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2 1 Introduction

List of abbreviations

FCI Full Configuration Interaction
VQE Variational Quantum Eigensolver
QPE Quantum Phase Estimation
IQPE Iterative Quantum Phase Estimation
SE Schrödinger equation
SCM Symmetry Configuration mapping
UCC Unitary Coupled Cluster
UCCSD Unitary Coupled Cluster Singles Doubles
JW Jordan–Wigner
BK Bravyi–Kitaev
BKSF Bravyi–Kitaev Superfast
STO Slater Type Orbital
GTO Gaussian Type Orbital
Hartree–Fock HF
CC Coupled Cluster

1 Introduction

The electronic structure problem is arguably the most fundamental problem in chemistry.
Its main task is to find the wave function of a chemical system, such as an atom or a
molecule. The wave function determines all the chemical properties of the system. The
electronic structure problem is the underlying problem that has to be solved when it comes
to all chemically interesting applications such as drug design, finding efficient catalysts
or constructing molecules for capturing solar energy. Therefore, finding efficient meth-
ods for solving electronic structure problems can be considered of as some kind of ”holy
grail” in chemistry. Theoretical and computational chemists have been developing ap-
propriate electronic structure methods for decades. The large underlying challenge lies
in the fact that with increasing number of particles, the Hilbert space of the problem in-
creases exponentially, which means that the Schrödinger equation of only the simplest
model systems can be solved analytically. Thus, approximations have to be made when
one wants to perform useful applications. The ultimate method is the full configuration
interaction (FCI) method [1, 2], which provides the exact solution within the employed
basis. However, the FCI method scales factorially with system size according to Weyl’s
dimension formula [1]. The best ab initio methods, such as second order Møller–Plesset
perturbation level (MP2) or coupled cluster singles and doubles with perturbative treat-
ment of the triples level (CCSD(T)) [1] are used in large scale applications. They scale
as N5 to N7, where N represents the system size. The accurate FCI method can only be
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applied to small systems, and is used mainly for benchmarking. Even though CCSD(T)
calculations can be performed on large molecules consisting of several hundreds of atoms
[7], the obtained energies differ significantly from total energies that would be obtained
at the FCI level due to the approximations made. Advances in quantum physics naturally
lead to new approaches for solving electronic structure problems. The most recent and
important one is quantum computing.

When thinking about computational sciences at a very fundamental level, one might ask
what kind of physical systems can be used to perform a computation? For a very long
time only classical systems were considered for this task, like the classical bit in an av-
erage laptop, which usually makes use of some electromagnetic phenomenon to be either
in the state 0 or 1, and together, many bits can perform advanced computations. It wasn’t
until the 80s when pioneers like Richard Feynman thought of making the physical sys-
tem quantum mechanical [5, 6]. The motivation was that to be able to simulate quantum
mechanical systems (such as atoms and molecules) in an efficient manner compared to
classical computations, we also need to make the computer quantum mechanical. This
seems reasonable since the quantum mechanical world is so different from the classical
world. It should be (and is) very difficult to simulate it using classical physics. How-
ever, if we make the computer itself quantum mechanical, the story could be different.
Quantum chemistry is a field which deals with highly quantum mechanical systems and
therefore it has risen as a natural field of application for quantum computers. It is however
well known that making quantum computations tractable is an extremely difficult task due
to decoherence. Decoherence is the fact that quantum mechanical systems are very sen-
sitive and difficult to control. They tend to interact with the environment and instead of
staying in the quantum mechanical world, they collapse to some classical state or become
entangled with the environment, which causes the computations to fail. For this reason it
has taken such a long time for quantum computing to get serious attention from the field
of quantum chemistry. More on the concepts of decoherence and entanglement can be
found e.g. in refs [3, 4].

Now that quantum computing is becoming more tractable, the need for quantum algo-
rithms grows. I have studied a few existing quantum algorithms for solving the electronic
structure problem, focusing on the helium atom. First I have computed the one- and two-
electron interactions on a classical computer, using a numerical basis set. There are sev-
eral advantages to using numerical basis sets instead of analytical functions [45]. They are
more robust and flexible, which means that they can be used as exact orbitals. This is an
advantage over analytical basis functions such as Gaussian type orbitals (GTO) or Slater
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type orbitals (STO), which are approximations of exact orbitals. I have then implemented
the integrals on a quantum computer simulator and run the quantum phase estimation al-
gorithm for different basis set sizes. I conclude the introduction with some basics of the
theory behind quantum computers and a short recap of classical calculations. After this I
focus on how to map electronic structure problems to a quantum device, i.e., rewriting it
in terms of qubits and quantum gates. I consider a few different mappings and transfor-
mations. Their task is trying to minimize the number of qubits and gates needed. After
that I present two of the most important quantum algorithms for finding the electronic
structure, namely quantum phase estimation and variational quantum eigensolver. This
is followed by a section on the largest challenge facing quantum computing today, which
is noise. Noise is when the quantum computer interacts with the environment, causing
the computation to fail. I discuss a theory for modeling noisy quantum channels which
produce errors. After this I present the results of my work, and end with a discussion and
conclusions.

1.1 Quantum computers

There are many differences between how classical computers and quantum computers
work in practice. An example is the fact that in quantum computing one measures the
result, which makes the quantum computing itself an experimental science. There are
also very important differences on the fundamental theoretical level. Two of them are
the superposition principle and quantum entanglement. Classical computers use bits as
their most basic unit, which can take on values 0 and 1. The corresponding units on
quantum computers are called quantum bits, or qubits. A qubit is a two-level quantum
mechanical system and they work quite differently from their classical counterpart. A
physical qubit can be realized by any quantum mechanical system with two different
states, like an atom with two energy levels or a superconducting circuit where the current
can go either clockwise or counterclockwise. For the purposes of this thesis however, the
qubits will only be abstract mathematical objects, which lets one explore the theory of
quantum information. As all other quantum mechanical systems, they are represented as
vectors in a Hilbert space, which for a qubit is two-dimensional. Therefore a qubit in the
general case is written as a superposition of the two states |0⟩ and |1⟩ as

|q⟩ = a|0⟩+ b|1⟩, (1.1)
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where a, b ∈ C are coefficients which satisfy

|a|2 + |b|2 = 1. (1.2)

Consequently, a qubit can be in the state 0 and 1 simultaneously contrary to the bit, which
is always either 0 or 1. A measurement in the basis {|0⟩, |1⟩} will collapse the qubit
to the state |0⟩ with probability |a|2 and |1⟩ with probability |b|2. This is the superpo-
sition principle. The other important property is quantum entanglement, a phenomenon
where two or more qubits are dependent on each other, or entangled. One can not know
anything about one specific qubit, without affecting the other qubit(s). It is perhaps best
demonstrated by an example. The quantum state

|ψ⟩ = |01⟩+ |10⟩√
2

(1.3)

is a highly entangled state. It is impossible to isolate one qubit from the state and write
it as a product state. If we measure the value of one qubit, we immediately know the
value of the second one. These two properties of quantum mechanical states result in new
ways to think of computation both concerning storage of information, and manipulating
the information through algorithms. Regarding information storage, one can again think
of a string of qubits in a superposition state

|ψ⟩ = a0|0⟩+ a1|01⟩+ a3|10⟩+ a4|11⟩. (1.4)

This qubit register consisting of two qubits stores four numbers, a0, a1 . . . , and in general,
n qubits can store 2n numbers while n classical bits can only store n numbers. This
exponential increase in information storage is one of the properties which makes quantum
computers desirable.

The next question is then: How do we perform computations with these qubits? The qubit
being a vector on a Hilbert space, we can of course operate on them with operators on the
space. The operators are represented as unitary matrices and are called quantum gates, or
just gates. Some of the most common gates are found in table 1.1. These are the quantum
equivalents of classical logic gates.

From these gates we can put a qubit in a superposition state using the Hadamard gate, put
two qubits in an entangled state using the CNOT gate and make up gates which perform
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Name Symbol Matrix representation

Identity I
(
1 0
0 1

)
Pauli-X X

(
0 1
1 0

)
Pauli-Y Y

(
0 −i
i 0

)
Pauli-Z Z

(
1 0
0 −1

)
Hadamard H 1√

2

(
1 1
1 −1

)

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 1.1: The most common quantum gates and their symbol and matrix representations.

arbitrary rotations of angle θ of the qubit around an axis n̂

Rn̂(θ) = exp

(
−iθn̂ · σ⃗

2

)
= cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ), (1.5)

where σ⃗ = (X, Y, Z) denotes the vector of Pauli matrices. In general, any unitary trans-
formation U of quantum mechanics, which performs the evolution

|ψ⟩f = U |ψ⟩i, (1.6)

where |ψ⟩f is the final state and |ψ⟩i is the initial state, can be implemented on a quantum
computer using a set of universal quantum gates.

Finally, at the end of the computation one must perform a measurement in the basis to
get the result. The measurement can be represented by a set of measurement operators
{Mm}, and the probability of getting the result m is

p(m) = ⟨ψ|M †
mMm|ψ⟩. (1.7)

As an example, in the computational basis one can measure a qubit using the projection
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operators |0⟩⟨0| and |1⟩⟨1|, which satisfy the completeness relation∑
m

M †
mMm = I. (1.8)

As mentioned, the implementation of the operators and qubits is an experimental science,
and many different methods have been proposed like trapped ion [30]-[34], superconduct-
ing quantum computers [35, 36] and photon systems [37, 38]. Now we have everything
we need to start building quantum algorithms; the set of qubits, which form a qubit regis-

ter, and the quantum gates.

1.2 The electronic structure problem

Before completely turning the attention to quantum computations, I will revisit classical
quantum chemistry computations. This is necessary for understanding what the electronic
structure problem is, why it is so difficult to solve on a classical computer and how it can
be implemented on a quantum computer.

The electronic structure problem is quite simple to state: solve the Schrödinger equation
(SE) and you know everything there is to know about the system. However, actually
solving the equation is a much harder problem. The time-independent, non-relativistic
SE can be stated as follows

H|Ψ⟩ = E|Ψ⟩, (1.9)

where H is the electronic Hamiltonian, |Ψ⟩ is the quantum state and E the energy corre-
sponding to that state. In the formalism of first quantization the electronic Hamiltonian
is

H = −1

2

N∑
i

∇2
i −

n∑
j

N∑
i

Zj

rij
+

N∑
i>j

1

rij
, (1.10)

where the first term is the kinetic energy operator, the second term gives the electron-
nuclear interaction and the third the electron-electron interaction. N is the number of
electrons, n the number of nuclei and Zj the charge of nucleus j.

The state |Ψ⟩ is an abstract vector in a Hilbert space and can be expanded in some basis
{|ψi⟩}ni=1 in the following way

|Ψ⟩ =
n∑

i=1

cn|ψn⟩, (1.11)

where ci ∈ C are the expansion coefficients. The wavefunction we want to deal with is
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then obtained as an inner product

Ψ(x) = ⟨x|Ψ⟩ =
n∑

i=1

cn⟨x|ψ⟩ =
n∑

i=1

cnψn(x), (1.12)

where the functions ψn(x) are the basis functions.

Based on this, all the different computational approaches have individual ways of finding
the wavefunction that solves the SE and FCI the one I focus on. Here the state is expanded
as a Slater determinant

|Φ⟩ = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) . . . ϕN(1)

ϕ1(2) ϕ2(2) . . . ϕN(2)
...

... . . . ...
ϕ1(N) ϕ2(N) . . . ϕN(N)

∣∣∣∣∣∣∣∣∣∣
, (1.13)

which is a product of one-particle spin functions ϕi(j) of electron j (the basis functions).
The Slater determinant preserves the correct anti-symmetric properties of the state. By
including all possible determinants made up from the functions in the basis set, one makes
sure that all possible excitations are considered in the superposition state. Therefore, the
solution will be exact within the basis set. The FCI state is

|FCI⟩ =
∑
i

Ci|Φi⟩, (1.14)

where |Φ⟩ are the Slater determinants. The energy of the system is

E =
∑
i

∑
j

CiCj⟨Φi|H|Φj⟩, (1.15)

where we have the normalization condition∑
i

|Ci|2⟨Φi|Φi⟩ = 1, (1.16)

with the orthogonality condition

⟨Φi|Φj⟩ = 0, i ̸= j. (1.17)
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This allows us to write down the Lagrangian for FCI as

L =
∑
i

∑
j

CiCj⟨Φi|H|Φj⟩ − E

(∑
i

|Ci|2⟨Φi|Φi⟩ − 1

)
(1.18)

and differentiating with respect to Ci gives an eigenvalue matrix equation

HC = EC, (1.19)

where the Hamiltonian matrix elements are

Hij = ⟨Φi|H|Φj⟩. (1.20)

The number of Slater determinants is

Ndet =

(
M

N/2 + S

)(
M

N/2− S

)
, (1.21)

where N is the number of electrons and M is the number of orbitals. This large number
of determinants is what makes classical computations so inefficient. A detailed discussion
on classical quantum chemistry methods can be found e.g. in refs [1, 2] or other similar
textbooks. It has now been demonstrated that FCI indeed scales factorially, which makes
it useful mainly for benchmarking. The more tractable methods mentioned (CCSD(T)
and MP2) yield energies which differ significantly from the FCI energy. Therefore, we
now turn our attention to quantum computations instead.

2 Mapping of the problem

It is necessary to map the problem to the quantum device before the actual calculation.
Thus, one has to rewrite the problem in such a way that it can be implemented on a
quantum computer. The idea is to map the states of the quantum system onto the qubit
register. The Hamiltonian is then mapped to a combination of unitary operators. In this
section a few approaches to map the space of states to qubits is presented. The aim is
to minimize the number of qubits needed, which is especially important for today’s early
quantum computers. Then a few different ways to implement the Hamiltonian will be dis-
cussed. The operator is mapped to a sum of Pauli operators which are easily implemented
on a quantum device. The methods use as few operators as possible to generate shallow
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algorithms, while preserving the antisymmetric properties of the quantum states.

2.1 Electron to qubit mappings

The electronic structure problem starts with defining the Hamiltonian. The non-relativistic
electronic Hamiltonian for N particles in second quantization formalism can be written
as

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

vpqrsa
†
pa

†
qasar, (2.1)

where the weights, hpq and vpqrs, are one- and two electron integrals respectively. The
one electron weights are obtained as

hpq = −
∫
χ∗
p(r)

(
1

2
∇2 +

∑
i

Zi

|Ri − r|

)
χq(r)dr, (2.2)

which is the expectation value of the kinetic energy term and the Coulomb attraction term
between the electron and the nuclei, as in equation 1.2. The two-electron interaction terms
are given by

vpqrs =

∫
χ∗
p(r1)χ

∗
q(r2)χr(r2)χs(r1)

|r1 − r2|
dr1dr2. (2.3)

The integrals are calculated on a classical computer and implemented on the quantum
device. Since the integrals have to be calculated only once, they do not lead to any over-
head to the simulation. In equation 2.1 ai and a†i are fermionic annihilation and creation
operators, respectively, i.e., they annihilate/create an electron in the spin orbital i. They
obey the anticommutation relations

aia
†
j − a†jai = {ai, a†j} = δij (2.4)

{ai, aj} = {a†i , a
†
j} = 0, (2.5)

which is important because it means that the Fermi statistics of fermions is automatically
encoded on the operator level. The second quantization formalism is more convenient
than the first quantization of equation 1.2 when doing quantum simulations because it
reduces the number of qubits needed [15].

The Hamiltonian acts on the space of states, the Fock space. It is defined as

F =
K⊕

n=0

Hn,K , (2.6)
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which denotes a direct sum of the Hilbert spaces Hn,K forK spin orbitals. n is the number
of particles. An arbitrary basis state in the Fock space can be written as

|ψ⟩ = |n1, n2, . . . , nN⟩, ni ∈ {0, 1}, (2.7)

where each ni is the occupation number of the spin orbital i. It is 0 or 1 if the spin orbital
is unoccupied or occupied respectively. Using the creation operators a generic state can
be written as

|n1, n2, . . . ⟩ = (a†1)
n1(a†2)

n2 . . . |0⟩. (2.8)

Considering the anticommutation relations in equations 2.4 and 2.5, the action of ai and
a†i on that state is

a†i | . . . , ni, . . . ⟩ = δni,0(−1)
∑

j<i nj | . . . , 1, . . . ⟩ (2.9)

and
ai| . . . , ni, . . . ⟩ = δni,1(−1)

∑
j<i nj | . . . , 0, . . . ⟩. (2.10)

The whole Fock space is redundant. The mapping has to be restricted to the subspace of
states containing constant numberN particles of the system. These are then the states that
need to be mapped to the qubit register.

The most straightforward mapping is the direct mapping (DM). In this mapping each spin
orbital is mapped to one qubit

|n1n2 · · ·nN⟩ 7→ |q1q2 · · · qN⟩, ni, qi ∈ {0, 1}, (2.11)

where N is the number of spin orbitals. The total composite system is the tensor product
of the individual systems and the notation

|q1⟩ ⊗ · · · ⊗ |qN⟩ = |q1 · · · qN⟩ (2.12)

is adopted. ni (qi) has the value 0 if the spin orbital is unoccupied, and value 1 if the spin
orbital is occupied.

In this basis a few different transformations can be used to map ai and a†i to unitary oper-
ators, which can be implemented on a quantum computer. Jordan–Wigner transformation
(JW) [14] is one of the most commonly used of such transformations. ai and a†i are
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mapped to strings of Pauli operators in the following way

a†j =

j−1⊗
n=1

Zn ⊗ σ+
j (2.13)

and

aj =

j−1⊗
n=1

Zn ⊗ σ−
j , (2.14)

where
σ± =

X ± iY

2
(2.15)

are the raising and lowering operators. These strings are tensor products of Pauli operators
with different indices. An operator with a specific index acts on the qubit with the same
index. For simplicity, the Pauli operators σx, σy and σz are written as Xi, Yi and Zi, when
acting on qubit i. The anti-symmetric property of the fermionic state in equation 2.9 needs
to be inherited. It is ensured by the string of Z operators because Z changes the phase
of a qubit in the state |1⟩ from +1 to -1, but leaves |0⟩ unchanged. The raising (lowering)
operator raises (lowers) the value of the qubit it acts on, as the name suggests.

There exist some problems with the JW transformation. As we can see in equations 2.13
and 2.14, we might have to operate on qubits which are not adjacent. This means that this
transformation is non-local and it can be quite impractical to implement on a physical
quantum computer.

Another transformation is the parity mapping. For this we need to make a change of basis
from the occupation number basis to the parity basis. In the occupation number basis, the
value ni of qubit i was the occupation number of spin orbital i. Now we make a change
of basis such that the value fi of qubit i contains the parity of all qubits up to qubit i

fi =
i∑

k=0

nk mod 2. (2.16)

We can define an operator

P =


1 1 · · · 1

0 1 · · · 1
...

... . . . ...
0 0 · · · 1

 , (2.17)

such that if |ψ⟩ is a occupation number basis state, then the corresponding parity basis
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state |ϕ⟩ is
|ϕ⟩ = P |ψ⟩, (2.18)

where addition is again mod 2. Like in the DM, we can define the corresponding cre-
ation and annihilation operators in the parity basis for N electrons

a†j =
N⊗

k=j+1

Xk ⊗ σ+
j (2.19)

and

aj =
N⊗

k=j+1

Xk ⊗ σ−
j , (2.20)

where
σ±
j =

Zj−1 ⊗Xj ∓ iYj
2

(2.21)

is the raising or lowering operator in the parity basis. However this has the same problems
as the Jordan–Wigner transformation: we get a similar string of Pauli operators which may
be non-local. Also, the scaling of qubit operations needed for both these transformations
is linear O(N). This scaling can be improved.

The Bravyi–Kitaev (BK) mapping [16] is an improvement to these mappings. It is a
somewhat complicated transformation that combines the two. We again need N qubits to
represent N spin orbitals and now the indexing of the qubits starts from 0. The informa-
tion qubit i holds depends on the index i and can be divided into three scenarios. First one
checks if i is even or odd. If i is even, then the qubit stores the occupation number of the
spin orbital, like the Jordan–Wigner transformation. If i is odd the qubit stores the parity
of a subset of qubits and there are two scenarios for this subset. If log2(i + 1) ∈ Z, then
the subset is the same as in the parity transformations, i.e., all qubits with index j ≤ i.
Otherwise the subset is all qubits with index k < j ≤ i, where k is the last index such
that log2(k + 1) ∈ Z. It is quite unintuitive and might be better illustrated with an ex-
ample. One can consider the change of basis from the occupation number basis, to the
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Bravyi–Kitaev basis for eight qubits by the matrix

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1





o0

o1

o2

o3

o4

o5

o6

o7


=



q0

q1

q2

q3

q4

q5

q6

q7


=



o0

o0 + o1

o2

o0 + o1 + o2 + o3

o4

o4 + o5

o6

o1 + o2 + o3 + o4 + o5 + o6 + o7


.

(2.22)
The scaling is O(log2 n) and it is a improvement from JW and parity mapping. It has
been shown that the BK mapping gives a significant reduction in gate count in quantum
chemistry simulations compared to the DM and PM [17]. The form of the creation and
annihilation operators in the BK basis will not be further discussed as they also retain
a complicated form, but they can be found in e.g. ref [17]. Bravyi–Kitaev Superfast
(BKSF) is another improved transformation. It has been shown that the performance for
calculations on H2 was improved when using BKSF, even though the gate count was larger
compared to BK [26].

The number of qubits needed can also be reduced by the use of Symmetry Configuration
Mapping (SCM) [8]. In SCM one sets constraints on the states themselves to rule out
some of them and make the space of states smaller. One can start by constructing a
symmetry adapted basis {|Ψl⟩Σ}, where l enumerates the basis states belonging to the
same symmetry configuration. In this basis the total Hamiltonian is written as a direct
sum of Hamiltonians for different symmetry configurations

H =
⊕
Σ

HΣ, (2.23)

which means that we can solve equation 1.9 separately for each symmetry configuration

HΣ|ΨΣ⟩ = EΣ|ΨΣ⟩. (2.24)

The symmetry configuration
Σ = (N,S, Sz,Γ) (2.25)

contains a set of parameters which restrict the state and the Hamiltonian. These areN , the
number of electrons, S, the total spin, Sz, the total spin projection and Γ, the symmetry
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representation of the state. The number of qubits needed is now dependent on the rank
ΛΣ of the symmetry configurated Hamiltonian HΣ as

QΣ =
⌈
log2 Λ

Σ
⌉
. (2.26)

This can be an effective method to use, especially in single point calculations where the
symmetry of the state is known from experiments. In ref [8] they performed calculations
on the ground state of F2. They were able to reduce the number of qubits from 16 to
4 by using SCM. First they applied the frozen core approximation, leaving N = 14

electrons when assuming that the four electrons in the four 1s-orbitals remain constant.
They further set Sz = 0 and Γ = Ag. They performed the calculation in the minimal
atomic basis with 16 spin orbitals.

2.2 Hamiltonian Simulation

Now we can choose a basis and a transformation to map our operators to Pauli strings.
The next step is to implement these operators onto the quantum device. To do that, we
first divide the Hamiltonian into a sum of local Hamiltonians

H =
∑
k

Hk (2.27)

such that each Hk acts at most on a constant number of qubits. Next we exponentiate this
operator to construct a unitary operator

U = eiH (2.28)

and in general, we would like to write

e
∑

k Hk =
∏
k

eHk . (2.29)

However, since the different Hk do not usually commute, i.e.,

HkHl −HlHk = [Hk, Hl] ̸= 0 (2.30)
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in the general case, equation 2.29 does not hold. Instead we need the Trotter–Suzuki
formula

lim
m→∞

(
e
∑

k Hk/m

)m

=
∏
k

eHk/m. (2.31)

The local Hamiltonians Hk are just Pauli operators. Applying equation 1.5, this operator
can be implemented on a quantum computer in form of rotations. However, the prob-
lem lies in the fact that we can not realistically take m to infinity and need to make an
approximation and cut it off at some point. This will introduce errors.

There are other methods for generating quantum circuits from a Hamiltonian and one of
them is truncated Taylor series [11]. Again we start with the operator in equation 2.28
where the Hamiltonian is a sum of Pauli operators. Here it is important to note that each
Hk must be unitary. Now, instead of using Trotterization, we make use of Taylor series

U ≈
K∑
k=0

1

k!
(−iH)k, (2.32)

but cut it off at order K. If we want the simulation to accuracy ϵ, K will be of order

K = O
(

log(1/ϵ)

log log(1/ϵ)

)
. (2.33)

However, the powers of the Hamiltonian might not be unitary but combining this with
equation 2.27 we can expand the series

U ≈
K∑
k=0

∑
l1,...,lk

al1 . . . alkHl1 . . . Hlk , (2.34)

where we can set each al > 0. This operator has a form which can be implemented on a
quantum computer. I will not however go further into the implementation of the operator
and instead focus on the more used Trotterization method.

These methods for implementing the Hamiltonian introduce errors. One source for errors
is that the operator in the truncated Taylor series method is not exactly unitary, since the
series expansion is cut off. However, it is close to unitary and the error can be controlled.
Implementation of Hamiltonians remains an active area of research and other approaches
such as qubitization [19] have been suggested. Thus, we now have the tools to prepare
Hamiltonians on a quantum computer.
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3 State Preparation

The last step to consider before discussing the quantum algorithms is preparation of the
initial state, which is one of the strengths of quantum computers. Preparing a good initial
state with sufficient overlap with the true ground state can be a crucial starting point to
many algorithms. For regular closed shell singlet molecules the Hartree–Fock (HF) state
is usually a good guess. Around the equilibrium geometry the overlap tends to be about
|⟨ΨHF|Ψexact⟩|2 ≈ 0.9, but this overlap can decrease for molecules beyond these criteria
[10].

My focus will lie on adiabatic state preparation, since it is probably the best known state
preparation technique in quantum computing. The idea stems from the adiabatic theorem,
which makes the following statement:

A physical system remains in the eigenstate of a Hamiltonian when acted upon with a

perturbation if the evolution is sufficiently slow and there is a gap between the eigenvalue

of the system and the rest of the spectrum of the Hamiltonian.

One can now make the Hamiltonian time dependent

H(ξ), ξ ∈ [0, 1], (3.1)

where the ground state of H(0) is some known state that can be prepared on a quantum
computer, and the ground state of H(1) is the desired state. H(1) could e.g. be obtained
by slowly turning on some perturbation say

H(1) = H0 +H ′, (3.2)

whereH0 = H(0) andH ′ is a perturbation. Now one can make use of the time-dependent
SE

i
d

dt
|Ψ(t)⟩ = H(t/tf )|Ψ(t)⟩, t ∈ [0, tf ] (3.3)

to evolve the system along a determined path. Given that the spectrum of the Hamiltonian
along this path is gapped and the evolution is sufficiently slow, the final state will be the
ground state of the H(1). The total time, tf , depends on the gap between the two lowest
eigenvalues of the Hamiltonian along the path, and a parameter ε as [18]

tf >
ε

g2min

, (3.4)
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where
gmin = min(E1(t)− E0(t)) (3.5)

is the gap and

ε = max

∣∣∣∣⟨ψ1(t)|
dH(t/tf )

dt
|ψ0(t)⟩

∣∣∣∣, (3.6)

where |ψ0(t)⟩ is the ground state and |ψ1(t)⟩ is the first excited state. Thus, if tf is constant
or grows polynomially, there will be no excess overhead to the simulation. On the other
hand, large tf might require deep circuits, which is still a problem as mentioned. Another
challenge could lie in the fact that the spectrum along the whole path might not be known
and degeneracies could lead to the wrong final state. An algorithm designed for state
preparation for molecules with open shell character has also been suggested [20]. It is
based on Serber construction [47, 48] and has the advantage that the circuit depth is only
2.

An alternative technique is variational state preparation. This will be discussed in more
detail in section 4.2 in connection to VQE. This now leads us to the subject of quantum
algorithms.

4 Quantum Algorithms

The algorithm of most interest is Quantum Phase Estimation (QPE) and state preparation
and implementation of the Hamiltonian are the starting points for that. Now that we have
these tools, we can start to explore the algorithm.

As mentioned, the exact solution to the SE within the employed basis is classically given
by FCI. The corresponding algorithm for quantum computers is QPE [9]. It is an al-
gorithm for determining eigenvalues of unitary operators. Like FCI, it gives the exact
solution to the SE within the basis. The advantage is that it scales polynomially with
system size, compared to factorially for FCI. As mentioned, the starting points are the
initial state and the implementation of the Hamiltonian. The task of the algorithm is to
project the initial state onto an eigenstate of the Hamiltonian. A measurement then yields
the corresponding eigenvalue of the eigenstate exactly. The success rate is proportional
to the overlap |⟨ψinitial|ψexact⟩|2 between the initial state and the exact state. Thus, state
preparation can be of great value. Given exponentially decreasing overlap between the
HF state and multiconfigurational states, an exponential numbers of runs of the algorithm
is also needed. For singlet closed-shell molecules around their optimal geometry the HF
state is usually sufficient.
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The problem with QPE is that it is sensitive to noise. Therefore, VQE is another important
algorithm, especially for near time quantum computers because it is more robust. It takes
advantage of quantum computers’ ability to prepare and measure a quantum state, while
utilizing classical computers to keep the quantum circuits from becoming too deep. It
is based on Ritz variational principle [21] for quantum mechanics, which is a common
method in many classical algorithms as well. The two algorithms will be discussed in
detail in this section.

4.1 Quantum Phase Estimation

QPE is an algorithm for finding eigenvalues of unitary operators on quantum computers.
The eigenvalue of a unitary operator U can be represented by a point on the unit circle in
the following way

U |u⟩ = u|u⟩ = eiφ|u⟩. (4.1)

QPE estimates the value of φ with very high accuracy. The Hamiltonian 2.1 is an Her-
mitian operator. Thus, we again construct a unitary operator by exponentiating H as in
equation 2.28

U |u⟩ = e−iH |u⟩ = eiφ|u⟩, (4.2)

where φ, the ”phase”, is an eigenvalue of H .

The algorithm consists of two qubit registers. One with t qubits, the ancilla register, from
which we in the end will read out the eigenvalue, and another with m qubits, representing
the initial state |u⟩. The computer starts in the product state

|ψ⟩ = |0⟩⊗t ⊗ |u⟩ = |0⟩⊗t|u⟩. (4.3)

First, we apply to the first register a sequence of Hadamard gates,H⊗t, to put the computer
in the equal superposition state

|ψ⟩ = 1√
N

N−1∑
j=0

|j⟩|u⟩. (4.4)

Next, we apply controlled U j-operations with the j:th qubit in the first register as the
control qubit and |u⟩ as the target

|ψ⟩ = 1√
N

N−1∑
j=0

|j⟩U j|u⟩. (4.5)
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We can write |u⟩ as a superposition of states in the computational basis

|ψ⟩ = 1√
N

N−1∑
j=0

|j⟩U j
∑
k

ck|ϕk⟩ (4.6)

=
1√
N

∑
k

ck

N−1∑
j=0

|j⟩U j|ϕk⟩ (4.7)

=
1√
N

∑
k

ck

N−1∑
j=0

|j⟩(λk)j|ϕk⟩, (4.8)

where λk is the k:th eigenvalue of U , with eigenvector |ϕk⟩. If we now write the eigen-
values as eiφk according to 4.2, we obtain

|ψ⟩ = 1√
N

∑
k

ck|ϕk⟩
N−1∑
j=0

eiφkj|j⟩ = 1√
N

N−1∑
j=0

eiφkj|j⟩|u⟩. (4.9)

We can now make an interesting observation: the first qubit register has the form of
quantum Fourier transformation (QFT) of the state |φk⟩. We apply the inverse QFT

QFT† 1√
N

N−1∑
j=0

eiφkj|j⟩ = |φk⟩ (4.10)

to obtain a state
|ψ⟩ = |φk⟩|u⟩ (4.11)

where the first qubit register contains the t-bit representation of λk. We then measure it
in the computational basis to obtain the eigenvalue λk with probability |⟨u|ϕk⟩|2 = |ck|2.
The circuit diagram showing the first part of the algorithm, up until the inverse QFT, can
be found in figure 4.1. A more detailed description of the QFT subroutine can be found
in ref [3].
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. . .

. . .

. . .

. . .

. . .

first register
t qubits

|0⟩ H |0⟩+ e2πi2
t−1φ|1⟩

|0⟩ H |0⟩+ e2πi2
2φ|1⟩

|0⟩ H |0⟩+ e2πi2
1φ|1⟩

|0⟩ H |0⟩+ e2πi2
0φ|1⟩

second register |u⟩ U20 U21 U22 U2t−1 |u⟩

Figure 4.1: Circuit diagram outlining the first part of the QPE algorithm.

The accuracy of the algorithm depends on the number of qubits in the first qubits register.
One can modify the algorithm such that the accuracy is independent of the number of
qubits used. This procedure is called iterative QPE (IQPE) and it reduces the number of
qubits needed [10]. As the name suggests, the algorithm proceeds in an iterative manner.
In each iteration one digit of the eigenvalue is measured, starting from the last and working
towards the first ones. One problem might be that one has to prepare the trial state in each
iteration if one does not want to maintain throughout the whole algorithm, but if the state
is easily prepared then it is no problem. Otherwise IQPE works in the same way as QPE
and the circuit for iteration k can be found in figure 4.2. The rotation Rz(ωk) and the
second Hadamard gate form the inverse QFT for the first qubit.

|0⟩ H Rz(ωk) H φk

|u⟩ U2k−1

Figure 4.2: The circuit for iteration k of IQPE.

This version however does not remove the bottleneck of the algorithm, namely the imple-
mentation of the operator U .
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4.2 Variational Quantum Eigensolver

QPE is not useful for doing computations on near-term quantum computers. VQE how-
ever, is more robust against noise. It is a hybrid quantum-classical algorithm. It utilizes
quantum computers’ ability to prepare and measure quantum states but takes advantage
of classical computers to avoid deep circuits. The algorithm starts by finding a good trial
state, or ansatz, |Ψ(θ⃗)⟩ and a trial quantum circuit U(θ⃗). They are parameterized by a
set θ⃗ = (θ1, . . . , θn) of parameters we want to optimize. Contrary to QPE, this method is
iterative and in each iteration we prepare a new state and new circuit. At the end of the
iteration the energy is measured. Then the parameters are optimized with respect to the
energy on a classical computer. That way a new set of parameters are obtained for the
next iteration.
The outline of the algorithm is as follows:

1. Prepare the circuit U(θ⃗).

2. Run the circuit to get |Ψ(θ⃗)⟩.

3. Measure expectation value of H .

4. Optimize the parameters θ⃗.

5. If it has not converged go back to step 1.

There are different ways of preparing the ansatz and the circuit. The original approach
was unitary coupled cluster (UCC) [22]. It is based on the classical coupled cluster (CC)
method [42, 43], but modified to be unitary. UCC offers several advantages over the non-
unitary version [44] but there is no way to implement it efficiently on a classicl computer.
Now the new state is obtained as

|Ψ(θ⃗)⟩ = U(θ⃗)|Φ⟩, (4.12)

where the ansatz |Φ⟩ is e.g. an HF determinant.
To construct the circuit we will use the unitary cluster operator, which is given by

|ΨUCC⟩ = exp[T − T †]|Φ⟩, (4.13)

where T is the cluster operator when we have n electrons

T =
n∑

k=1

Tk. (4.14)
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The cluster operator is a sum of excitation operators

T1 =
∑
i∈occ
k∈virt

tai a
†
aai (4.15)

T2 =
1

4

∑
i,j∈occ
a,b∈virt

tabij a
†
aa

†
baiaj (4.16)

...

Tn =
1

(n!)2

∑
i1,...,in∈occ
a1,...,an∈virt

ta1···ani1···in a
†
a1
· · · a†anai1 · · · ain , (4.17)

i.e., Tm excites m electrons from occupied orbitals to virtual orbitals. Here the indices
i, j, k, l, . . . indicate occupied orbitals and a, b, c, d, . . . indicate virtual orbitals. We can
write the circuit as

U(θ⃗) = exp

[∑
k

θk(Tk − T †
k )

]
(4.18)

and make a Suzuki–Trotter decomposition

U(θ⃗) ≈
(∏

k

e
θk
n
(Tk−T †

k )

)n

. (4.19)

Usually it suffices to go as high as single and double excitations (UCCSD), i.e.,

T ≈ T1 + T2 (4.20)

to obtain good results.

There have been several modifications made to the originally suggested UCCSD approach
[23, 24], which are also based on UCC. A modification suited for strongly correlated
systems has been suggested, called ADAPT-VQE [25]. It starts by defining a set

{tpq , tpqrs, . . . } (4.21)

of excitation operators and the HF state. In each iteration the gradient of the energy with
respect to each operator in the set is calculated

∂E(n)

∂θi
=
〈
ψ(n)

∣∣[H,Oi]
∣∣ψ(n)

〉
, (4.22)
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where n denotes the iteration and i the operator index. The operator with the largest
gradient is then applied to the trial state, the parameters are optimized and a new energy is
obtained. If the gradient is converged the algorithm is done. The final state at convergence
is

|ψadapt⟩ = (eτN )(eτN−1) . . . (eτ1)|ψHF⟩, (4.23)

where each eτn is computed at iteration n. The idea behind this approach is that the
algorithm builds the trial state itself step by step, so that the system itself decides the
state. They showed that the performance of the method is very good for both uncorrelated
and correlated systems, outperforming the original approach.
A hardware-efficient method has also been proposed [13]. It uses alternating single qubit
rotations, U q,d(θ⃗) and entangling operations, Uent. Here q denotes the qubit index and d
the circuit depth. The initial state is the state |00 . . . 0⟩, which yields the trial state

|ψ(θ⃗)⟩ =
N∏
q=1

(
U q,d(θ⃗)

)
Uent

N∏
q=1

(
U q,d−1(θ⃗)

)
. . . Uent

N∏
q=1

(
U q,0(θ⃗)

)
|00 . . . 0⟩, (4.24)

where the single qubit rotations have the form

U q,i(θ⃗) = Rz(θ
q,i
1 )Rx(θ

q,i
2 )Rz(θ

q,i
3 ), (4.25)

where the Rn are the rotation operators from equation 1.5. This method is useful because
it yields shallow circuits. Kandala et al. got good results for their studied molecules,
however, there are no results of the method giving good results for highly correlated
systems. Moreover, it requiresN(3d+2) parameters, which is higher than that of ADAPT-
VQE, where the number of parameters is equal to the number of operators in the set.
An improvement to the ADAPT-VQE has also been suggested [27], referred to as a
hardware-efficient ADAPT-VQE, or qubit-ADAPT-VQE. It replaces the excitations op-
erator set with Pauli strings and introduces a completeness relation for the operators.
They show that this results in the operator set scaling linearly with the number of qubits,
resulting in a more hardware-efficient algorithm and lower-depth circuits.

5 Noisy Quantum Computation

Before discussing the applications of the quantum algorithms, I will take a small detour
into the theory of noise. The model of noise is somewhat mathematical and might not be
relevant for quantum chemistry computations, but offers insight as to what goes on when
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the quantum gates don’t work as planned. This will then lead to the subject of quantum
computer simulators, which have been the focus of my experiments.
One of the biggest challenges with today’s quantum computers is that they are not closed
quantum systems, but open quantum systems. This means that they interact with their
environment, and this interaction produces noise. This noise can be e.g. heat coming in to
the system from the surroundings, or electromagnetic fields interacting with the qubit. It
can cause different problems, like collapsing of the superposition of the qubit or a bit flip.
These cause the computation to fail. We can study noise both from a theoretical point
of view with a mathematical model, and from a practical point of view using quantum
computer simulators. The theoretical viewpoint requires construction of a new formalism,
which is discussed in this section. This is followed by a discussion on quantum computer
simulators.

5.1 Quantum Operations

To understand noise we can construct a model called the quantum operations formalism.
It is now easier to work in the density matrix formulation. If a quantum system is in the
state |ψi⟩ with probability pi, we have an ensemble of pure states, {pi, |ψi⟩}. Then we can
define a density matrix, or density operator as

ρ =
∑
i

pi|ψi⟩⟨ψi|. (5.1)

Just as in the state vector representation, all the information about the quantum system
is contained within the density matrix and all the postulates of quantum mechanics can
be restated in the density operator formalism. We begin by stating that there is a noisy
interaction U which is not necessarily a unitary interaction. This is visualized in figure 5.1
where ρenv is the density matrix of the environment and ρ′ is the final state of the system.
We can define a map E

ρ′ = E(ρ), (5.2)

which we call a quantum operation. This model of noise focuses a lot on how to develop
a formalism for these operations.
Next we can introduce the state space of the interacting environment |ek⟩. The environ-
ment starts in some state |e0⟩. Then to obtain the density matrix of the system we trace
out the environment from the composite system Uρ⊗ ρenvU

†, using partial trace

E(ρ) = Trenv
(
Uρ⊗ ρenvU

†) (5.3)
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=
∑
k

⟨ek|Uρ⊗ |e0⟩⟨e0|U †|ek⟩ (5.4)

=
∑
k

EkρE
†
k. (5.5)

The Ek = ⟨ek|U |e0⟩ are operators on the space of states of our system.

ρ

U

ρ′

ρenv

Figure 5.1: The density matrix of the system interacts through a black box with the envi-
ronment to become a new state.

The quantum operation satisfies three properties:

1. The probability of the process represented by E occurring is represented by the trace
Tr(E).

2. For a set of probabilities {pi}ni=1 and density matrices {ρi}ni=1, E satisfies

E
( n∑

i=1

piρi

)
=

n∑
i=1

piE(ρi). (5.6)

3. E is completely positive.

If these three properties are satisfied, then the quantum operation can be represented as in
equation 5.5 [3], where Ek satisfy

N∑
k=1

EkE
†
k ≤ I. (5.7)

The quantum operations formalism is good for describing noisy quantum channels. As
an example, one can consider the bit flip channel. It flips a qubit from |0⟩ to |1⟩ and vice
versa with probability p, and leaves it be with probability 1− p. Then we have

E0 =
√

1− pI =
√

1− p

(
1 0

0 1

)
E1 =

√
pX =

√
p

(
0 1

1 0

)
. (5.8)
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From this one can see that the quantum operation E flips a qubit with probability p. More
on quantum operations and the effects of noise can be found in textbooks like ref [3]. The
effect of noisy quantum channels can be studied using quantum computer simulators.

5.2 Simulating Quantum Computers

So far I have discussed quantum computers from a theoretical point of view. We want
to study quantum computers from a practical one also. This is impractical, or in some
cases not possible, to do using real quantum computers. As an example, the goal of my
work is to study electronic structure calculations on quantum computers that correspond
to classical FCI calculations. This would firstly be very resource consuming to do on
actual quantum computers when algorithms are run many times. Secondly, it would not
give many useful results since these algorithms are still very prone to errors. The solutions
to these problems is to simulate a quantum computation. This can be done on classical
computers and there already exist several different programs for simulating both error free
and noisy quantum computations [28, 29].

6 Results

The goal of this work is to test quantum computer simulators by calculating the electronic
structure and ground state energy of the helium atom using quantum algorithms corre-
sponding to classical FCI calculations. First the one- and two electron integrals needed to
be calculated and for this purpose a basis set had to be defined. I started only with the HF
level without any unoccupied, or virtual orbitals. I optimized the electronic structure and
included more orbitals in the next calculation, again optimizing the electronic structure,
and so on, building larger basis sets of top of the previous ones. I used numerical orbitals
which I will discuss shortly in the next section. After this I implemented the integrals
on the quantum simulator to calculate the ground state energy of the atom. I did the cal-
culations for a few different basis sets and parameter combinations, and compared the
results.

The quantum simulations were done on Atos quantum learning machine Kvasi, which
has a Python interface. One can implement noisy quantum channels using the quantum
operations formalism from section 5.1 to simulate realistic quantum computers of today,
however I have opted to simulate error free computations since the goal was to understand
how the algorithms work in a perfect environment. In this section I first discuss the idea
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behind the numerical basis set I have used, and then go through the implementation of the
quantum algorithm in more detail.

6.1 Numerical Orbitals

As mentioned in section 2.2, the one- and two-electron weights are calculated on a clas-
sical computer before the quantum simulation. To calculate these, we first need a basis
set and I have made use of numerical orbitals since they have several advantages over
analytical functions. A detailed discussion on the method can be found in refs [39]-[41].

The orbital functions I have used can be divided into two parts, a radial part and an angular
part

ϕnlm(r, ϑ, φ) = Rnl(r)Ylm(ϑ, φ), (6.1)

where the angular part is an analytical function and the radial part is numerical. The radial
function is defined on a grid in such a way, that inside each element r ∈ [xi, xi+1] it is
defined by a polynomial. At the gridpoints r = xi continuity between the polynomials at
adjacent elements is assured.

One big advantage when using numerical orbitals is that they are more flexible than com-
mon analytical basis functions like Slater type orbitals (STO) or Gaussian type orbitals
(GTO), which means that they can be adapted to represent exact orbitals [45]. Therefore,
faster convergence to the complete basis set (CBS) limit is achieved. This is important for
current quantum devices especially because it will mean that fewer qubits are required.
This will lead to further advantages if one uses VQE because fewer qubits means more
shallow circuits. As an example, looking at the calculations in ref [13] where they used
operators of the form of equation 4.25, it is clear that fewer qubits will result in more
shallow circuits.

6.2 Quantum Simulations

To map the electronic states to the qubit register I used DM and since I did a single
point calculation, the mapping was done considering only symmetry configuration of the
ground state. The JW transformation was used to map the Hamiltonian to Pauli operators
and then Trotter–Suzuki decomposition was used to build the circuit.

The one- and two-electron parts of the Hamiltonian are separately implemented as tensors
of rank two and four. By ensuring that these tensors have the right form, one can obtain
the desired symmetry configuration. This is perhaps best demonstrated with an example.
Take the helium atom and a basis set of the 1- 2- and 3s-orbitals, which gives six spin
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orbitals. The ground state has the term symbol 1S0, i.e., zero spin projection and s-
symmetry. The full Fock space can first and foremost be reduced to all states containing
only two electrons

{|Ψ⟩} = {|110000⟩, |101000⟩, . . . , |000011⟩}. (6.2)

Further reductions can be made if we make the constraint that sz = 0 so the electrons
must have opposite spin. Then the space of states becomes

{|Ψ⟩} = {|110000⟩, |100100⟩, |100001⟩, |011000⟩, . . . , |000011⟩} (6.3)

and therefore we only want to consider excitations which preserve the total spin of the
system in the one- and two-body tensors. Then the one-body tensors have the form hij ,
such that the element is zero if one of the indices is odd, corresponding to spin down and
one even, corresponding to spin up. This ensures that we only excite spin up to spin up and
spin down to spin down. The two-electron integrals have the form ⟨x1x2|x2x1⟩, which
means that the two-body tensors will have the form hijkl, where the non-zero elements
are the ones where i and l are odd and j and k are even or vice versa.

After the integrals were implemented it was time to choose a mapping of the operators to
quantum gates and as mentioned, I opted for the JW transformation since it is the simplest
and most the commonly used one.

Another parameter that can be varied is the number of qubits needed for the ancilla qubit
register containing the eigenvalue, and it can be obtained by analysis of performance [3].
To obtain φ accurate to n bits we need t qubits according to the following equation

t = n+

⌈
log

(
2 +

1

2ϵ

)⌉
. (6.4)

Choosing a success rate of 0.9, i.e, ϵ = 0.1 and n = 6, which should be sufficient accuracy,
gives t = 8. The energy given when increasing the number of ancilla qubits can be found
in figure 6.1. One can notice that it converges at 8 qubits.

There is excellent agreement with the HF energy of helium done with QPE and the clas-
sical ”exact” result. Unfortunately, I was not able to reproduce this for larger basis sets.
There is still some agreement when performing an FCI computation with two s-functions
using QPE, −2.887968 a.u. and the classical calculation, −2.8779968 a.u., but the al-
gorithm fails for larger basis sets. I have reason to believe that the disagreement is due
to limitations in the quantum simulator when simulating QPE, since diagonalizing the
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Figure 6.1: Energy of helium atom given by QPE as a function of the number of ancilla
qubits. Calculations done on Kvasi with HF basis set.

Hamiltonian matrix gives eigenvalues which are in good agreement with the exact en-
ergy. The limitations could lie in the fact that the gate count rises quite high when going
to larger bases, making it hard to simulate classically.

7 Discussion

I have explored progress in the field of electronic structure calculations in the age of
quantum computing, discussing the important algorithms QPE and VQE and their mod-
ifications. I have computed the electronic structure of the He atom on classical quantum
computer simulators. These simulators are an important tool in the age of noisy quantum
computers. The computations are in good agreement for minimal basis sets, but as the
dimensions of the Hamiltonian matrix grows, the algorithm fails. I have used numerical
orbitals, which converge faster to the CBS limit than analytical basis sets, due to their abil-
ity to represent exact orbitals. This in turn could result in fewer qubits, especially when
using VQE. Thus, one might in the future try to implement these numerical calculations
to VQE and see if they have an impact.

There of course remain many great challenges to overcome before quantum computers
can make new contributions to computational chemistry. The biggest challenge remains to
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minimize the impact of noise in quantum computations. There is progress in this area with
many different approaches being taken, e.g. trapped-ion quantum computers [30, 31, 32],
but this remains an engineering problem which is a whole field of its own. Moore’s law,
which is the statement that the number of transistors in computers doubles about every
two years, has held up quite well but stagnated a bit in recent years. Could one perhaps
apply a sort of quantum version of this law, holding for qubits? It might not be at all
impossible with such a broad spectrum of research going on in this field and new progress
being made all the time.
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