zi. From this segmentation map is extracted the vector
zatt,i which constitutes a list of all attributes present on the segmentation map zi. We call this operation a
vectorization. The couple {zi, zatt,i} is the Explainable Latent Space. A logistic regression model here
acts as a Transparent Classifier h. A Naive Bayes Classifier (NB) can also work, but the experiments
conducted in the Section 5 gave better results with logistic regression. We then use the inherent transparent
nature of h (developed in Section 4.2.2) and the Explainable Latent Space {zi, zatt,i} to explain prediction
yi.

Figure 4: Example of use of the Greybox XAI framework for the task of image classification. The framework produces a prediction
of what class of object is present on the image while generating a natural language explanation based on the weight matrix of
the transparent classification. It also outputs a visual explanation based on a predicted semantic segmentation image representing
different object parts of the predicted class.

4.2. Training Process of the Latent Space Predictor and the Transparent Classifier
The Latent Space Predictor g and the Transparent classifier h constituting our framework are trained

separately. Here are the steps constituting our training:

• Manually extract the subset Zatt from Z in order to have the attributes in the form of a segmentation
mask and in the form of a vector.

• Train the Transparent Classifier to predict Y using Zatt. This model is predicting a class based on
an attribute vector.

• Train the Latent Space Predictor to predict latent space Z using X . This model is predicting a
segmentation map based on an RGB image.



In Section 4.2.1 we explain how we extract the subset Zatt. Section 4.2.2 show how we train the
Transparent Classifier and in Section 4.2.3 we explain how we train the Latent Space Predictor.

4.2.1. Subset Extraction for Knowledge Base Construction
The goal of the dataset subset extraction task is to obtain a Knowledge Base from a Dataset Dtriplet =

{(xi, zi, yi)}Ni=1 with a set X of RGB images, a set Z of semantic segmentation masks and a set of (final,
whole object) labels Y . We call a Knowledge Base a common repository of semantic annotations to
facilitate a fast and efficient search in the given set of resources [78].

In Description Logics [79], a terminology box TBox, or schema extracted from the dataset, together
with the class instanciations (in our case, that compose the datasets seen by the network), i.e., the
assertional ABox, form the KB =< TBox,ABox >. This particular KB will serve as database, in form
of a knowledge graph (KG) that interlinks individuals (i.e. instances) of different classes through roles
or relationships with possible semantic restrictions. In order to create and populate a Knowledge Base
it is necessary that some terminology axioms TBox and assertion axioms ABox can be extracted from
some of the training labels, from which a set of Resource Description Framework (RDF) triples of subject,
predicate and object (s, p, o) can be extracted. This is the case, for example, when the labels are in a text
or caption form1. The Automatic Knowledge Base Construction (AKBC) from a dataset problem consists
of finding a process t : YKB → {(s, p, o)} able to triplify each data point following the RDF language2.
Concrete examples of AKBC include learning a KB through semantic parsing, using Markov Logic [82]
or relational probabilistic models [83]. The triplification process consists of extracting two entities or
concepts, subject (s) and object (o), and a predicate (p) that connects them. This predicate expresses a
relationship, i.e., a data property or an object property [84] among the subject and the object. The AKBC
problem in the Greybox XAI framework consists of finding a process that automatically constructs a KB
composed of hierarchical (isA), partOf, and attribute (hasAttribute) relations. Analogically, the ABox in
KB must be uniquely composed by description logics assertional axioms solely extracted from applying
the triplification process on datapoint.

We flatten each semantic segmentation image zi ∈ Z to obtain a single dimension vector and we return
zatt,i, a sorted list of every unique element contained in zi in order to obtain a set Zatt of each element
present on each semantic segmentation image. By using OWL3 entities and relationships we obtain the
following type of KB, linking any element {zatt,i,j}N,Ki,j ∈ ZN,Katt with the corresponding xi ∈ XN and
yi ∈ YN , withN the number of triple elements of datasetDtriplet andK the number of different attributes
in Z:

This Knowledge Base stands for the Explainable Latent Space which will be used to produce the
rationale of an explanation.

Our framework is composed of 2 sequential and connected models that do not perform with the same
representation of information: while it is possible for the DNN to work with images, it is necessary for
the transparent model to work with a much more reduced and compact representation of the data. It is
not possible for a model such as a logistic regression to take images as input because it would lose its
transparency due to the exploding number of variables and parameters. A logistic regression needs to have
human readable predictors and interactions among them kept to a minimum [6]. It can be the case on a
compact 2D representation of the semantic segmentation image but not on the image itself because it has
too many variables. Therefore, Zatt will be used to train the Transparent Classifier.

1This is also possible for plain named class labels (e.g., through using external lexicons or semantic parsers such as DBPedia [80]
or Wordnet [81].

2W3C standard model for data exchange: Resource Description Framework w3.org/RDF/
3Web Ontology Language (OWL) [85]

w3.org/RDF/


KB RDF (s,p,o) triple examples

TBox (zatt,1,1, isPartOf, y1)
(zatt,1,2, isPartOf, y1)
...
(zatt,1,k, isPartOf, y1)
(zatt,2,1, isPartOf, y2)
...
(zatt,n,k, isPartOf, yn)

ABox (x1, hasLabel, y1)
(x1, hasAttributes, zatt,1,1...k)

Table 1: Examples of Resource Description Framework (RDF) triples extracted from a Dataset D = (X ,Z,Y) with n the number
of samples and k the number of different attributes. These triples are contained in a KB terminological (TBox) and assertional
(ABox) components.

4.2.2. Training of the Transparent Classifier
We use a logistic regression to statistically fit the attributes Zatt and classes Y present in the database.

The goal is to see if we have fairly discriminating attributes. The purpose of this test is to check if it is
possible to train a transparent classifier based on attributes. If there were an excessive difference between
the performance of a regression predicting classes based on attributes and the performance of a DNN
predicting classes based on images, it would mean that the presence/absence of attributes did not allow for
an efficient classification of images and therefore that these labels were of poor quality. The choice of
using a logistic regression is motivated by the fact that this model predicts probabilities easily interpretable
[86].

In binary logistic regression the function h(zatt,i, θh) used to model the dependence of a regression
target yi ∈ {0, 1} on features zatt,i where yi ≈ h(zatt,i, θh) can be written as:

h(zatt,i, θh) =
1

1 + exp(−θᵀhzatt,i)
(15)

with θh the set of weights trained to minimize the cost function

J(θh) = −

[
n∑
i=1

yi log h(zatt,i, θh) + (1− yi) log(1− h(zatt,i, θh))

]
(16)

Multinomial logistic regression is a generalization of binary logistic regression to multiclass problems,
meaning that the label yi ∈ {1, 2, ..., k} can take K different values depending on the number of classes. A
softmax function is used to generalize hθ(zatt,i) from the binary to the multi-class classification problem:

h(zatt,i, θh) =


P (y = 1|zatt,i; θh)
P (y = 2|zatt,i; θh)

...
P (y = k|zatt,i; θh)

 =
1∑k

j=1 exp
{
θᵀh,jzatt,i

}


exp
{
θᵀh,1zatt,i

}
exp

{
θᵀh,2zatt,i

}
...

exp
{
θᵀh,kzatt,i

}

 (17)

θh,1, θh,2, ... θh,k ∈ Rn are all the parameters of the regression and are represented as a n-by-K



matrix:

θh =

 | | | |
θh,1 θh,2 . . . θh,K
| | | |

 (18)

J(θh) = −

 m∑
i=1

k∑
k=1

1{yi = k} log
exp

{
θᵀh,jzatt,i

}
∑K
j=1 exp

{
θᵀh,jzatt,i

}
 (19)

Equation 19 is minimized thanks to an iterative optimization algorithm with the gradient:

∇θh,k
J(θh) = −

m∑
i=1

[zatt,i (1{yi = k} − P (yi = k|zatt,i; θh))] (20)

with

P (yi = k|zatt,i; θh) =
exp

{
θᵀh,kzatti

}
∑K
j=1 exp

{
θᵀh,jzatt,i

} (21)

Thus, for any {zatt,i}Ni=1 ∈ Zatt is it possible to find the associated {yi}Ni=1 ∈ Y by using the
following equation:

P (yi = k|zatt,i; θh) = softmax(θᵀh,jzatt,i) (22)

Since the softmax function is monotonic, the ranking of probabilities given by
softmax(θᵀh,jzatt,i) is the same as the one given by θᵀh,jzatt,i. Therefore, we can approximate that:

h(zatt,i, θh) ≈ θᵀh,jzatt,i ≈
K∑
j=1

θh,jzatt,i,j (23)

Each parameter θh,j provides a quantitative contribution of the corresponding attribute zatt,i to
predicted class.This logistic regression is transparent by design because it meets the criteria of algorithmic
transparency, decomposability and simulatability from [6]:

• Algorithmic Transparency: the user can understand the process followed by the logistic regression
to produce any given output from its input data. Just multiply the weight matrix θh by the attribute
vector zatt,i to obtain the prediction yi.

• Decomposability: every part of the logistic regression is understandable by a human without the
need for additional tools. The input zatt,i, the parameters θh and the calculation are interpretable.

• Simulatability: the logistic regression has the ability to be totally simulated by a human. It is
self-contained enough for a human to think and reason about it as a whole. For this condition to
remain true, the complexity of the logistic regression must remain low. Thus, it is necessary that the
attribute vector zatt,i and the parameters θh are not too big.

We can produce explanations following customized templates, for instance:

Example 1. Explanation: The model predicts this attribute vector zatt,i to belong to class yi, because
attributes {zatt,i,1, zatt,i,..., zatt,i,k} are linked to the class yi with weights {θh,1, θh,..., θhk

} in training
dataset Dtriples.

Regarding the definitions expressed in Section 3.3, we can say that the explanation function Φ(h(zatt,i)) =
θᵀhzatt,i of our model h : Zatt → Y is:



• Objective: as the explanation ei uses symbols (zatt,i) and relationships (θh,i) that can be conceptual-
ized by the human user.

• Intrinsic: as the explanation ei only depends of elements (zatt,i), parameters (θh,i) and operations
present in original model h

The validity of the explanation will have to be measured when applying the Greybox XAI framework
to a use-case, as this criterion is dataset-dependant. This notion can be easily measured by comparing the
weights θh,i and an expert knowledge base.

4.2.3. Training of the Latent Space Predictor
The Latent Space Predictor must predict a segmentation map zi from a RGB input image xi thanks to

an Encoder-Decoder architecture. This segmentation map will then be vectorized in an attribute vector
zatt,i to constitute the Explainable Latent Space {zi, zatt,i}. We choose to use a DeepLabv3+ [87] as a
Latent Space Predictor with a ResNet101 as backbone model. The specificity of DeepLabv3+ is to use an
atrous convolution, allowing the developer to adjust filter’s field-of-view in order to capture multi-scale
information, and a depthwise separable convolution. As it is a semantic segmentation task, we use an
output stride of 16 for denser feature extraction as it is the best trade-off between speed and accuracy. The
objective is to make a pixel-wise prediction over an entire image and the performance is measured in terms
of pixel intersection-over-union averaged across the attributes (mIOU).

In order to test the performance of our model, we do not train it with images of semantic segmentation
masks but with bounding boxes showing the presence or absence of attributes, in a weekly supervised
manner [88]. The main objective is to have an Explainable Latent Space that accounts for the presence of
each attribute as much as possible. It is therefore necessary that each attribute present on the xi image is
segmented but the segmentation map does not need to be very accurate because it is afterwards vectorized.
Pixels that do not belong to any bounding box are considered as background pixels, while the ones
belonging to several bounding boxes are accounted as belonging only to the smallest one. We select the
smallest rather than the largest in order to not lose the small attributes encompassed by large ones (like
eyes in the middle of a face for example).

The input of the Latent Space predictor is an RGB image xi while its output is a segmentation map
zi of dimension h ∗ w with h and w the dimensions of xi. As the spatial information is not used by the
Transparent Classifier, we extract from zi an attribute vector zatt,i containing the list of each unique value
contained in zi. A confidence mask is applied in order to keep only the attributes that were predicted with
a confidence above a certain threshold. We finally use a one-hot encoding to obtain a vector of 0s and 1s,
describing the prediction of presence or absence of each attribute in the input RGB image xi. Because this
extraction does not allow backpropagation, the Latent Space Predictor is trained by maximising its mIOU.
It is therefore not directly trained to predict a good attribute vector zatt,i but a good segmentation map zi.
Note that this segmentation map prediction is opaque, no explanation is given as to why a certain pixel has
been predicted as representing a certain attribute.

4.3. Inference prediction and its explanation rendering through a Natural Language Explanation

When the Latent Space Predictor g and the Transparent Classifier h are trained and provide good
results on their own, we freeze their weights and compose them to evaluate the function (h ◦ g) : XY in
order to predict a class yi from xi. As the Transparent Classifier h is transparent by design, we are able to
generate a natural language explanation while making the prediction yi = h(g(xi)). As explained earlier
we produce an explanation of prediction ŷ from 3 elements:

• The intrinsic transparency of h, allowing to know what would imply a change of zatt,i on the final
prediction ŷ thanks to the learned weights in θh.



• zatt,i which takes the form of a list of attributes that can be named in natural language.

• zi which is a segmentation map, showing the position of attributes on the RGB image xi, thus taking
over the ease of understanding of the usual visual explanations.

We define the explanation function Φ : Y → E with Y the label space and E the explanation space.
The Transparent Classifier h and the Explainable Latent Space {zi, zatt,i} make it possible to produce
explanation e in natural language.

ei = Φ(h(zatt,i)) (24)

Therefore, we have the following explanation:
ei = ”Image xi represents a yi because attributes zatt,i,1, zatt,i,... and zatt,i,m are present, and the

classifier h leads those attributes respectively with weights θh,1, θh,... and θh,n to class yi.”
In addition, the segmentation map zi can be displayed as a visual explanation to show the position of

attributes zatt,i.
As a summary, the Greybox XAI framework makes a prediction yi of a random RGB image xi ∈ X

and produces an explanation ei by following Algorithm 1:

Algorithm 1 Greybox XAI framework pseudo-algorithm to produce a natural language explanation of a
prediction

Require: Input Image xi, Latent Space Predictor g, Transparent Classifier h, Explanation Function Φ
1: Step 1: Predict Explainable Latent Space
2: zi ← g(xi)
3: Step 2: Vectorize Explainable Latent Space to obtain an attribute vector
4: for j ∈ zi do
5: Append(zatt,i, j) if j /∈ zatt,i
6: end for
7: Step 3: Predict Object Class
8: yi ← h(zatt,i)
9: Step 4: Generate a Natural Language Explanation

10: ei ← Φ(h(zatt,i))
11: return Prediction yi, Natural Language Explanation ei, Segmented Image zi

5. Experimental Study

We illustrate the use of our framework with 2 datasets: MonuMAI, PASCAL-Part. The extensive use
case proving the utility of the model is developed on MonuMAI because this dataset has already been
used in the state of the art [53] to prove the utility of compositional models. The hypothesis tested is to
verify that the Greybox XAI framework is able to produce accurate and explainable predictions. Our goal
is to solve a compositional classification problem and to be able to predict for each image which object is
present, justifying this prediction by the parts-of object (attributes) of this object present on the image.

MonuMAI dataset [89] allows to classify architectural style classification from facade images. The
idea here is to be able to classify an image by predicting which type of monument is present in the image
based on the distinctive architectural attributes of the different types of monuments. This dataset contains
approximately 1500 images labelled with 4 classes (architectural styles) and containing bounding boxes
describing the presence of 15 different attributes (visible characteristics of these architectural styles).
Each image is labelled with the architectural style of the monument present on the image and bounding
boxes inform about the presence and position of the attributes present on the image. We call this dataset



Dtriple = {(xi, zi, yi)}Ni=1 with a set X of RGB images representing architectural monuments, a set Z of
bounding boxes representing architectural attributes and a set Y of architectural styles.

A Knowledge Base 2 is built based on the expert knowledge of the MonuMAI dataset [89].

KB RDF (s,p,o) triple examples

TBox (Ogee Arch, isPartOf, Gothic Monument)
(Pointed Arch, isPartOf, Gothic Monument)
(Trefoil Arch, isPartOf, Gothic Monument)
(Gothic Pinnacle, isPartOf, Gothic Monument)
(Flat Arch, isPartOf, Hispanic-Muslim Monument)
(Lobed Arch, isPartOf, Hispanic-Muslim Monument)
(Horseshoe Arch, isPartOf, Hispanic-Muslim Monument)
(Broken Pediment Arch, isPartOf, Baroque Monument)
(Solomonic Column, isPartOf, Baroque Monument)
(Rounded Arch, isPartOf, Baroque Monument)
(Rounded Arch, isPartOf, Renaissance Monument)
(Porthole Arch, isPartOf, Baroque Monument)
(Porthole Arch, isPartOf, Renaissance Monument)
(Lintelled Doorway Arch, isPartOf, Baroque Monument)
(Lintelled Doorway Arch, isPartOf, Renaissance Monument)
(Serliana, isPartOf, Renaissance Monument)
(Segmental Pediment, isPartOf, Renaissance Monument)
(Triangular Pediment, isPartOf, Renaissance Monument)

Table 2: Examples of RDF triples extracted from the MonuMAI dataset and contained in a KB terminological (TBox) and assertional
(ABox) components

We repeat the various steps described in the Section 4.2 in order to train and use the Greybox XAI
framework:

• A transparent model h is trained to predict an architectural style, using as input a vector encoding
the presence and absence of architectural attributes.

• A Deep Neural Network g is trained to predict a segmentation map from an RGB image input. Its
purpose is to detect the different architectural attributes that constitute the image.

5.1. Logistic Regression as a Transparent Classifier

The purpose of the Transparent Classifier is to represent a more accurate and closer version of the
dataset than the Knowledge Base 2 itself. In fact, the knowledge contained in the knowledge base is
very generic (for example, a Hispanic-Muslim monument has a flat arch, an horseshoe arch and a lobed
arch). However, while this is true in a general case, not all such monuments have all these attributes and
some representations (i.e. images) of these monuments may have some attributes missing. Also, in this
particular case of monuments, it is possible that some images have architectural attributes belonging to
several architectural styles. It is the result of the progressive evolution of the construction or reconstruction
processes.

In binary logistic regression the function h(zatt, θh) used to model the dependence of a regression
target yi ∈ {0, 1} on features zatt,i where yi ≈ h(zatt,i, θh) can be written as:



Following Section 4.2.2, a logistic regression h(zatt, θh) is trained on the set of attributes ‡att of the
dataset to predict classes from the set of labels Y . We compare the performance of the logistic regression
to a Naive Bayes Classifier.

Model Accuracy
Logistic Regression 97.65%
Naive Bayes Classifier 94.32%

Table 3: Mean Accuracy of 2 transparent models on MonuMAI dataset. The logistic regression have a better accuracy than the Naive
Bayes Classifier. We therefore choose to use it as the Transparent Classifier of the Greybox XAI framework

Figure 5 represent the set of trainable weights θh of the logistic regression, linking attributes from zatt
and classes from Y thanks to the relationship yi ≈ θᵀh × zatti . These weights provide a statistical link
between attributes and classes.

Figure 5: Weights of the logistic regression model fitted to link attributes and classes from the MonuMAI dataset.

From the set of trainable weights θh of the Transparent Classifier we extract a Knowledge Graph (KG)
(Figure 6) representing the link between attributes and classes. It is a visual representation of the weights
from Figure 5. If a weight is superior to 0, an edge is drawn between the 2 concerned nodes. Representing
knowledge this way has a simple explanatory interest: when an attribute is detected, it is straightforward to
see which classes are linked to this attribute. We see for example that the attributes Trefoil Arch, Pointed
Arch and Ogee Arch are only linked to the architectural style Gothic. Therefore, if those attributes are
present in the vector zatti , the class Gothic will be predicted by the Transparent Classifier.

5.2. Deeplabv3+ as a Latent Space Predictor

Logistic regression cannot remain transparent when taking images as input because the number of
parameters and variables would be far too large. Moreover, these variables would be pixels rather than
symbols. To overcome this and to make the logistic regression take as input a vector of attributes, we train
an Encoder-Decoder on the images on a semantic segmentation task. We chose to use a DeepLabv3+ [87]
as it gives the best performance on this dataset.

On this dataset we do not have a semantic segmentation image representing the ground truth but only
bounding boxes around each attribute. We use these bounding boxes to predict a segmentation map thanks
to a cross-entropy loss. As the model was trained with images annotated with bounding boxes instead
of semantic segmentation images, the segmented attributes have a square shape. It is not a problem as



Figure 6: Knowledge Graph representation automatically extracted from the Logistic Regression weights on the MonumAI dataset.
Green nodes represent attributes while yellow nodes represent classes. Distances between nodes represent weights linking attributes
and classes in the θ matrix of the fitted logistic regression model: the closer 2 nodes are, the larger the weight linking them. An edge
is set to black if the associated weight is superior to zero and transparent otherwise.



unlike most semantic segmentation models, what we are interested in here is not the mIoU or the accuracy
of the prediction at the pixel level but rather how well the attribute vector zatt,i is predicted. Since the
Transparent Classifier takes as input a one-hot encoded vector of attributes, the mIoU and the average
precision of the Deeplabv3+ have no influence on the classification result: what Greybox model focuses on
is on detecting at least once each attribute, not on detecting all pixels of each occurrence of each attribute.
Whether we detect one pixel of a given attribute or 3000 pixels of an attribute is the same because the
segmentation map is put in the form of a binary vector of attribute presence in order to be used by the
Transparent Classifier.

To generate this attribute vector, we compare the list of sorted unique elements of the predicted
semantic segmentation image and the list of attributes present in the image. Figure 7 represents on the
left an RGB image used as input to the Deeplabv3+ and on the right the predicted semantic segmentation
image. The attribute vector associated with this semantic segmentation image would be, for example,
[1, 0, 1, 1, 0, ..., 0] representing the 3 attributes (in dark cyan, pink and blue) present in the image. It is this
vector that is subsequently used by the pre-trained Transparent Classifier to predict the class of the image.

5.3. Performance of the Greybox XAI framework: Accuracy and Explainability

We judge the performance of our framework according to 2 notions: its accuracy during an image
classification task and the explainability of its prediction during this same classification task.

5.3.1. Accuracy
We evaluate our model on the image classification task and compare it to several baselines. Our model

is the Greybox XAI Framework, composed by a Deeplabv3+ and a logistic regression. The first baseline
is a Data-efficient image Transformers (DeiT) [90], a convolution-free transformer built upon the Vision
Transformer (ViT) architecture [47] and achieving state-of-the-art results over baseline datasets. In order
to obtain the best performing comparison baseline, we used the largest possible DeiT architecture (similar
to that of VIT-B), as well as the highest possible image resolution (384x384). The second baseline is a
ResNet101 classifier, in order to have a convolution-based baseline. We then compare to the EXPLANet
[53] model which is the state of the art of compositional XAI models on this database. We also build a
new baseline by modifying the DeepLabv3+ to make it a classifier. This Deeplab Classifier is a usual
Deeplabv3+ architecture, with a ResNet101 as backbone, with skip connections and atrous convolutions,
but instead of predicting the class of each pixel as in a semantic segmentation we use it in a classification
role by modifying the last layer. Instead of evaluating it by the MiOU, it is now judged by the accuracy of
the global class. By adding an AveragePooling and a Softmax after the decoder, we obtain an end-to-end
classification model. Since this is a classification task, we compare ourselves in terms of accuracy. We also
add the results on the PASCAL-Part dataset, which contains more attributes and more classes. As our model
is transparent by design, we compare ourselves separately to models considered as opaque (Transformers
like DeiT and CNNs such as ResNet or Encoder-Decoder such as Deeplabv3+) and explainable models
(such as EXPLANet).

The results of Greybox XAI4 classification model based on Deeplabv3+ semantic segmentation
backbone and a logistic regression, together with these baseline classification networks are shown in Table
4 for MonuMAI and PASCAL-Part dataset. The results show that the Greybox XAI classifier achieves
accuracy slightly inferior to the opaque models, being outperformed by approximately 2.5% each time.
However, its accuracy is far superior to the explainable baseline, which is the EXPLANet model. We
can therefore consider that there is a slight loss in accuracy compared to the opaque models but a gain
compared to the compositional models.

4https://github.com/AdrienBennetot/Greybox-

https://github.com/AdrienBennetot/Greybox-


Figure 7: Example of results obtained using semantic segmentation. Image a) represents the RGB input data and Image b) represents
the Ground Truth of semantic segmentation masks. Image c) represents the result of this segmentation by the Latent Space Predictor
and image d) is an overlay of the prediction on the input image, in order to see where the detected attributes are. The black pixels
represent the background, the cyan and pink pixels represent two architectural attributes.



Dataset Model Accuracy (%)
Comparison with Opaque Models
MonuMAI Greybox XAI (our) 94.04

Deeplabv3+ Classifier 96.02
DeiT-B 96.48
ResNet101 95.69
MonuNet Classifier 83.11

PASCAL-Part Greybox XAI (our) 88.30
Deeplabv3+ Classifier 90.18
DeiT-B 90.85
ResNet101 90.12

Comparison with Explainable Models
MonuMAI Greybox XAI (our) 94.04

KG Deterministic Classifier 54.79
EXPLANet 90.40

PASCAL-Part Greybox XAI (our) 88.30
EXPLANet 82.4

Table 4: Explainable compositional vs opaque direct classification: Results of the Greybox XAI model (using semantic segmentation
Deeplabv3+ and a logistic regression) on MonuMAI and PASCAL-Part datasets, and comparison with embedded version of the
baseline model MonuNet, a vanilla classifier baseline with ResNet101, a transformer model with DeiT, an expert KG-based
deterministic (non-trained) classifier, the compositional model EXPLANet and a classifier derived from Deeplabv3+

The loss in accuracy compared to opaque models should be counterbalanced by a benefit in explain-
ability because the Greybox XAI is transparent by design when used for a classification task (see Section
4.2.2) and produces ”good” explanations (objective and intrinsic).

5.3.2. Explainability
In order to verify whether the explanations generated by the Greybox XAI are valid we compare the

Knowledge Graph extracted directly from the Transparent Classifier weights in Figure 6 and the expert
Knowledge Graph Figure 8. This figure is taken from [53] and represents MonuMAI Knowledge Graph
constructed based on art historians expert knowledge [89]. The KG is extracted from the Transparent
Classifier by creating a node for every part-of and objects of the weights matrix and by drawing an edge
between nodes for every weights superior to 0. The Graph Edit Distance (GED) [91] between the two KG
is equal to zero, meaning that the explanation of the Transparent Classifier is the same as the ones art
historians experts would have produced. Therefore, we can consider that these explanations are globally
valid if the semantic segmentation is correct.

We also verify if our framework is a self-explaining prediction model according to the definition of
[75], i.e. if it has the form:

f(x) = g(θ(x)1h(x)1, ..., θ(x)kh(x)k) (25)

where:

• g is monotone and completely additively separable

• For every zi := θi(x)hi(x), g satisfies ∂g
∂zi
≥ 0

• θ is locally difference bounded by h

• hi(x) is an interpretable representation of x



Figure 8: Simplified MonuMAI knowledge graph constructed based on art historians expert knowledge [53, 89]. It links attributes
and classes in a graphical representation and shows, for example, that a Hispanic-Muslim monument is composed by Flat Arches,
Horseshoe Arches and Lobed Arches. This graph representing the expert knowledge of the dataset is similar to the one extracted by
the Transparent Classifier.



• k is small

Taking Equation 12, Greybox XAI framework can be written:

f(x) = (h ◦ g)(x) = h(g(xi, θg), θh) ≈ θh,1zatt,1, ..., θh,nzatt,n (26)

where:

• The Transparent Classifier h is monotone and completely additive separable as it can be approxi-
mated with the multiplication between the weight matrix θh and the features.

• Partial derivative of h with respect to θh,izatt,i is positive.

• θh is locally difference-bounded by zatt,i.

• zatt,i is an interpretable representation of x as zatt,i are nameable features.

• n = is small as interactions of the logistic regression are kept to a minimum to respect the definition
of simulatability.

From these different elements, we can conclude that the Greybox XAI model is transparent and
produces ”good” explanations when used for the task of image classification. Moreover, it is possible
to accompany this textual explanation by a visualization, showing the semantic segmentation image
masks used to determine the attribute vector ‡att employed by the Transparent Classifier to perform the
classification. Figure 9 shows an example of the visualization that can be produced. This image has been
classified as Gothic based on the different attributes detected by the Latent Space Predictor. The predicted
semantic segmentation map can be overlaid on top of the RGB input to visualize where these features are
located. The image on the right shows all pixels that were used during classification. These are obtained
by removing every pixel segmented as being a background pixel.

Figure 9: Visual explanation of the Greybox XAI model. The image in the upper left corner is the RGB input that the model must
classify. In the bottom left corner is the semantic segmentation image predicted by the model, showing in black the pixels classified
as part of the background. Cyan and black pixels represents two attributes. In the middle the superposition of the two images on the
left, removing black pixels from the background to keep only the elements that will be used in the logistic regression. Finally, the
image on the right is the same sample image but replacing the attributes by their RGB value and hiding the background pixels, which
are not used during the classification by the Transparent Classifier as it only uses as input an attribute vector.



Figure 9 illustrates the ideal case where the semantic segmentation performed is perfect and the ensuing
classification is also perfect. However, there are some cases where the prediction of the segmentation map
is either flawed or false, which is sometimes inconsequential but that will sometimes distort the prediction.
Below we present the different cases observed and associated example.

Example 1. Incomplete segmentation, correct prediction:
Some occurrences of an attribute are not detected. As vectorization does not take into account the

number of occurrences of each attribute, this has no impact on the prediction or the explanation. However,
the predicted segmentation map is far from the real segmentation map, which gives an incomplete visual
explanation. See Figure 10. This is the kind of example that ultimately has no impact on the result:
the prediction remains correct and the explanation is valid and complete because it addresses the 2
main elements detected. The fact that some occurrences of one of the attributes are forgotten is of little
importance for our classification task. However, for a detection task where detecting each and every
instance of an object type is critical, it could have been very problematic. A future improvement could be
using an Optimized Loss Function for Object detection [92] when training the Latent Space Predictor in
order to improve the detection.

Figure 10: Incomplete segmentation, correct prediction. Example of results obtained using semantic segmentation. Image a)
represents the RGB input data and Image b) represents the semantic segmentation masks of the Ground Truth, which the Latent
Space Predictor must predict. Image c) represents the result of this segmentation and image d) is an overlay of the prediction on the
input image, in order to see where the detected attributes are. Black pixels represent the background, cyan and red pixels represent
two architectural attributes. The red attribute is missing 5 times compared to the GT but it has no impact on the prediction nor the
explanation.

Example 2. Wrong segmentation, correct prediction:
Some attributes are missing but the classification does not change as the detected attributes are already

discriminative enough for the Transparent Classifier. See Figure 11. Here it is complicated to judge the
validity of the explanation without being an expert: is the explanation complete enough by talking about
the cyan and red attributes or was the blue attribute indispensable for the classification of this monument?
Looking at the Transparent Classifier weight matrix, we can see how important the blue attribute should
have been in the prediction. A higher quality segmentation would correct this case of model failure: if the
blue attribute had been detected, the image would have been predicted correctly.



Figure 11: Wrong segmentation, correct prediction. Example of results obtained using semantic segmentation. Image a) represents
the RGB input data and Image b) represents the semantic segmentation masks of the Ground Truth, which the Latent Space Predictor
must predict. Image c) represents the result of this segmentation and image d) is an overlay of the prediction on the input image, in
order to see where the detected attributes are. The black pixels represent the background, the colored pixels represent architectural
attributes. The red attribute is missing several times and the blue one is totally absent compared to the GT but it has no impact on the
prediction, as the presence of the red and cyan elements are enough to consider that this monument is Gothic.

Example 3. Wrong segmentation, wrong prediction:
Some attributes are detected while they are not existing in the ground truth. It makes the classification

totally wrong. See Figure 12. This error is more problematic than the previous one because it misleads the
user by giving an invalid explanation. The model is not Right for the Right Reason. This is primarily a
semantic segmentation problem: the model should not have seen the yellow attribute and the cyan attribute.
The model could thus be improved, perhaps with the use of a weighted FocalLoss[93] to penalize more
strongly a wrong attribute detection.

5.4. Counterfactual Explanations

While an explanation refers to a description of the internal state or logic of an algorithm that leads
to a decision, a counterfactual describes a dependency on external facts that led to that decision [94].
This allows to have an actionable element in the explanation, allowing to know what could have caused
a change in the prediction [95]. In short, a counterfactual is the answer to the question ”If X had not
occurred, Y would not have occurred.”. It describes the smallest plausible change [96] to the feature values
that changes the prediction to a predefined output [97]. Several methods exist to produce counterfactual
explanations [98, 99, 100, 101, 102]. With Greybox XAI framework, we propose to answer the question
”Which object would have been predicted if a different object part had been detected?” to find the equivalent
of a counterfactual example for a specific prediction. We do not propose to compute what would be the
minimal change in the object prediction, or in the initial semantic segmentation, but rather to see what
the final prediction would have been if the Explainable Latent Space of detected object parts had been
different. For a given attribute vector zatt,i detected by the Latent Space Predictor, the probability that the



Figure 12: Wrong segmentation, wrong prediction.. Example of results obtained using semantic segmentation. Image a) represents
the RGB input data and Image b) represents the semantic segmentation masks of the Ground Truth, which the Latent Space Predictor
must predict. Image c) represents the result of this segmentation and image d) is an overlay of the prediction on the input image, in
order to see where the detected attributes are. The black pixels represent the background, the colored pixels represent architectural
attributes. The red and blue attributes are missing several times and the yellow, pink and cyan where added while they do not exist in
the GT. As the Latent Space Predictor segments the image badly, the Transparent Classifier is not able to correctly predict the class.

predicted class yi is the class k is expressed as follows:

p(yi = k|zatt,i; θh) =
exp

{
(θᵀh,jzatt,i)

}
∑K
j=1(θᵀh,jzatt,i,j)

(27)

with θᵀh,j the weight matrix of the Transparent Classifier. The attribute vector zatt,i being composed of
0 and 1, each probability yi = k is written as an exponential fraction of a sum of weights. Thus, it is
straightforward to calculate how much a change between a 1 and a 0 in the attribute vector zatt,i would
change in the prediction.

6. Discussion

Although we have shown that the Greybox XAI framework, a compositional transparent model, is
capable of achieving an image classification with a satisfying accuracy, this is largely caused by the quality
of the attributes present in the dataset describing the set of classes. Without the presence of discriminative
attributes in the dataset, it would not be possible to perform this kind of compositional classification. As
an example, we can see on Figure 6 that the classes Baroque and Renaissance share 3 attributes: Rounded
Arch, Lintelled Doorway and Porthole. Thus, if only these 3 attributes are detected, it is possible that the
network is wrong. Figure 5 gives the weights of these attributes for the Baroque and Renaissance classes:

• Rounded Arch (Baroque: 0.13, Renaissance: 0.01)

• Lintelled Doorway (Baroque: 0.07, Renaissance: 0.01)

• Porthole (Baroque: 0.1, Renaissance: 0.04)



Thus, the presence (i.e., as output by the (object-part) detector) of these 3 elements will cause the
prediction ”Baroque” when it could just as well be, according to the expert KG, a Renaissance monument.
Further human evaluation may be required to inspect outputs of these types, e.g., verifying that indeed the
highest probabilities detected object parts indeed correspond to the top-most probable detected components
in that image, and that no other object element that entirely discriminates to predict a particular class exists.

In addition, the Transparent Classifier accuracy depends on the Latent Space Predictor performances.
Moreover, using a classification based on concrete features forsakes one of the advantages of neural
networks, which is to use abstract features. Furthermore, this framework is only compatible with a
classification task. Several usual Computer Vision tasks (segmentation, detection) cannot be explained
by this framework. Therefore, there is no explainability progress for the Latent Space Predictor. Finally,
the properties of the attributes (position, dimension, numbers) are not used by the Transparent Classifier
resulting in a loss of information.

However, the gain in explainability is important and the possibility to know exactly why a certain
prediction happened is very useful. Our framework allows inserting human knowledge, since the annotation
of attributes in the image to be classified is indeed done by a human. Furthermore, we show that our
framework can elicit explanations relating attributes to predicted labels, which can be offered in a human-
readable form and serve for validating whether the explanations of the framework concur with his/her
expert knowledge. We hope this will motivate the research community to build datasets that inherently
provide a greater granularity and hierarchy in the organisation of datasets, in order to move from the widely
used (image, class) pair to triples (images, attributes, classes).

An important element to note about this model is its actionability. As we have seen in the examples of
the Figures 10, 11 and 12, having the possibility to visualize the explanations of the predictions made by
the model allows to explore ways to improve its performances, by correcting its predictions, or the validity
of the explanations, by correcting the semantic segmentation.

7. Conclusions and Future Work

The contribution proposed in this article are:

• A formalisation of what is a ”good” explanation. We propose 3 criteria - objectivity, intrinsicality,
validity - to assert that an explanation is ”good” or not.

• The Greybox XAI, a compositional framework for explainable classification. It is composed by a
black box Latent Space Predictor and a Transparent Classifier.

We proved that this framework is transparent and produces ”good” explanations, based on attributes
segmented on the image. We tested it on 2 datasets and showed that it has SOTA results compared
to compsotional models. Nevertheless, the accuracy is lower than for opaque end-to-end CNNs like
ResNet101 or Transformers like DeiT-B.

One of the reasons why accuracy is not at the level of models like DeiT-B is that the semantic
segmentation performed by the Latent Space Predictor is not perfect. This means that the Transparent
Classifier takes as input a sometimes distorted or incomplete representation of the RGB image to classify.
Since the vectorization of the segmentation map do not include a gradient, it is not possible to perform
a direct backpropagation between the Transparent Classifier and the Latent Space Predictor. Future
work could therefore involve finding a way to influence the semantic segmentation using the Transparent
Classifier. Also, the representation of the image in the Explainable Latent Space causes a significant loss
of information because the attributes are not enumerated and their relative dimensions and positions are
not taken into account. Future work will involve the encoding of this information in the Explainable Latent
Space, in order to be able to explain a prediction based on the size and position of the objects. Finally,
the Transparent Classifier is here a simple logistic regression. The use of Logic Tensor Networks [22]



could allow to improve the model by using real logic beyond unique is-a relationships. Also, it would
be interesting to test this framework on a new benchmark dataset specifically containing images that are
labeled with position of objects, object groupings and relational concept such as those involved in solving
the challenges of Kandinsky Patterns[103, 104]

Finally, let’s take look at the Renaissance line in the Figure 5. We see that the attributes are not very
discriminative in favor of this class: the highest positive value is a weight of 0.14 for the attribute Serliana.
On the contrary, some attributes like Ogee Arch or Column Salomnic have a weight of -0.38 and -0.36,
which implies that their presence leads to an absence of Renaissance monument. Thus, it may be difficult
to recognize a renaissance monument because if a Serliana is not detected the class will have difficulty
in gaining the upper hand. It is therefore interesting to check whether this particular attribute is detected
with good accuracy. An attribute like Triangular Pediment which has for biggest absolute weight a 0.03 is
almost useless in the prediction. We can therefore give it less importance during the semantic segmentation.
Thus, the weight matrix could be used in the future to fine-tune the semantic segmentation so as to give
importance to certain attributes in particular (the highest absolute value like Horseshoe Arch or Ogee Arch)
and to neglect others.
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