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Abstract

The goal in Acousto-Electric Tomography (AET) is to reconstruct an image of

the unknown electric conductivity inside an object from boundary measurements of

electrostatic currents and voltages collected while the object is penetrated by propa-

gating ultrasound waves. This problem is a coupled-physics inverse problem. Accurate

knowledge of the propagating ultrasound wave is usually assumed and required, but in

practice tracking the propagating wave is hard due to inexact knowledge of the interior

acoustic properties of the object. In this work, we model uncertainty in the sound

speed of the acoustic wave, and formulate a suitable reconstruction method for the

interior power density and conductivity. We also establish theoretical error bounds,

and show that the suggested approach can be understood as a regularization strategy

for the inverse problem. Finally, we numerically simulate the sound speed variations

from a numerical breast tissue model, and computationally explore the effect of using

an inaccurate sound speed on the error in reconstructions. Our results show that with

reasonable uncertainty in the sound speed reliable reconstruction is still possible.

Keywords: Acousto-Electric Tomography, acousto-electric effect, Electrical Impedance

Tomography, uncertainty quantification, hybrid data tomography, variable sound speed,

coupled-physics imaging, inverse problems, medical imaging
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1 Introduction

Electrical Impedance Tomography (EIT) [11, 16] is a well established technology for imaging

of the interior electrical conductivity in a body or object from electro-static surface mea-

surements. Applications in medical imaging include early detection of breast cancer [34],

bedside monitoring of the lung function [29], and hemorrhagic stroke detection [26]. The

inverse problem in EIT is highly ill-posed due to the diffusive nature of electric signals, and

consequently reconstructed images have low resolution. A potential remedy can be found in

hybrid imaging techniques that exploit the interplay between different physical phenomena.

Acousto-Electric Tomography (AET) [33] is a hybrid imaging technique combining the

electro-static boundary measurements of EIT with ultrasound. The aim is to provide tomo-

graphic images having much better contrast and resolution compared to images produced by

EIT alone.

The experimental procedure is as follows: An ultrasound wave is emitted by a transducer

and propagates through the object. The acoustic pressure causes local contractions and

expansions, and these small volume deformations induce a slight change of conductivity;

this effect is referred to as acousto-electric interaction, acousto-electric modulation or the

acousto-electric effect [19, 23]. As a consequence of the change in conductivity the electro-

static boundary measurements change as well, and the inverse problem is then to obtain the

conductivity from these acoustically excited EIT measurements.

Our work in this paper is inspired by the use of AET for breast cancer imaging and

parameters in simulations are chosen accordingly. The study is, however, conceptual and

computational rather than data driven.

AET assumes complete knowledge of the propagating waves through the object, and this,

in turn, requires complete knowledge of the sound speed of the object. However, in many

applications, the sound speed is not fully known; only a rough estimate of the magnitude

is provided and can be used in the inversion framework. For instance, in breast tissue it is

reasonable to model the sound speed to be constant with spatial variations up to 10% [12].

In this paper we focus on the following question: To what extent can we trust AET,

when the sound speed is uncertain. To answer the question we adapt the reconstruction

framework of [18] (with few and important updates) that relies on a decomposition of the

inverse problem into two separate optimization problems. We show theoretically that the

approach is consistent in the sense of classical regularization theory: in the limit of vanishing

uncertainty and errors we perfectly solve the problem. Moreover, we numerically model the

uncertainty in the sound speed. Inspired by potential applications in breast cancer detection,
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we adapt the tissue model in [30] to numerically produce such sound speed variations. Then

we use the complete inversion framework to quantify the impact of sound speed uncertainty

on the interior power density and conductivity reconstructions.

AET was considered experimentally in [33], however, since the measurements have very

low signal-to-noise ratio, the technology is still in its infancy and many technological chal-

lenges need to be solved. Mathematically, the problem is fairly well understood [5, 7, 8, 10,

21, 22, 27] and several numerical algorithms have been discussed [2, 3, 6, 17, 24, 31]. For an

introduction to the mathematical theory pertaining to both AET and related problems we

refer to the book [4]. While to the best of our knowledge AET has not seen any study related

to uncertainty quantification prior to this work, we should mention that there is some work

on the unknown sound speed problem [28, 32] for related hybrid problems Photo-Acoustic

tomography and Thermo-Acoustic tomography. We believe that the quantitative approach

developed here applies to these modalities as well.

The outline of this paper is as follows. In Section 2 we describe the AET model, including

the sound speed modeling. In Section 3 we obtain continuity results for the AET data with

respect to the sound speed variations. In Section 4 we recall the optimization problem for-

mulations of the involved inverse problems; first recovery of the power density and from there

recovery of the conductivity. We further prove that our approach forms a proper regulariza-

tion strategy. In Section 5 we describe the numerical implementation of the forward models.

Moreover, we describe the procedure used for generating random sound speed samples with

structures for our numerical computations. In section 6 we show reconstructions and describe

the numerical results, and Section 7 contains discussion and concluding remarks.

2 Modeling Acousto-Electric Tomography

The modeling of AET follows [18]. In Rd, d = 2, 3, an ultrasound wave generated by a source

S(x, t) is modelled by the scalar wave equation
(
∂2
t − c2∆

)
p = S in Rd × R+,

p|t=0 = ∂tp|t=0 = 0 on Rd,
(1)

where c(x) is the spatially dependent sound speed. We assume that the source S is fully

known, smooth and compactly supported, and that c ∈ C∞(Rd) is bounded, and bounded

from below, by a positive constant. (The smoothness assumptions are not essential nor

optimal.) Then (1) has a unique weak solution, which given the smoothness of the coefficients

is in fact C∞, see e.g. [14, Sec. 7.2].
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The electric conductivity is modeled by a real-valued function σ in a bounded and open

subset Ω ⊂ Rd with smooth boundary ∂Ω. The function σ belongs to L∞(Ω) and is bounded

from below by a positive constant. When a current flux f is applied on ∂Ω, an electric

potential u is generated in Ω, and assuming no interior sources or sinks of charge, the electrical

potential u satisfies the partial differential equation (PDE)−∇ · σ∇u = 0 in Ω,

σ∂νu = f on ∂Ω.
(2)

The vector ν denotes the outward pointing unit normal on ∂Ω and σ∂νu = ν · σ∇u is the

normal component of the current field J = σ∇u. The compatibility condition f ∈ L2
�(∂Ω) =

{v ∈ L2(∂Ω) :
∫
∂Ω
v ds = 0} (corresponding to a conservation of charge) guarantees that

(2) has a weak solution u ∈ H1(Ω) unique up to a constant, which is fixed by selecting

the solution u for which u|∂Ω = g ∈ L2
�(∂Ω) [14], g describing the voltage potential at the

boundary, which is measurable via electrodes.

When the wave p propagates through Ω, the conductivity is perturbed due the acousto-

electric effect. The perturbed conductivity σ∗(x, t), now temporally dependent, is described

by the first order model [19, 23]

σ∗ = σ(1 + ηp), (3)

where η > 0 is called the acousto-electric coupling constant and is assumed to be known.

Substituting σ∗ for σ in (2) yields the PDE−∇ · (σ∗∇u∗) = 0 in Ω,

σ∗∂νu∗ = f on ∂Ω.
(4)

characterizing for fixed t ∈ R+ the resulting time-dependent electrical potential u∗(x, t).

Again, u∗ is unique up to a (time-dependent) constant that is fixed by requiring u∗|∂Ω(·, t) =

g∗(·, t) ∈ L2
�(∂Ω) for each t; g∗ being the boundary voltage potential for u∗.

The inverse problem of AET is now to reconstruct σ from knowledge of several triplets

(f, g, g∗) corresponding to different choices of f . As a first step in order to transform the

boundary functions to interior information, the product of the current density f and the

difference in boundary potentials g∗ − g is integrated along the boundary. This defines the

time signal

I(t) =

∫
∂Ω

f · (g∗( · , t)− g) ds.

The signal describes the time evolution of the difference in power for the system under the

influence of the wave perturbation. The map I(t) is illustrated in the cartoon-like Figure
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1. The blue curve illustrates I(t) for the depicted conductivity phantom with a circular

inclusion. The gray curve is for reference I(t) for the homogeneous background conductivity.

Note that the signal difference is large when the wave is in contact with the inclusion. Using

Figure 1: Upper plot illustrates the perturbed conductivity σ∗ due to a single propagating

acoustic wave at key times. The lower plot illustrates the corresponding time signal I(t) for

the conductivity phantom with a circular inclusion (blue) and for a homogeneous reference

(gray).

the function I, we can now pose the inverse problem of AET as follows: Given I for several

boundary conditions f and wave sources S, reconstruct the conductivity σ. Note that when

multiple boundary currents f are used we could also consider cross-terms by integrating f

to a g − g∗ coming from different boundary currents. This approach might stabilize the

reconstruction problem; we will instead use three boundary conditions; more than the two

required for reconstruction by theory [4].

In solving the inverse problem, the crucial intermediate object is the interior power density

H(x), x ∈ Ω, for (2) given by

H = σ|∇u|2. (5)

where u = u[σ] is the solution of (2) as a function of the conductivity σ. The power density

shows up by considering the weak forms of (2) and (4), each with the solution of the other
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taken as a test function therein.∫
∂Ω

fg∗ ds =

∫
Ω

σ∇u · ∇u∗ dx,∫
∂Ω

fg ds =

∫
Ω

σ∗∇u∗ · ∇u dx

Taking their difference and substituting in (3)

I =

∫
∂Ω

fg∗ − fg ds = −η
∫

Ω

pσ∇u · ∇u∗ dx. (6)

The approximation u∗ ≈ u then yields

I ≈ −η
∫

Ω

p

H︷ ︸︸ ︷
σ|∇u|2 dx. (7)

We thus pose the linear inverse problem to find H from the equation

I = KH (8)

with K denoting the integral operator with kernel −ηp

(KH)(t) = −η
∫

Ω

p(x, t)H(x) dx. (9)

Such an integral operator K : L2(Ω) → L2(0, T ) is compact when the integration kernel

belong to L2(Ω× (0, T )); as the wave p is smooth, this is indeed the case here.

The reconstruction is decomposed in two steps: First recover the power density H by

solving (8) for each applied boundary current; second recover σ from several H corresponding

to different choices of f .

Remark 2.1. Equations (8)–(9) illustrate the importance of p(x, t) in the reconstruction. The

generated waves must be a sufficiently expressive set that it captures all the facets of H. In

other words, the size of the ker(K) is determined by the set of waves; of course we cannot

hope to recover components of H in ker(K).

There are in general multiple possible sources of errors in AET. The most obvious include

measurement errors, linearization errors, and model errors. In this work we are interested in

exploring the effect of uncertainty in the sound speed c. We do so by considering the exact

sound speed to be unknown to us, however, we assume prior knowledge of the mean value of

the sound speed in the reconstruction approach. Using a wrong sound speed corresponds to

having a model error.

6



We consider sound speeds c and c̃, where the former represents the true sound speed and

the latter an approximation available from prior knowledge. Numerically, we model c by

c(x) = cbg + cvar(x),

where cvar, carries information about the uncertain variations in c. We take c̃ = cbg constant

in our studies.

3 Stability of the forward operator

In this section, we demonstrate that, under certain assumptions, the wave p and forward

operator K are continuously dependent on the sound speed c. This guarantees that errors in

the data are controlled by errors in the sound speed. The results are likely well-known, but

with the lack of a proper reference, we indicate the overall ideas.

Let m =
⌈
d+1

2

⌉
. We define the admissible set of sound speeds as the set of smooth

functions bounded from above and below by positive constant λ ∈ (0, 1)

Aλ :=
{
c ∈ C∞(Rd) : λ ≤ c ≤ λ−1; ‖c‖Ck(Rd) < λ−1, k ≤ m+ 1

}
.

A positive lower bound on c ensures that ∂2
t − c2∆ is a uniformly hyperbolic operator. The

upper bound yields finite propagation speed for the wave p [14]; the bounds on the Ck norms

allow uniform estimates inside Aλ. We assume in the following that λ is fixed and that

c, c̃ ∈ Aλ.
Put h = c̃− c and q = p̃− p. Clearly q solves the PDE

(
∂2
t − c̃2∆

)
q = h(c̃+ c)∆p, in Rd × R+,

q|t=0 = ∂tq|t=0 = 0, on Rd.
(10)

Note that, due to the finite speed of propagation, supp {h(c̃+ c)∆p(·, t)} is compact and so

is the support of q. We denote by B ⊂ Rd a large ball that contains the support of both

h(c̃ + c)∆p and q for all t ∈ (0, T ). For all m, the regularity of q can now be estimated [14,

p.415] by

ess sup
0≤t≤T

m+1∑
j=0

∥∥∂jt q(·, t)∥∥Hm+1−j(B)
≤ C

m∑
j=0

∥∥h(c̃+ c)∆∂jt p
∥∥
L2(0,T ;Hm−j(B))

, (11)

where C depends on the Cm+1-norm of c; thus by c ∈ Aλ it depends only on λ. This leads

to:
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Proposition 3.1. The wave difference is bounded by

‖p̃− p‖L∞(0,T ;Hm+1(B)) ≤ C‖c̃− c‖Hm(B), (12)

where C does not depend on c̃.

Proof. Observe that, for any positive index k, ‖ · ‖L2(0,T ;Hm−k(B)) ≤ ‖ · ‖L2(0,T ;Hm(B)), and

moreover that for m > d/2, Hm(ω) is a Banach algebra[1, 4.39]. Applying these observations

to (11) yield

‖p̃− p‖L∞(0,T ;Hm+1(B)) ≤ C‖c̃− c‖Hm(B)

m∑
k=0

‖(c̃+ c)∆∂kt p‖L2(0,T ;Hm(B)),

for some C > 0. Since c̃+ c ≤ 2λ−1 and p ∈ C∞ we get (12).

Remark 3.1. By boundedness of Ω we can without loss of generality assume Ω ⊆ B.

The established continuity for the wave upon the sound speed yields operator continuity

for the forward operator in the following sense. Like the integration kernel of K derives from

p and c, we consider K̃ as the operator with integration kernel coming from p̃ and c̃.

Proposition 3.2. The operator difference K̃ −K : L2(Ω)→ L2(0, T ) is bounded by

‖K̃ −K‖ ≤ C‖c̃− c‖Hm(B),

where C does not depend on c̃.

Proof. By the Cauchy-inequality

‖(K̃ −K)H‖2
L2(0,T )

‖H‖2
L2(Ω)

=
η2
∫ T

0

[∫
Ω

(p̃− p)H dx
]2
dt

‖H‖2
L2(Ω)

≤ η2T‖p̃− p‖2
L∞(0,T ;L2(Ω)),

which shows ‖K̃−K‖ ≤ η
√
T‖p̃−p‖L∞(0,T ;L2(Ω)). Proposition 3.1 now gives the estimate.

4 Inversion procedure

In this section, we introduce the applied inversion procedure. The problem is dealt with in

two parts, both handled as regularized minimization problems. First, the power densities

are reconstructed from the measured differences in power I(t) by a standard least-squares

approach, and second, the conductivity is reconstructed from the recovered power densities.

We elaborate on the approach below.

8



4.1 Reconstruction of the power density

To reconstruct the power densities from (8) we use a regularized least squares approach [18].

However, since the actual sound speed is known only approximately, we suggest to use the

approximation c̃ and the derived operator K̃ in place considering

arg min
H∈L2(Ω)

J1(H), J1(H) =
1

2
‖K̃H − I‖2

L2(0,T ) +
β

2
‖H‖2

L2(Ω). (13)

In contrast to [18], we discretize (13) using a finite element basis {φj}1≤j≤N . The regu-

larization term is then discretized as

‖LTv‖2
2 = ‖v‖2

M ≈ ‖v‖2
L2(Ω),

where M = LLT is the mass matrix for the finite element basis, and L the Cholesky factor of

M. The vector v is the coefficient vector for the finite element discretization of the continuous

function v(x), and ‖ · ‖2 is the usual Euclidean 2-norm. The finite dimensional regularized

least squares problem therefore takes the form

arg min
H∈RN

J1(H), J1(H) =
1

2
‖KH− I‖2

2 +
β

2
‖LTH‖2

2, (14)

where K is the discretization of the operator K in (8). K has the form

(K)ij = −η
∫

Ω

p̃(·, ti)φj dx,

with {ti}0≤i≤m a uniform time-discretization; i.e. 0 = t0 < t1 < · · · < tm = T and ti − ti−1 =

∆t for all 1 ≤ i ≤ m. Because the time-discretizing is uniform we may neglect the scaling

coefficient, which would appear from discretizing the L2(0, T )-norm.

Remark 4.1. To eliminate effects not relevant to our study, we solve our problem for various

values of β comparing the reconstruction to the true power density in order to choose a close

to optimal β.

4.2 Reconstruction of the conductivity

To reconstruct the conductivity from the formerly reconstructed power densities we follow the

general structure of the approach outlined in [2]; with some modifications. In particular we

draw inspiration from [15] and improve on the approach by rewriting it into a preconditioned

linear problem to which we apply a preconditioned conjugate gradient algorithm [9, p.15].
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We consider in the following only a single power density datum, denoted by z, but note

that the problem extends naturally for multiple by summing the separate data fidelity terms.

The L1–TV optimization problem is

arg min
σ
J2(σ), J2(σ) = ‖H[σ]− z‖L1(Ω) + γ|σ|TV, (15)

with an L1(Ω) data fidelity term and total variation regularization. A minimizer for this

problem is known to exist [2].

Linearizing the power density with respect to the conductivity we write H[σ + κ] =

H[σ] +H ′[σ]κ, where

H ′[σ]κ = κ|∇u[σ]|2 + 2σ∇u[σ] · ∇u′[σ]κ, (16)

and u′[σ]κ is the Fréchet derivative of u[σ] in direction κ. Substituting this linearization into

(15) one finds that the optimality condition becomes approximately that of the following

weighted quadratic functional

Jσ(κ) =
1

2

∫
Ω

w[σ]|H ′[σ]κ− zσ|2 dx+
γ

2

∫
Ω

w0[σ]|∇(σ + κ)|2 dx, (17)

where w[σ] = |H[σ]− z|−1, zσ = z−H[σ] and w0[σ] = |∇σ|−1 and the absolute values | · | are

smoothened close to zero, i.e. | · | ≈
√
| · |2 + τ 2 for a small τ > 0; see [2]. Instead of tackling

(15), we take steps by iteratively minimizing (17) and then updating σ and computing the

new weights.

Discretizing (17), we obtain the quadratic

Jσ(κ) =
1

2
κT
(
WTMwW + γKw0

)
κ− κT

(
WTMwzσ − γKw0σ

)
+ constant, (18)

where {φj}1≤j≤n is a finite element basis, and

(Mw)ij =

∫
Ω

w[σ]φiφj dx, (Kw0)ij =

∫
Ω

w0[σ]∇φi · ∇φj dx

and W is the discretization of the linear map κ 7→ H ′[σ]κ. This discretization is arrives by

considering the variational form of (16) and is given by W = M−1 (Mu − 2Wσ,uK
−1
σ Lu),

where

(M)ij =

∫
Ω

φiφj dx, (Mu)ij =

∫
Ω

|∇u[σ]|2φiφj dx, (Wσ,u)ij =

∫
Ω

φiσ∇u[σ] · ∇φj dx,

(Kσ)ij =

∫
Ω

σ∇φi · ∇φj dx, and (Lu)ij =

∫
Ω

φj∇u[σ] · ∇φi dx.
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The K−1
σ Lu factors enters from the discretization of κ 7→ u′[σ]κ.

The minimization of (18) has the first order optimality condition(
WTMwW + γKw0

)
κ = WTMwzσ − γKw0σ.

Following the idea in [15], we consider a positive definite perturbation of Kw0 and for a small

ε > 0 take the Cholesky factorization L0L
T
0 = Kw0 + εI. Substituting this in the above we

obtain (
L−1

0 WTMwWL−T0 + γI
)
κ̃ = L−1

0 WTMwzσ − γLT0 σ,

where κ̃ = LT0 κ. Setting γ = 0 we obtain the preconditioned linear problem

L−1
0 WTMwWL−T0 κ̃ = L−1

0 WTMwzσ. (19)

We thus minimize (18) by solving (19), with the preconditioned conjugate gradient algorithm.

This algorithm only needs the evaluation of L0L
T
0 , so in practice we neither need to compute

the Cholesky factor nor its inverse.

4.3 Regularization strategy

In (13) the correct operator K was replaced by the K̃ due to the uncertainty in the sound

speed. Furthermore, the data I might be corrupted by noise. We are interested in the

behaviour of the solution in the limit of both vanishing model uncertainty and vanishing

noise. This is a general question for inverse problems with model errors and data noise. To

emphasize the nature of the problem, we restate it in an abstract setting and approach the

question in the spirit of classical regularization theory [13, 20]. The following convergence

result has independent interest; the result might be available in the literature, but in the lack

of a proper reference we give the details.

Theorem 4.1. Let δ > 0 and A,Aδ : X → Y be linear and compact operators between Hilbert

spaces X, Y. Suppose further that Ax = y for x ∈ X and y ∈ Y, and that ‖A − Aδ‖ < δ,

‖y − yε‖Y < ε. Denote for β > 0 by Rδ
β = ((Aδ)∗Aδ + βIX)−1(Aδ)∗ the Tikhonov regularized

inverse of Aδ.

i) If x ∈ Ran(A∗), i.e. A∗w = x, for some w ∈ Y, take β = β(δ, ε) such that δ/
√
β(δ, ε)→

0, ε/
√
β(δ, ε)→ 0 and β(δ, ε)→ 0 as δ, ε→ 0. Then

‖x−Rδ
βy

ε‖X ≤
δ√
β
‖x‖X +

√
β‖w‖Y + δ‖w‖Y +

ε√
β
→ 0 as δ, ε→ 0,
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ii) If x ∈ Ran(A∗) there exist β(δ, ε)→ 0 as δ, ε→ 0 such that

‖x−Rδ
βy

ε‖X → 0 as δ, ε→ 0 .

Remark 4.2. The assumption x ∈ Ran(A∗) can often be interpreted as a smoothness as-

sumption on the true solution x [20]. If x 6∈ Ran(A∗), only the projection of x onto

Ran(A∗) is recovered in the above limits; that is, we can never recover components of

x ∈ Ran(A∗)
⊥

= kerA.

Remark 4.3. Assume for instance that δ ∝ εγ, γ > 0, asymptotically as they vanish, then

β(δ, ε) = δaεb, where 0 < a, b < 2 solves 2−a
b
> γ and γ > a

2−b , works. For simplicity, taking

a = b = 1
k

all k > γ+1
2

are solutions.

To this end we first establish the following operator bound.

Lemma 4.2. Let E = ((Aδ)∗Aδ+βIX)−1 and Rδ
β be as in the theorem above, then ‖E‖ ≤ β−1

and ‖Rδ
β‖ ≤ β−

1
2 ; i.e. the operators are uniformly bounded independent of δ.

Proof. For an arbitrary x ∈ X consider

β‖x‖2
X ≤ β‖x‖2

X + ‖Aδx‖2
Y =

〈
x, (βIX + (Aδ)∗Aδ)x

〉
X
≤ ‖x‖X‖E−1x‖X ,

thus ‖E‖ ≤ β−1.

Note that E is self-adjoint and that we have Rδ
β = E ◦ (Aδ)∗. Let again x ∈ X and fix

z = Ex, then

‖(Rδ
β)∗x‖2

Y =
〈
AδEx,AδEx

〉
Y

=
〈
z, (Aδ)∗Aδz

〉
X

≤
〈
z, (Aδ)∗Aδz

〉
X

+ β 〈z, z〉X =
〈
z, E−1z

〉
X

= 〈Ex, x〉X
≤ ‖Ex‖X‖x‖X ≤ β−1‖x‖2

X ,

thus ‖(Rδ
β)∗‖ ≤ β−

1
2 . As Rδ

β is a bounded linear operator ‖Rδ
β‖ = ‖(Rδ

β)∗‖.

With this we deal with the proof of the theorem.

Proof of Theorem 4.1. We fix E = ((Aδ)∗Aδ + βIX)−1 as in Lemma 4.2.

i) We note that

‖x−Rδ
βy

ε‖X = ‖x−Rδ
βy +Rδ

β(y − yε)‖X ≤ ‖x−Rδ
βy‖X + ‖Rδ

β‖‖y − yε‖Y

≤ ‖x−Rδ
βy‖X +

ε√
β
,
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the last inequality by applying Lemma 4.2. We thus consider simply ‖x−Rδ
βy‖X from here.

‖x−Rδ
βy‖X = ‖x− E ◦ (Aδ)∗Ax‖X = ‖E ◦

[
E−1 − (Aδ)∗A

]
x‖X

= ‖E ◦
[
((Aδ)∗Aδ + βIX)− (Aδ)∗A

]
x‖X

= ‖E ◦ (Aδ)∗[Aδ − A]x+ βEx‖X (20)

= ‖Rδ
β[Aδ − A]x+ βEA∗w‖X

≤ ‖Rδ
β‖‖Aδ − A‖‖x‖X + β‖EA∗w‖X ≤

δ√
β
‖x‖X + β‖EA∗w‖X

We consider now β‖EA∗w‖X ,

β‖EA∗w‖X = β‖E((Aδ)∗ + A∗ − (Aδ)∗)w‖X
= β‖Rδ

βw + E(A∗ − (Aδ)∗)w‖X
≤ β‖Rδ

β‖‖w‖X + β‖E(A∗ − (Aδ)∗)w‖X
≤
√
β‖w‖Y + β‖E‖‖(A− Aδ)∗‖‖w‖Y

≤
√
β‖w‖Y + δ‖w‖Y .

Back-substituting yields i).

ii) First, note that x ∈ Ran(A∗) implies the existence of an xα ∈ Ran(A∗) satisfying

‖x− xα‖X < α for any α > 0. There is thus wα such that A∗wα = xα.

Consider then the term Ex in (20) and expand

Ex = E(xα + x− xα) = Exα + E(x− xα) = EA∗wα + E(x− xα).

Substituting this into the above derivation we find

‖x−Rδ
βy

ε‖X ≤
δ√
β
‖x‖X +

√
β‖wα‖Y + δ‖wα‖Y +

ε√
β

+ α

We now first choose β = β(δ, ε) as in i). Next, we choose α = α(δ, ε, β) → 0 such that the

growth of ‖wα‖Y satisfies max(
√
β, δ)‖wα‖Y → 0.

We now adapt Theorem 4.1 to the particular problem:

Corollary 4.3. Assume that m, B ⊇ Ω c , c̃, K and K̃ are as in Section 3, that I = KH

and that H ∈ Ran(K∗). If β ∝ ‖c̃− c‖Hm(B) there is a constant C > 0 independent of c̃ and

β such that

‖H − R̃βI‖L2(Ω) ≤ C‖c̃− c‖
1
2

Hm(B),

where R̃β = (K̃∗K̃ + βI)−1K̃∗.

13



Proof. The result follows from Theorem 4.1 part i), taking K and K̃ as our operators A and

Aδ, together with Propositions 3.1 and 3.2 from Section 3.

Remark 4.4. If H ∈ Ran(K∗)\Ran(K∗) convergence is still granted by Theorem 4.1 part ii),

but the rate is no longer guaranteed.

The above demonstrates that, as the sound speed uncertainty vanish (i.e. in the limit

c̃ → c) and the regularization parameter is chosen appropriately, the solution of (13), with

operator K̃, converges to the true solution H. This result can be combined with known

stability results for the mapping H 7→ σ (see e.g. [4]) showing that also the correct σ can be

obtained in the limit of vanishing sound speed uncertainty.

5 Forward computations and uncertainty modeling

Simulations are done for a two-dimensional problem. In general we fix parameter values and

follow the approach in [18, Sec. 3.3] though with minor deviations. In the subsections we

sketch our approach.

5.1 Forward models

Figure 2: Reconstruction of H for boundary condition

f(x, y) = x and 12 uniformly distributed wave sources.

This reconstruction is done using a forward model with

a homogeneous sound speed c from data generated with

a homogeneous sound speed c̃ = 1.05c. This illustrates

star-like shape artifacts resulting from having only few

waves, and the low-energy band close to the boundary

resulting from the severely wrong mean sound speed

assumption (here too low).

We solve the wave equation (1) using the k-Wave package for Matlab. This is done

on a regular square grid in a domain [−L,L]2 ⊂ R2 and, to simulate the full domain R2, an

absorbing boundary layer is added such that from within the subdomain [−L′, L′]2 ⊂ [−L,L]2

the solution is an approximation to the problem in the full space. Note that the domain of

our electrical measurements Ω is contained in [−L′, L′]2. In k-Wave we take L = 6 × 10−2
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Figure 3: The two conductivity phantoms used for simulations; σ1(x) on the left and σ2(x)

on the right.

and L′ = 4.5× 10−2. The disc with radius 4× 10−2 is then mapped to the electrical domain

Ω, which is computationally taken as the unit disc.

The sound speed c is generated based on a breast tissue model [30]. The model along

with the changes introduced to accommodate our problem are outlined in Section 5.2. The

sound speed for generating the data has the form

c(x; θ) = cbg + µcbgs(x; θ) (21)

where s(x; θ) is the sampled structured perturbation with θ the random variable. cbg =

1500m/s is the background sound speed. µ is a small scaling factor fixed at µ = 0.05 in our

simulations unless otherwise specified. We note that the density of the medium in k-Wave

is taken to be 1000.

We use 36 uniformly distributed wave-source positions in order to eliminate artifacts that

would appear when too few waves are used; see Figure 2. Each transducer source consists of

a sequence of point sources on the arc of ∂Ω. The transducer produces half a cycle of a 50

kHz tone burst.

The generated acoustics fields, all expressed in p(x, t), are interpolated on an unstructured

triangulated mesh M with 20100 nodes; M representing Ω.

The electrical potentials are computed as in [18] using FEniCS [25] with a P1 finite

element basis on the mesh M. To ensure no other sources of uncertainty than the unknown

sound speed, no noise components are added at this step. Moreover, as our primary interest is

in the errors induced by the waves, we avoid any linearization error, from the approximation

in (6)–(7), by generating our time series data directly by first forming the power density H,

and then by integrating it against the waves on Ω numerically in the linear expression (7).

The used conductivity phantoms are shown in Figure 3. The simple phantom on the left
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Figure 4: Examples of realizations of s(x; θ); ( , , ) = (1, 0,−1). The white dashed line

marks the boundary of the domain Ω on which the AET-problem is considered.

is given by σ1(x) = 1 + 1
2
χD(x), where D = B 1

4

(
0, 3

8

)
. The more challenging phantom on the

right σ2(x) is defined by inclusions made up from 7 polar rectangles on a smooth background.

The background is a polynomial given by

2

k
poly(x1, x2) +

1

2
, poly(x1, x2) =

(
1− x2

1 − x2
2

)((
x1 −

3

4

)2

+

(
x2 −

3

4

)2
)

where k ≡ max{poly(x1, x2) : ‖(x1, x2)‖2 ≤ 1} ≈ 1.8272; the polar rectangles are defined in

polar coordinates (r, v), r1 ≤ r < r2, v1 ≤ v < v2 with the values in Table 1.

layer r1 r2 v1 v2 value

outer 5
7

6
7
−0.4167π 0.1099π 2.2646

outer 5
7

6
7

0.2106π 0.8697π 2.0845

middle 3
7

4
7

0.0057π 0.4847π 0.5461

middle 3
7

4
7

0.5840π 1.2579π 1.4765

middle 3
7

4
7

1.3731π 1.8870π 1.3523

inner 1
7

2
7
−0.0650π 0.8526π 2.3122

inner 1
7

2
7

1.0193π 1.9350π 1.8090

Table 1: The parameters for the different polar rectangles in the more complicated conduc-

tivity phantom seen on the right in Figure 3.

5.2 Generation of random structures

We sample different structures s for the sound speed c, as used in (21), and generate data

to observe the influence on the reconstructions. The sound speed is sampled based on the

16



breast tissue model proposed on [30], though we make a couple of modifications to their

proposed model. This model was used as a base since it provides interesting non-trivial

variations with some actual structure to them, compared to for instance adding Gaussian

noise to the sound speed, which has no structure. Also, a proposed application area for AET

is mammography, which makes the model topical. The modifications to the model are made

for two primary reasons. First, our problem is in 2D where the original model is created for

3D, hence we move it to 2D. Second, the original model creates smooth structures; to better

control the amount of disruptive structure we add to our acoustic medium we here create

piecewise constant structures instead.

The remainder of this section details the model used to generate the random structures.

The end product is a structure function s(x; θ), where θ is our random variable. Hence to

create different structures we sample different θ.

We define constants f0 = 20, ` = 25, c0 = 0.5, c1 = 1 and an N×N -grid with points ξjk :=

(ξj, ξk) ∈ [−`, `]2, 1 ≤ j, k ≤ N , ξj = `
(
2 j−1
N−1
− 1
)
. Then we draw uniformly distributed

phase samples for each node in the grid, θjk ∼ U(−π, π). We define the function Vβ(ξ; θ), as

Vβ(ξ; θ) =


c0, |ξ| = 0,

c1|ξ|−
β
2 e−iθ, 0 < |ξ| < f0,

0, otherwise,

(22)

and evaluate at each grid point, vjk = Vβ(ξjk; θjk). We take the discrete inverse 2D Fourier

transform of vjk, thus defining qjk = |F−1
discretevjk|. Define a region U ⊆ [−`, `]2, where we

want to control the structures, and let JU = {(j, k) : (ξj, ξk) ∈ U} and

r(γ) := arg min
r∈R

∣∣∣∣∣∣γ − 1

|JU |
∑

(j,k)∈JU

max(sign(r − qjk), 0)

∣∣∣∣∣∣ .
That is, r(γ) is the height at which to make a cut such that the ratio of grid points in U

with values less than r(γ) compared to the total amount of grid points in U is as close to γ

as possible. We then put

q̂jk =

1 if qjk < r(γ),

0 otherwise.

We thus have a random (due to the distribution on θij) map (β, γ) 7→ Q̂jk(β, γ) := q̂jk. From

here we take some liberties in constructing our random structured sound speed. We proceed

as follows: Define β0 = 3.3, β1 = 2.8 and γ = 0.35. We choose U ⊂ Ω slightly away from the
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boundary of Ω, U is here a disc with radius 4
5

the radius of Ω, to ensure that the primary

amount of variations will be exhibited in the central part of Ω. Then we put

sjk := Qjk(β0, γ)−Qjk(β1, γ).

Note that sjk takes only the discrete values -1, 0 and 1. We define s(x; θ) as the linear grid

interpolation of sjk. Examples of draws from s(x; θ) for some different realizations of θ are

illustrated in Figure 4.

Remark 5.1. Note that c(x; θ), computed as in (21), may have an average slightly different

from cbg. Since the range of sjk is discrete, c(x; θ) may have very steep slopes depending

on the discretization. A smoothed version may be obtained by convolution with a mollifier

function, though we do not actually do that in our test cases.

Remark 5.2. We scale the spatial domain of s(x; θ) to coincide with the square domain we

have for wave equation. This is not an issue as the choice of value for ` in the sampling

scheme is unitless and we could move everything relative to a different scale and obtain the

same s(x; θ); e.g. let α > 0 and consider a new ` → α`, then we should use f0 → αf0 and

scale |ξ| → |ξ/α| in Vβ(ξ; θ) to compensate.

6 Numerical results

Figures 5 and 6 illustrate reconstructions of power densities for different boundary conditions

(rows 1-3) and the conductivity (row 4) for the phantoms σ1(x) and σ2(x) respectively. The

power densities are reconstructed by solving (14) and then the conductivity is found by solving

(19). Rows 1–3 are power densities corresponding to boundary conditions f(x1, x2) = x1,

x2, (x1 + x2)/
√

2 respectively. The first column contains (for comparison) reconstructions of

the “best possible case” where s(x) = 0, i.e. the correct sound speed is used for solving the

inverse problem.

The test case in Figure 5 purposely uses a simple conductivity to clearly illustrate the

effect of the added structure from the s(x) term. Comparatively the test case in Figure 6 is a

more complicated phantom with various regions and smooth areas serves to demonstrate that

the discernible reconstructions obtained for the simpler phantom are replicatable even when

the target is more complicated; more separate regions, smoothness and higher contrasts.

Looking at columns 2 through 4 in Figure 5, we clearly see the propagation of the model

error to the power density, H(x), reconstructions, though, due to the complexity of the error

propagation, we remark how the error features have no obvious resemblance to the structures
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Figure 5: Reconstructions of power densities and conductivities corresponding to σ1(x) and

different realizations of sound speeds; µ = 0.05. Rows 1–3 are power densities corresponding

to the boundary conditions f(x1, x2) = x1, x2, (x1 + x2)/
√

2 respectively. Row 4 is the

reconstructed conductivity corresponding to the three power densities above. For comparison

column 1 shows a case with s(x) = 0; i.e. with the same forward and reconstruction operator.

Columns 2–4 correspond to the particular sound speed realizations shown in Figure 4; left

to right.
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Figure 6: Reconstructions of power densities and conductivities corresponding to σ2(x) and

different realizations of sound speeds; µ = 0.05. Rows 1–3 are power densities corresponding

to the boundary conditions f(x1, x2) = x1, x2, (x1 + x2)/
√

2 respectively. Row 4 is the

reconstructed conductivity corresponding to the three power densities above. For comparison

column 1 shows a case with s(x) = 0; i.e. with the same forward and reconstruction operator.

Columns 2–4 correspond to the particular sound speed realizations shown in Figure 4; left

to right.
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Figure 7: Reconstructions of power densities corresponding to different values of noise level

µ. The power density is the one corresponding to the boundary condition f(x1, x2) = x1 and

the sound speed structure s(x) used is the left-most in Figure 4. The values used for µ are

(left-to-right) 0.00, 0.01, 0.05 and 0.10.

introduced in the sound speed for the data generation; we refer back to Figure 4. A number

of these error features seemingly disappear again when moving on to the reconstruction of the

conductivity, σ(x), though clearly the background variations are notable, and in particular

near the boundary we find artifacts. The latter should not be surprising, as the mean sound

speed might be slightly different from the constant cbg used in recovery, which during this

study has been observed to cause structural errors close to the boundary; we refer again

to the example in Figure 2. The inclusion, however, stands out quite clearly, which we

attribute to the high and low peaks around the inclusion area present in all the power

density reconstructions. Similar encircling high-low peak structures do not appear elsewhere

attributing to the non-presence of other inclusions introduced by model errors.

Similar phenomenons as in Figure 5 appear in the reconstructions in Figure 6, where

the reconstructed power densities clearly exhibit disruptions of a similar fashion. The power

densities are mostly concentrated near the north east area, which is due to the higher contrasts

in conductivity in that area. In general, despite the disruptive model errors introduced,

the reconstructions remain very good with both shapes and structures, along with smooth

features, recognizable.

We illustrate in Figure 7 the change in the reconstructed power density relative to the

level of difference in sound speed. In the figure progressing from left to right, the scale of

the structured variation, controlled by µ, is scaled up. In the left-most reconstruction µ = 0,

thus the only error in the sound speed is within the inclusion. The third reconstruction has

µ = 0.05 and we note that this is the same reconstruction as row 1–column 2 in Figure 5.

This image demonstrates quite nicely the theory developed in the preceding sections.
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Figure 8: Node-wise means and standard deviations of reconstructions from different samples;

µ = 0.05. The upper row contains, left to right, the mean power densities for the boundary

conditions f(x1, x2) = x1, x2, (x1 + x2)/
√

2 respectively. The second row contains the

corresponding standard deviations, and finally the last row has the mean conductivity on the

left and standard deviation on the right. 150 samples were used.
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We present in Figure 8 the mean and standard deviations, taken point-wise, of the power

density and conductivity reconstructions from multiple different realizations of s(x; θ). The

means illustrate that our sampling does not appear to be biased in promoting non-existing

features, which is to be expected but also nice to verify. The standard deviations also highlight

some expected features, for example it sky-rockets near the boundary, which is in correspon-

dence with our observations from the test cases. This is due to the increasing misalignment

between the true wave p and the wave p̃ used for reconstruction as time increases; we refer

again to Figure 2.

In a simplified scenario, if the true sound speed is slightly higher, p will have left the do-

main before p̃ and the reconstruction algorithm will see no signal as p̃ traverses the last stretch

towards the boundary. Thus, the reconstructed power density will exhibit a low-valued zone.

On the other hand, if the true sound speed is slightly lower, a reverse phenomenon happens

and the reconstructed power density exhibits high values in the area. This phenomenon is

very obvious when the error in p̃ is exacerbated by deliberately shifting the used sound speed

by some constant.

Also, the boundary of the conductivity inclusion exhibits moderately higher standard

deviation, which is not surprising when looking at the conductivity reconstructions in Figure

5; here the inclusion boundary shifts a bit from one to the other. We note that 150 sampled

structures s(x; θ) were used for computing the means and standard deviations.

7 Discussion and conclusion

As proposed, in this paper we have explored the effect in AET of uncertainty in the sound

speed and the wave propagation. In Propositions 3.1 and 3.2 we have established bounds for

the deviation of the wave and the operator based on variations in the sound speed coefficient.

This guarantees that, for sufficiently small variations in the sound speed, the deviations

scale accordingly. Considering how the error in the wave propagates to the operator, we

demonstrated in Theorem 4.1 a regularization strategy for model error and used the formerly

established propositions to show in Corollary 4.3 the applicability to the AET problem.

In numerical simulations we found that the theory matches observations quite nicely,

in particular as illustrated in Figure 7, where we observe directly how the reconstruction

improves as the difference between the real and estimated waves decreases. It is of course

important to point out that, as mentioned in Remark 4.1, in this study we perform a search

for a good β value. In truth, this is a bit artificial, but it is necessary to be able to fairly
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compare the different end-results. Also, while we do not give the optimal values for β here,

for the reconstructions in Figure 7 they start at about 10−5 (right-most) and decrease with

µ towards zero; the leftmost being about 10−8.

We saw in Figure 5 how the variations in realizations of the sound speed can influence

the reconstructed power density quite heavily, propagating the operator error to the recon-

struction. It is, however, notable how little of this error continues into the reconstructed

conductivity, where the inclusion is quite convincingly reconstructed. We conjecture that

this kind of error in the reconstructed power density is not too significant, probably because

the features across all the power densities corresponding to the different boundary conditions

are not collectively producible by the model H[σ] from a single choice of conductivity.

We believe that these results are quite promising for AET showing that, even if the wave

is not known exactly, this will not necessarily pose a huge problem for the final recovery of

the conductivity, though it might produce certain irregular and artificial structures in the

reconstructed power densities. We expect that the obtained results may carry over to other

hybrid tomography problems such as Photo-Acoustic tomography.

Acknowledgement

KK was supported by The Villum Foundation (grant no. 25893). BCSJ was supported by

the Academy of Finland (grant no. 320022).

References

[1] R. A. Adams and J. J. Fournier, Sobolev spaces, vol. 140, Elsevier, 2003.

[2] B. J. Adesokan, B. Jensen, B. Jin, and K. Knudsen, Acousto-electric tomography

with total variation regularization, Inverse Problems, 35 (2019), pp. 035008, 25.

[3] B. J. Adesokan, K. Knudsen, V. P. Krishnan, and S. Roy, A fully non-linear

optimization approach to acousto-electric tomography, Inverse Problems, 34 (2018),

pp. 104004, 16.

[4] G. S. Alberti and Y. Capdeboscq, Lectures on elliptic methods for hybrid inverse
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