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Extraction of Long k-mers Using Spaced Seeds
Miika Leinonen and Leena Salmela

Abstract—The extraction of k-mers from reads is an important task in many bioinformatics applications, such as all DNA sequence

analysis methods based on de Bruijn graphs. These methods tend to be more accurate when the used k-mers are unique in the

analyzed DNA, and thus the use of longer k-mers is preferred. When the read lengths of short read sequencing technologies increase,

the error rate will become the determining factor for the largest possible value of k. Here we propose LOMEX which uses spaced seeds

to extract long k-mers accurately even in the presence of sequencing errors. Our experiments show that LOMEX can extract long k-mers

from current Illumina reads with a similar or higher recall than a standard k-mer counting tool. Furthermore, our experiments on

simulated data show that when the read length further increases enabling even longer k-mers, the performance of standard k-mer

counters declines, whereas LOMEX still extracts long k-mers successfully.

Index Terms—k-mers, k-mer counting, spaced seeds

Ç

1 INTRODUCTION

COUNTING and extracting k-mers from reads is a fre-
quently used technique in bioinformatics applications

and many tools have been developed to solve this task [28].
A k-mer counter needs to enumerate all different subse-
quences of length k that occur in the reads and report the
frequency of each such k-mer.

Counting k-mers has several applications in bioinformat-
ics. In the overlap-layout-consensus approach to genome
assembly, k-mers can be used to identify candidate pairs of
overlapping reads by finding reads that share a substantial
amount of k-mers [2], [32]. These candidate read pairs are
then further verified for actual overlaps by aligning them.
In the de Bruijn graph-based approaches [12], [37], [42],
[46], k-mer counting is the first step as it identifies the dis-
tinct k-mers occurring in the reads that will become the
edges of the de Bruijn graph, whereas the k� 1-mers will
form the nodes.

Correction of sequencing errors in reads is another appli-
cation where k-mer counting plays an important role. The
correction procedure may be entirely based on the k-mer
spectrum of the reads [17], [25], [30] or k-mers can be used to
filter reads for multiple alignments [41]. Other approaches
rely on de Bruijn graphs which are built on k-mer sets [40].
Other applications of k-mer counting include metagenomic
classification [45], repeat classification [6], [21], and SNV call-
ing directly from read data [33], [44].

It is generally beneficial to be able to count long k-mers
because the longer the k-mers are, the more likely they are
unique in the genome. For example, a de Bruijn graph will

be simpler with fewer branches when the k-mers are longer.
If the k-mers are short, the de Bruijn graph will be more
complex having multiple branching paths, which makes it
difficult to infer with high confidence which long sequences
are present in the genome. However, if k is too big, the
unique k-mer abundance starts to drop and the graph
becomes too fragmented. The optimal choice of k has been
studied [8], but it is a difficult task to estimate the best
choice of k. Nevertheless, the usage of long k-mers can be
helpful in many bioinformatics applications.

The accurate short read sequencing technologies, such as
Illumina, nowadays reach read lengths of 300 bp, which
allow the use of longer k-mers. However, although the error
rate of these technologies is low, the sequencing errors will
become a limiting factor for determining the largest possible
value of k in the standard k-mer counting methods when
the read lengths further increase. The standard methods
involve only counting how many times each k-mer appears
in the data. A common approach is to require a k-mer to
occur at least twice for it to be counted as a real k-mer exist-
ing within the data. With short enough k-mers one expects
to find enough error-free occurrences of the k-mers but the
likelihood of finding at least two error-free occurrences of a
k-mer decreases as k increases. A higher coverage increases
the likelihood of finding at least two error-free occurrences
of a k-mer but producing high coverage data sets is more
costly and might be infeasible if the required coverage is
very high.

Development of k-mer counting methods has largely con-
centrated on time and memory efficiency. Much less atten-
tion has been given to improving the quality, i.e., getting
long and accurate k-mers. Here we propose LOMEX (LOng
k-MEr eXtraction) to extract long k-mers with high precision
and recall. To increase the accuracy of the k-mer extraction
process, we want to diminish the influence of sequencing
errors. To achieve this, LOMEX uses string patterns called
spaced seeds of matching length k. A spaced seed specifies
which characters of a string are relevant. We call the relevant
character positions fixed positions, and the remaining ones are
called gap positions (sometimes known as “don’t care”
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positions).Wewill denote the number of fixed positionswith
q (also known as the weight of the spaced seed), and the
number of gap positions will be k� q. When we are search-
ing for matches between k-mers using a spaced seed, only
the characters in the q fixed positions are required to match.
If two k-mers have the same characters in the fixed positions,
they are treated as the same spaced k-mer. Afterward, the con-
sensus of the k-mers associated with the same spaced k-mer
are used to fill in the gaps, resulting in a consensus k-mer. This
process allows us to ignore incorrect characters in the reads
when they fall in a gap position because they are unlikely to
affect the consensus of multiple k-mers.

We compared LOMEX to DSK [38] which is a standard
k-mer extraction tool. Our results show that on current Illu-
mina data LOMEX typically has similar or higher recall than
DSK with a small drop in precision. Extracting k-mers with
a high recall is valuable for downstream applications. While
a missing k-mer cannot be recovered, it is possible to later
discard erroneous k-mer information, for example by exam-
ining the tip and bubble structures of a de Bruijn graph. Fur-
thermore, our experiments on simulated data show that
when read lengths further increase, the error rate will
become the limiting factor for choosing a large k in standard
k-mer extraction, whereas LOMEX can still extract long
k-mers successfully.

LOMEX is freely available at https://github.com/
Denopia/LoMeX

2 RELATED WORK

2.1 K-mer Counting

Many strategies have been developed to count the k-mers
present in a set of reads. For example KMC3 [18], Turtle [39],
and GenomeTester4 [15] use sorting to count k-mers. In this
approach, all k-mers are extracted from the reads. The
k-mers are then sorted and from the sorted list of k-mers, it
is easy to count how many times each k-mer occurs.

An alternative method is to use a data structure to store
the k-mers and their counts. Jellyfish [29] implements a lock-
free hash table using a compare-and-swap assembly instruc-
tion to store the k-mers as keys and the counts as values. The
lock-free data structure enables fast, parallel k-mer counting.

Other tools have employed approximate membership
query (AMQ) data structures for more efficient k-mer count-
ing. BFCounter [31] uses Bloom filters to filter out singleton
k-mers and stores the non-singleton k-mers and their counts
in a hash table. To account for the false-positives of the
Bloom filter, it reiterates over the reads to correct the wrong
counts in the hash table. Squeakr [35] uses counting quo-
tient filters (CQF) to store the k-mer counts. Squeakr sup-
ports both exact and approximate k-mer counting.

Other data structures used by k-mer counters include
enhanced suffix trees used by Tallymer [20] and burst tries
used by KCMBT [27].

MSPKmerCounter [24], KMC3 [18], and Gerbil [10] use
minimum string partitioning to further reduce memory
usage. They partition the input strings into multiple disjoint
partitions based on minimizers and store several consecu-
tive k-mers sharing a minimizer as a single super k-mer.
The disjoint partitions can then be processed independently
to get the actual k-mer counts.

Many k-mer counters use a disk-based implementation
to save memory costs. For example, DSK [38] first calculates
the number of k-mer partitions it will need. The k-mers are
then distributed to the partitions based on their hash values
and an iteration number. The actual counting happens by
loading one partition to memory at a time and counting the
k-mers assigned to that partition.

Also, GPU computation has been used to speed up k-mer
counting [10]. We refer the reader to [28] for a more detailed
review of the various k-mer counting methods and their
benchmarking.

2.2 Spaced Seeds

Determining if two sequences are similar is a central ques-
tion in biology. Initially, such problems were solved by pair-
wise alignment of the two sequences but the quadratic
dynamic programming algorithms for pairwise alignment
soon became too costly when the number of sequences
increased as the number of pairwise comparisons also grows
quadratically. The introduction of seeds presented a solution
to this problem. Themain idea is that similar sequences share
identical regions and thus identical seeds can be found in
these areas.

First programs for homology search, such as BLAST [1],
used matches of k-mers as seeds and then extended the
seed matches to longer alignments. Spaced seeds [5], [9],
[13], [16], [26] extend this concept by allowing gaps within
the k-mer seeds. PatternHunter [26] proposed to optimize
the predefined positions required to match and obtained a
significantly better sensitivity than BLAST [1]. Furthermore,
Buhler et al. [4], Ma et al. [26] and Brejov�a et al. [3] noticed
that using several spaced seeds further increased the sensi-
tivity. In practice, spaced seeds have been shown to have
high sensitivity and specificity for homology search even
when the spaced seeds are not optimized [23], [26]. More
recently, Leimeister et al. [22] have shown that spurious
matches can be further reduced by filtering matches based
on characters in the gap positions.

Spaced seeds are effective in finding similar sequences
when the sequences mainly differ by mismatches. However,
as the frequency of insertions and deletions increases, the
length and the number of common spaced seeds found in
similar sequences decreases. Thus, the spaced seeds are no
longer effective for identifying similar sequences which has
been seen for example in long read alignment [7].

3 DEFINITIONS

We start with a formal definition of the k-mer extraction
problem. Then we extend it to spaced k-mer extraction and
finally to consensus k-mer extraction. Consensus k-mers are
the long and accurate k-mers LOMEX produces as its output.

A k-mer is a sequence of k characters. A canonical k-mer is
a k-mer that is lexicographically smaller than its reverse
complement. Canonical k-mers are used in k-mer counting
because the reads can originate from either strand of the
DNA molecule and we only want to count a k-mer once
regardless of its orientation. Suppose we have an 11-mer m
= ACTCATAATCA. Its reverse complement is m0=TGAT-
TATGAGT, which is lexicographically bigger than m. Thus
m is the canonical k-mer of these two.
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Problem 1 (k-mer Extraction). Given a set of reads R and a
threshold S, find all canonical k-mers that occur at least S
times in the reads and their reverse complements.

Now we can extend the notion of k-mers to spaced
k-mers with the help of spaced seeds. A spaced seed is a pat-
tern of zeros and ones where ones correspond to fixed char-
acters, and zeros correspond to gap characters. The number
of fixed positions is q, and the number of gap positions is
k� q. For example, spaced seed p ¼ 10010101001 (q ¼ 5,
k� q ¼ 6) could be used to identify spaced 11-mers. With
this, we are ready to define spaced k-mers.

Definition 2 (Spaced k-mer). A spaced k-mer g adhering to a
spaced seed p is a string of characters from {A,C,G,T,*} such
that if p½i� ¼ 0 then g½i� ¼ �, and if p½i� ¼ 1, then g½i� 2
fA;C;G; Tg.
Because spaced seeds can be very long, it will sometimes

save space to alternatively represent them as a sequence of
integers, where the integers at odd positions indicate the
number of consecutive fixed positions, and the integers at
even positions indicate the number of consecutive gap posi-
tions. Thus the spaced seed p ¼ 10010101001 could be repre-
sented as p ¼1-2-1-1-1-1-1-2-1.

As an example of spaced k-mers, suppose we have a
spaced seed p ¼ 10010101001 and an 11-mer m = ACTCA-
TAATCA. Using spaced seed p on this 11-mer m yields
spaced k-mer g ¼ A**C*T*A**A. Since the spaced seed is
known, we can remove the gap characters without losing
information, and represent the spaced k-mer compactly as
g ¼ACTAA.

When the spaced seed is palindromic, we can define a
canonical spaced k-mer similar to canonical k-mers. A
spaced k-mer is canonical if it is lexicographically smaller
than its reverse complement. The spaced seed is required to
be palindromic so that the spaced k-mers from both strands
have the same fixed and gap positions. With this definition
of canonical spaced k-mers, we can now define the spaced
k-mer extraction problem:

Problem 3 (Spaced k-mer extraction). Given a set of reads
R, a threshold S, and a spaced seed p, find all canonical spaced
k-mers that adhere to the spaced seed p and occur at least S
times in the reads and their reverse complements.

Each spaced k-mer reported by the solution to the spaced
k-mer extraction problem has a set of at least S occurrences
(regular k-mers) in the reads. These occurrences are used to
determine which characters are solid at each position of the
spaced k-mer.

Definition 4 (Solid Characters). Let Q be the set of occur-
rences of a spaced k-mer g in a set of reads R and let c be the
threshold for a character to be solid. Character ni 2 fA;C;
G; Tg is a solid character at position i of spaced k-mer g, if ni

appears at least c times at position i in Q.

We classify each position of a spaced k-mer as unambigu-
ous, ambiguous, or undecided. The number of solid charac-
ters determines how a position is classified. A position is
unambiguous if it has only one solid character, and if there
is more than one solid character, the position is classified as
ambiguous. If there are no solid characters, the position is

undecided. We note that all fixed positions of a spaced
k-mer are unambiguous, whereas gap positions can be in
any of the three categories.

Definition 5 (Undecided, Unambiguous, and Ambigu-
ous Positions). Position i in spaced k-mer g is undecided if it
has no solid characters. The position is unambiguous if it has
exactly one solid character. If there is more than one solid char-
acter, the position is ambiguous.

With the help of undecided, unambiguous, and ambigu-
ous positions, we can define consensus k-mers.

Definition 6 (Consensus k-mer). Consensus k-mer d is a
k-mer which corresponds to a spaced k-mer g such that d½i� is a
solid character of g at position i. Additionally, for all ambigu-
ous positions j in the spaced k-mer g, we require g to have at
least two occurrences (regular k-mers) x and y such that
d½j� ¼ x½j� ¼ y½j�.
Because the characters are not independent of each other,

we do not want to take all possible combinations of solid
characters in ambiguous positions. For this reason, we
require that there exist at least two occurrences that have
the specific ambiguous position solid character combination
before it is used to construct a consensus k-mer.

If a spaced k-mer has any undecided positions, it does
not have a consensus k-mer. If all positions are unambigu-
ous, there is only one possible consensus k-mer. If there is at
least one ambiguous position, there can be more than one
consensus k-mer. Fig. 2 shows examples of different consen-
sus k-mer cases, which will be discussed in more detail in
Section 4.1.

Finally, we are ready to define the consensus k-mer
extraction problem:

Problem 7 (Consensus k-mer Extraction). Find all consen-
sus k-mers corresponding to spaced k-mers found in a read setR.

The reliability of k-mers is measured by k-mer counts, i.e.,
the number of occurrences a k-mer has in the read set. Here
we extend the notion of k-mer counts to consensus k-mer
support counts. Each occurrence of spaced k-mer where all
the ambiguous positions match a consensus k-mer exactly
contributes to the support count of that consensus k-mer.
One such occurrence can only support exactly one consen-
sus k-mer. The remaining occurrences of the spaced k-mer
are evenly distributed among all its consensus k-mers.

Definition 8 (Consensus k-mer Support Counts). Let Q
be the set of occurrences of a spaced k-mer g and D the set of
consensus k-mers of g. Given a consensus k-mer d 2 D, we
denote by Qd the set of occurrences where the ambiguous posi-
tions match d. The support count for consensus k-mer d is
jQdj þ jðQnS d02DQd0 Þj=jDj.
We can see from the definition that the sum of the sup-

port counts for consensus k-mers of the same spaced k-mer
is equal to jQj, i.e., the number of its occurrences.

4 METHODS

LOMEX pipeline can be divided into three steps. The first
step solves the spaced k-mer extraction problem, the second
step gathers k-mers corresponding to the extracted spaced
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k-mers, and the third step solves the consensus k-mer
extraction problem for each extracted spaced k-mer.

In the first step, a spaced seed is used to extract spaced
k-mers from the read set. The purpose of this step is to filter
out spaced k-mers that do not have enough occurrences. In
the second step, the reads are scanned once more to find all
occurrences of the spaced k-mers that appear often enough.
The idea of this step is to group k-mers in the reads based
on the chosen spaced seed. In other words, k-mers that yield
the same spaced k-mer belong to the same group. In the
third step, the long consensus k-mers are built with the help
of the grouped k-mers. Specifically, we use the consensus of
the grouped k-mers to fill the gap positions of the spaced
k-mers to produce consensus k-mers, which are then
reported as the output. Fig. 1 depicts all the steps of this pro-
cess, which are explained in more detail in the following
sections.

LOMEX aims to diminish the significance of erroneous
characters i.e., substitution errors. If such an error occurs in
a gap position of a k-mer, it does not affect the grouping of
that k-mer. Furthermore, in the consensus step, one wrong
character is unlikely to affect which characters are solid and
used for filling the gap positions. This method also gets
around unclear bases (such as N characters) if they appear
in a gap position. If such a character appears in a fixed posi-
tion, the k-mer will not be used.

4.1 Spaced K-mer Extraction

In the first step, LOMEX extracts all canonical spaced k-mers
that adhere to a given spaced seed. As noted before, we are
only considering palindromic spaced seeds. Furthermore,
we use an odd number of fixed characters so that the spaced
k-mers have an odd weight. This ensures that a sequence
and its reverse complement cannot be the same, so only one
of them can be the canonical spaced k-mer.

To find all occurrences of the spaced k-mers in the input
reads, we use a modified version of an existing k-mer count-
ing system called Squeakr [35]. Given a set of reads, thresh-
old S, and length k, Squeakr solves the k-mer extraction
problem and outputs all the k-mers that appear in the reads
at least S times. A k-mer is required to appear more than
once to get rid of some of the spurious k-mers that arise due
to the sequencing errors in the reads. By default, Squeakr
reports k-mers that appear at least S ¼ 2 times.

We modified Squeakr so that instead of basing the search
on k-mer length, it is based on a spaced seed. Squeakr uses

the spaced seed to report the corresponding spaced k-mers
that appear at least S times. Only characters in the fixed
positions are reported, and Squeakr’s exact k-mer counting
implementation supports only k-mers up to length 32.
Because of this and the fact that we want to use odd length
spaced k-mers, we are limited to using at most 31 fixed posi-
tions. There exists other k-mer counting tools that could
work with longer k-mers, but Squeakr was the easiest one
for us to modify for our needs, so we decided to use it over
the other programs.

4.2 ConsensusK-mer Construction

After Squeakr output has been obtained, the reported
spaced k-mers are given to LOMEX which solves the consen-
sus k-mer extraction problem. Before that, for each reported
spaced k-mer, LOMEX must find its occurrences in the input
reads. This is done by looking at all the regular k-mers, and
checking if they match a spaced k-mer reported by Squeakr.
If this is the case, the regular k-mer is stored in memory
associated with the matched spaced k-mer. Essentially, the
k-mers in the read set are split into groups where the k-mers
have the same characters in the fixed positions. If a k-mer
does not match any spaced k-mer, it is not used.

After occurrences of the spaced k-mers have been found,
LOMEX fills the gap positions with solid characters to con-
struct consensus k-mers. For every spaced k-mer position,
the occurrences of the four possible characters (A, C, G, and
T) in the associated k-mers are counted. Then, the counts are
used to determine which characters are considered solid at
each position. A character is solid if it appears at least c times,
where c is the minimum character count threshold. To make
LOMEX work on different sized read sets, we take the num-
ber of regular k-mers into account when deciding a suitable
value for c. LOMEX requires that c is at least ten percent of the
number of all characters at the position, i.e., the character
appears at least in ten percent of the regular k-mers at the
specified position. Additionally, LOMEX has a hard mini-
mum threshold N for the number of required occurrences,
set to two. The minimum character count threshold for
spaced k-mer g is defined in LOMEX as cg ¼ maxðN; r � jQgjÞ,
where N ¼ 2 is the absolute minimum number of required
character occurrences, r ¼ 0:1 is the required proportion
with respect to the number of regular k-mers, and Qg is the
set of regular k-mers corresponding to g. The user can set dif-
ferent values for the parameters N and r. The effect of N on
the accuracy of LOMEX is exploredmore in Section 5.

Fig. 1. Long k-mer extraction steps. First, the spaced k-mers are extracted from the reads according to the chosen spaced seed using a modified ver-
sion of Squeakr k-mer counting program. Next, the reads are scanned once more while the extracted spaced k-mers are kept in memory. For each
spaced k-mer reported by Squeakr, their occurrences (matching regular k-mers) are stored on disk. Finally, the long k-mers are built based on the
consensus of the regular k-mers.
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Only solid characters are used to fill a gap. If there is only
one character that has a high enough count to be solid, the
position is unambiguous, and LOMEX simply uses that char-
acter to fill the position. If there are multiple solid characters
in a single position, it becomes ambiguous, making the whole
consensus k-mer building case ambiguous. If there is a posi-
tion with no solid characters, the consensus k-mer building is
left undecided. Consensus k-mer cases can be divided into
four categories; unambiguous consensus, simple ambiguous
consensus, complex ambiguous consensus, and undecided
consensus. Examples of these cases are illustrated in Fig. 2.

1) Unambiguous consensus. Every position is unambigu-
ous, i.e., there is only one character with a count
greater than the required threshold c. The only solid
characters are used to fill the gap positions, resulting
in a single consensus k-mer.

2) Simple ambiguous consensus. Only one position is
ambiguous, i.e., there are multiple solid characters
for that position. All positions with only one solid
character are filled as in the previous case. The ambig-
uous position is filled with all the solid characters,
leading to multiple (two, three, or four) different con-
sensus k-mers.

3) Complex ambiguous consensus. There are multiple
ambiguous positions. The consensus k-mers are con-
structed by first filling the unambiguous gap posi-
tions. Then LOMEX looks for regular k-mers that have
the same characters at the ambiguous gap positions.
If LOMEX finds at least two k-mers that share the
same characters at the ambiguous positions, those

characters are used to fill the remaining gaps to pro-
duce a consensus k-mer. This case gives us at most
bjQgj

2 c consensus k-mers, whereQg is the set of regular
k-mers associatedwith spaced k-mer g.

4) Undecided consensus. There is at least one position
with no solid characters. This can happen when the
number of regular k-mers corresponding to a spaced
k-mer is very low. This results in zero reported con-
sensus k-mers.

Even though there are three different cases where a con-
sensus k-mer is formed, they all still follow our consensus
k-mer definition in Section 3. The cases are separated
because LOMEX handles them differently in practice based
on the number of ambiguous positions. In the complex
ambiguous consensus case, the regular k-mers must be ana-
lyzed to determine which solid characters can be used. In
the unambiguous consensus and simple ambiguous consen-
sus cases, we can determine how the gaps are filled just
based on the solid characters.

The gaps in the spaced k-mers are filled with solid charac-
ter to produce long consensus k-mers, which LOMEX reports
as its output. Despite the fact that non-canonical spaced
k-mers are discarded, this does not mean that the reported
consensus k-mers are necessarily canonical. However,
LOMEX only reports k-mers which correspond to canonical
spaced k-mers and thus only a k-mer or its reverse comple-
ment is reported but never both. Therefore it is easy to trans-
form the output of LOMEX so that only canonical k-mers are
reported. One simply needs to check if a reported consensus
k-mer is canonical and if it is not, report its reverse comple-
mentary sequence instead.

Fig. 2. Four different gap-filling cases. In this example, we are filling the gaps of the spaced k-mer A**C*T*A**A. Fixed characters are colored black.
Gap characters are blue if only one character appears at least twice in its column. Gap characters are colored purple if there is more than one charac-
ter that appears at least twice in its column. If none of the gap characters appears twice in its column, all the characters are colored red. A gap char-
acter is underlined if it appears more than once in its column. The numbers in brackets next to the consensus k-mers are their support counts.
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As their name implies, k-mer counters produce the
extracted k-mers and how many times they appear in the
input reads. We implemented a similar feature for LOMEX
but instead of exact k-mer counts, LOMEX reports the sup-
port counts of the consensus k-mers as defined in Section 3.
The support counts tell how strongly a produced consensus
k-mer is supported by the spaced k-mer occurrences in the
input data.

Here we define how support counts are calculated for the
four different consensus cases:

1) Unambiguous consensus. Because all spaced k-mer
occurrences support the same consensus k-mer,
the support count is the number of spaced k-mer
occurrences.

2) Simple ambiguous consensus. In this case, the pro-
duced k-mers differ only in a single position. The
base support count becomes the number of spaced
k-mer occurrences that have the matching character
at this position. On top of these occurrences, some
might have a non-solid character at the ambiguous
position. The number of these occurrences is then
divided equally between the produced k-mers and
added to their base support counts.

3) Complex ambiguous consensus. This case is similar to
the previous one. Here the base support count is the
number of spaced k-mer occurrences that have iden-
tical ambiguous position characters as the produced
k-mer. The leftover occurrences are again split
equally between the produced k-mers and added to
their base support counts.

4) Undecided consensus. No consensus k-mer is pro-
duced, so there is no need to calculate support counts.

Fig. 2 shows examples of consensus k-mers and their
support counts. In cases 1 and 3, there is only one built con-
sensus k-mer, so the support count is the number of regular
k-mers corresponding to the spaced k-mer. In case 2, both
consensus k-mers are supported by two regular k-mers, and
the last regular k-mer is split between them, so the support
count for both is 2.5. In case 4, a consensus k-mer could not
be built, so there is no need to calculate the support count.

4.3 Memory-Efficient and Parallel Implementation

For each spaced k-mer, LOMEX needs to find its occurrences
in the reads. Therefore, before constructing the consensus
k-mers, all the reads have to be scanned through. Time-wise,
it is not efficient to read the input reads separately for all the
different spaced k-mers. Instead, LOMEX goes through the
input reads just once, trying to match the k-mers in the reads
one by onewith all spaced k-mers reported by Squeakr. If the
read set is reasonably small, LOMEX could store all the reads
in memory. It would then be easy to just store the regular
k-mers as pointers to specific read positions. The stored
spaced reads and regular k-mer pointers could then be used
to find the solid characters and build the consensus k-mers.
Unfortunately, this would mean that LOMEX worked only
with small genomes and small read sets, limiting its usability.

In order to make LOMEX scale to larger genomes, we can-
not store the reads in memory nor can we keep all the regu-
lar k-mers occurring in the reads in memory. To solve this
problem, LOMEX has a buffer where the regular k-mers

associated with the matching spaced k-mers are stored, and
once the buffer becomes full, the information is stored on
disk in temporary files. Then the buffer is emptied, and the
scanning of reads for regular k-mers continues. The infor-
mation in the buffer is written to the temporary files in lexi-
cographic order by the matching spaced k-mers. In other
words, the regular k-mers for the lexicographically smallest
spaced k-mer come first, and the lexicographically largest
last. The size of the buffer B is the number of regular k-mers
that are kept in the buffer. B is a parameter of LOMEX and
can thus be set appropriately by the user depending on the
available memory.

The regular k-mers are stored temporarily as a binary
file, which makes it easy to use only two bits for every
nucleotide character, instead of eight bits if the file was writ-
ten in a human-readable format. As the usage of two bits
enables us to store only four different characters, we are
unable to mark unclear nucleotide characters such as the N
characters. For this reason, if a gap position in a regular
k-mer has a character other than A, C, G, or T one from these
four is randomly chosen as a replacement. This imitates the
case where the unclear character was just read incorrectly.
A fixed position can never have characters other than A, C,
G, or T, because Squeakr reports spaced k-mers that have
only these characters in the fixed positions.

After all the reads are scanned and the regular k-mer
information has beenwritten to the disk, LOMEX starts build-
ing the consensus k-mers. Because the information is written
to multiple temporary files in lexicographic order, we can
use a technique similar to the multiway merge algorithm.
LOMEX starts to read all the files simultaneously, byte by
byte. The files are read until all the information (regular
k-mers) matching the first spaced k-mers of each file is stored
in memory. Next, LOMEX determines which spaced k-mer
among those is lexicographically smallest, combines the reg-
ular k-mers for that spaced k-mer, and builds the consensus
k-mers. After that, the regular k-mers matching the spaced
k-mer are discarded, and for every file that contained it,
LOMEX continues reading bytes until all the information for
the next lexicographically smallest spaced k-mer in memory.
This process continues until no file has more content to be
read. The produced consensus k-mers are not kept in mem-
ory, as they are immediately written to an output file.

The benefit of this approach is that it is possible to find long
k-mers even if the input data is too large to be kept inmemory.
As a drawback, this requires more disk space and increases
runtime due to the increased disk IO. At some point, the avail-
able disk space may become an issue, which we address by
splitting the search and consensus steps into multiple itera-
tions. The spaced k-mers are partitioned between these itera-
tions so that each iteration only cares about k-mers specific to
it. The temporary files are deleted at the end of the iterations
and thus the space usage is decreased. The number of itera-
tions affects the runtime because the reads must be read in
every iteration to find the iteration-specific k-mers. Therefore,
there is a trade-off between the runtime and available disk
space, which can be optimized by the user with a parameter
that controls the number of iterations.

LOMEX thus executes sequential iterations with two dis-
tinct steps: search step and consensus step. The spaced k-mer
search with Squeakr is not split into multiple iterations. In
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the search step LOMEX goes through the input reads and
finds occurrences of specific spaced k-mers and writes them
to temporary files for the consensus step. We have parallel-
ized the search step so that reading the input and associating
the regular k-mers to spaced k-mers is split into multiple
threads. The input reads are split into equally sized blocks
and each thread is responsible for a single read block.

In the consensus step, LOMEX reads all the temporary
files to access the necessary information for consensus
k-mer building. Our experiments suggested that in this step
the bottleneck is the disk IO instead of the actual consensus
k-mer construction. Because all the temporary files must be
read simultaneously due to the multiway merge -like nature
of the disk storing implementation, this task cannot be effi-
ciently split between threads. For this reason, we did not
utilize parallelism in this step.

4.4 Time and Space Complexity

Here we analyze the time and space complexities of LOMEX.
The whole k-mer extraction process can be divided into
three steps, and some of them are performed multiple times
according to the iteration count. The steps are:

1) Squeakr spaced seed search
2) LOMEX search step
3) LOMEX consensus step
Squeakr Spaced Seed Search. Extracting all spaced k-mers

from a read set with total length L takes OðLqÞ time where q
is the weight of the spaced k-mer i.e., the number of fixed
characters. Inserting a spaced k-mer into the counting quo-
tient filter (CQF) takesOð1Þ time and the contents of the CQF
can be enumerated in linear time [34] so the total complexity
of this step isOðLqÞ. The space complexity of Squeakr spaced
seed search is OðjGjÞ where G is the set of distinct spaced
k-mers.

LOMEX Search Step. First, a hashtable is initialized to sup-
port membership queries to the set of spaced k-mers
returned by Squeakr which takes OðjGjÞ time where G is the
extracted spaced k-mer set. In each iteration of the search
step, LOMEX extracts all the k-mers from the reads in OðLkÞ
time. For each k-mer, we check if it corresponds to a stored
spaced k-mer and if so, it is inserted to the set of k-mers for
that spaced k-mer. This takesOðkÞ time per k-mer. Therefore
the total time complexity of the search step isOðiLkÞwhere i
is the number of iterations. In this step, the memory contains
the hashtable of jGj spaced k-mers and the buffer ofB regular
k-mers. Thus the total space complexity isOðjGj þBÞ.

LOMEX Consensus Step. During the consensus step in total
OðLÞ regular k-mers each of size k are read from disk. Let n
be the maximum number of regular k-mers associated with
a spaced k-mer. The worst case for consensus k-mer

generation occurs when there are multiple ambiguous posi-
tions. In this case, we compare the regular k-mers to each
other, which takes Oðn2kÞ time. There are at most bn=2c con-
sensus k-mers to report and thus the total complexity of this
step is OðLkþ gn2kÞ. The space complexity of this step is
OðnkÞ since at any given time we have the regular k-mers
associated with the currently processed spaced k-mer in
memory.

During an iteration, the temporary files on disk contain
the regular k-mers associated with the iteration-specific
spaced k-mers. Assuming the regular k-mers are evenly dis-
tributed over the spaced k-mers and the spaced k-mers are
evenly distributed over the iterations, the maximum total
number of k-mers stored on disk at any given time isOðL=iÞ.

5 EXPERIMENTS AND RESULTS

We ran experiments on Illumina read set sequenced from an
E. coli genome with 111x coverage, and a smaller sampled
read set with 50x coverage. We also ran experiments on a
larger A. thaliana genome, with two read sets of coverage
130x and 50x, where the smaller set was sampled from the
larger one. The details of the data sets are shown in Table 1.
Additionally, we simulated read sets from an E. coli reference
genome. Reads were simulated with four different read
lengths, 250 bp, 500 bp, 1,000 bp, and 2,000 bp, and four dif-
ferent substitution error rates, 0.0001, 0.005, 0.010, and 0.020.
All combinations of the read lengths and the error rates were
used, totaling 16 different data sets. Only substitution errors
were simulated, in a simple uniformly randommanner.

We compare LOMEX to DSK [38], one of the state-of-the-
art k-mer extraction tools. DSK is a low memory usage pro-
gram, that supports k-mer search for large k-mers. This is the
reason we chose to compare against DSK as it is also able to
extract long k-mers. E. coli experiments were executed on a
machine with 8 cores and 16GB memory, and for the
A. thaliana experiments we used a more powerful machine
with 8 cores and 64 GB memory. LOMEX was run with the
default parameters (Squeakr abundance S ¼ 2, solid charac-
ter minimum countN ¼ 2, solid character minimumpropor-
tion r ¼ 0:10), with the exception of using 8 threads, the
number of iterations being 32, and having buffer size of 1 000
000 for E. coli and 5 000 000 for A. thaliana. For LOMEX we
used the following hand-picked spaced seeds:

� 121-mers: 6-30-6-15-7-15-6-30-6
� 221-mers: 6-55-6-40-7-40-6-55-6
� 321-mers: 6-80-6-65-7-65-6-80-6
� 421-mers: 6-105-6-90-7-90-6-105-6
� 521-mers: 6-130-6-115-7-115-6-130-6
We evaluated the correctness of both programs by com-

paring the sets of k-mers extracted from the reads to the set

TABLE 1
Data Sets Used in the Experiments

Accession number Organism Ref. seq. accession Genome length Coverage Number of reads Avg. read length

ERR654976 E. coli GCA_000005845.2 4,641,652 50 928,274 243
ERR654976 E. coli GCA_000005845.2 4,641,652 111 2,120,290 243
SRR5216995 A. thaliana GCA_000001735.2 119,668,634 50 20,781,062 289
SRR5216995 A. thaliana GCA_000001735.2 119,668,634 130 53,786,130 289
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of k-mers occurring in the reference genome, which we refer
to as the real k-mers. We call the intersection of real k-mers
and k-mers extracted from the read set the extracted real
k-mers. With these sets of k-mers we can compute the preci-
sion and recall for the tools

Precision ¼ jExtracted real k�mersj
jExtracted k�mersj

Recall ¼ jExtracted real k�mersj
jReal k�mersj :

Finally, the F1 score is the harmonic mean of precision
and recall

2 � Precision � Recall
Precisionþ Recall

:

We used LOMEX and DSK to extract 221-mers from the
simulated data sets to evaluate how well they fared with
varying read lengths and error rates. The results of these
experiments can be seen in Fig. 3.

Simulated data sets were also used to evaluate how the
value of k affects the performance of these programs. For
this experiment, we used the four simulated read sets with

2,000 bp read length and varying error rates. All hand-
picked spaced seeds were used to extract different length
k-mers, which were compared against DSK extracted
k-mers. The results of these experiments are found in
Fig. 4.

LOMEX was also compared to DSK with real read sets.
For these experiments, we used two larger read sets of
E. coli and A. thaliana, and two smaller read sets sampled
from the larger ones. In these experiments, only 221-mers
were extracted. The results can be seen in Table 2, and the
runtimes and memory usages in Table 3.

We also experimented with how the chosen spaced seed
affects the k-mer extraction. We chose four random spaced
seeds of length 221 and compared them to the handpicked
221 length spaced seed. The random spaced seeds are the
following:

� Random I: 1-11-1-2-1-27-1-6-2-3-2-6-1-20-2-6-1-1-1-9-
1-4-3-4-1-9-1-1-1-6-2-20-1-6-2-3-2-6-1-27-1-2-1-11-1

� Random II: 2-9-1-4-1-8-2-1-1-20-2-1-1-6-1-5-1-23-1-7-1-
3-1-8-1-8-1-3-1-7-1-23-1-5-1-6-1-1-2-20-1-1-2-8-1-4-1-
9-2

� Random III: 1-1-1-6-2-32-1-15-1-6-1-5-1-1-1-2-2-7-1-2-
1-10-1-6-1-2-1-2-1-6-1-10-1-2-1-7-2-2-1-1-1-5-1-6-1-15-
1-32-2-6-1-1-1

Fig. 3. Effect of different error rates and read lengths on LoMeX and DSK 221-mer extraction. This experiment was performed with simulated E. coli
reads.
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� Random IV: 1-10-1-11-1-1-1-2-1-2-1-5-1-9-1-2-1-6-1-7-
1-4-1-4-1-19-1-8-1-5-1-5-1-8-1-19-1-4-1-4-1-7-1-6-1-2-
1-9-1-5-1-2-1-2-1-1-1-11-1-10-1

The results of these experiments are shown in Table 4.
The differences in runtime and memory usage between the
spaced seeds were negligible.

LOMEX has parameters that can be tuned to optimize the
results of the k-mer extraction. Demanding a greater num-
ber of occurrences in Squeakr spaced k-mer search and a
higher base count for solid characters will give us fewer
reported k-mers. This can discard mostly false k-mers from

the results, leading to higher precision. On the other hand,
some weakly supported correct k-mers can end up being
discarded lowering the recall rate. We experimented with a
few different thresholds. In Table 5 we report the results on
how these parameters affect the extracted k-mers. Here
parameter S is the minimum number of spaced k-mer
occurrences required by the modified Squeakr. Parameter
N is the absolute minimum base count for a base to be con-
sidered solid. Again, the differences in runtime and mem-
ory usage with the different parameters were negligible so
they are not shown.

Fig. 4. Effect of different error rates and values of k on LoMeX and DSK k-mer extraction. This experiment was performed with 2,000 bp long
simulated E. coli reads.

TABLE 2
LOMEX and DSK 221-mer Extraction Results With Different Data Sets

Program Data set Coverage k Real k-mers Extracted k-mers Extracted real k-mers Precision Recall F1 score

LOMEX E. coli 50 221 4,589,073 4,073,788 3,971,588 0.974913 0.865445 0.916923
DSK E. coli 50 221 4,589,073 3,948,038 3,911,563 0.990761 0.852365 0.916367

LOMEX E. coli 111 221 4,589,073 4,798,705 4,486,627 0.934966 0.977676 0.955844
DSK E. coli 111 221 4,589,073 4,574,246 4,466,413 0.976426 0.973271 0.974846

LOMEX A. thaliana 50 221 117,866,955 127,422,253 109,783,497 0.861572 0.931419 0.895135
DSK A. thaliana 50 221 117,866,955 118,800,490 105,014,811 0.883959 0.890961 0.887446

LOMEX A. thaliana 130 221 117,866,955 163,363,095 115,442,220 0.706660 0.979428 0.820981
DSK A. thaliana 130 221 117,866,955 155,947,309 115,468,749 0.740434 0.979653 0.843409
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6 DISCUSSION

The simulated experiments in Fig. 3 give a good overview of
how the characteristics of the reads affect LOMEX. As the
read length increases, the input data becomes less frag-
mented and the total number of k-mers in the input data
increases, and thus there is more data to construct consen-
sus k-mers. For this reason, the recall of LOMEX increases
(or at least stays the same), when the read length increases.
The same is true for DSK. On the other hand, precision
behaves more interestingly. With short reads, it is the high-
est, but with error rates 0.005 and higher, the precision of
LOMEX first drops and then slightly rises as the read length
increases. When the total number of k-mers in the input
reads increases, it is more likely that the same error occurs
twice in the reads, and thus precision decreases. However,
when the number of k-mers in the input data increases fur-
ther, the minimum character occurrence threshold c in
LOMEX starts to increase because LOMEX also requires that
a base is present in more than 10% of regular k-mers corre-
sponding to a spaced k-mer. DSK precision always declines
as the read length increases.

The most promising results were observed in the simu-
lated read experiments. As seen in Fig. 3, the recall of
LOMEX is always identical or better than that of DSK,

regardless of read length and error rate. On the data sets
with the two lowest error rates, LOMEX also has higher pre-
cision with reads at least 500 bp long. On the data sets with
the higher error rates, LOMEX does not beat DSK in preci-
sion. LOMEX F1 score is also higher or nearly identical com-
pared to DSK with all combinations of read lengths and
error rates.

Fig. 4 shows how well LOMEX and DSK can count k-mers
of different length with varying error rates and a fixed 2,000
bp read length. With the lowest error rate both LOMEX and
DSK have similar recalls, but LOMEX has higher precision
and F1 score. With 0.005 error rate LOMEX has a similar
recall for the shorter k-mers, but with the longer k-mers DSK
recall drops noticeably. DSK starts with low precision but
begins to catch up with LOMEX as the value of k increases.
On data sets with the two highest error rates, DSK has a very
low recall with longer k-mers. On the other hand, LOMEX is
still able to find most of the k-mers. With the higher error
rates LOMEX starts to lose to DSK in precision. DSK could
not find any 521-mers when the error rate was 0.02.

LOMEX performs well with simulated data, but it is also
important to assess the performance with real reads. In
Table 2 we can see 221-mer extraction results of LOMEX and

TABLE 3
Memory Usages and Runtimes of LOMEX and DSK in 221-mer Extraction

Program Data set Coverage k Time usage [hh:mm:ss] Max memory [MB]

LOMEX E. coli 50 221 00:11:13 8,565
DSK E. coli 50 221 00:00:23 817

LOMEX E. coli 111 221 00:20:46 8,847
DSK E. coli 111 221 00:00:30 1,649

LOMEX A. thaliana 50 221 10:35:51 12,583
DSK A. thaliana 50 221 00:28:21 8,067

LOMEX A. thaliana 130 221 26:29:17 12,583
DSK A. thaliana 130 221 00:54:30 7,065

These resource usages are related to the results in Table 2.

TABLE 4
Comparison Between one Hand-Picked Spaced Seed and Four Randomly Chosen Spaced Seeds for 221-mer Search

Program k Real k-mers Extracted k-mers Extracted real k-mers Precision Recall F1 score

Hand-picked 221 4,589,073 4,077,016 3,972,459 0.974355 0.865634 0.916782
Random I 221 4,589,073 4,109,510 3,982,071 0.968989 0.867729 0.915568
Random II 221 4,589,073 4,082,556 3,974,210 0.973461 0.866016 0.916601
Random III 221 4,589,073 4,098,478 3,978,745 0.970786 0.867004 0.915965
Random IV 221 4,589,073 4,094,384 3,977,466 0.971444 0.866725 0.916102

These experiments were done with the 50x coverage E. coli reads.

TABLE 5
Comparison Between LoMeX Runs for 221-mers With Different Minimum Occurrence and Coverage Thresholds

S N k Real k-mers Extracted k-mers Extracted real k-mers Precision Recall F1 score

2 2 221 4,589,073 4,073,790 3,971,590 0.974913 0.865445 0.916923
2 3 221 4,589,073 3,389,853 3,365,283 0.992752 0.733325 0.843543
3 2 221 4,589,073 3,710,129 3,615,914 0.974606 0.787940 0.871388
3 3 221 4,589,073 3,389,853 3,365,283 0.992752 0.733325 0.843543

The experiment was run using the 50x coverage E. coli read set.
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DSKwith four different read sets. Their recalls are very simi-
lar, slightly favoring LOMEX with all sets except the 130x
one. On the other hand, DSK performed noticeably better in
precision in all cases. LOMEX seems to be able to extract some
harder to find k-mers, but as a drawback more false consen-
sus k-mers are also reported. In Table 3we can see the resour-
ces used in these experiments. LOMEX is clearly slower than
DSK since our program does much more than just search for
existing k-mers in the read set. When filtering spaced k-mers
or searching their occurrences, we currently convert each
k-mer to a spaced k-mer separately which takes OðqÞ time
where q is the weight of the spaced seed.We could speed this
up by using the technique of Petrucci et al. [36] which uses
the previous overlapping spaced k-mers to construct the
next spaced k-mer. However, currently the consensus step of
LOMEX is the most time-consuming step so overall this
improvementwould only have aminor effect.

It is possible that some spaced seeds are better than
others for k-mer extraction. We did not try to optimize the
spaced seeds, but we checked how an ”average” spaced
seed would perform by generating random spaced seeds
and then comparing them to our hand-picked one. The
results of this experiment are in Table 4. There is some slight
variation in precision and recall, but none of the seeds is sig-
nificantly better than the others. As future work, it would be
interesting to design optimal spaced seeds for LOMEX.

Designing optimal seeds for similarity search has been
researched extensively, and various methods have been
proposed to solve this problem [11], [14], [19], [43]. How-
ever, these methods are not directly applicable to LOMEX
because the studied seeds are much shorter than the ones
LOMEX requires, and the proportions between fixed and
gap positions is much higher when compared to the spaced
seeds in LOMEX. Using more than 31 fixed characters would
likely have an effect on the extracted k-mers and could also
be explored. Extending Squeakr to allow this would be
another potential objective for future work.

From the experiments, we can see that the precision of
LOMEX is lower than the precision of DSK with real reads.
The precision can be boosted by making the spaced k-mer
occurrence threshold S and consensus base count threshold
N stricter, but this also reduces recall as shown in Table 5.
We believe a high recall is ultimately more important
because k-mers lost by a k-mer counter cannot be recovered,
whereas erroneous k-mers can be detected for example by
examining the tip and bubble structure of a de Bruijn graph
built on the k-mers.

7 CONCLUSION

We have presented LOMEX, a tool for extracting long k-mers
from reads. LOMEX uses spaced seeds to successfully find
long k-mers even in the presence of sequencing errors. Our
experiments show that on current real reads, LOMEX is able
to recover some missing k-mers compared to state-of-the-art
k-mer counter, DSK. At this point the differences in recall
rates are minor, but the method LOMEX utilizes could be a
valid choice in future implementations. Furthermore, our
experiments on simulated data show that the advantage of
LOMEX over DSK increases when the read lengths increase.
We expect that the read length of Illumina data will keep

increasing and thus LOMEX has the potential to become
more practical in the future.

Because of the nature of LOMEX, it is better equipped to
handle substitution errors than insertion or deletion errors.
A substitution error only disrupts the spaced k-mer match-
ing if the substitution happens at a fixed character position.
On the other hand, insertion or deletion will disrupt this
regardless of where it occurs. Thus LOMEX is not yet ready
to process reads from third generation sequencing machines
with high rates of indel errors. Nevertheless, the approach
pioneered here opens up the possibility to extract long accu-
rate k-mers also from these high error rate reads.
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