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a b s t r a c t

We consider an economy where many sellers sell identical goods to many buyers. Each seller has a
unit supply and each buyer has a unit demand. The only possible information flow about prices is
through costly advertising. We show that in equilibrium the sellers use mixed strategies in pricing
which leads to price and advertisement distributions. With convex advertising costs each seller sends
only one advertisement in the market. We also delineate a class of advertising costs which ensures
that sellers may send multiple advertisements in equilibrium. Higher prices are advertised more than
lower prices.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Butters’s (1977) article on informative advertising is seminal
n at least two respects. First, it is an equilibrium analysis of
irms that compete both by prices and advertising. Secondly, the
rn–ball meeting technology, which has become widely used in
any fields in economics (in particular directed search models),

s introduced. In the model there are multiple firms that produce
homogeneous good at a constant marginal cost. There are many
onsumers each with a unit demand and identical valuations. The
onsumers neither know where the goods are available, nor at
hich prices, unless they receive advertisements (ads, hereafter)

rom the firms. The firms send multiple ads at a constant unit
ost, and the ads are randomly allocated amongst the consumers.
onsumers who do not receive any ads cannot consume (there
s no search by uninformed consumers). If a consumer receives
ultiple ads, she contacts the firm with the lowest price. In equi-

ibrium the firms mix over prices which leads to price dispersion.
ll the firms send the same number of ads.
In the empirical advertising literature there are many papers

hich suggest that heavily advertised brands are more expensive
han are less-advertised goods within the same class of goods
see Bagwell, 2007 for a comprehensive review of the litera-
ure). This phenomenon has been usually explained by persuasive
dvertising that alters consumers’ tastes and brand loyalty. We
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apply a version of Butters’s model, and show that this positive
relationship between prices and advertising is a natural feature
of informative advertising, too.1 To achieve this result we deviate
from Butters’s model in two respects.

First, we assume that the firms are capacity constrained each
firm possessing just one unit of an indivisible good. In Butters
(1977) the firms have unlimited capacity which is in stark con-
trast with the more recent directed search literature: sellers have
just one unit for sale (e.g. Burdett, Shi, and Wright, 2001), or firms
have just one vacancy (e.g. Pissarides, 2000 and Shimer, 2005).

Second, we generalise the advertising cost scheme by consid-
ering a large class of cost functions which plays a crucial role in
our set-up.

If the cost function is convex, as in Butters (1977), we show
that each firm sends only one ad in equilibrium. Pricing is in
mixed strategies, and the equilibrium price distribution of our
model coincides with Butters (1977) once the parametrisation
between the papers is harmonised (the number of consumers
and their valuations of the good are normalised to unity and
the cost of production to zero). This is a surprising result as
the capacity constraint seems to play no role in pricing. The
explanation hinges on the linear cost function in Butters (1977):
sending k more ads is equivalent to adding k more firms who
send one ad each. Hence, the equilibrium of Butters (1977) can
be interpreted as a case in which each firm sends a single ad and
there is a free entry.2

1 We point out that interpreting the low prices that result from the mixed
ricing strategy as ‘sale’-prices is misleading. The concept of a sale would require
multiperiod model and it does not make sense in our static model.
2 Butters (1977) studies the limit case in which the number of firms is taken

o infinity which makes each firm’s profits zero. This limit case resembles free
ntry of firms. Moreover, as the number of the firms goes to infinity, there are
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Our main contribution is to delineate a class of cost functions
such that in equilibrium multiple ads are sent. Pricing is still in
mixed strategies. In equilibrium the support of the mixed strategy
is divided into intervals such that in each interval the firms send
the same number of ads, and the number of ads increases with
the price. To the best of our knowledge, this is a somewhat novel
equilibrium in the theoretical advertising literature.

In a multiple-ad equilibrium the advertising costs must be
sufficiently concave. The positive relationship between the prices
and the number of ads arises as the firms that price low do not
face much competition, while those who price high are likely
to be undercut if they send only one ad. Sending more ads
increases the probability of a sale and the expected revenue. If
the increase in revenue is greater than the increase in advertising
costs, then the firm can also ask a higher price (in equilibrium
these two effects must be equal). Since in our model the firms
have a limited capacity and there is competition for the potential
consumers, advertising has diminishing marginal revenue. Hence,
price-increasing advertising necessitates, indeed, that the adver-
tising expenditure per ad must fall as more ads are sent in a
multiple-ad equilibrium.

On the other hand, the advertising costs cannot grow too
slowly. The construction of the equilibrium presupposes that the
consumers always contact the firm with the lowest price. This is
obvious if there are no capacity constraints (i.e., in Butters, 1977);
a consumer who contacts a firm always gets an object. However,
if the firms are capacity constrained, not every consumer who
receives an ad gets an object. This implies that a consumer who
receives multiple ads may find it profitable to choose a higher
price offer if it is more probable that she gets the object. To
guarantee that the consumers contact the firm with the lowest
price there is a minimum speed at which the costs have to
increase. It is somewhat surprising that making the lowest priced
good the most desirable for the consumers restricts the possible
cost functions of the advertisers; this emphasises that the logic of
the model with capacity constrained firms is different from that
of unlimited capacity.

We delineate a class of cost functions that supports an equi-
librium with multiple ads by using functional equations. The func-
tional equations determine the upper and lower bounds for the
changes in advertising costs. In this class, the equilibrium can be
determined simply by examining the successive differences of the
cost function. Moreover, the cost of the first ad (which can also
include the entry or capacity costs) immediately fixes the highest
possible number of ads sent by a single firm in equilibrium. It
turns out that this maximum is decreasing in the cost of the first
ad.

The theoretical contribution of our model stems from high-
lighting the issues that arise once we give up the assumption
of unlimited capacity. In particular, constructing an equilibrium
where the consumers regard low prices as more attractive than
high prices turns out to restrict the growth of the cost function
from below, while, more expectedly, the firms are willing to send
multiple ads only if the growth rate is restricted from above. One
would expect the same issues to arise if capacity were allowed to
be at any finite level.

The positive association between the price and the number
of ads requires the capacity constraint. We elaborate this in
Section 5.

This paper is organised as follows: In Section 2 we relate
our analysis to the literature. In Section 3 we list the set of
assumptions and build the model. In Section 4 we define and
construct so-called configurations for different amounts of ads

some firms that do not send any ads, which can be interpreted as free exit of
firms.
 l

2

sent in the market. After that we study which conditions are
needed for a configuration to be an equilibrium. In Section 5 we
discuss our findings, and in Section 6 we conclude the paper. We
relegate all the proofs to the Appendix to improve readability.

2. Related literature

Our analysis contributes to two different fields. The first con-
sists of directed search models originated by Peters (1991) and
Montgomery (1991). A typical application consists of buyers and
sellers, the latter ones posting prices. These models aim to depict
markets with frictions. The frictions are of coordination type, and
they arise as each seller has only one good but in equilibrium
she may be contacted by several buyers, or no buyers at all. The
frictions, however, arise in a symmetric equilibrium; depending
on the details of the model there may be asymmetric equilibria
which do not give rise to frictions. Instead of price posting the
sellers in our model send ads, and only those who receive the
ads get informed about the offers in the market. In this set-up
there is a unique equilibrium that gives rise to frictions.

Our results, in particular the price distribution, is reminiscent
of what happens in models of noisy search. In these models there
are features of directed search but the agents have only partial
or noisy information about some aspects of the environment.
For instance, in Shi (2018) the buyers enter a submarket based
on the maximum price the sellers commit not to exceed. In the
submarket the sellers contact the buyers making offers without
knowing how many other sellers contact the same buyer. The
optimal behaviour in the price offer subgame is mixing, and this
results in a price distribution. In a similar vein Bethune et al.
(2020) in a model of money and credit, and Acemoglu and Shimer
(2000) in a model of labour market, assume that the contacting
parties choose how much information they acquire about the
deals available. In equilibrium they have only partial information
which leads the parties who offer the deals to use mixed strate-
gies as the buyers’ partial information gives the offerers some
monopoly power but at the same time exposes them to some
competitive pressures. In our set-up the buyers have only partial
information, albeit endogenously determined, about the available
deals, while the sellers still face some competition as a buyer
may get ads from several sellers. It is worth noticing that unlike
in Bethune et al. (2020) and Acemoglu and Shimer (2000) it is the
party that offers the deals, i.e., the sellers, who are responsible for
the noisy environment.

The second field naturally deals with the economics of adver-
tising. This is a very large area covered for instance in Bagwell
(2007). We only mention a couple of models that are directly
related to Butters (1977).

Robert and Stahl (1993) allow the consumers who remain
uninformed to search. The model still exhibits price dispersion
but a mass of sellers charge the highest price that is paid only
by the searchers. Roberts and Stahl assume strictly convex ad-
vertising costs, and find that firms advertise lower prices more
intensively which is just the opposite of our result. Convex costs
and uninformed searchers imply that firms advertise ‘‘sale’’ prices
more than high prices in equilibrium.3

In McAfee (1994) the firms choose a continuous advertising
intensity instead of physical ads as in Butters (1977). McAfee
shows that when the firms first choose the intensity and only
after that the price, there is one high-intensity high-price firm
in equilibrium, while the other firms advertise at lower intensity
and mix in prices.

3 Search makes the marginal benefit of sending an offer with a high price
maller than with a low price. In equilibrium the marginal benefit must be equal
o the marginal cost, and then the convexity of advertising costs implies that
ow prices are advertised more than high prices.
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Gomis-Porqueras, Julien, and Wang (2017) study a model
which differs from Butters (1977) in two respects. Firms are
capacity constrained, and advertising takes place by choosing
intensity continuously. The cost of intensity is assumed convex
and increasing, while we study a broader class of advertising
cost schemes. Moreover, in our model each firm sends a finite
number of ads, and there is a discrete jump in the cost between
zero and one ads. This means that in our set-up it is natural to
assume free entry and exit. In Gomis-Porqueras et al. (2017) the
intensity of advertising can be continuously adjusted, and the
market tightness is taken as a parameter. They study trading by
both posted prices and auction, and in both cases find a unique
equilibrium in pure strategies. As the number of firms is fixed the
advertising intensity is non-monotonic in the number of buyers.
If there are relatively many buyers there is little competition,
and a low intensity in advertising results in trade with high
probability. If there are relatively few buyers then there is a
lot of competition, and the marginal pay-off from advertising is
low. Consequently, the equilibrium advertising intensity is low.
Between these extremes there is some competition and a need to
make sure that advertising reaches the buyers. As a result there
is more advertising than at the extremes. If, in our model, the
number of firms were fixed we would expect same kind of non-
monotonicity; with relatively few buyers some firms would not
advertise at all.

3. Model

In the spirit of Butters (1977), we assume the following:

(i) There is a large economy with S sellers and B buyers.
Denote the ratio of sellers to buyers by θ =

S
B . Since

this ratio is the only relevant magnitude in the sequel, we
normalise B = 1. Then the number of sellers is S = θ .

(ii) All the sellers are risk neutral and have a unit supply of an
identical good. They value the good at zero. Also the buyers
are risk neutral and have a unit demand. The buyers value
the good at unity.

(iii) There is free entry and exit of sellers.
(iv) The sellers can sell their goods only via sending ads. An ad

contains the location and price of the good. Buyers who do
not receive any ads cannot shop at all.

(v) The price and the number of ads are the choice variables
of a seller.

(vi) The cost of sending k ads is given by function c(k) where
c : N0 → R+ such that c(0) = 0 and for all k ∈ N0,
∆c(k + 1) ≡ c(k + 1) − c(k) > 0.

(vii) Buyers receive ads randomly and independently of all other
ads and each buyer has an equal probability of receiving
each offer. Receiving an ad and sending orders (i.e. con-
tacting a seller) are costless for a buyer. Buyers can contact
exactly one seller.

The timing of the static game is as follows. First, sellers set
prices and send ads. Second, each buyer who has received an
ad (or ads) makes an order. Lastly, the orders are executed by
sellers. If a seller receives many orders, she chooses randomly
with equal probabilities one buyer with whom to trade. There is
no discounting between stages.

Since we consider a large economy where there is an infinite
number of buyers and sellers, the random process by which the
ads are allocated follows the Poisson distribution.4

4 The idea is basically based on the following argument. Assume that there
re N discrete buyers, and each buyer has an equal probability of getting an ad
that is, 1

N . Then for any total amount of ads θN , each buyer receives zero ads

ith probability
(
1 −

1
N

)θN
. This converges to e−θ as N goes to infinity. This is

the Poisson probability with parameter θ > 0.
 d

3

In equilibrium, the sellers use mixed strategies in pricing. This
can be seen by assuming the opposite. Suppose that all the sellers
ask the same price and send a single ad. Then lowering the price
a little leads to a discrete increase in the selling probability when
a potential buyer receives ads from multiple sellers. This further
increases the profits which is a contradiction. The same logic
shows that there are no mass points or gaps which means that
the support of the mixed strategy is some interval [l,U] ⊂ R.
The highest price is the value of buyers, U = 1, by two reasons.
First, it is clear that it is never profitable to ask price greater than
the value of the buyers. Second, if U were less than 1, then it
would be profitable to increase the price since it does not change
the probability of sale (a buyer contacts a seller with the highest
price only if she does not receive ads from any other seller).
For the seller who asks the lowest price in the support, l, it is
ptimal to send only one ad; an ad always reaches a buyer and
he probability of a sale with the lowest price is 1. The free entry
nd exit assumption implies that we must have l = c(1).
A seller who asks the lowest price need not send more than

ne ad since this always leads to a sale. If each buyer chooses the
owest price offer she receives, then a seller who asks the highest
rice only sells if a buyer who receives his ad does not receive
ny other ads. In this light, we construct the equilibrium of the
ollowing type. Depending on the price, sellers send different
umbers of ads such that the higher the price, the higher the
umber of ads sent. Denote a partition of a unit interval by Pn =

pi}ni=−1 where pi−1 < pi for all i ∈ {0, 1, . . . , n}, p−1 = 0, and
pn = 1. A seller who advertises a price p ∈ [pi−1, pi) sends i ads,
and a seller with the highest price, pn, sends n ads. The partition of
the unit interval with a maximum of n ads is illustrated in Fig. 1.

The equilibrium mixed strategy F is a probability distribu-
tion over [p0, pn] defined piecewise for each subinterval of the
partition. The corresponding probability density function of F is
denoted by f and called a price distribution.5 In equilibrium, each
seller makes zero profits (due to free entry). Here we assume that
the buyers who receive multiple ads always contact the seller
with the lowest price; we return to this point in Section 4.2.

4. Results

In this section we define configurations related to the partition
of the unit interval; these are used to construct an equilibrium.
In a 1-configuration all the sellers send exactly one ad, in a 2-
configuration some sellers (low pricing ones) send one ad, and
the others two ads, and in an n-configuration the sellers send
different numbers of ads between one and n as depicted in Fig. 1.
In other words, configurations are indexed by their maximum
number of ads that are sent. If no one wants to send more ads in a
configuration and each buyer chooses the lowest price offer that
she receives, then the configuration constitutes an equilibrium.
That is why we start the analysis with careful derivation of
configurations.

After defining configurations, we determine the conditions on
the advertising costs that guarantee that a configuration con-
stitutes an equilibrium. In particular, we determine a class of
cost functions under which an n-configuration constitutes an
equilibrium.

4.1. Configurations

For the formal definition of a configuration we need the fol-
lowing components:

5 Note that by a price distribution we refer to a density function, not the
istribution function.
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1. The partition of the unit interval Pn = {pi}ni=−1 which
assigns prices to the number of ads such that sellers with
prices in [pi−1, pi) sends i ads for all i ∈ {0, 1, . . . , n} and a
seller with the highest price pn sends n ads.

2. The mixed strategy Fn over [p0, pn] defined piecewise for
each subinterval of the partition:

Fn(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (1)
n (p) for p ∈ [p0, p1)
F (2)
n (p) for p ∈ [p1, p2)

...

F (n)
n (p) for p ∈ [pn−1, pn].

Since there are no gaps or mass points in the support, we
have F (i)

n (pi) = F (i+1)
n (pi) for all i ∈ {1, 2, . . . , n − 1}.

3. The number of sellers θn.

Since the partition, the mixed strategy, and the number of sellers
vary with configurations, we use the subscripts in each compo-
nent to refer to the index of a configuration.

Using these components we define the expected number of
ads with price less than p ∈ [pi−1, pi] as follows:

λn(p) =

i−1∑
j=1

j ·
(
F (j)
n (pj) − F (j)

n (pj−1)
)
·θn + i ·

(
F (i)
n (p) − F (i)

n (pi−1)
)
·θn,

(1)

here term j ·
(
F (j)
n (pj) − F (j)

n (pj−1)
)

·θn is the number of ads times
he expected number of sellers who send j ads. In particular, the
otal (expected) number of ads is

n(pn) =

n∑
i=1

i ·
(
F (i)
n (pi) − F (i)

n (pi−1)
)
· θn.

Next, consider a seller who sends k ads with price p ∈ [p0, pn],
nd a buyer who receives her ad. Assume that the buyer chooses
he lowest price offer that she receives.6 The number of ads
ith a price lower than p is distributed as Poisson(λn(p)).7 Hence,
he buyer who receives the seller’s ad contacts the seller with
robability e−λn(p), which is the probability that the buyer receives
ero ads from price range of [p0, p). The probability that the buyer
oes not contact the seller is 1−e−λn(p). Consequently, the seller’s
xpected profit by sending k ads at price p is given by

n(p, k) =

(
1 −

(
1 − e−λn(p)

)k)
p − c(k), (3)

6 In Section 4.2 we determine conditions when this is, indeed, optimal
ehaviour.
7 This is due to the properties of the Poisson distribution. Buyers receive

T ∼ Poisson(λn(1)) ads in total. The probability of each of these ads has a price
less than p ∈ [pi−1, pi] is λn(p)

λn(1)
. The probability for a buyer to receive nL ads with

rice offer less than p therefore equals

∞∑
T =nL

e−λn(1) λn(1)nT

nT !

(
nT

nL

)(
λn(p)
λn(1)

)nL (
1 −

λn(p)
λn(1)

)nT −nL
= e−λn(p) λn(p)nL

nL!
.

(2)
That is, nL ∼ Poisson(λn(p)) (see, e.g., Lester et al. (2015)). We thank the
referee for suggesting this clarification.
4

where
(
1 −

(
1 − e−λn(p)

)k) is the probability that a seller who
sends k ads at price p is contacted by at least one buyer.

Using this notation we can give the formal definition of an
n-configuration.

Definition 1. An n-configuration is a triplet (Pn, Fn, θn) which
solves the following system of equations for i ∈ {1, 2, . . . , n}:

πn(p, i) = 0 for all p ∈ [pi−1, pi] (ZPi)

πn(pi−1, i − 1) = πn(pi−1, i). (Ii)

Condition (ZPi) is the zero profit condition which says that
each seller has to make zero profits by setting any price p ∈

[pi−1, pi] and sending i ads. Conditions (Ii) for all i ∈ {1, 2, . . . , n}
are indifference conditions which require that a seller who sets
price pi−1 must be indifferent between sending i−1 and i ads for
all i ∈ {1, 2, . . . , n}. Note that a configuration is not necessarily
an equilibrium, but an equilibrium is a configuration. Before we
go in more detail into this, we prove that if we find a partition
for a configuration, then it is unique. Then given partition Pn, it
is always possible to uniquely determine mixed strategies Fn and
the number of sellers θn.

Proposition 1. If an n-configuration exists, then it is unique.

Proposition 1 is a technical result which shows that if an
n-configuration exists, it has a unique partition Pn, and given
that partition, the total number of ads with price less than p ∈

[pi−1, pi] is given by

λn(p) = − log

(
1 −

i

√
1 −

c(i)
p

)
, (4)

the mixed strategy over [pi−1, pi] for the ith subinterval of the
partition by

F (i)
n (p) =

1
θn

⎡⎣λn(p)
i

+

i−1∑
j=1

λn(pj)
j(j + 1)

⎤⎦ , (5)

and the number of sellers by

θn =

⎡⎣λn(pn)
n

+

n−1∑
j=1

λn(pj)
j(j + 1)

⎤⎦ . (6)

In words, a configuration is completely pinned down by the
maximum number of ads and advertising costs c(·).

Notice that an (n − 1)-configuration and an n-configuration
atisfy the same zero profit and indifference conditions up until
rice pn−2. Consequently, the partitions in both configurations are
he same except that the last subinterval is divided in two in
he n-configuration. The number of sellers changes, but for any
rice p ≤ pn−2 in any subinterval the number of ads remains the

same. The mixed strategy in each subinterval has a logarithmic
form, and the price distribution is decreasing and convex in each
subinterval of the partition.
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Fig. 2. The partition of the unit interval in a 1-configuration.
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Next we give an example of a 1-configuration where each
eller sends a single ad. In the Appendix we derive 2- and 3-
onfigurations (Examples 2 and 3). Solving the 1- and 2-
onfigurations is pretty simple, but determining the partition of
he unit interval for the 3-configuration requires solving of a
ubic equation and gets somewhat arduous. Constructing higher-
ndexed configurations is probably possible only numerically.

xample 1. Consider a market in which each seller sends only
one ad at maximum. A seller who sets the lowest price, p0, sells
her good for sure and earns p0 − c(1). Since free entry implies
zero profits, we must have p0 = c(1), and the partition of the
unit interval becomes P1 = {0, c(1), 1}.

Since in the 1-configuration each seller sends a single ad, the
total number of ads is the same as the number of sellers θ . A seller
who asks the highest price, 1, sells only if the buyer who receives
her ad does not get any other ads; this happens with probability
e−θ . The zero profit condition requires e−θ

− c(1) = 0, which
implies that the number of sellers in the market is θ = − log c(1).

We know that all the sellers have to get the same revenue
from sending a single ad and setting a price according to the
mixed strategy, F . Consider a seller who sends an ad with price
p ∈ (c(1), 1). Her expected revenue is e−F (p)θp−c(1), where e−F (p)θ

is the probability that a buyer who receives the seller’s ad does
not receive any other ads with price less than p. Then we can use
the zero profit condition and substitute θ = − log c(1) into this
and obtain

F (p) = 1 −
log p

log c(1)
.

We have thus found a unique 1-configuration that consists
of the following three elements: (i) partition of the unit interval
P1 = {0, c(1), 1}, (ii) mixed strategy F (p) = 1 −

log p
log c(1) , for

p ∈ [c(1), 1], and (iii) number of sellers θ = − log c(1).
The partition of the unit interval and an example of a price

distribution with c(1) =
1
2 are given in Figs. 2 and 3.

The 1-configuration constitutes an equilibrium if no seller
inds it profitable to send more than 1 ad. It turns out that if the
dvertising cost function is convex, then each seller sends exactly
ne ad in equilibrium. This is the case in Butters (1977) where
he advertising costs are linear. We postpone the proof of this for
ater analysis where we have the sufficient tools and notation.

.2. Equilibrium

In this section we construct an equilibrium. There are two
hings that could go wrong with an n-configuration to be an
quilibrium. The first one is that some of the sellers might want
o deviate and send more than n ads. The second one is that we
ave implicitly assumed so far that each buyer always chooses the
owest price offer that she receives. Basically, these two problems
ccur if the advertising costs are not increasing fast enough. On
he other hand, if the costs are increasing too fast, then it is not
ossible to construct an n-configuration. To tackle these issues we
eed to determine a class of cost functions under which no seller
ants to deviate and all the buyers choose the lowest price offer
hat they receive.
5

Fig. 3. The price distribution, f (p), and the mixed strategy, F (p), of the
1-configuration with c(1) =

1
2 .

We start by proving two lemmas. In the first lemma we derive
a class of advertising costs under which an optimal behaviour for
buyers is to choose the lowest price offer. In the second lemma
we show that a seller who asks the highest price, has the highest
incentive to send more ads. This result eases the construction
of an equilibrium; once we have found a configuration, we only
need to check that a seller with the highest price does not find it
profitable to send more ads.

First, let us define the following class of advertising cost func-
tions.

Definition 2. For n ∈ N\{1} and γ ∈ (0, 1), let Cn(γ ) be the
set of advertising costs defined on N0 with the following two
properties:

1. Any c ∈ Cn(γ ) is strictly increasing on N0 such that c(0) = 0
and c(1) = γ .

2. Let c(k) =
kγ

1+(k−1)γ . Any c ∈ Cn(γ ) satisfies ∆c(k) < ∆c(k)
for all k ∈ {2, 3, . . . , n}.8

In equilibrium the buyers know the sellers’ pricing and adver-
tising strategies, and they must best-respond to them. In particu-
lar, choosing the lowest price offer received has to be optimal. It
turns out that this is the case when the advertising costs belong
to the class Cn(γ ) given in Definition 2, and the construction of
n n-configuration is correct.

emma 1. If c ∈ Cn(γ ) for any γ ∈ (0, 1), then in an n-
configuration a buyer always chooses the lowest price offer that she
receives.

The intuition of Lemma 1 is the following. If the advertising
costs do not increase fast enough, the proportions of sellers who

8 Recall that ∆c(k + 1) ≡ c(k + 1) − c(k) > 0.
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end multiple ads are relatively large. This means that a buyer
ho receives an ad with a low price from a seller who has sent
any ads is in competition with the other buyers who have

eceived this seller’s ads. For all these buyers, the seller’s offer is
ikely to be the lowest one. But then contacting the lowest price
ompromises the probability of getting a good.
Next consider the ith subinterval of the unit partition and the

sellers who send i ads and ask prices between pi−1 and pi. By
construction, any seller with price p < pi makes negative profit
by sending i + 1 ads, while a seller with price p = pi is just
indifferent; both i and i + 1 ads generate zero profits.

Lemma 2. Assume c ∈ Cn(γ ). In an n-configuration for any i ∈

{1, 2, . . . , n} a seller who asks the highest price pi ∈ [pi−1, pi] has
the highest incentive to send more than i ads. Furthermore, a seller
who asks the lowest price pi−1 ∈ [pi−1, pi] has the highest incentive
to send fewer than i ads.

Using Lemmas 1 and 2 we get the following proposition.

Proposition 2. Assume c ∈ Cn(γ ). In an n-configuration, a seller
ho sets price p ∈ [pi−1, pi] cannot increase her profits by sending
∈ {1, . . . , i − 1, i + 1, . . . , n}.

Although Proposition 2 is not surprising, it provides an easy
est for an equilibrium: if in an n-configuration a seller with the
ighest price does not want to deviate and send more than n ads,
hen the n-configuration constitutes an equilibrium.9

orollary 1. Assume c ∈ Cn(γ ). An n-configuration constitutes an
equilibrium if the seller who asks the highest price does not find it
profitable to send more than n ads.

By these results, the Butters’s (1977) model with capacity
constrained sellers features each seller sending just one ad in
equilibrium as the cost function is linear. This follows because
the marginal return of the second ad is always lower than that of
the first ad; the second ad is useless if the first ad leads to a sale.
Therefore, for linear advertising costs, if a seller finds it profitable
to send a second ad, it gets surplus from the first one, which
violates the zero profit condition. Consequently, if the second ad
is sufficiently more expensive than the first ad, sellers send only
one ad in a free entry equilibrium. We state the result as follows.

Proposition 3. If the advertising cost function is convex, then each
seller sends exactly one ad in equilibrium.

The characterisation of the single-ad equilibrium is given in
xample 1. The equilibrium price distribution coincides with But-
ers (1977) by setting the cost of production to zero, normalising
he number of buyers to unity, and assuming that each buyer
alues the good at unity in the Butters’s model.10 This is due to
he free entry and exit assumption and convex advertising costs.

9 We impose that each seller sends all the ads with the same price in
quilibrium. Butters (1977) does not use this premise. However, as the proof
f Lemma 2 indicates, we can relax the assumption and allow sellers to post
ifferent prices in each ad. In equilibrium, sellers who choose a price in interval
pi−1, pi] use a mixed strategy F (i)

n and send i ads. They could equally well choose
different prices by making i independent draws from F (i)

n ; they would still
ake zero profits. If a seller deviates and chooses a price p′ /∈ [pi−1, pi] and
ends i ads, she makes losses. Assuming that each seller advertises just one
rice simplifies the analysis; otherwise there would be buyers with different
rice offers approaching the seller.
10 Note that Butters’s advertising price density a(p) equals f (p)θ in our case.
1 1

6

.3. Multi-advertisement equilibria

In this section we study a class of advertising costs under
hich an n-configuration constitutes an equilibrium. It turns out
hat even the concavity of advertising costs is not enough to
uarantee that some sellers send more than 1 ad in equilibrium.
ext we construct a class of cost functions that allows an n-
onfiguration to constitute an equilibrium for some n > 1. The
dea is to determine an upper bound for advertising costs such
hat if the advertising costs increase faster than the upper bound
fter k+n ads (k ∈ {1, 2, . . . }), then a seller with the highest price
oes not find it profitable to send more than n ads. Then, if the
dvertising costs belong to the intersection of the class of costs
iven in Definition 2 and the class defined by the upper bound,
n n-configuration constitutes an equilibrium.
Consider an n-configuration and a seller who sets price at 1.

he does not want to send more than n ads if πn(1, n + k) ≤

n(1, n) for all k > 1 — that is,(
1 −

(
1 − e−λn(1)

)n+k
)

− c(n + k) ≤

(
1 −

(
1 − e−λn(1)

)n)
− c(n).

(7)

From the zero profit condition ZPn we get that 1 − e−λn(1) =

1 − c(n))
1
n and so (7) becomes

c(n) ≤ 1 − (1 − c(n + k))
n

n+k , (8)

which gives us the upper bound for the advertising costs. As with
the proof of Lemma 1, let us treat the upper bound in (8) as a
functional equation and denote it as c̄(x) = 1− (1 − c̄(x + k))

x
x+k

such that c̄ : R+ → R. This functional equation has a solution of
c̄(x) = 1 − φ(x)x such that φ(x) = φ(x + 1) for all x ∈ R. Since
he advertising costs are assumed to be increasing, we must have
(x) = φ ∈ (0, 1) for all x, which makes c̄ an increasing concave

function. Furthermore, from Example 1 we know that the upper
bound for ∆c(2) is c(1)(1 − c(1)). This is the initial value for the
upper bound from which we can solve φ = 1 − c(1). The upper
bound becomes

c̄(x) = 1 − φx for all x ∈ R+,

where φ = 1−c(1). Simple algebra shows that the upper bound is
greater than the lower bound in Definition 2 — that is, c̄(x) > c(x)
for all x > 1.11 If the costs increase as fast as the upper bound,
.e. if ∆c(n + k) = ∆c̄(n + k), then a seller who asks the highest
rice is indifferent between sending n and n + k > n ads.
Using the upper bound we define the following class of adver-

ising costs.

efinition 3. For n ∈ N\{1} and γ ∈ (0, 1), let C̄n(γ ) be the
set of advertising costs defined on N0 with the following two
properties:

1. Any c ∈ C̄n(γ ) is strictly increasing on N0 such that c(0) = 0
and c(1) = γ .

2. Let c̄(k) = 1−(1−γ )k. Any c ∈ C̄n(γ ) satisfies ∆c(k) < ∆c̄(k)
for all k ∈ {2, 3, . . . , n − 1} and ∆c(k) ≥ ∆c̄(k) for all
k ∈ {n, n + 1, . . .}.

Our aim is to determine when an n-configuration constitutes
n equilibrium. To that end, let the intersection of the classes of
dvertising costs in Definitions 2 and 3 be denoted by Cn(γ ) =

n(γ ) ∩ C̄n(γ ). The class of advertising costs we study is then

11 See the proof of Proposition 4.
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Fig. 4. An example of advertising costs c ∈ C3( 12 ).

efined as C(γ ) =
⋃

∞

i=2 Ci(γ ).12 Then let the advertising costs
e c(k) = c(k) + ak =

kγ
1+(k−1)γ + ak for all k ≥ 1.

We still need to check under which conditions Cn(γ ) is not an
mpty set to guarantee than an n-configuration exists and is a
quilibrium for c ∈ Cn(γ ). This result is given by the following

proposition.

Proposition 4. There exists a unique n(γ ) ∈ N which gives the
highest possible configuration under costs c ∈ C(γ ). Moreover, n(γ )
is decreasing in γ and Cn(γ ) ̸= ∅ for all n ≤ n(γ ).

In Fig. 4 we illustrate the relationship between n, n(γ ), and
x∗(γ ), which are used in the proof of Proposition 4.

Next we give our last result which is a direct implication of the
construction of C(γ ), Proposition 1, Corollary 1, and Proposition 4.

Proposition 5. Assume that c ∈ Cn(γ ) such that n ≤ n(γ ).
Then there exists a unique n-configuration which constitutes an
equilibrium.

If the advertising costs coincide with the upper bound, then
a 1-configuration is an equilibrium. This can be easily seen by
considering p1 =

c(1)2
2c(1)−c(2) derived in Example 1. If we substitute

¯(k) into this formula we get that p1 = 1 for all γ ∈ (0, 1).
Proposition 5 gives us a simple test to find an equilibrium: if

the advertising costs belong to class C(γ ), find an n ≤ n(γ ) such
hat c ∈ Cn(γ ). Then the n-configuration is an equilibrium.

. Discussion

In this section we point out, on the one hand, some limitations
f our analysis, and, on the other hand, possible applications and
nterpretations of the model.

Comparative statics in a multiple-ad equilibrium is compli-
ated. For instance, changing advertising costs affects not only the
quilibrium strategies, but also the number of sellers (free entry
nd exit). It is just hard to keep track of both effects.
Nevertheless, some comparative statics can still be conducted.

irst, the equilibrium configuration with the highest index is
etermined by the cost of the first ad. The higher it is, the smaller
he maximum index (Proposition 4). This has the following eco-
omic intuition. Let us interpret the cost of the first ad as the

12 An example of an advertising cost function that belongs to class Cn(γ ) can
e constructed by using the lower bound. Consider a sequence (ak) that increases
p to a sufficiently slowly, and after that sufficiently fast with a = 0.
n 1 m

7

um of an entry cost and the marginal cost of the first ad. Then
he higher the entry cost, the less there can be potential entrants.
his implies that the probability of a sale is greater or competition
s less severe. Therefore fewer ads are sent with a higher entry
ost in equilibrium.
Furthermore, comparative statics can be done within the equi-

ibrium configuration. Suppose that an n-configuration forms the
quilibrium. If we decrease the advertisements costs such that the
ame configuration is still an equilibrium, we have the following
ffects: (i) the total number of ads sent is greater (see Eq. (4)),
nd (ii) the number of sellers is higher (a consequence of the first
ffect).
Capacity constrained sellers is a crucial feature of our model.

t guarantees the positive association of prices and the number of
ds.
A simple example demonstrates this. Assume that the sell-

rs have unlimited capacity, and assume a cost function such
hat each seller sends a finite number of ads. By the standard
rguments pricing is in mixed strategies on some interval [p0, 1].
Consider a seller with price p0, and assume that she sends k

ds. Her pay-off is given by kp0 − c(k). Then consider a seller
ith price unity, and assume provisionally that she sends k ads,
oo. The number of buyers she attracts is given by a binomial
istribution with success probability e−θk, where θ is the number
f sellers and θk the total number of ads sent assuming that
ach seller sends k ads. Consequently, the seller’s pay-off is given
y ke−θk

− c(k). Under mixed strategy the pay-offs have to be
qual, and this condition allows solving p0 = e−θk. This implies
hat the pay-offs of these two sellers are identical, and hence the
ptimality condition for the sellers is c(k + h) − c(k) > hp0 for
∈ {−k, −(k − 1), . . . ,−1, 0, 1, . . . } (no profitable deviations to
end k+h ads). This shows that in equilibrium all the sellers send
he same number of ads.

This leaves open the possibility that there are equilibria where
he sellers send different numbers of ads. Let us consider this
ext. Assume temporarily that low pricing sellers with p ∈

p0, p1) send k ads, and high pricing sellers with p ∈ [p1, 1] send
+ 1 ads. The pay-off of the lowest pricing seller is given by
p0 − c(k) = 0 by free entry. We can thus solve p0 =

c(k)
k . Denote

the total number of ads with price lower than p by λ(p). The pay-
off of the highest pricing seller is given by (k+1)e−λ(1)

−c(k+1) =

, and we can solve e−λ(1)
=

c(k+1)
k+1 .

In equilibrium the lowest pricing seller does not find it prof-
itable to send k + 1 ads, and the highest pricing seller does not
find it profitable to send k ads, or

kp0 − c(k) > (k + 1)p0 − c(k + 1) (9)

k + 1)e−λ(1)
− c(k + 1) > ke−λ(1)

− c(k). (10)

ubstituting p0 =
c(k)
k in the first condition, and e−λ(1)

=
c(k+1)
k+1 in

the latter condition, and manipulating a little yields

c(k + 1) >
k + 1
k

c(k) (11)

nd

(k + 1) <
k + 1
k

c(k) (12)

hich is a contradiction. This demonstrates that we lose the
ositive association with prices and the number of ads in general,
f we allow unlimited capacity.

We assume unit capacity, but relaxing this to some finite
apacity k > 1 does not affect the basic message of our model. In
quilibrium pricing is still in mixed strategies, and the seller with
he lowest price sends k ads, while higher pricing sellers send
ore than k ads if the cost function is concave enough.
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Although our model is highly stylised in the sense that the
capacity constrained sellers are assumed to possess just one unit
of a good, it may be applicable to some settings where capacity
constraints are salient. For instance, suppose that each seller has
a room for rent, and the rooms are more or less equal in quality
(distance, ratings, etc.). The sellers use internet platforms to ad-
vertise their items. Posting the offer onto a platform is costly, but
it is reasonable to argue that the costs are marginally decreasing
in the number of platforms chosen since the first offer involves
costs, such as taking pictures and composing the ad, that are
not incurred for the succeeding offers. Based on this, our model
suggests that the sellers who use multiple platforms should ask
higher prices.

An alternative interpretation of our theoretical framework is
as follows. There are a large number of agents divided into two
different types. To produce a unit surplus a member of both types
has to form a pair. One party can commit to the division of the
surplus in the sense that it sends take-it-or-leave-it offers to the
other party. The senders are, however, subject to competition
by other senders as the receiving party accepts the best offer.
Sending offers is costly, and in equilibrium the senders mix over
the offers and number of offers sent. This is the typical setting of a
decentralised model of a job market. Low wage offers would then
be advertised more as they correspond to high prices of goods
offered for sale.

6. Conclusion

We study a version of Butters’s seminal model of informative
advertising with a large number of buyers and sellers, assuming
that the sellers are capacity constrained each with one unit of
a good. In order to trade a buyer has to receive an ad. Pricing
is in mixed strategies, and we establish an equilibrium where
high pricing sellers send more ads than low pricing sellers, i.e., a
positive relationship between prices and the number of ads. In
equilibrium, the buyers who received multiple ads contact the
seller with lowest price.

The key ingredient in our analysis is the cost of advertising.
If the cost function is convex, then each seller sends exactly one
ad in equilibrium. The reason is diminishing marginal returns of
advertising that stem from the capacity constraint. If the marginal
cost of advertising is decreasing there may be equilibria where
multiple ads are sent.

We delineate a class of advertising costs which permits an
equilibrium where sellers send multiple ads, and each buyer
contacts the seller who offers the lowest price. The first property
requires that the marginal cost of advertising is decreasing, and
we determine an upper bound for the advertising costs. The
second property requires that the cost is increasing sufficiently
fast; otherwise there could be too many sellers who price high,
and send many ads, such that the buyers could profitably trade-
off low price and the probability of getting a good. We determine
a lower bound for the advertising costs.

Appendix

Proof of Proposition 1

Proof. We start by showing that an n-configuration has a unique
partition. Assume that there is an n-configuration with two differ-
ent partitions Pn and P ′

n such that the elements of the partitions
re denoted by pi ∈ Pn and p′

i ∈ P ′
n. Let index k be the first one

here pk ̸= p′

k and let pk < p′

k. The numbers of ads less than pk
and p′ with different partitions are denoted by λ (p ) and λ′ (p′ ),
k n k n k t

8

respectively. Up until price pk we necessarily have λn(pk) = λ′
n(pk)

ince in both cases the sellers make zero profits.
Now we have the following two equalities(

1 −
(
1 − e−λn(pk)

)k)
pk − c(k) =

(
1 −

(
1 − e−λ′

n(p
′
k)
)k)

p′

k − c(k)

1 −
(
1 − e−λn(pk)

)k−1
)
pk − c(k − 1) =

(
1 −

(
1 − e−λ′

n(p
′
k)
)k−1

)
p′

k − c(k − 1).

his system of equations can be rewritten as

1 −

(
1 − e−λ′

n(p
′
k)
)k−1

1 −

(
1 − e−λ′

n(p′
k)
)k =

1 −
(
1 − e−λn(pk)

)k−1

1 −
(
1 − e−λn(pk)

)k . (13)

Both sides have the same functional form of f (z) =
1−zk−1

1−zk
such

hat

∂

∂z
f (z) =

zk−2(1 − z)
(
k −

1−zk
1−z

)
(
1 − zk

)2 > 0 (14)

since z ∈ (0, 1) and k−
1−zk
1−z = k−

∑k
i=1 z

i−1 > 0 by the sum of a
geometric progression where each element z i−1

∈ (0, 1). In other
words, f is a strictly increasing function and so f (x) = f (y) only
if x = y. Hence, the system of equations in (13) has a solution of
λn(pk) = λ′

n(p
′

k). This is a contradiction and therefore the partition
must be unique.

Next we show that given partition Pn, there is a unique mixed
strategy Fn that solves the zero profit conditions. Consider a seller
who sets price p ∈ [pi−1, pi] and sends i ads. From zero profit
condition (ZPi) we get

λn(p) = − log

(
1 −

i

√
1 −

c(i)
p

)
. (15)

n the other hand, from expression (1) we know the total number
f ads with a price less than p is

n(p) = λn(pi−1) + i
[
F (i)
n (p) − F (i−1)

n (pi−1)
]
θn.

Combining these two we have the following expression for mixed
strategy F (i)

n (p) for prices p ∈ [pi−1, pi]:

F (i)
n (p) = F (i−1)

n (pi−1) +
1
iθn

[λn(p) − λn(pi−1)] .

This recursive formula can be rewritten as follows by substituting
in the mixed strategies from the earlier subintervals:

F (i)
n (p) =

1
θn

⎡⎣λn(p)
i

+

i−1∑
j=1

λn(pj)
j(j + 1)

⎤⎦ , (16)

here λn(·) is given in Eq. (15).
Finally, using the fact that F (n)

n (1) = 1 we can solve the number
f sellers:

n =

⎡⎣λn(pn)
n

+

n−1∑
j=1

λn(pj)
j(j + 1)

⎤⎦ . (17)

Eqs. (4), (5), and (6) uniquely determine the mixed strategies
n and the number of the sellers in the market θn. □

roof of Lemma 1

roof. Let us state the obvious case first: if a buyer receives an
d at price p ∈ [p0, p1), she knows that the seller has sent only a
ingle ad and therefore by contacting the seller she always gets
he good.
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Then, consider a buyer who receives an ad at price p ∈

[pi−1, pi) for some i > 1. She knows that the seller who has
sent this offer has sent i ads. If the buyer contacts this seller, the
probability that she gets the object is

Qi(p) ≡

i−1∑
k=0

1
k + 1

(
i − 1
k

) (
e−λn(p)

)k (
1 − e−λn(p)

)i−1−k
. (18)

This can be written as

eλn(p)

i

i∑
k=1

(
i
k

) (
e−λn(p)

)k (
1 − e−λn(p)

)i−k

nd using the binomial theorem it becomes

i(p) =
eλn(p)

i

(
1 −

(
1 − e−λn(p)

)i)
.

urther, from zero profit condition (ZPi) we get

−λn(p) = 1 −

(
1 −

c(i)
p

) 1
i

.

Substituting this into the formula of Qi(p) we get

Qi(p) =
c(i)

ip
(
1 − i

√
1 −

c(i)
p

) . (19)

A buyer’s utility of getting an object at price p is 1 − p. Then,
he expected utility of a buyer who contacts a seller with price
∈ [pi−1, pi) is U(p) = Qi(p)(1 − p). The derivative of this with

espect to p is

U ′(p) = −
1
p

c(i)

ip
(
1 − i

√
1 −

c(i)
p

) +
1 − p
p

c(i)2
(
1 −

c(i)
p

) 1
i −1

(
ip
(
1 − i

√
1 −

c(i)
p

))2 .

(20)

fter some multiplications and rearrangements that retain the
ign, this expression becomes

− 1 + U(p)
(
1 −

c(i)
p

) 1
i −1

. (21)

irst we prove that (21) is strictly negative at p = pi−1. After that
e show that U(p) is an inverted-U-shaped function (∩-shaped)
nd thus if U ′(pi−1) < 0, then also U ′(p) < 0 for all p ∈ [pi−1, pi).
Expression (21) is strictly negative at p = pi−1 if

(1 − pi−1)
c(i)
ipi−1

<

(
1 −

c(i)
pi−1

)1− 1
i

− 1 +
c(i)
pi−1

. (22)

e know that a seller who asks price pi−1 is indifferent between
ending i and i−1 ads. We hence get from indifference condition
Ii) and zero profit condition (ZPi) that

1 −
c(i)
pi−1

)1− 1
i

= 1 −
c(i − 1)
pi−1

.

y substituting this into (22) and rearranging the terms we get

i−1 > 1 − i
∆c(i)
c(i)

. (23)

e know that pi−1 > c(i−1). So, if c(i−1) > 1− i∆c(i)
c(i) , then also

23) is satisfied. This is equivalent to

(i) ≥
ic(i − 1)

. (24)

i − 1 + c(i − 1)

9

From this we get lower bound c : R+ → R+ for the differences
of advertising costs under which each buyer chooses the lowest
price offer she receives. The lower bound c must satisfy

c(x − 1) = 1 − x
∆c(x)
c(x)

, (25)

or all x ∈ R+. This is a functional equation which has the
ollowing increasing solution:

(x) =
x

x + a
or some a > 0. The initial value for advertising costs is given by
(1) = c(1) from where we can solve a =

1−c(1)
c(1) . The lower bound

for the advertising cost function thus is

c(x) =
x

x +
1−c(1)
c(1)

=
xc(1)

1 + (x − 1)c(1)
,

hich is exactly the function given in Definition 2 with γ = c(1).
So we know that if ∆c(i) ≥ ∆c(i) then U ′(pi−1) < 0.

Let us consider the left-hand side and the right-hand side
of expression (22) as functions of p instead of pi−1. The left-
and side is a strictly convex strictly decreasing function of p for
ll p ∈ [pi−1, pi). The right-hand side is a strictly concave and
trictly increasing function of p for all p ∈ [pi−1, pi). Moreover,
the left-hand side is strictly positive at p = c(i), whereas the
right-hand side is 0. If p = 1, then the left-hand side is 0 and
the right-hand side is strictly positive. Hence, there is a unique
intersection which implies that U(p) is a ∩-shaped function of p.
ince U ′(pi−1) < 0, then also U ′(p) < 0 for all p ∈ [pi−1, pi].
Finally, we need to show that a buyer wants to contact a seller

ho has sent an ad at price p ∈ [pi−1, pi) rather than a seller who
as sent an ad at price p′

∈ [pk−1, pk) for some k > i. We know
hat Qi(p)(1 − p) ≥ Qi(pi)(1 − pi). By the similar arguments, we
now that Qi+1(pi)(1− pi) ≥ Qi+1(p′)(1− p′) for all p′

∈ [pi−1, pi).
t is easy to verify that Qi(pi) ≥ Qi+1(pi), and hence we have
i(p)(1 − p) ≥ Qi+1(p′)(1 − p′) for all p′

∈ [pi, pi+1). This implies
that Qi(p)(1 − p) ≥ Qk(p′)(1 − p′) for all k ≥ i and p′

≥ p. □

Proof of Lemma 2

Proof. The derivative of πn(p, k) with respect to p ∈ [pi−1, pi] and
or any k ∈ N0 is

′

n(p, k) = 1 −

(
1 −

c(i)
p

)k/i

−
k
i

(
1 −

c(i)
p

) k
i −1 c(i)

p
. (26)

Let us simplify the notation and denote x =
c(i)
p ∈ (0, 1) and

z =
k
i . By rearranging terms we get

π ′

n(x, z) = 1 − (1 − x)z−1 (1 − (1 − z)x) . (27)

his is non-negative if

1 − x)1−z
≥ 1 − (1 − z)x. (28)

nd negative if

1 − x)1−z < 1 − (1 − z)x. (29)

The derivative in (27) is zero if z = 0 or z = 1. Moreover,
since (1 − x)1−z is a strictly increasing convex function of z and
1 − (1 − z)x is a strictly increasing linear function of z, we have
that π ′

n(p, k) ≥ 0 for all z ≥ 1 and π ′
n(x, z) ≤ 0 for all z ∈ [0, 1].

n other words, we have that for all p ∈ [pi−1, pi], π ′
n(p, k) = 0

if k = i, π ′
n(p, k) < 0 if k ∈ {1, 2, . . . , i − 1}, and π ′

n(p, k) > 0 if
k > i. □
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Proof of Proposition 2

Proof. Lemma 2 shows that πn(p, k) ≤ πn(p′, k) for some p ≤ p′

and k ∈ {i + 1, . . . , n}. So, if a seller sends k ∈ {i + 1, . . . , n} ads
at price p ∈ [pi−1, pi], her profits are πn(p, k) ≤ πn(pk, k) = 0 for
pk ≥ p.

Analogously, if a seller sets price at p ∈ [pi−1, pi] and sends
k ∈ {1, . . . , i − 1} ads her profits are πn(p, k) ≤ πn(pk, k) = 0 for
pk ≤ p by Lemma 2. □

Proof of Corollary 1

Proof. Assume that the cost function is linear c(k) = kα, for some
α ∈ (0, 1). Then consider a 1-configuration and a seller who asks
price 1, but deviates and sends k ads. Then her expected profits
π1(k, 1) are(
1 −

(
1 − e−λ1(1)

)k)
− c(k) =

(
1 − (1 − c(1))k

)
− c(k) (30)

since λ1(1) = − log c(1). This is decreasing for all k ≥ 0 or(
1 − (1 − α)k

)
− kα ≥

(
1 − (1 − α)k+1)

− (k + 1)α,

which can be simplified to

1 ≥ (1 − α)k . (31)

So, in a 1-configuration it is not profitable to send more than
one ad if the advertising costs are linear. This clearly holds good
also for costs that increase faster, i.e. for convex cost
functions. □

Proof of Proposition 4

Proof. The goal of this proof is to show that there exists a
unique and decreasing n(γ ) ∈ N such that ∆c̄(k) > ∆c(k) for all
k = 2, 3, . . . , n(γ ) and ∆c̄(k) ≤ ∆c(k) for all k > n(γ ). Then the
et Cn(γ ) = Cn(γ ) ∩ C̄n(γ ) is non-empty for all n ≤ n(γ ). In order
to do that, we first prove that there exists a unique x∗(γ ) ∈ (1, ∞)
such that c ′(x∗(γ )) = c̄ ′(x∗(γ )) and ∂

∂γ
x∗(γ ) < 0. Once we have

hown this, we can show that this applies to integer values as
ell.
One can show by induction that c(x) < c̄(x) holds for all

x ∈ N\{1}, and since the functions are concave and continuous it
holds for all real numbers x > 1. Moreover, we have that c(1) =
10
c̄(1) = γ and limx→∞ c(x) = limx→∞ c̄(x) = 1. The derivatives of
he upper and lower bounds are c̄ ′(x) = −(1− γ )x log(1− γ ) and
′(x) =

γ (1−γ )
(1+γ (x−1))2

. These are equal if

(1 − γ )x−1
=

−γ

log(1 − γ )(1 + γ (x − 1))2
. (32)

rom here we can see that the left-hand side equals 1 when x = 1
nd the right-hand side is less unity since − log(1 − γ ) = γ +

γ 2

2 + · · · > γ for all γ ∈ (0, 1). Both sides are strictly decreasing
functions of x and they both converge to zero as x goes to infinity.
However, since the left-hand side decreases exponentially and
the right-hand side decreases slower than exponentially, there
exists a unique x∗(γ ) ∈ (0, ∞) such that c ′(x∗(γ )) = c̄ ′(x∗(γ )). In
ther words, (1 − γ )x−1

≥
−γ

log(1−γ )(1+γ (x−1))2
for all x ≤ x∗(γ ) and

(1 − γ )x−1 <
−γ

log(1−γ )(1+γ (x−1))2
for all x > x∗(γ ). This is depicted

in Fig. 5.
Next we show that ∂

∂γ
x∗(γ ) < 0. However, it turns out that

the proof is not straightforward and we must do it inversely. We
show that γ ∗(x) which solves (32) is strictly decreasing in x. Then
its inverse x∗(γ ) is decreasing in γ .

Let us denote h(x, γ ) = (1 − γ )x−1(1 + γ (x − 1))2 and
g(γ ) =

γ

− log(1−γ ) . Clearly, h(x, 0) = 1 and h(x, 1) = 0, whereas
limγ→0 g(γ ) = 1 and limγ→1 g(γ ) = 0. One can show that g is
strictly decreasing in γ while

∂

∂γ
h(x, γ ) = (x − 1)(1 − γ )x−2(1 + γ (x − 1))(1 − γ (x + 1)), (33)

hich is non-negative for all γ ≤
1

x+1 and negative for all
γ < 1

x+1 . Moreover, when γ goes to 0, the derivative in (33)
pproaches x−1 ≥ 0. Thus, h(x, γ ) is a single-peaked function of
with a global maximum at 1

x+1 . We know that g(γ ) and h(x, γ )
intersect once at some γ ∗

∈ (0, 1), and hence the intersection
must be on the decreasing part of h(x, γ ). This is depicted in
Fig. 6. Next we show that increasing x shifts h(x, γ ) to the left
and, consequently, γ under which h(x, γ ) = g(γ ) decreases.

Let us fix arbitrary γ ∗ and x∗ such that Eq. (32) is satisfied or
h(x∗, γ ∗) = g(γ ∗). By the uniqueness of x∗ we know that for all
x > x∗ the expression in (32) holds as inequality:

(1 − γ ∗)x−1 <
−γ ∗

log(1 − γ ∗)(1 + γ ∗(x − 1))2
. (34)

his is equivalent to

1 − γ ∗)x−1(1 + γ ∗(x − 1))2 <
γ ∗

. (35)

− log(1 − γ ∗)
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n the left-hand side we have now h(x, γ ∗) and on the right-
hand side g(γ ∗). However, since g(γ ∗) = h(x∗, γ ∗) we have that
h(x, γ ∗) < h(x∗, γ ∗) for all x > x∗. This implies that if h(x, γ ) =

(γ ) and x > x∗ then γ < γ ∗. This is depicted in Fig. 6.
We have thus shown that γ ∗ which solves (32) exists and is

nique for all x > 1. It is also strictly decreasing in x and therefore
ts inverse x∗(γ ) is strictly decreasing in γ for all γ ∈ (0, 1).

Finally, let n(γ ) = ⌈x∗(γ )⌉ − 1 (where ⌈·⌉ is the ceiling func-
ion). By the properties of x∗(γ ) it directly implies that ∆c̄(k) >

c(k) for all k ∈ {2, 3, . . . , n(γ )} and ∆c̄(k) ≤ ∆c(k) for all
> n(γ ). We have thus shown that n(γ ) gives us the highest
ossible configuration under costs c ∈ C(γ ) such that Cn(γ ) ̸= ∅

or all n ≤ n(γ ), and n(γ ) is decreasing in γ . □

xample 2 (2-configuration). From the example of a 1-
onfiguration we get that p0 = c(0) and thus the partition in a
-configuration is P2 = {0, c(0), p1, 1}. So we are left with solving
1.
Consider a seller who sets a price at p1. She must make zero

rofits, and she must be indifferent between sending 1 and 2 ads.
ore precisely, it means that the following two conditions must
old

e−λ2(p1)p1 − c(1) = 0

e−λ2(p1)p1 − c(1) =

(
1 −

(
1 − e−λ2(p1)

)2) p1 − c(2).

rom this set of equations we solve that p1 =
c(1)

1− ∆c(2)
c(1)

. Since we

ust have p1 ∈ (p0, 1), it requires that ∆c(2) < c(1)(1 − c(1))
hich necessitates the strict concavity of advertising costs.
The mixed strategies are solved by using Eq. (5). For p ∈

p0, p1] we have

(1)
2 (p) =

log p − log c(1)
θ2

,

nd for p ∈ [p1, 1]

F (2)
2 (p) =

1
2θ2

[λ2(p1) + λ2(p)] ,

here λ2(p1) = log p1
c(1) and

λ2(p) = − log

(
1 −

2

√
1 −

c(2)
p

)
.

11
Fig. 7. The partition of the unit interval in the 2-configuration with c(1) =
1
2

nd c(2) =
5
8 .

he number of sellers in the market is given by Eq. (6):

2 =
1
2
log

[
c(1)

(2c(1) − c(2))
(
1 −

√
1 − c(2)

)] .

We have thus solved the unique 2-configuration (P2, F2, θ2),
here P2 = {0, c(1), c(1)

1− ∆c(2)
c(1)

, 1},

2(p) =

⎧⎪⎪⎨⎪⎪⎩
1
θ2

[log p − log c(1)] p ∈ [p0, p1)

1
2θ2

log

⎡⎣ c(1)

(2c(1)−c(2))
(
1−
√
1− c(2)

p

)
⎤⎦ p ∈ [p1, 1]

nd

2 =
1
2
log

[
c(1)

(2c(1) − c(2))
(
1 −

√
1 − c(2)

)] .

With c(1) =
1
2 and c(2) =

5
8 we have θ2 ≈ 0.617, which is less

than the number of sellers in the 1-configuration θ1 = − log(2) ≈

0.69 with the same c(1) =
1
2 . The partition is P2 = {0, 1

2 ,
2
3 , 1}.

This and the price distribution are given in Figs. 7 and 8.

Example 3 (3-configuration). From the 2-configuration we know
that p0 = c(1) and p1 =

c(1)
1− ∆c(2)

c(1)
. Combining indifference condi-

tion I2 and zero profit condition (ZP2) we get(
1 −

c(3)
p2

)2

=

(
1 −

c(2)
p2

)3

.

There is a unique solution to this cubic equation which satisfies
p2 > c(3) and the advertising costs remain concave:

p2 =
c(3)2 − 3c(2)2 + (c(3) − c(2))

3
2
√
c(3) + 3c(2)

.

2(2c(3) − 3c(2))
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Fig. 8. The price distribution of the 2-configuration with c(1) =
1
2 and c(2) =

5
8 .

Fig. 9. The partition of the unit interval in the 3-configuration with c(1) =
1
2 , c(2) =

5
8 , and c(3) =

3
4 .

The mixed strategies are derived by the similar steps as in the
2-configuration:

F3(p) =

⎧⎪⎪⎨⎪⎪⎩
1
θ3

λ3(p), p ∈ [p0, p1)
1

2θ3
(λ3(p1) + λ3(p)) , p ∈ [p1, p2)

1
θ3

( 1
2λ3(p1) +

1
6λ3(p2) +

1
3λ3(p)

)
, p ∈ [p2, 1]

where λ3(·) is given in (4). θ3 is given by (6):

θ3 =
1
2
λ3(p1) +

1
6
λ3(p2) +

1
3
λ3(1)

With c(1) =
1
2 , c(2) =

5
8 , and c(3) =

3
4 we have θ3 ≈ 0.611

which is less than the number of sellers in the 2-configuration
with the same advertising costs (θ2 ≈ 0.617). The unit partition
12
Fig. 10. The price distribution of the 3-configuration with p2 =
39+

√
21

48 and
c(1) =

1
2 , c(2) =

5
8 , and c(3) =

6
8 .

is P3 = {0, 1
2 ,

2
3 ,

39+
√
21

48 , 1}. This and the price distribution are
given in Figs. 9 and 10.
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