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early Holocene (11.3–8.6 kyr cal BP), compared with the period from 8.6 to 6.9 kyr cal
BP. This finding clearly reflects the existence of different hydroclimatic conditions
between the lake and its catchment due to diverse driving mechanisms. The early
Holocene high stand of the lake, as demonstrated by the stratigraphic variability of the
remains of aquatic biota, may have responded to the strengthened ASM and increased
monsoonal precipitation; the relatively low vegetation cover in the marginal region of
the Asian monsoon during the early Holocene, and the coeval widespread active sand
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Dear Editor, 

We are resubmitting a manuscript, entitled ‘Lateglacial and Holocene climate change in the 

NE Tibetan Plateau: Reconciling divergent proxies of Asian summer monsoon variability’ 

with a reference code of CATENA12849. We thank you for your efforts to evaluate this work. 

In light of the comments and suggestions raised by the reviewers, we have carefully revised 

the manuscript. The major revisions are outlined as follows: 

We made small adjustments to the zonation of biota stratigraphy according to reviewer #1’s 

comments, highlighting that a higher lake level and relatively lower terrestrial vegetation 

cover occurred synchronously during the early Holocene (11.3–8.6 kyr cal BP), compared 

with the period from 8.6 to 6.9 kyr cal BP. 

We hope that the revisions are satisfactory to you. Please let us know if you have any 

questions regarding the revisions. Thank you! 

 

Yours sincerely, 

Yuan Li and other co-authors  
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Abstract 14 

The nature of Holocene Asian summer monsoon (ASM) evolution documented by diverse 15 

natural archives remains controversial, with a contentious issue being whether or not a strong 16 

Asian summer monsoon prevailed during the early Holocene. Here we present sequences of 17 

multiple proxies measured in sediment cores from Genggahai Lake in the NE Tibetan Plateau 18 

(NETP). The results suggest that a higher lake level and relatively lower terrestrial vegetation 19 

cover occurred synchronously during the early Holocene (11.3–8.6 kyr cal BP), compared with 20 

the period from 8.6 to 6.9 kyr cal BP. This finding clearly reflects the existence of different 21 

hydroclimatic conditions between the lake and its catchment due to diverse driving mechanisms. 22 

The early Holocene high stand of the lake, as demonstrated by the stratigraphic variability of the 23 

remains of aquatic biota, may have responded to the strengthened ASM and increased monsoonal 24 

precipitation; the relatively low vegetation cover in the marginal region of the Asian monsoon 25 

during the early Holocene, and the coeval widespread active sand dune mobility in both the NE 26 

Tibetan Plateau and NE China, most likely resulted from a low level of effective moisture due to 27 

high evaporation, and hence they cannot be interpreted as evidence of a weak ASM. Our results 28 

potentially reconcile the current divergent interpretations of various proxy climate records from 29 

the region. Our findings suggest that the ASM evolution was characterized by a consistent 30 

pattern across the monsoonal regions, as indicated by the oxygen isotope record of Chinese 31 

speleothems. 32 
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1 Introduction 34 

The Asian monsoon system affects more than half of the world’s population and the 35 

associated ecosystems (Webster et al., 1998). Understanding the variability of the Asian 36 

monsoon has significant implications for the social and ecological systems in the region (Hansen 37 

and Lebedeff, 1987; Mishra et al., 2019). Precipitation in the marginal regions dominated by the 38 

Asian summer monsoon (ASM) is highly dependent on the strength of the ASM: a stronger ASM 39 

circulation can transport more water vapor, leading to higher precipitation, and vice versa (Zhou 40 

et al., 2009). Therefore, precipitation in these marginal regions can directly reflect the strength of 41 

the ASM (Chen et al., 2015). Over the past two decades, numerous studies of the Holocene 42 

evolution of the ASM have been conducted based on diverse natural archives from the region 43 

(e.g., Chen et al., 2015; Dykoski et al., 2005; Goldsmith et al., 2017; Hu et al., 2008; Li et al., 44 

2014; Wang et al., 2005; Wei et al., 2020). However, the nature of ASM evolution during the 45 

Holocene still remains controversial, with a contentious issue being whether or not a strong 46 

Asian summer monsoon prevailed during the early Holocene. For example, the early Holocene 47 

high-stand of lakes in the marginal regions dominated by the ASM (Fig. 1A), including lakes 48 

Dali (Goldsmith et al., 2017), Dabusu (Li and Lv, 2001) and Kuhai (Mischke et al., 2010), 49 

reflects an intensified ASM which is consistent with monsoonal records from Chinese 50 

speleothems (Dykoski et al., 2005; Hu et al., 2008; Wang et al., 2005). However, records of 51 

pollen assemblages and/or pollen-based precipitation from the lakes in the region (Fig. 1A), 52 

including lakes Gonghai (Chen et al., 2015), Dalianhai (Cheng et al., 2013), Daihai (Xiao et al., 53 

2004), Dali (Wen et al., 2017) and Hulun (Wen et al., 2010), together with evidence for 54 

widespread sand dune mobility in NE China (Li et al., 2014), indicate the occurrence of dry 55 

terrestrial conditions at this time, possibly related to a weak ASM. Furthermore, even diverse 56 

proxies generated from the same study site may exhibit divergent patterns of Holocene climate 57 

change and ASM evolution. For example, at Qinghai Lake, the geochemical proxies (An et al., 58 

2012; Jin et al., 2015; Lister et al., 1991) generally suggest a high lake level and a strong ASM 59 

during the early Holocene. In contrast, the shoreline deposits (Liu et al., 2015) and the pollen 60 

assemblages (Shen et al., 2005) suggest that the lake level probably was low at this time, induced 61 

by high evaporation or a weak ASM. These seemingly contradictory interpretations, especially 62 

those from the same site (e.g., Qinghai Lake), cannot be explained by the spatial and temporal 63 

differentiation of ASM evolution, or by chronological uncertainties. Therefore, a comprehensive 64 

analysis of the driving mechanisms of these proxies and their linkage to the ASM are essential 65 

for reconciling the controversy.  66 



 

Genggahai Lake is a small, shallow lake in the NE Tibetan Plateau (NETP) (Fig. 1A), 67 

located in the marginal region dominated by the ASM. The sediments are rich in the remains of 68 

aquatic biota and terrestrial pollen, which provide the opportunity to conduct multi-proxy 69 

investigations of ASM evolution. Qiang et al. (2013b) have discussed the lake-level fluctuations 70 

over the past 16 kyr based mainly on plant macrofossil assemblages in the sediments from a 71 

single core (GGH-A) recovered from the lake. However, the early Holocene high-stand of the 72 

lake was indirectly inferred by geochemical variables (total organic carbon, total nitrogen and 73 

carbon isotopic composition of bulk sediment organic matter), due to the absence of plant 74 

macrofossils (Qiang et al., 2013b). In addition, the evolution of lake bathymetry may also lead to 75 

lake-level fluctuations on a long timescale (Hilton, 1985; Lehman, 1975), which was not 76 

differentiated from the influence of climatic factors in the previous study (Qiang et al., 2013b). 77 

Therefore, comprehensive analyses of diverse bioindicators (e.g., plant macrofossils, Cladocera, 78 

diatoms) from multiple cores are essential not only for the reliable reconstruction of lake-level 79 

fluctuations, but also for assessing the influence of the evolution of lake bathymetry on the lake-80 

level fluctuations, and for understanding regional hydroclimatic changes (Dearing, 1997). 81 

Moreover, the evolution of the regional terrestrial vegetation and its potential linkages to the 82 

ASM remain unclear. 83 

Here we present sequences of aquatic (plant macrofossils, Cladocera, diatoms) and 84 

terrestrial (terrestrial pollen) proxies derived from multiple sediment cores from Genggahai 85 

Lake. Combined with hydrological and ecological investigations of the modern lake, and with 86 

reference to independent climatic records from the marginal regions dominated by the ASM, our 87 

aims were to reconstruct the regional ASM variability during the Lateglacial and the Holocene, 88 

and to reconcile the current divergent results of proxy indicators of ASM evolution. 89 

2 Materials and Methods 90 

Genggahai Lake (36°11′N, 100°06′E) is located in the central Gonghe Basin (Fig. 1B) at 91 

an altitude of 2,860 m a.s.l. The lake is small (surface area, ~2 km2) and shallow (maximum 92 

water depth, ~1.8 m) and has an elevated salinity (~1.2 g L−1) and pH (~9.1). Potamogeton 93 

pectinatus, Myriophyllum spicatum, and Chara spp. dominate the submerged macrophyte 94 

communities in the current lake. The lake is mainly fed by groundwater. Sever small spring-95 

water streams flow into the lake. Three sediment cores were recovered from Genggahai Lake in 96 

January 2008 and January 2013 using a modified Livingstone piston corer. Cores GGH-A (length 97 

782 cm) and GGH-C (length 774 cm) were recovered from the center of the lake in a water depth 98 

of 170 cm (Fig. 1C), and core GGH-E (length 765 cm) was recovered from the northwest littoral 99 

area in a water depth of 110 cm (Fig. 1C). Due to the lack of terrestrial plant remains, samples of 100 



 

the leaves of aquatic macrophytes were picked from the sediments for accelerator mass 101 

spectrometry (AMS) 14C dating, conducted by Beta Analytic Inc. (Miami, USA) (Table S1). The 102 

reservoir age of the lake was estimated at 1,010 14C years on average, based on the AMS 14C 103 

dating results of the dissolved inorganic carbon of the lake water, macrophyte remains in the 104 

lake’s surface sediments and living P. pectinatus (Li et al., 2017b). A total of 26 14C ages from 105 

cores GGH-A (cited from Qiang et al. 2013b), GGH-C, and GGH-E (Table S1), which are in 106 

stratigraphic order, were calibrated to calendar years (Calib 6.0.1, Reimer et al., 2009) after 107 

subtracting an average reservoir age (1,010 yr). The age-depth models of the three cores were 108 

generated by the Bacon Bayesian age-modeling software (Blaauw and Christen, 2011), using the 109 

calibrated radiocarbon ages. The age versus depth profiles of the three cores agree well with each 110 

other, which supports their reliability (Fig. S1). 111 

Plant macrofossils, including Chara gyrogonites (Fig. 2B, 2D, 2F) and encrustations of 112 

Chara spp. and P. pectinatus (or M. spicatum) (Fig. 2A, 2C, 2E), were picked from cores GGH-113 

A (cited from Qiang et al. 2013b), GGH-C, and GGH-E. Cladocera (Fig. 2G) and diatom (Fig. 2I, 114 

2G) analyses were conducted on core GGH-C using standard methods (Korhola and Rautio, 115 

2001; Weckström et al., 1997). In addition, fossil pollen (Fig. 3A, 3C) was extracted from core 116 

GGH-A following the methods of Fægri and Iversen (1989). In order to comprehensively depict 117 

the terrestrial vegetation conditions in the marginal regions dominated by the ASM, we compiled 118 

six lacustrine tree pollen records from the region, including from lakes Qinghai (Shen et al., 119 

2005), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Dali (Wen et al., 2017), 120 

Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010). Since the changes in the tree pollen 121 

content of these records show a similar trend, a synthesized tree pollen index covering the past 122 

12 kyr (obtained by taking the average of the normalized tree pollen contents from the six lakes) 123 

was used to portray changes in tree cover in the marginal regions dominated by the ASM 124 

(Fig. 3). Further details about the method are given in the supplements. 125 

3 Results and discussion 126 

3.1. Patterns of hydroclimatic evolution indicated by lake level and pollen sequences 127 

In general, submerged macrophytes, Cladocera, and diatoms in freshwater lakes are 128 

sensitive to changes in water level, and thus their fossil remains in lake sediments can be used to 129 

reconstruct past water-level fluctuations (Birks, 1993; Heggen et al., 2012). The aquatic plant 130 

macrofossils in the sediments of Genggahai Lake mainly originate from Chara spp., 131 

P. pectinatus and M. spicatum. These species also dominate the lake today and they are common 132 

in shallow lakes worldwide (Wilson et al., 1941). The spatial distribution of submerged 133 

macrophytes in the modern lake is mainly modulated by the water depth, and the shallow water 134 



 

zone of the lake is occupied by Chara spp. (Fig. S2) (Qiang et al., 2013b). Therefore, the 135 

occurrence of the fossil remains of Chara spp. and P. pectinatus (or M. spicatum) in the lake 136 

sediments, especially the occurrence of abundant Chara gyrogonites, most likely reflects a 137 

shallow water environment. As for fossil Cladocera, only two littoral species (Chydorus 138 

sphaericus and Coronatella rectangula) which prefer macrophyte habitats were identified in the 139 

sediments of Lake Genggahai (Walseng, B., 2016a, 2016b). Diatoms in the sediments are 140 

relatively diverse, consisting of both planktonic (e.g., Lindavia comta and Cyclotella 141 

distinguenda) and non-planktonic species (e.g., Gomphonema angustum and Achnanthes 142 

minutissima). Based on changes in submerged macrophytes, Cladocera and diatoms in the lake 143 

sediments (Fig. 2), the history of lake-level fluctuations was divided into the following four 144 

stages: 145 

15.4–11.3 cal kyr BP The lake sediments contain abundant submerged-macrophyte 146 

encrustations, Chara gyrogonites and littoral cladoceran fossils, reflecting a shallow lake. In 147 

addition, the diatom assemblages are dominated by both planktonic (e.g., L. comta and C. 148 

distinguenda) and non-planktonic species (e.g., G. angustum). Notably, C. distinguenda is a 149 

tychoplanktonic species which can adapt to shallow water conditions. Therefore, the lake level 150 

most likely was low during this period. 151 

11.3–8.6 cal kyr BP Submerged macrophytes and Cladocera largely disappear from the 152 

sediments. In addition, the diatom assemblages are dominated by an euplanktonic species (i.e., L. 153 

comta). Thus we conclude that the lake level was high during this period, and it may have 154 

exceeded the depth limit for submerged macrophytes, resulting in the absence of Cladocera 155 

macrophyte habitats and increasing the abundance of planktonic diatoms. 156 

8.6–5.5 cal kyr BP Submerged macrophyte encrustations occur episodically and Chara 157 

gyrogonites are relatively scarce. Cladocera fossils largely disappear from the sediments, 158 

probably in response to the scarcity of macrophyte habitats. The diatom assemblages are 159 

dominated by both planktonic (e.g., L. comta and C. distinguenda) and non-planktonic species. 160 

Thus we conclude that the lake level during this period was probably high overall, but lower than 161 

during the previous stage. 162 

5.5 kyr cal BP to the present The lake sediments contain abundant submerged-163 

macrophyte encrustations, Chara gyrogonites, littoral Cladocera fossils, and non-planktonic 164 

diatoms, reflecting a shallow lake.  165 

The terrestrial pollen in lake sediments is mainly derived from the catchment and hence it 166 

reflects the local and regional terrestrial vegetation conditions (Pennington, 1979). Changes in 167 

total terrestrial pollen concentrations (Fig. 3A) and tree pollen contents (Fig. 3C) in the 168 



 

sediments of Genggahai Lake are largely in agreement with those at nearby Qinghai Lake (Fig. 169 

3B, 3D) and the synthesized tree pollen index (Fig. 3J), showing that optimal vegetation 170 

conditions occurred during 8.6–6.9 cal kyr BP. Overall, the aquatic and animal fossils 171 

(macrophytes, Cladocera, diatoms) and terrestrial pollen in the sediments of Genggahai Lake 172 

indicate that a higher lake level and relatively lower terrestrial vegetation cover occurred 173 

synchronously during the early Holocene (11.3–8.6 kyr cal BP), compared with the period from 174 

8.6 to 6.9 kyr cal BP. This implies the occurrence of different hydroclimatic conditions between 175 

the lake and its catchment (Fig. 4A, 4I). This apparent contradiction is also reflected in proxy 176 

sequences from other lakes in the marginal regions dominated by the ASM: e.g., at Lakes 177 

Qinghai (An et al., 2012; Shen et al., 2005), Dali (Goldsmith et al., 2017; Wen et al., 2017) and 178 

Chagan Nur (Li et al., 2020a).  179 

3.2. Implications for the evolution of the Asian summer monsoon  180 

The early Holocene high lake levels and low total pollen concentrations (or tree 181 

percentages) recorded by lake sediments from the margins of the regions dominated by the ASM 182 

are mutually contradictory in terms of their interpretation as evidence for ASM strength (e.g., An 183 

et al., 2012; Chen et al., 2015), or as evidence for the spatial differentiation of ASM evolution 184 

(Zhang et al., 2019). However, these seemingly contradictory patterns most likely reflect the 185 

existence of different hydroclimatic conditions between the lake and its catchment due to diverse 186 

driving mechanisms (cf., Wilson et al., 2015), and they cannot simultaneously be interpreted as 187 

proxies of ASM strength. 188 

In general, lake-level fluctuations are controlled by the water balance of the lake. 189 

However, previous studies have demonstrated that the evolution of lake bathymetry on a long 190 

timescale may also result in lake-level fluctuations (Hilton, 1985; Lehman, 1975). Increased 191 

allochthonous input of detrital materials will enhance the sedimentation rate in the deepest parts 192 

of the lake due to gravity (i.e., the “sediment-focusing effect”) which will lead to decreases in 193 

water depth (Hilton, 1985). However, at Genggahai Lake, the AMS 14C dating results show that 194 

the sedimentation rate of the central cores (GGH-A and GGH-C) was largely consistent with that 195 

of the littoral core (GGH-E) during the Lateglacial and Holocene (Fig. S1), indicating that 196 

changes in lake bathymetry since the Lateglacial were probably minor, exerting little effect on 197 

the lake level. This could be ascribed to the flat lake basin morphometry and the dense growth of 198 

submerged macrophytes, which largely restricted re-suspension and transport of sediments to the 199 

depocenter (cf. Dearing, 1997). Therefore, lake-level fluctuations mainly represent the balance 200 

between water inflows and losses. Currently, there are no large glaciers on the summits of the 201 

mountains surrounding Genggahai Lake. In addition, the Lateglacial glaciers on these mountains 202 



 

were mainly distributed in areas above 4,500 m a.s.l. (Fig. 1B) (Li et al., 1991) and therefore 203 

their total extent was relatively small. Thus they are unlikely to have continuously contributed 204 

meltwater which could sustain the high lake level during the early Holocene (11.3–8.6 cal kyr 205 

BP), given the temperature increase of ~3 oC at the onset of the Holocene (Herzschuh et al., 2014; 206 

Li et. al., 2017a). Genggahai Lake is fed mainly by groundwater. Loose, porous fluvio-lacustrine 207 

sediments of the Gonghe Formation (Perrineau et al., 2011) and surficial fluvial-fan sediments 208 

largely constitute the catchment substrate of groundwater. In addition, the deep incision of the 209 

Yellow River in the eastern Gonghe Basin led to a steep hydraulic gradient of the basin 210 

(Craddock et al., 2010). Therefore, the catchment of groundwater was highly permeable, and 211 

hence precipitation can infiltrate rapidly into the ground and feed the lake. The evaporation 212 

losses during the infiltration process were most likely low. In addition, the catchment area of the 213 

groundwater feeding the lake is far larger than the lake's surface area (Fig. 1B). Therefore, 214 

evaporation may play a minor role in the water balance of the lake, and hence the lake-level 215 

fluctuations can be interpreted as indicating changes in regional precipitation, reflecting the 216 

strength of the ASM in the study area. The pattern of water-level fluctuations at Genggahai Lake 217 

largely coincides with that of other lakes in the marginal regions dominated by the ASM (e.g., 218 

Qinghai, Kuhai, Dali, Dabusu and Chagan Nur) (Fig. 4B–F). This consistent pattern suggests a 219 

weak ASM during 15.4–11.3 cal kyr BP, a significantly intensified ASM during 11.3–8.6 cal 220 

kyr BP, and a gradually weakening ASM thereafter. In addition, the results of a modeling study 221 

of water level changes at Qinghai Lake also reveal an early Holocene high-stand (Fig. 4C) (Li et 222 

al., 2020b). 223 

The evolution of terrestrial vegetation is generally the integrated reactions to multiple 224 

environmental factors, including temperature, precipitation and the available water capacity of 225 

the soil (Prentice et al., 1992). The sparse terrestrial vegetation in the marginal regions 226 

dominated by the ASM during 15.4–11.3 cal kyr BP and 5.5–0 cal kyr BP mainly resulted from 227 

low monsoonal precipitation and low temperatures (Lu et al., 2011). In addition, the relatively 228 

low total terrestrial pollen concentration (Fig. 4I) during the early Holocene (11.3–8.6 kyr cal BP) 229 

suggests that the terrestrial vegetation did not respond to the significantly ameliorated 230 

environmental conditions, although the monsoonal precipitation increased sharply. Significantly, 231 

changes in terrestrial vegetation are modulated mainly by effective moisture rather than by 232 

precipitation (Prentice et al., 1992). Furthermore, changes in effective moisture do not always 233 

respond linearly to variations in precipitation, but rather they depend on the balance between 234 

precipitation and evaporation. Therefore, the relatively low terrestrial vegetation cover in the 235 

study area during the early Holocene mostly likely reflects a low level of effective moisture. 236 

Notably, the low effective moisture during this interval is also documented by the widespread 237 



 

sand dune mobility in both the NETP and NE China (Fig. 4K, 4L) (Li et al., 2014; Qiang et al., 238 

2013a). Given that the enhanced monsoonal precipitation during the early Holocene may have 239 

infiltrated rapidly into the ground due to the porous nature of the soils and the steep hydraulic 240 

gradient of the catchment, the water retained in the soils probably could not compensate for the 241 

intense evaporation loss as a consequence of the high temperatures (Li et. al., 2017a) and high 242 

summer insolation. This may have led to a low level of effective moisture and further restricted 243 

the development of both the terrestrial vegetation and paleosols (Mason et al., 2009; Qiang et al., 244 

2013a, 2016). In addition, the strong ASM during this period would have resulted in the strong 245 

release of latent heat by water (Herzschuh et al., 2014), which may have further increased 246 

temperatures and evaporation. By contrast, decreased temperatures (Li et. al., 2017a), due to the 247 

reduction in both summer insolation and release of latent heat by water vapor during the period 248 

from 8.6 to 6.9 cal kyr BP, likely resulted in the weakened evaporation of soil water and hence 249 

led to the widespread development of vegetation (Fig. 3) and palaeosols (Li et al., 2014; Qiang et 250 

al., 2013a) in the marginal regions dominated by the ASM. In addition, given that the terrestrial 251 

vegetation has a lagged response to precipitation changes, the different response rates of the lake 252 

water and terrestrial vegetation to climate change may also have contributed to the occurrence of 253 

different hydroclimatic conditions between Genggahai Lake and its catchment (Zhao et al., 254 

2017).  255 

The diverse proxies derived from sediments of Genggahai Lake clearly reveal the 256 

synchronous occurrence of high lake levels and relatively low terrestrial vegetation cover, which 257 

are correlative with evidence for widespread sand dune mobility in the marginal regions 258 

dominated by the ASM during the early Holocene. These features do not reflect different 259 

climatic patterns, but rather they reflect different aspects of monsoonal climate change. The 260 

consistent high-stand of the lakes from these monsoon margin areas suggests increased 261 

monsoonal precipitation during the early Holocene, providing compelling evidences for the 262 

spatial consistency of ASM evolution documented by oxygen isotopic records from Chinese cave 263 

deposits (Cheng et al., 2019; Dykoski et al., 2005; Hu et al., 2008; Wang et al., 2005). The strong 264 

ASM and the increased monsoonal precipitation in the marginal regions dominated by the ASM 265 

during the early Holocene are ascribed to the enhanced thermal contrast between land and sea in 266 

spring and summer due to the increased orbitally-induced summer insolation (Fig. 4G, 4H). The 267 

relatively low terrestrial vegetation cover during the early Holocene, as well as the widespread 268 

dune sands in eolian sections in both the NETP and NE China, most likely reflect low effective 269 

moisture conditions due to high evaporation, and hence they cannot be interpreted as evidence of 270 

a weak monsoon. 271 



 

4 Conclusions 272 

The water-level fluctuations of Genggahai Lake and the vegetation conditions in its 273 

catchment were reconstructed from the aquatic biota and pollen preserved in the lake sediments. 274 

The results suggest a higher lake level and a stronger ASM during 11.3–5.5 cal kyr BP, 275 

compared to the intervals of 15.4–11.3 cal kyr BP and 5.5–0 cal kyr BP. However, the total 276 

terrestrial pollen concentration indicates relatively lower terrestrial vegetation cover during the 277 

early Holocene (11.3–8.6 cal kyr BP), compared with the period from 8.6 to 6.9 kyr cal BP. In 278 

contrast to the lake-level fluctuations, the vegetation cover in the catchment cannot be used as a 279 

proxy for variations in monsoonal precipitation and thus ASM strength. Rather, the relatively 280 

low vegetation cover mainly reflects a low level of effective moisture conditions, as a result of 281 

intense evaporation due to high temperatures during the early Holocene.  282 
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Figure and table captions 445 

Fig. 1. Location and modern environmental context of Genggahai Lake. (A) Overview map showing locations 446 

of the paleoclimatic sites referenced in the text, and the dominant circulation systems of the westerlies and the 447 

Asian monsoon. Genggahai Lake is indicated by a star. Lakes Qinghai (Shen et al., 2005), Kuhai (Mischke et 448 

al., 2010), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Chagan Nur (Li et al., 2020a), Dali 449 

(Wen et al., 2017), Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010), Dabusu Lake (Li and Lv, 2001) 450 

and Dongge Cave (Dykoski et al., 2005) are indicated by circles. The modern Asian summer monsoon limit is 451 

shown by a green dashed line (after Gao et al., 1962). (B) Physical environment of the Gonghe Basin. 452 

Mountain areas above 4,500 m a.s.l. and the potential catchment area of groundwater-fed Genggahai Lake are 453 

delineated by the white dashed line and the blue dashed line (after Qiang et al., 2017), respectively. (C) 454 

Vegetation (after Qiang et al., 2013b.) and coring sites. 455 

Fig. 2. Records of plant macrofossils (A–F), Cladocera (G, H), and diatoms (I, J, K) from the sediments of 456 

Genggahai Lake and the reconstructed lake level (L). (G, I, J) Relative abundance of Cladocera, planktonic 457 

diatoms and non-planktonic diatoms, respectively. (H, K) Total counted individuals of Cladocera and diatoms, 458 

respectively. In (A, C, E) green and red bars denote Potamogeton pectinatus (or Myriophyllum spicatum) and 459 

Chara encrustations, respectively. Macrofossil stem encrustations are identified in the stratigraphy. Chara 460 

gyrogonites are presented as individuals/dm2 per year. 461 

Fig. 3. Comparison of the synthesized tree pollen index (J, this study) and pollen records from the marginal 462 

regions dominated by the ASM. (A, B) Total terrestrial pollen concentration from lakes Genggahai (this study) 463 

and Qinghai (Shen et al., 2005), respectively. (C−I) Tree pollen percentages from lakes Genggahai (this study), 464 

Qinghai (Shen et al., 2005), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Dali (Wen et al., 465 

2017), Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010), respectively. The gray bar indicates the optimal 466 

vegetation conditions during 8.6–6.9 cal kyr BP. 467 

Fig. 4. Comparison of the lake-level record (A) and total terrestrial pollen concentration (I) from Genggahai 468 

Lake and other paleoclimatic records. (B) Asian summer monsoon (ASM) index based on the sedimentary 469 

carbonate and TOC content of the sediments of Qinghai Lake (An et al., 2012). (C) Simulated water level of 470 

Qinghai Lake (Li et al., 2020b). (d) Mz (φ) grain-size record from Dabusu Lake (Li and Lv, 2001). (E, F) 471 

Water level of Chagan Nur (Li et al., 2020a) and Dali Lake (Goldsmith et al., 2017), respectively. (G) Summer 472 

insolation at 35°N (Berger and Loutre, 1991). (H) δ18Oc record from Dongge Cave (Dykoski et al., 2005). (J) 473 

Synthesized tree pollen index (this study). (K) Probability density plot of the OSL ages of eolian sand samples 474 

from the NETP (Qiang et al., 2013a). (L) Synthesized sand percentages in eolian deposits in northeast China 475 

(Li et al., 2014).  476 
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Abstract 14 

The nature of Holocene Asian summer monsoon (ASM) evolution documented by diverse 15 

natural archives remains controversial, with a contentious issue being whether or not a strong 16 

Asian summer monsoon prevailed during the early Holocene. Here we present sequences of 17 

multiple proxies measured in sediment cores from Genggahai Lake in the NE Tibetan Plateau 18 

(NETP). The results suggest that a higher lake level and relatively lower terrestrial vegetation 19 

cover occurred synchronously during the early Holocene (11.3–8.6 kyr cal BP), compared with 20 

the period from 8.6 to 6.9 kyr cal BP. This finding clearly reflects the existence of different 21 

hydroclimatic conditions between the lake and its catchment due to diverse driving mechanisms. 22 

The early Holocene high stand of the lake, as demonstrated by the stratigraphic variability of the 23 

remains of aquatic biota, may have responded to the strengthened ASM and increased monsoonal 24 

precipitation; the relatively low vegetation cover in the marginal region of the Asian monsoon 25 

during the early Holocene, and the coeval widespread active sand dune mobility in both the NE 26 

Tibetan Plateau and NE China, most likely resulted from a low level of effective moisture due to 27 

high evaporation, and hence they cannot be interpreted as evidence of a weak ASM. Our results 28 

potentially reconcile the current divergent interpretations of various proxy climate records from 29 

the region. Our findings suggest that the ASM evolution was characterized by a consistent 30 

pattern across the monsoonal regions, as indicated by the oxygen isotope record of Chinese 31 

speleothems. 32 
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1 Introduction 34 

The Asian monsoon system affects more than half of the world’s population and the 35 

associated ecosystems (Webster et al., 1998). Understanding the variability of the Asian 36 

monsoon has significant implications for the social and ecological systems in the region (Hansen 37 

and Lebedeff, 1987; Mishra et al., 2019). Precipitation in the marginal regions dominated by the 38 

Asian summer monsoon (ASM) is highly dependent on the strength of the ASM: a stronger ASM 39 

circulation can transport more water vapor, leading to higher precipitation, and vice versa (Zhou 40 

et al., 2009). Therefore, precipitation in these marginal regions can directly reflect the strength of 41 

the ASM (Chen et al., 2015). Over the past two decades, numerous studies of the Holocene 42 

evolution of the ASM have been conducted based on diverse natural archives from the region 43 

(e.g., Chen et al., 2015; Dykoski et al., 2005; Goldsmith et al., 2017; Hu et al., 2008; Li et al., 44 

2014; Wang et al., 2005; Wei et al., 2020). However, the nature of ASM evolution during the 45 

Holocene still remains controversial, with a contentious issue being whether or not a strong 46 

Asian summer monsoon prevailed during the early Holocene. For example, the early Holocene 47 

high-stand of lakes in the marginal regions dominated by the ASM (Fig. 1A), including lakes 48 

Dali (Goldsmith et al., 2017), Dabusu (Li and Lv, 2001) and Kuhai (Mischke et al., 2010), 49 

reflects an intensified ASM which is consistent with monsoonal records from Chinese 50 

speleothems (Dykoski et al., 2005; Hu et al., 2008; Wang et al., 2005). However, records of 51 

pollen assemblages and/or pollen-based precipitation from the lakes in the region (Fig. 1A), 52 

including lakes Gonghai (Chen et al., 2015), Dalianhai (Cheng et al., 2013), Daihai (Xiao et al., 53 

2004), Dali (Wen et al., 2017) and Hulun (Wen et al., 2010), together with evidence for 54 

widespread sand dune mobility in NE China (Li et al., 2014), indicate the occurrence of dry 55 

terrestrial conditions at this time, possibly related to a weak ASM. Furthermore, even diverse 56 

proxies generated from the same study site may exhibit divergent patterns of Holocene climate 57 

change and ASM evolution. For example, at Qinghai Lake, the geochemical proxies (An et al., 58 

2012; Jin et al., 2015; Lister et al., 1991) generally suggest a high lake level and a strong ASM 59 

during the early Holocene. In contrast, the shoreline deposits (Liu et al., 2015) and the pollen 60 

assemblages (Shen et al., 2005) suggest that the lake level probably was low at this time, induced 61 

by high evaporation or a weak ASM. These seemingly contradictory interpretations, especially 62 

those from the same site (e.g., Qinghai Lake), cannot be explained by the spatial and temporal 63 

differentiation of ASM evolution, or by chronological uncertainties. Therefore, a comprehensive 64 

analysis of the driving mechanisms of these proxies and their linkage to the ASM are essential 65 

for reconciling the controversy.  66 



 

Genggahai Lake is a small, shallow lake in the NE Tibetan Plateau (NETP) (Fig. 1A), 67 

located in the marginal region dominated by the ASM. The sediments are rich in the remains of 68 

aquatic biota and terrestrial pollen, which provide the opportunity to conduct multi-proxy 69 

investigations of ASM evolution. Qiang et al. (2013b) have discussed the lake-level fluctuations 70 

over the past 16 kyr based mainly on plant macrofossil assemblages in the sediments from a 71 

single core (GGH-A) recovered from the lake. However, the early Holocene high-stand of the 72 

lake was indirectly inferred by geochemical variables (total organic carbon, total nitrogen and 73 

carbon isotopic composition of bulk sediment organic matter), due to the absence of plant 74 

macrofossils (Qiang et al., 2013b). In addition, the evolution of lake bathymetry may also lead to 75 

lake-level fluctuations on a long timescale (Hilton, 1985; Lehman, 1975), which was not 76 

differentiated from the influence of climatic factors in the previous study (Qiang et al., 2013b). 77 

Therefore, comprehensive analyses of diverse bioindicators (e.g., plant macrofossils, Cladocera, 78 

diatoms) from multiple cores are essential not only for the reliable reconstruction of lake-level 79 

fluctuations, but also for assessing the influence of the evolution of lake bathymetry on the lake-80 

level fluctuations, and for understanding regional hydroclimatic changes (Dearing, 1997). 81 

Moreover, the evolution of the regional terrestrial vegetation and its potential linkages to the 82 

ASM remain unclear. 83 

Here we present sequences of aquatic (plant macrofossils, Cladocera, diatoms) and 84 

terrestrial (terrestrial pollen) proxies derived from multiple sediment cores from Genggahai 85 

Lake. Combined with hydrological and ecological investigations of the modern lake, and with 86 

reference to independent climatic records from the marginal regions dominated by the ASM, our 87 

aims were to reconstruct the regional ASM variability during the Lateglacial and the Holocene, 88 

and to reconcile the current divergent results of proxy indicators of ASM evolution. 89 

2 Materials and Methods 90 

Genggahai Lake (36°11′N, 100°06′E) is located in the central Gonghe Basin (Fig. 1B) at 91 

an altitude of 2,860 m a.s.l. The lake is small (surface area, ~2 km2) and shallow (maximum 92 

water depth, ~1.8 m) and has an elevated salinity (~1.2 g L−1) and pH (~9.1). Potamogeton 93 

pectinatus, Myriophyllum spicatum, and Chara spp. dominate the submerged macrophyte 94 

communities in the current lake. The lake is mainly fed by groundwater. Sever small spring-95 

water streams flow into the lake. Three sediment cores were recovered from Genggahai Lake in 96 

January 2008 and January 2013 using a modified Livingstone piston corer. Cores GGH-A (length 97 

782 cm) and GGH-C (length 774 cm) were recovered from the center of the lake in a water depth 98 

of 170 cm (Fig. 1C), and core GGH-E (length 765 cm) was recovered from the northwest littoral 99 

area in a water depth of 110 cm (Fig. 1C). Due to the lack of terrestrial plant remains, samples of 100 



 

the leaves of aquatic macrophytes were picked from the sediments for accelerator mass 101 

spectrometry (AMS) 14C dating, conducted by Beta Analytic Inc. (Miami, USA) (Table S1). The 102 

reservoir age of the lake was estimated at 1,010 14C years on average, based on the AMS 14C 103 

dating results of the dissolved inorganic carbon of the lake water, macrophyte remains in the 104 

lake’s surface sediments and living P. pectinatus (Li et al., 2017b). A total of 26 14C ages from 105 

cores GGH-A (cited from Qiang et al. 2013b), GGH-C, and GGH-E (Table S1), which are in 106 

stratigraphic order, were calibrated to calendar years (Calib 6.0.1, Reimer et al., 2009) after 107 

subtracting an average reservoir age (1,010 yr). The age-depth models of the three cores were 108 

generated by the Bacon Bayesian age-modeling software (Blaauw and Christen, 2011), using the 109 

calibrated radiocarbon ages. The age versus depth profiles of the three cores agree well with each 110 

other, which supports their reliability (Fig. S1). 111 

Plant macrofossils, including Chara gyrogonites (Fig. 2B, 2D, 2F) and encrustations of 112 

Chara spp. and P. pectinatus (or M. spicatum) (Fig. 2A, 2C, 2E), were picked from cores GGH-113 

A (cited from Qiang et al. 2013b), GGH-C, and GGH-E. Cladocera (Fig. 2G) and diatom (Fig. 2I, 114 

2G) analyses were conducted on core GGH-C using standard methods (Korhola and Rautio, 115 

2001; Weckström et al., 1997). In addition, fossil pollen (Fig. 3A, 3C) was extracted from core 116 

GGH-A following the methods of Fægri and Iversen (1989). In order to comprehensively depict 117 

the terrestrial vegetation conditions in the marginal regions dominated by the ASM, we compiled 118 

six lacustrine tree pollen records from the region, including from lakes Qinghai (Shen et al., 119 

2005), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Dali (Wen et al., 2017), 120 

Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010). Since the changes in the tree pollen 121 

content of these records show a similar trend, a synthesized tree pollen index covering the past 122 

12 kyr (obtained by taking the average of the normalized tree pollen contents from the six lakes) 123 

was used to portray changes in tree cover in the marginal regions dominated by the ASM 124 

(Fig. 3). Further details about the method are given in the supplements. 125 

3 Results and discussion 126 

3.1. Patterns of hydroclimatic evolution indicated by lake level and pollen sequences 127 

In general, submerged macrophytes, Cladocera, and diatoms in freshwater lakes are 128 

sensitive to changes in water level, and thus their fossil remains in lake sediments can be used to 129 

reconstruct past water-level fluctuations (Birks, 1993; Heggen et al., 2012). The aquatic plant 130 

macrofossils in the sediments of Genggahai Lake mainly originate from Chara spp., 131 

P. pectinatus and M. spicatum. These species also dominate the lake today and they are common 132 

in shallow lakes worldwide (Wilson et al., 1941). The spatial distribution of submerged 133 

macrophytes in the modern lake is mainly modulated by the water depth, and the shallow water 134 



 

zone of the lake is occupied by Chara spp. (Fig. S2) (Qiang et al., 2013b). Therefore, the 135 

occurrence of the fossil remains of Chara spp. and P. pectinatus (or M. spicatum) in the lake 136 

sediments, especially the occurrence of abundant Chara gyrogonites, most likely reflects a 137 

shallow water environment. As for fossil Cladocera, only two littoral species (Chydorus 138 

sphaericus and Coronatella rectangula) which prefer macrophyte habitats were identified in the 139 

sediments of Lake Genggahai (Walseng, B., 2016a, 2016b). Diatoms in the sediments are 140 

relatively diverse, consisting of both planktonic (e.g., Lindavia comta and Cyclotella 141 

distinguenda) and non-planktonic species (e.g., Gomphonema angustum and Achnanthes 142 

minutissima). Based on changes in submerged macrophytes, Cladocera and diatoms in the lake 143 

sediments (Fig. 2), the history of lake-level fluctuations was divided into the following four 144 

stages: 145 

15.4–11.3 cal kyr BP The lake sediments contain abundant submerged-macrophyte 146 

encrustations, Chara gyrogonites and littoral cladoceran fossils, reflecting a shallow lake. In 147 

addition, the diatom assemblages are dominated by both planktonic (e.g., L. comta and C. 148 

distinguenda) and non-planktonic species (e.g., G. angustum). Notably, C. distinguenda is a 149 

tychoplanktonic species which can adapt to shallow water conditions. Therefore, the lake level 150 

most likely was low during this period. 151 

11.3–8.6 cal kyr BP Submerged macrophytes and Cladocera largely disappear from the 152 

sediments. In addition, the diatom assemblages are dominated by an euplanktonic species (i.e., L. 153 

comta). Thus we conclude that the lake level was high during this period, and it may have 154 

exceeded the depth limit for submerged macrophytes, resulting in the absence of Cladocera 155 

macrophyte habitats and increasing the abundance of planktonic diatoms. 156 

8.6–5.5 cal kyr BP Submerged macrophyte encrustations occur episodically and Chara 157 

gyrogonites are relatively scarce. Cladocera fossils largely disappear from the sediments, 158 

probably in response to the scarcity of macrophyte habitats. The diatom assemblages are 159 

dominated by both planktonic (e.g., L. comta and C. distinguenda) and non-planktonic species. 160 

Thus we conclude that the lake level during this period was probably high overall, but lower than 161 

during the previous stage. 162 

5.5 kyr cal BP to the present The lake sediments contain abundant submerged-163 

macrophyte encrustations, Chara gyrogonites, littoral Cladocera fossils, and non-planktonic 164 

diatoms, reflecting a shallow lake.  165 

The terrestrial pollen in lake sediments is mainly derived from the catchment and hence it 166 

reflects the local and regional terrestrial vegetation conditions (Pennington, 1979). Changes in 167 

total terrestrial pollen concentrations (Fig. 3A) and tree pollen contents (Fig. 3C) in the 168 



 

sediments of Genggahai Lake are largely in agreement with those at nearby Qinghai Lake (Fig. 169 

3B, 3D) and the synthesized tree pollen index (Fig. 3J), showing that optimal vegetation 170 

conditions occurred during 8.6–6.9 cal kyr BP. Overall, the aquatic and animal fossils 171 

(macrophytes, Cladocera, diatoms) and terrestrial pollen in the sediments of Genggahai Lake 172 

indicate that a higher lake level and relatively lower terrestrial vegetation cover occurred 173 

synchronously during the early Holocene (11.3–8.6 kyr cal BP), compared with the period from 174 

8.6 to 6.9 kyr cal BP. This implies the occurrence of different hydroclimatic conditions between 175 

the lake and its catchment (Fig. 4A, 4I). This apparent contradiction is also reflected in proxy 176 

sequences from other lakes in the marginal regions dominated by the ASM: e.g., at Lakes 177 

Qinghai (An et al., 2012; Shen et al., 2005), Dali (Goldsmith et al., 2017; Wen et al., 2017) and 178 

Chagan Nur (Li et al., 2020a).  179 

3.2. Implications for the evolution of the Asian summer monsoon  180 

The early Holocene high lake levels and low total pollen concentrations (or tree 181 

percentages) recorded by lake sediments from the margins of the regions dominated by the ASM 182 

are mutually contradictory in terms of their interpretation as evidence for ASM strength (e.g., An 183 

et al., 2012; Chen et al., 2015), or as evidence for the spatial differentiation of ASM evolution 184 

(Zhang et al., 2019). However, these seemingly contradictory patterns most likely reflect the 185 

existence of different hydroclimatic conditions between the lake and its catchment due to diverse 186 

driving mechanisms (cf., Wilson et al., 2015), and they cannot simultaneously be interpreted as 187 

proxies of ASM strength. 188 

In general, lake-level fluctuations are controlled by the water balance of the lake. 189 

However, previous studies have demonstrated that the evolution of lake bathymetry on a long 190 

timescale may also result in lake-level fluctuations (Hilton, 1985; Lehman, 1975). Increased 191 

allochthonous input of detrital materials will enhance the sedimentation rate in the deepest parts 192 

of the lake due to gravity (i.e., the “sediment-focusing effect”) which will lead to decreases in 193 

water depth (Hilton, 1985). However, at Genggahai Lake, the AMS 14C dating results show that 194 

the sedimentation rate of the central cores (GGH-A and GGH-C) was largely consistent with that 195 

of the littoral core (GGH-E) during the Lateglacial and Holocene (Fig. S1), indicating that 196 

changes in lake bathymetry since the Lateglacial were probably minor, exerting little effect on 197 

the lake level. This could be ascribed to the flat lake basin morphometry and the dense growth of 198 

submerged macrophytes, which largely restricted re-suspension and transport of sediments to the 199 

depocenter (cf. Dearing, 1997). Therefore, lake-level fluctuations mainly represent the balance 200 

between water inflows and losses. Currently, there are no large glaciers on the summits of the 201 

mountains surrounding Genggahai Lake. In addition, the Lateglacial glaciers on these mountains 202 



 

were mainly distributed in areas above 4,500 m a.s.l. (Fig. 1B) (Li et al., 1991) and therefore 203 

their total extent was relatively small. Thus they are unlikely to have continuously contributed 204 

meltwater which could sustain the high lake level during the early Holocene (11.3–8.6 cal kyr 205 

BP), given the temperature increase of ~3 oC at the onset of the Holocene (Herzschuh et al., 2014; 206 

Li et. al., 2017a). Genggahai Lake is fed mainly by groundwater. Loose, porous fluvio-lacustrine 207 

sediments of the Gonghe Formation (Perrineau et al., 2011) and surficial fluvial-fan sediments 208 

largely constitute the catchment substrate of groundwater. In addition, the deep incision of the 209 

Yellow River in the eastern Gonghe Basin led to a steep hydraulic gradient of the basin 210 

(Craddock et al., 2010). Therefore, the catchment of groundwater was highly permeable, and 211 

hence precipitation can infiltrate rapidly into the ground and feed the lake. The evaporation 212 

losses during the infiltration process were most likely low. In addition, the catchment area of the 213 

groundwater feeding the lake is far larger than the lake's surface area (Fig. 1B). Therefore, 214 

evaporation may play a minor role in the water balance of the lake, and hence the lake-level 215 

fluctuations can be interpreted as indicating changes in regional precipitation, reflecting the 216 

strength of the ASM in the study area. The pattern of water-level fluctuations at Genggahai Lake 217 

largely coincides with that of other lakes in the marginal regions dominated by the ASM (e.g., 218 

Qinghai, Kuhai, Dali, Dabusu and Chagan Nur) (Fig. 4B–F). This consistent pattern suggests a 219 

weak ASM during 15.4–11.3 cal kyr BP, a significantly intensified ASM during 11.3–8.6 cal 220 

kyr BP, and a gradually weakening ASM thereafter. In addition, the results of a modeling study 221 

of water level changes at Qinghai Lake also reveal an early Holocene high-stand (Fig. 4C) (Li et 222 

al., 2020b). 223 

The evolution of terrestrial vegetation is generally the integrated reactions to multiple 224 

environmental factors, including temperature, precipitation and the available water capacity of 225 

the soil (Prentice et al., 1992). The sparse terrestrial vegetation in the marginal regions 226 

dominated by the ASM during 15.4–11.3 cal kyr BP and 5.5–0 cal kyr BP mainly resulted from 227 

low monsoonal precipitation and low temperatures (Lu et al., 2011). In addition, the relatively 228 

low total terrestrial pollen concentration (Fig. 4I) during the early Holocene (11.3–8.6 kyr cal BP) 229 

suggests that the terrestrial vegetation did not respond to the significantly ameliorated 230 

environmental conditions, although the monsoonal precipitation increased sharply. Significantly, 231 

changes in terrestrial vegetation are modulated mainly by effective moisture rather than by 232 

precipitation (Prentice et al., 1992). Furthermore, changes in effective moisture do not always 233 

respond linearly to variations in precipitation, but rather they depend on the balance between 234 

precipitation and evaporation. Therefore, the relatively low terrestrial vegetation cover in the 235 

study area during the early Holocene mostly likely reflects a low level of effective moisture. 236 

Notably, the low effective moisture during this interval is also documented by the widespread 237 



 

sand dune mobility in both the NETP and NE China (Fig. 4K, 4L) (Li et al., 2014; Qiang et al., 238 

2013a). Given that the enhanced monsoonal precipitation during the early Holocene may have 239 

infiltrated rapidly into the ground due to the porous nature of the soils and the steep hydraulic 240 

gradient of the catchment, the water retained in the soils probably could not compensate for the 241 

intense evaporation loss as a consequence of the high temperatures (Li et. al., 2017a) and high 242 

summer insolation. This may have led to a low level of effective moisture and further restricted 243 

the development of both the terrestrial vegetation and paleosols (Mason et al., 2009; Qiang et al., 244 

2013a, 2016). In addition, the strong ASM during this period would have resulted in the strong 245 

release of latent heat by water (Herzschuh et al., 2014), which may have further increased 246 

temperatures and evaporation. By contrast, decreased temperatures (Li et. al., 2017a), due to the 247 

reduction in both summer insolation and release of latent heat by water vapor during the period 248 

from 8.6 to 6.9 cal kyr BP, likely resulted in the weakened evaporation of soil water and hence 249 

led to the widespread development of vegetation (Fig. 3) and palaeosols (Li et al., 2014; Qiang et 250 

al., 2013a) in the marginal regions dominated by the ASM. In addition, given that the terrestrial 251 

vegetation has a lagged response to precipitation changes, the different response rates of the lake 252 

water and terrestrial vegetation to climate change may also have contributed to the occurrence of 253 

different hydroclimatic conditions between Genggahai Lake and its catchment (Zhao et al., 254 

2017).  255 

The diverse proxies derived from sediments of Genggahai Lake clearly reveal the 256 

synchronous occurrence of high lake levels and relatively low terrestrial vegetation cover, which 257 

are correlative with evidence for widespread sand dune mobility in the marginal regions 258 

dominated by the ASM during the early Holocene. These features do not reflect different 259 

climatic patterns, but rather they reflect different aspects of monsoonal climate change. The 260 

consistent high-stand of the lakes from these monsoon margin areas suggests increased 261 

monsoonal precipitation during the early Holocene, providing compelling evidences for the 262 

spatial consistency of ASM evolution documented by oxygen isotopic records from Chinese cave 263 

deposits (Cheng et al., 2019; Dykoski et al., 2005; Hu et al., 2008; Wang et al., 2005). The strong 264 

ASM and the increased monsoonal precipitation in the marginal regions dominated by the ASM 265 

during the early Holocene are ascribed to the enhanced thermal contrast between land and sea in 266 

spring and summer due to the increased orbitally-induced summer insolation (Fig. 4G, 4H). The 267 

relatively low terrestrial vegetation cover during the early Holocene, as well as the widespread 268 

dune sands in eolian sections in both the NETP and NE China, most likely reflect low effective 269 

moisture conditions due to high evaporation, and hence they cannot be interpreted as evidence of 270 

a weak monsoon. 271 



 

4 Conclusions 272 

The water-level fluctuations of Genggahai Lake and the vegetation conditions in its 273 

catchment were reconstructed from the aquatic biota and pollen preserved in the lake sediments. 274 

The results suggest a higher lake level and a stronger ASM during 11.3–5.5 cal kyr BP, 275 

compared to the intervals of 15.4–11.3 cal kyr BP and 5.5–0 cal kyr BP. However, the total 276 

terrestrial pollen concentration indicates relatively lower terrestrial vegetation cover during the 277 

early Holocene (11.3–8.6 cal kyr BP), compared with the period from 8.6 to 6.9 kyr cal BP. In 278 

contrast to the lake-level fluctuations, the vegetation cover in the catchment cannot be used as a 279 

proxy for variations in monsoonal precipitation and thus ASM strength. Rather, the relatively 280 

low vegetation cover mainly reflects a low level of effective moisture conditions, as a result of 281 

intense evaporation due to high temperatures during the early Holocene.  282 
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Figure and table captions 445 

Fig. 1. Location and modern environmental context of Genggahai Lake. (A) Overview map showing locations 446 

of the paleoclimatic sites referenced in the text, and the dominant circulation systems of the westerlies and the 447 

Asian monsoon. Genggahai Lake is indicated by a star. Lakes Qinghai (Shen et al., 2005), Kuhai (Mischke et 448 

al., 2010), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Chagan Nur (Li et al., 2020a), Dali 449 

(Wen et al., 2017), Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010), Dabusu Lake (Li and Lv, 2001) 450 

and Dongge Cave (Dykoski et al., 2005) are indicated by circles. The modern Asian summer monsoon limit is 451 

shown by a green dashed line (after Gao et al., 1962). (B) Physical environment of the Gonghe Basin. 452 

Mountain areas above 4,500 m a.s.l. and the potential catchment area of groundwater-fed Genggahai Lake are 453 

delineated by the white dashed line and the blue dashed line (after Qiang et al., 2017), respectively. (C) 454 

Vegetation (after Qiang et al., 2013b.) and coring sites. 455 

Fig. 2. Records of plant macrofossils (A–F), Cladocera (G, H), and diatoms (I, J, K) from the sediments of 456 

Genggahai Lake and the reconstructed lake level (L). (G, I, J) Relative abundance of Cladocera, planktonic 457 

diatoms and non-planktonic diatoms, respectively. (H, K) Total counted individuals of Cladocera and diatoms, 458 

respectively. In (A, C, E) green and red bars denote Potamogeton pectinatus (or Myriophyllum spicatum) and 459 

Chara encrustations, respectively. Macrofossil stem encrustations are identified in the stratigraphy. Chara 460 

gyrogonites are presented as individuals/dm2 per year. 461 

Fig. 3. Comparison of the synthesized tree pollen index (J, this study) and pollen records from the marginal 462 

regions dominated by the ASM. (A, B) Total terrestrial pollen concentration from lakes Genggahai (this study) 463 

and Qinghai (Shen et al., 2005), respectively. (C−I) Tree pollen percentages from lakes Genggahai (this study), 464 

Qinghai (Shen et al., 2005), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Dali (Wen et al., 465 

2017), Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010), respectively. The gray bar indicates the optimal 466 

vegetation conditions during 8.6–6.9 cal kyr BP. 467 

Fig. 4. Comparison of the lake-level record (A) and total terrestrial pollen concentration (I) from Genggahai 468 

Lake and other paleoclimatic records. (B) Asian summer monsoon (ASM) index based on the sedimentary 469 

carbonate and TOC content of the sediments of Qinghai Lake (An et al., 2012). (C) Simulated water level of 470 

Qinghai Lake (Li et al., 2020b). (d) Mz (φ) grain-size record from Dabusu Lake (Li and Lv, 2001). (E, F) 471 

Water level of Chagan Nur (Li et al., 2020a) and Dali Lake (Goldsmith et al., 2017), respectively. (G) Summer 472 

insolation at 35°N (Berger and Loutre, 1991). (H) δ18Oc record from Dongge Cave (Dykoski et al., 2005). (J) 473 

Synthesized tree pollen index (this study). (K) Probability density plot of the OSL ages of eolian sand samples 474 

from the NETP (Qiang et al., 2013a). (L) Synthesized sand percentages in eolian deposits in northeast China 475 

(Li et al., 2014).  476 
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Abstract 14 

The nature of Holocene Asian summer monsoon (ASM) evolution documented by diverse 15 

natural archives remains controversial, with a contentious issue being whether or not a strong 16 

Asian summer monsoon prevailed during the early Holocene. Here we present sequences of 17 

multiple proxies measured in sediment cores from Genggahai Lake in the NE Tibetan Plateau 18 

(NETP). The results suggest that a higher lake level and relatively lower terrestrial vegetation 19 

cover occurred synchronously during the early Holocene (11.3–8.6 kyr cal BP), compared with 20 

the period from 8.6 to 6.9 kyr cal BP. This finding clearly reflects the existence of different 21 

hydroclimatic conditions between the lake and its catchment due to diverse driving mechanisms. 22 

The early Holocene high stand of the lake, as demonstrated by the stratigraphic variability of the 23 

remains of aquatic biota, may have responded to the strengthened ASM and increased monsoonal 24 

precipitation; the relatively low vegetation cover in the marginal region of the Asian monsoon 25 

during the early Holocene, and the coeval widespread active sand dune mobility in both the NE 26 

Tibetan Plateau and NE China, most likely resulted from a low level of effective moisture due to 27 

high evaporation, and hence they cannot be interpreted as evidence of a weak ASM. Our results 28 

potentially reconcile the current divergent interpretations of various proxy climate records from 29 

the region. Our findings suggest that the ASM evolution was characterized by a consistent 30 

pattern across the monsoonal regions, as indicated by the oxygen isotope record of Chinese 31 

speleothems. 32 
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1 Introduction 34 

The Asian monsoon system affects more than half of the world’s population and the 35 

associated ecosystems (Webster et al., 1998). Understanding the variability of the Asian 36 

monsoon has significant implications for the social and ecological systems in the region (Hansen 37 

and Lebedeff, 1987; Mishra et al., 2019). Precipitation in the marginal regions dominated by the 38 

Asian summer monsoon (ASM) is highly dependent on the strength of the ASM: a stronger ASM 39 

circulation can transport more water vapor, leading to higher precipitation, and vice versa (Zhou 40 

et al., 2009). Therefore, precipitation in these marginal regions can directly reflect the strength of 41 

the ASM (Chen et al., 2015). Over the past two decades, numerous studies of the Holocene 42 

evolution of the ASM have been conducted based on diverse natural archives from the region 43 

(e.g., Chen et al., 2015; Dykoski et al., 2005; Goldsmith et al., 2017; Hu et al., 2008; Li et al., 44 

2014; Wang et al., 2005; Wei et al., 2020). However, the nature of ASM evolution during the 45 

Holocene still remains controversial, with a contentious issue being whether or not a strong 46 

Asian summer monsoon prevailed during the early Holocene. For example, the early Holocene 47 

high-stand of lakes in the marginal regions dominated by the ASM (Fig. 1A), including lakes 48 

Dali (Goldsmith et al., 2017), Dabusu (Li and Lv, 2001) and Kuhai (Mischke et al., 2010), 49 

reflects an intensified ASM which is consistent with monsoonal records from Chinese 50 

speleothems (Dykoski et al., 2005; Hu et al., 2008; Wang et al., 2005). However, records of 51 

pollen assemblages and/or pollen-based precipitation from the lakes in the region (Fig. 1A), 52 

including lakes Gonghai (Chen et al., 2015), Dalianhai (Cheng et al., 2013), Daihai (Xiao et al., 53 

2004), Dali (Wen et al., 2017) and Hulun (Wen et al., 2010), together with evidence for 54 

widespread sand dune mobility in NE China (Li et al., 2014), indicate the occurrence of dry 55 

terrestrial conditions at this time, possibly related to a weak ASM. Furthermore, even diverse 56 

proxies generated from the same study site may exhibit divergent patterns of Holocene climate 57 

change and ASM evolution. For example, at Qinghai Lake, the geochemical proxies (An et al., 58 

2012; Jin et al., 2015; Lister et al., 1991) generally suggest a high lake level and a strong ASM 59 

during the early Holocene. In contrast, the shoreline deposits (Liu et al., 2015) and the pollen 60 

assemblages (Shen et al., 2005) suggest that the lake level probably was low at this time, induced 61 

by high evaporation or a weak ASM. These seemingly contradictory interpretations, especially 62 

those from the same site (e.g., Qinghai Lake), cannot be explained by the spatial and temporal 63 

differentiation of ASM evolution, or by chronological uncertainties. Therefore, a comprehensive 64 

analysis of the driving mechanisms of these proxies and their linkage to the ASM are essential 65 

for reconciling the controversy.  66 



 

Genggahai Lake is a small, shallow lake in the NE Tibetan Plateau (NETP) (Fig. 1A), 67 

located in the marginal region dominated by the ASM. The sediments are rich in the remains of 68 

aquatic biota and terrestrial pollen, which provide the opportunity to conduct multi-proxy 69 

investigations of ASM evolution. Qiang et al. (2013b) have discussed the lake-level fluctuations 70 

over the past 16 kyr based mainly on plant macrofossil assemblages in the sediments from a 71 

single core (GGH-A) recovered from the lake. However, the early Holocene high-stand of the 72 

lake was indirectly inferred by geochemical variables (total organic carbon, total nitrogen and 73 

carbon isotopic composition of bulk sediment organic matter), due to the absence of plant 74 

macrofossils (Qiang et al., 2013b). In addition, the evolution of lake bathymetry may also lead to 75 

lake-level fluctuations on a long timescale (Hilton, 1985; Lehman, 1975), which was not 76 

differentiated from the influence of climatic factors in the previous study (Qiang et al., 2013b). 77 

Therefore, comprehensive analyses of diverse bioindicators (e.g., plant macrofossils, Cladocera, 78 

diatoms) from multiple cores are essential not only for the reliable reconstruction of lake-level 79 

fluctuations, but also for assessing the influence of the evolution of lake bathymetry on the lake-80 

level fluctuations, and for understanding regional hydroclimatic changes (Dearing, 1997). 81 

Moreover, the evolution of the regional terrestrial vegetation and its potential linkages to the 82 

ASM remain unclear. 83 

Here we present sequences of aquatic (plant macrofossils, Cladocera, diatoms) and 84 

terrestrial (terrestrial pollen) proxies derived from multiple sediment cores from Genggahai 85 

Lake. Combined with hydrological and ecological investigations of the modern lake, and with 86 

reference to independent climatic records from the marginal regions dominated by the ASM, our 87 

aims were to reconstruct the regional ASM variability during the Lateglacial and the Holocene, 88 

and to reconcile the current divergent results of proxy indicators of ASM evolution. 89 

2 Materials and Methods 90 

Genggahai Lake (36°11′N, 100°06′E) is located in the central Gonghe Basin (Fig. 1B) at 91 

an altitude of 2,860 m a.s.l. The lake is small (surface area, ~2 km2) and shallow (maximum 92 

water depth, ~1.8 m) and has an elevated salinity (~1.2 g L−1) and pH (~9.1). Potamogeton 93 

pectinatus, Myriophyllum spicatum, and Chara spp. dominate the submerged macrophyte 94 

communities in the current lake. The lake is mainly fed by groundwater. Sever small spring-95 

water streams flow into the lake. Three sediment cores were recovered from Genggahai Lake in 96 

January 2008 and January 2013 using a modified Livingstone piston corer. Cores GGH-A (length 97 

782 cm) and GGH-C (length 774 cm) were recovered from the center of the lake in a water depth 98 

of 170 cm (Fig. 1C), and core GGH-E (length 765 cm) was recovered from the northwest littoral 99 

area in a water depth of 110 cm (Fig. 1C). Due to the lack of terrestrial plant remains, samples of 100 



 

the leaves of aquatic macrophytes were picked from the sediments for accelerator mass 101 

spectrometry (AMS) 14C dating, conducted by Beta Analytic Inc. (Miami, USA) (Table S1). The 102 

reservoir age of the lake was estimated at 1,010 14C years on average, based on the AMS 14C 103 

dating results of the dissolved inorganic carbon of the lake water, macrophyte remains in the 104 

lake’s surface sediments and living P. pectinatus (Li et al., 2017b). A total of 26 14C ages from 105 

cores GGH-A (cited from Qiang et al. 2013b), GGH-C, and GGH-E (Table S1), which are in 106 

stratigraphic order, were calibrated to calendar years (Calib 6.0.1, Reimer et al., 2009) after 107 

subtracting an average reservoir age (1,010 yr). The age-depth models of the three cores were 108 

generated by the Bacon Bayesian age-modeling software (Blaauw and Christen, 2011), using the 109 

calibrated radiocarbon ages. The age versus depth profiles of the three cores agree well with each 110 

other, which supports their reliability (Fig. S1). 111 

Plant macrofossils, including Chara gyrogonites (Fig. 2B, 2D, 2F) and encrustations of 112 

Chara spp. and P. pectinatus (or M. spicatum) (Fig. 2A, 2C, 2E), were picked from cores GGH-113 

A (cited from Qiang et al. 2013b), GGH-C, and GGH-E. Cladocera (Fig. 2G) and diatom (Fig. 2I, 114 

2G) analyses were conducted on core GGH-C using standard methods (Korhola and Rautio, 115 

2001; Weckström et al., 1997). In addition, fossil pollen (Fig. 3A, 3C) was extracted from core 116 

GGH-A following the methods of Fægri and Iversen (1989). In order to comprehensively depict 117 

the terrestrial vegetation conditions in the marginal regions dominated by the ASM, we compiled 118 

six lacustrine tree pollen records from the region, including from lakes Qinghai (Shen et al., 119 

2005), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Dali (Wen et al., 2017), 120 

Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010). Since the changes in the tree pollen 121 

content of these records show a similar trend, a synthesized tree pollen index covering the past 122 

12 kyr (obtained by taking the average of the normalized tree pollen contents from the six lakes) 123 

was used to portray changes in tree cover in the marginal regions dominated by the ASM 124 

(Fig. 3). Further details about the method are given in the supplements. 125 

3 Results and discussion 126 

3.1. Patterns of hydroclimatic evolution indicated by lake level and pollen sequences 127 

In general, submerged macrophytes, Cladocera, and diatoms in freshwater lakes are 128 

sensitive to changes in water level, and thus their fossil remains in lake sediments can be used to 129 

reconstruct past water-level fluctuations (Birks, 1993; Heggen et al., 2012). The aquatic plant 130 

macrofossils in the sediments of Genggahai Lake mainly originate from Chara spp., 131 

P. pectinatus and M. spicatum. These species also dominate the lake today and they are common 132 

in shallow lakes worldwide (Wilson et al., 1941). The spatial distribution of submerged 133 

macrophytes in the modern lake is mainly modulated by the water depth, and the shallow water 134 



 

zone of the lake is occupied by Chara spp. (Fig. S2) (Qiang et al., 2013b). Therefore, the 135 

occurrence of the fossil remains of Chara spp. and P. pectinatus (or M. spicatum) in the lake 136 

sediments, especially the occurrence of abundant Chara gyrogonites, most likely reflects a 137 

shallow water environment. As for fossil Cladocera, only two littoral species (Chydorus 138 

sphaericus and Coronatella rectangula) which prefer macrophyte habitats were identified in the 139 

sediments of Lake Genggahai (Walseng, B., 2016a, 2016b). Diatoms in the sediments are 140 

relatively diverse, consisting of both planktonic (e.g., Lindavia comta and Cyclotella 141 

distinguenda) and non-planktonic species (e.g., Gomphonema angustum and Achnanthes 142 

minutissima). Based on changes in submerged macrophytes, Cladocera and diatoms in the lake 143 

sediments (Fig. 2), the history of lake-level fluctuations was divided into the following four 144 

stages: 145 

15.4–11.3 cal kyr BP The lake sediments contain abundant submerged-macrophyte 146 

encrustations, Chara gyrogonites and littoral cladoceran fossils, reflecting a shallow lake. In 147 

addition, the diatom assemblages are dominated by both planktonic (e.g., L. comta and C. 148 

distinguenda) and non-planktonic species (e.g., G. angustum). Notably, C. distinguenda is a 149 

tychoplanktonic species which can adapt to shallow water conditions. Therefore, the lake level 150 

most likely was low during this period. 151 

11.3–8.6 cal kyr BP Submerged macrophytes and Cladocera largely disappear from the 152 

sediments. In addition, the diatom assemblages are dominated by an euplanktonic species (i.e., L. 153 

comta). Thus we conclude that the lake level was high during this period, and it may have 154 

exceeded the depth limit for submerged macrophytes, resulting in the absence of Cladocera 155 

macrophyte habitats and increasing the abundance of planktonic diatoms. 156 

8.6–5.5 cal kyr BP Submerged macrophyte encrustations occur episodically and Chara 157 

gyrogonites are relatively scarce. Cladocera fossils largely disappear from the sediments, 158 

probably in response to the scarcity of macrophyte habitats. The diatom assemblages are 159 

dominated by both planktonic (e.g., L. comta and C. distinguenda) and non-planktonic species. 160 

Thus we conclude that the lake level during this period was probably high overall, but lower than 161 

during the previous stage. 162 

5.5 kyr cal BP to the present The lake sediments contain abundant submerged-163 

macrophyte encrustations, Chara gyrogonites, littoral Cladocera fossils, and non-planktonic 164 

diatoms, reflecting a shallow lake.  165 

The terrestrial pollen in lake sediments is mainly derived from the catchment and hence it 166 

reflects the local and regional terrestrial vegetation conditions (Pennington, 1979). Changes in 167 

total terrestrial pollen concentrations (Fig. 3A) and tree pollen contents (Fig. 3C) in the 168 



 

sediments of Genggahai Lake are largely in agreement with those at nearby Qinghai Lake (Fig. 169 

3B, 3D) and the synthesized tree pollen index (Fig. 3J), showing that optimal vegetation 170 

conditions occurred during 8.6–6.9 cal kyr BP. Overall, the aquatic and animal fossils 171 

(macrophytes, Cladocera, diatoms) and terrestrial pollen in the sediments of Genggahai Lake 172 

indicate that a higher lake level and relatively lower terrestrial vegetation cover occurred 173 

synchronously during the early Holocene (11.3–8.6 kyr cal BP), compared with the period from 174 

8.6 to 6.9 kyr cal BP. This implies the occurrence of different hydroclimatic conditions between 175 

the lake and its catchment (Fig. 4A, 4I). This apparent contradiction is also reflected in proxy 176 

sequences from other lakes in the marginal regions dominated by the ASM: e.g., at Lakes 177 

Qinghai (An et al., 2012; Shen et al., 2005), Dali (Goldsmith et al., 2017; Wen et al., 2017) and 178 

Chagan Nur (Li et al., 2020a).  179 

3.2. Implications for the evolution of the Asian summer monsoon  180 

The early Holocene high lake levels and low total pollen concentrations (or tree 181 

percentages) recorded by lake sediments from the margins of the regions dominated by the ASM 182 

are mutually contradictory in terms of their interpretation as evidence for ASM strength (e.g., An 183 

et al., 2012; Chen et al., 2015), or as evidence for the spatial differentiation of ASM evolution 184 

(Zhang et al., 2019). However, these seemingly contradictory patterns most likely reflect the 185 

existence of different hydroclimatic conditions between the lake and its catchment due to diverse 186 

driving mechanisms (cf., Wilson et al., 2015), and they cannot simultaneously be interpreted as 187 

proxies of ASM strength. 188 

In general, lake-level fluctuations are controlled by the water balance of the lake. 189 

However, previous studies have demonstrated that the evolution of lake bathymetry on a long 190 

timescale may also result in lake-level fluctuations (Hilton, 1985; Lehman, 1975). Increased 191 

allochthonous input of detrital materials will enhance the sedimentation rate in the deepest parts 192 

of the lake due to gravity (i.e., the “sediment-focusing effect”) which will lead to decreases in 193 

water depth (Hilton, 1985). However, at Genggahai Lake, the AMS 14C dating results show that 194 

the sedimentation rate of the central cores (GGH-A and GGH-C) was largely consistent with that 195 

of the littoral core (GGH-E) during the Lateglacial and Holocene (Fig. S1), indicating that 196 

changes in lake bathymetry since the Lateglacial were probably minor, exerting little effect on 197 

the lake level. This could be ascribed to the flat lake basin morphometry and the dense growth of 198 

submerged macrophytes, which largely restricted re-suspension and transport of sediments to the 199 

depocenter (cf. Dearing, 1997). Therefore, lake-level fluctuations mainly represent the balance 200 

between water inflows and losses. Currently, there are no large glaciers on the summits of the 201 

mountains surrounding Genggahai Lake. In addition, the Lateglacial glaciers on these mountains 202 



 

were mainly distributed in areas above 4,500 m a.s.l. (Fig. 1B) (Li et al., 1991) and therefore 203 

their total extent was relatively small. Thus they are unlikely to have continuously contributed 204 

meltwater which could sustain the high lake level during the early Holocene (11.3–8.6 cal kyr 205 

BP), given the temperature increase of ~3 oC at the onset of the Holocene (Herzschuh et al., 2014; 206 

Li et. al., 2017a). Genggahai Lake is fed mainly by groundwater. Loose, porous fluvio-lacustrine 207 

sediments of the Gonghe Formation (Perrineau et al., 2011) and surficial fluvial-fan sediments 208 

largely constitute the catchment substrate of groundwater. In addition, the deep incision of the 209 

Yellow River in the eastern Gonghe Basin led to a steep hydraulic gradient of the basin 210 

(Craddock et al., 2010). Therefore, the catchment of groundwater was highly permeable, and 211 

hence precipitation can infiltrate rapidly into the ground and feed the lake. The evaporation 212 

losses during the infiltration process were most likely low. In addition, the catchment area of the 213 

groundwater feeding the lake is far larger than the lake's surface area (Fig. 1B). Therefore, 214 

evaporation may play a minor role in the water balance of the lake, and hence the lake-level 215 

fluctuations can be interpreted as indicating changes in regional precipitation, reflecting the 216 

strength of the ASM in the study area. The pattern of water-level fluctuations at Genggahai Lake 217 

largely coincides with that of other lakes in the marginal regions dominated by the ASM (e.g., 218 

Qinghai, Kuhai, Dali, Dabusu and Chagan Nur) (Fig. 4B–F). This consistent pattern suggests a 219 

weak ASM during 15.4–11.3 cal kyr BP, a significantly intensified ASM during 11.3–8.6 cal 220 

kyr BP, and a gradually weakening ASM thereafter. In addition, the results of a modeling study 221 

of water level changes at Qinghai Lake also reveal an early Holocene high-stand (Fig. 4C) (Li et 222 

al., 2020b). 223 

The evolution of terrestrial vegetation is generally the integrated reactions to multiple 224 

environmental factors, including temperature, precipitation and the available water capacity of 225 

the soil (Prentice et al., 1992). The sparse terrestrial vegetation in the marginal regions 226 

dominated by the ASM during 15.4–11.3 cal kyr BP and 5.5–0 cal kyr BP mainly resulted from 227 

low monsoonal precipitation and low temperatures (Lu et al., 2011). In addition, the relatively 228 

low total terrestrial pollen concentration (Fig. 4I) during the early Holocene (11.3–8.6 kyr cal BP) 229 

suggests that the terrestrial vegetation did not respond to the significantly ameliorated 230 

environmental conditions, although the monsoonal precipitation increased sharply. Significantly, 231 

changes in terrestrial vegetation are modulated mainly by effective moisture rather than by 232 

precipitation (Prentice et al., 1992). Furthermore, changes in effective moisture do not always 233 

respond linearly to variations in precipitation, but rather they depend on the balance between 234 

precipitation and evaporation. Therefore, the relatively low terrestrial vegetation cover in the 235 

study area during the early Holocene mostly likely reflects a low level of effective moisture. 236 

Notably, the low effective moisture during this interval is also documented by the widespread 237 



 

sand dune mobility in both the NETP and NE China (Fig. 4K, 4L) (Li et al., 2014; Qiang et al., 238 

2013a). Given that the enhanced monsoonal precipitation during the early Holocene may have 239 

infiltrated rapidly into the ground due to the porous nature of the soils and the steep hydraulic 240 

gradient of the catchment, the water retained in the soils probably could not compensate for the 241 

intense evaporation loss as a consequence of the high temperatures (Li et. al., 2017a) and high 242 

summer insolation. This may have led to a low level of effective moisture and further restricted 243 

the development of both the terrestrial vegetation and paleosols (Mason et al., 2009; Qiang et al., 244 

2013a, 2016). In addition, the strong ASM during this period would have resulted in the strong 245 

release of latent heat by water (Herzschuh et al., 2014), which may have further increased 246 

temperatures and evaporation. By contrast, decreased temperatures (Li et. al., 2017a), due to the 247 

reduction in both summer insolation and release of latent heat by water vapor during the period 248 

from 8.6 to 6.9 cal kyr BP, likely resulted in the weakened evaporation of soil water and hence 249 

led to the widespread development of vegetation (Fig. 3) and palaeosols (Li et al., 2014; Qiang et 250 

al., 2013a) in the marginal regions dominated by the ASM. In addition, given that the terrestrial 251 

vegetation has a lagged response to precipitation changes, the different response rates of the lake 252 

water and terrestrial vegetation to climate change may also have contributed to the occurrence of 253 

different hydroclimatic conditions between Genggahai Lake and its catchment (Zhao et al., 254 

2017).  255 

The diverse proxies derived from sediments of Genggahai Lake clearly reveal the 256 

synchronous occurrence of high lake levels and relatively low terrestrial vegetation cover, which 257 

are correlative with evidence for widespread sand dune mobility in the marginal regions 258 

dominated by the ASM during the early Holocene. These features do not reflect different 259 

climatic patterns, but rather they reflect different aspects of monsoonal climate change. The 260 

consistent high-stand of the lakes from these monsoon margin areas suggests increased 261 

monsoonal precipitation during the early Holocene, providing compelling evidences for the 262 

spatial consistency of ASM evolution documented by oxygen isotopic records from Chinese cave 263 

deposits (Cheng et al., 2019; Dykoski et al., 2005; Hu et al., 2008; Wang et al., 2005). The strong 264 

ASM and the increased monsoonal precipitation in the marginal regions dominated by the ASM 265 

during the early Holocene are ascribed to the enhanced thermal contrast between land and sea in 266 

spring and summer due to the increased orbitally-induced summer insolation (Fig. 4G, 4H). The 267 

relatively low terrestrial vegetation cover during the early Holocene, as well as the widespread 268 

dune sands in eolian sections in both the NETP and NE China, most likely reflect low effective 269 

moisture conditions due to high evaporation, and hence they cannot be interpreted as evidence of 270 

a weak monsoon. 271 



 

4 Conclusions 272 

The water-level fluctuations of Genggahai Lake and the vegetation conditions in its 273 

catchment were reconstructed from the aquatic biota and pollen preserved in the lake sediments. 274 

The results suggest a higher lake level and a stronger ASM during 11.3–5.5 cal kyr BP, 275 

compared to the intervals of 15.4–11.3 cal kyr BP and 5.5–0 cal kyr BP. However, the total 276 

terrestrial pollen concentration indicates relatively lower terrestrial vegetation cover during the 277 

early Holocene (11.3–8.6 cal kyr BP), compared with the period from 8.6 to 6.9 kyr cal BP. In 278 

contrast to the lake-level fluctuations, the vegetation cover in the catchment cannot be used as a 279 

proxy for variations in monsoonal precipitation and thus ASM strength. Rather, the relatively 280 

low vegetation cover mainly reflects a low level of effective moisture conditions, as a result of 281 

intense evaporation due to high temperatures during the early Holocene.  282 
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Figure and table captions 445 

Fig. 1. Location and modern environmental context of Genggahai Lake. (A) Overview map showing locations 446 

of the paleoclimatic sites referenced in the text, and the dominant circulation systems of the westerlies and the 447 

Asian monsoon. Genggahai Lake is indicated by a star. Lakes Qinghai (Shen et al., 2005), Kuhai (Mischke et 448 

al., 2010), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Chagan Nur (Li et al., 2020a), Dali 449 

(Wen et al., 2017), Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010), Dabusu Lake (Li and Lv, 2001) 450 

and Dongge Cave (Dykoski et al., 2005) are indicated by circles. The modern Asian summer monsoon limit is 451 

shown by a green dashed line (after Gao et al., 1962). (B) Physical environment of the Gonghe Basin. 452 

Mountain areas above 4,500 m a.s.l. and the potential catchment area of groundwater-fed Genggahai Lake are 453 

delineated by the white dashed line and the blue dashed line (after Qiang et al., 2017), respectively. (C) 454 

Vegetation (after Qiang et al., 2013b.) and coring sites. 455 

Fig. 2. Records of plant macrofossils (A–F), Cladocera (G, H), and diatoms (I, J, K) from the sediments of 456 

Genggahai Lake and the reconstructed lake level (L). (G, I, J) Relative abundance of Cladocera, planktonic 457 

diatoms and non-planktonic diatoms, respectively. (H, K) Total counted individuals of Cladocera and diatoms, 458 

respectively. In (A, C, E) green and red bars denote Potamogeton pectinatus (or Myriophyllum spicatum) and 459 

Chara encrustations, respectively. Macrofossil stem encrustations are identified in the stratigraphy. Chara 460 

gyrogonites are presented as individuals/dm2 per year. 461 

Fig. 3. Comparison of the synthesized tree pollen index (J, this study) and pollen records from the marginal 462 

regions dominated by the ASM. (A, B) Total terrestrial pollen concentration from lakes Genggahai (this study) 463 

and Qinghai (Shen et al., 2005), respectively. (C−I) Tree pollen percentages from lakes Genggahai (this study), 464 

Qinghai (Shen et al., 2005), Dalianhai (Cheng et al., 2013), Gonghai (Chen et al., 2015), Dali (Wen et al., 465 

2017), Daihai (Xiao et al., 2004) and Hulun (Wen et al., 2010), respectively. The gray bar indicates the optimal 466 

vegetation conditions during 8.6–6.9 cal kyr BP. 467 

Fig. 4. Comparison of the lake-level record (A) and total terrestrial pollen concentration (I) from Genggahai 468 

Lake and other paleoclimatic records. (B) Asian summer monsoon (ASM) index based on the sedimentary 469 

carbonate and TOC content of the sediments of Qinghai Lake (An et al., 2012). (C) Simulated water level of 470 

Qinghai Lake (Li et al., 2020b). (d) Mz (φ) grain-size record from Dabusu Lake (Li and Lv, 2001). (E, F) 471 

Water level of Chagan Nur (Li et al., 2020a) and Dali Lake (Goldsmith et al., 2017), respectively. (G) Summer 472 

insolation at 35°N (Berger and Loutre, 1991). (H) δ18Oc record from Dongge Cave (Dykoski et al., 2005). (J) 473 

Synthesized tree pollen index (this study). (K) Probability density plot of the OSL ages of eolian sand samples 474 

from the NETP (Qiang et al., 2013a). (L) Synthesized sand percentages in eolian deposits in northeast China 475 

(Li et al., 2014).  476 
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