
Master’s thesis

Master’s Programme in Mathematics and Statistics

A multistate analysis of ulcerative colitis and colorectal cancer

Tomas Tanskanen

December 2022

Supervisors: Janne Pitkäniemi, Sangita Kulathinal

University of Helsinki

Faculty of Science

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki



Faculty of Science Master’s Programme in Mathematics and Statistics

Tomas Tanskanen

A multistate analysis of ulcerative colitis and colorectal cancer

Master’s thesis December 2022 37

ulcerative colitis, colorectal cancer, multistate model, epidemiology

Colorectal cancer (CRC) accounts for one in 10 new cancer cases worldwide. CRC risk is determined
by a complex interplay of constitutional, behavioral, and environmental factors. Patients with ulcerative
colitis (UC) are at increased risk of CRC, but effect estimates are heterogeneous, and many studies are
limited by small numbers of events. Furthermore, it has been challenging to distinguish the effects of age at
UC diagnosis and duration of UC. Multistate models provide a useful statistical framework for analyses of
cancers and premalignant conditions. This thesis has three aims: to review the mathematical and statistical
background of multistate models; to study maximum likelihood estimation in the illness-death model with
piecewise constant hazards; and to apply the illness-death model to UC and CRC in a population-based
cohort study in Finland in 2000–2017, considering UC as a premalignant state that may precede CRC.

A likelihood function is derived for multistate models under noninformative censoring. The multistate
process is considered as a multivariate counting process, and product integration is reviewed. The likelihood
is constructed by partitioning the study time into subintervals and finding the limit as the number of
subintervals tends to infinity. Two special cases of the illness-death model with piecewise constant hazards
are studied: a simple Markov model and a non-Markov model with multiple time scales. In the latter case,
the likelihood is factorized into terms proportional to Poisson likelihoods, which permits estimation with
standard software for generalized linear models.

The illness-death model was applied to study the relationship between UC and CRC in a population-based
sample of 2.5 million individuals in Finland in 2000–2017. Dates of UC and CRC diagnoses were obtained
from the Finnish Care Register for Health Care and the Finnish Cancer Registry, respectively. Individuals
with prevalent CRC were excluded from the study cohort. Individuals in the study cohort were followed
from January 1, 2000, to the date of first CRC diagnosis, death from other cause, emigration, or December
31, 2017, whichever came first. A total of 23,533 incident CRCs were diagnosed during 41 million person-
years of follow-up. In addition to 8,630 patients with prevalent UC, there were 19,435 cases of incident UC.
Of the 23,533 incident CRCs, 298 (1.3%) were diagnosed in patients with pre-existing UC. In the first year
after UC diagnosis, the HR for incident CRC was 4.67 (95% CI: 3.07, 7.09) in females and 7.62 (95% CI:
5.65, 10.3) in males. In patients with UC diagnosed 1–3 or 4–9 years earlier, CRC incidence did not differ
from persons without UC. When 10–19 years had passed from UC diagnosis, the HR for incident CRC was
1.63 (95% CI: 1.19, 2.24) in females and 1.29 (95% CI: 0.96, 1.75) in males, and after 20 years, the HR
was 1.61 (95% CI: 1.13, 2.31) in females and 1.74 (95% CI: 1.31, 2.31) in males. Early-onset UC (age <40
years) was associated with a markedly increased long-term risk of CRC. The HR for CRC in early-onset
UC was 4.13 (95% CI: 2.28, 7.47) between 4–9 years from UC diagnosis, 4.88 (95% CI: 3.46, 6.88) between
10–19 years, and 2.63 (95% CI: 2.01, 3.43) after 20 years.

In this large population-based cohort study, we estimated CRC risk in persons with and without UC in
Finland in 2000–2017, considering both the duration of UC and age at UC diagnosis. Patients with early-
onset UC are at increased risk of CRC, but the risk is likely to depend on disease duration, extent of disease,
attained age, and other risk factors. Increased CRC risk in the first year after UC diagnosis may be in
part due to detection bias, whereas chronic inflammation may underlie the long-term excess risk of CRC in
patients with UC.
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Abbreviations

CI Confidence interval

CRC Colorectal cancer

HR Hazard ratio

IBD Inflammatory bowel disease

MLE Maximum likelihood estimate

SIR Standardized incidence ratio

UC Ulcerative colitis
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1. Introduction

1.1 Epidemiological research

Epidemiology has been defined as “the study of the occurrence and distribution of health-
related events, states, and processes in specified populations, including the study of the
determinants influencing such processes, and the application of this knowledge to control
relevant health problems” (Porta et al., 2014).

Time-to-event analysis is widely used in epidemiological research. For example, the inter-
est may be in estimating the distribution of time from birth to diagnosis, or from diagnosis
to death. However, the study period may end before all patients have experienced the
event of interest, and some patients may be lost to follow-up, leading to right-censored
data. A common measure of disease occurrence is the incidence rate, which is defined as
the number of new cases divided by the person-years of follow-up (Rothman et al., 2021).
If the underlying hazard of event occurrence is constant over time, the incidence rate
provides an estimate of the hazard rate. Hazard ratios (HRs) are often used to compare
rates of occurrence between groups or degrees of exposure.

A cohort is a group of individuals who share a common characteristic such as the same
year of birth, lifestyle habit, or disease. In cohort studies, a cohort is followed over time,
and one or more event types are observed. The study objective may be to estimate rates
of health-related events, or to relate risk factors to the event rates. The design of a cohort
study allows the investigator to determine the timing and temporal order of exposure and
outcome, which are important criteria for a possible causal relationship.

1.2 Colorectal cancer and ulcerative colitis

Colorectal cancer (CRC) accounts for one in 10 new cancer cases worldwide (Sung et al.,
2021). The risk of developing CRC is determined by a complex interplay of constitutional,
behavioral, and environmental factors. The incidence of CRC is higher in older people.
In the Nordic countries, the age-standardized incidence is higher in men than in women
(Engholm et al., 2010; Larønningen et al., 2022). Modifiable risk factors for CRC include
obesity, physical inactivity, dietary factors, alcohol consumption, and smoking (Dekker
et al., 2019). Hereditary risk factors for CRC include Lynch syndrome, polyposis syn-
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4 Chapter 1. Introduction

dromes, and low-penetrance alleles (Peters et al., 2015). Medical risk factors for CRC
include ulcerative colitis (UC), Crohn’s disease, and type 2 diabetes mellitus (Dekker
et al., 2019).

UC is an inflammatory bowel disease (IBD) that primarily affects the rectum and colon.
Patients with UC are at increased risk of CRC, but effect estimates are heterogeneous,
and many studies are limited by small numbers of events (Jess et al., 2012; Lutgens et al.,
2013). Recently, a large population-based cohort study in Denmark and Sweden confirmed
UC as a risk factor for CRC, although the excess risk decreased over time (Olén et al.,
2020). Risk factors for CRC in patients with UC include early age at diagnosis, longer
disease duration, extensive colitis, coexisting primary sclerosing cholangitis, and a family
history of CRC (Annese et al., 2013). Based on the available data, it is challenging to
distinguish the effects of age at UC diagnosis and duration of UC (Lutgens et al., 2013;
Annese et al., 2013). Reliable estimates of CRC risk in UC are important for designing
preventive measures such as endoscopic screening and surveillance protocols.

1.3 Multistate models

Multistate models (see, e.g., Andersen and Keiding (2002)) provide a useful statistical
framework for analyses of cancers and premalignant conditions. The illness-death model is
a simple yet flexible multistate model with one initial state (“Healthy”), one intermediate
state (“Ill”), and one final state (“Dead”). It is applicable to semicompeting risks data
involving a terminal and a nonterminal event (Rothman et al., 2021). Other examples of
multistate models include models for competing risks and recurrent events.

1.4 Organization of the thesis

In this population-based cohort study, we use the illness-death model to study the re-
lationship between UC and CRC in Finland in 2000–2017. Chapter 1 provides a brief
introduction to epidemiological research, CRC, UC, and multistate models. Chapter 2
defines the aims of the study. In Chapter 3, we construct a likelihood function for multi-
state models. In Chapter 4, we study maximum likelihood estimation in the illness-death
model with piecewise constant hazards. In Chapter 5, we apply the illness-death model
to data on UC and CRC. In Chapter 6, the results are discussed and interpreted in the
context of earlier research.



2. Aims of the study

I. To review the mathematical and statistical background of multistate models. A
likelihood function is derived for multistate models under noninformative censoring.

II. To study maximum likelihood estimation in the illness-death model with piecewise
constant hazards. Two models are considered: a simple Markov model and a non-
Markov model with multiple time scales.

III. To apply the illness-death model to UC and CRC in a population-based cohort in
Finland in 2000–2017, regarding UC as a premalignant state that may precede CRC.
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3. Multistate models

Section 3.1 introduces stochastic processes, right-censoring, and left-truncation. In Sec-
tions 3.2, 3.3, and 3.4, we derive a likelihood function for multistate models following
Cook and Lawless (2007, 2018) and Aalen et al. (2008).

3.1 Basic concepts

3.1.1 Stochastic processes

Consider a probability space (Ω, F ,P), where Ω is a sample space, F is a σ-algebra, and
P is a probability measure. A random variable is a measurable function from a probability
space to a measurable space, such as the real line (−∞, ∞) equipped with the Borel σ-
algebra (R, B). A filtration {Ft : t ≥ 0}, also called a history, is an increasing set of
sub-σ-algebras (Ft ⊂ F ), meaning that if s < t, then Fs ⊂ Ft. The limit Ft− is the
smallest σ-algebra containing all the sets in ⋃h>0 Ft−h (Fleming and Harrington, 1991).

A stochastic process is an ordered set of random variables defined in the same probability
space. If ω is an outcome in the probability space Ω, a continuous-time stochastic process
can be written as {Xt(ω) : t ≥ 0}, where t has a continuous set of values. A continuous-
time stochastic process may or may not have continuous sample paths. The process
{Xt(ω) : t ≥ 0} has continuous sample paths if Xt(ω) is a continuous function of t for
almost all ω ∈ Ω. Left-continuous and right-continuous stochastic processes are defined
similarly. We will use the notation {X(t) : t ≥ 0} for stochastic processes.

A multistate process is a right-continuous stochastic process {Z(t) : t ≥ 0} that takes
values in a finite state space S = {1, 2, ..., K}. The state space consists of transient
and absorbing states. Transient states are those from which exit is possible, whereas
absorbing states cannot be left once entered. A multistate process is a Markov process if
its transition hazards depend on the process history only through the current state. In a
semi-Markov process, the transition hazards depend on the process history only through
time from entry to the current state (Andersen, 1993).

6



7 Chapter 3. Multistate models

3.1.2 Right-censoring and left-truncation

Right-censoring and left-truncation are common types of incomplete observation in time-
to-event studies. In the context of multistate models, right-censoring means that observa-
tion ends before the multistate process has reached an absorbing state. Left-truncation,
also called late entry, occurs when observation begins after the start of the multistate
process. For example, if the multistate process starts at birth, late entry occurs when an
individual enters the study some time after birth.

3.2 Transition hazard functions

Let {Zc(t) : t ≥ 0} denote an uncensored (complete) right-continuous multistate process
with state space S = {1, 2, ..., K}, and let {Xc(t) : t ≥ 0} denote an uncensored left-
continuous covariate process. The hazard function for the transition k → l (k, l ∈ S,
k ̸= l) is defined as

αkl(t|F c
t−) = lim

∆t→0+

P(Zc(t + ∆t−) = l|Zc(t−) = k, F c
t−)

∆t
, (3.2.1)

where F c
t = σ{Zc(s), Xc(s) : 0 ≤ s ≤ t}, and F c

t− is the history up to but not including
time t. The numerator is the conditional probability that a k → l transition occurs over
the interval [t, t + ∆t) given the history F c

t− and given that the multistate process is in
state k just before time t. From definition (3.2.1), it follows that

P(Zc(t + ∆t−) = l|Zc(t−) = k, F c
t−) = αkl(t|F c

t−)∆t + o(∆t), (3.2.2)

where o(·) is a function such that o(x)
x

→ 0 as x → 0.

3.2.1 Uncensored counting process

A multistate process can be conveniently expressed as a multivariate counting process. Let
{N c

kl(t) : t ≥ 0} denote an uncensored right-continuous counting process that records the
number of k → l transitions over time, and let ∆N c

kl(t) = N c
kl(t + ∆t−) − N c

kl(t−) denote
the number of k → l transitions over the interval [t, t+∆t). Also, let Yk(t) = I(Zc(t) = k)
indicate whether the multistate process is in state k at time t.
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The intensity function of the uncensored counting process N c
kl is defined as

λc
kl(t|F c

t−) = lim
∆t→0+

P(∆N c
kl(t) = 1|F c

t−)
∆t

, (3.2.3)

and the intensity and hazard functions are related by λc
kl(t|F c

t−) = Yk(t−)αkl(t|F c
t−)

(Aalen et al., 2008, Section 1.4).

3.2.2 Observed counting process

Consider an individual who is observed over the period [E, C], where E ≥ 0 is an entry
time and C is a censoring time. C is defined as min{CR, CA}, where CR is a random
censoring time and CA is a fixed administrative censoring time. In case of late entry,
E > 0. Then Y (t) = I(E < t ≤ C) is an indicator of whether the individual is under
observation at time t, and {Y (t) : t ≥ 0} is a left-continuous observation (“at risk”)
process. The observed number of k → l transitions over [0, t] is given by the observed
counting process

Nkl(t) =
∫ t

0
Y (s)dN c

kl(s) =
∑

tj∈Dc
kl

I(tj ≤ t)Y (tj)(N c
kl(tj) − N c

kl(t−
j )), (3.2.4)

where D c
kl is the set of k → l transition times over [0, CA]. The increment of the observed

counting process over the interval [t, t + ∆t) is denoted by ∆Nkl(t) = Nkl(t + ∆t−) −
Nkl(t−). The observed multivariate counting process can be written shortly as N(t) =
(N1(t)T , ..., NK(t)T )T , where Nk(t) = (Nkl(t), l ̸= k, l = 1, ..., K)T . The observed counting
process Nkl has the intensity function

λkl(t|Ft−) = lim
∆t→0+

P(∆Nkl(t) = 1|Ft−)
∆t

, (3.2.5)

where Ft− is the history of the observed processes.
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3.3 A product integral

This section defines a product integral (Cook and Lawless, 2007, p. 28) that will be used
to construct a likelihood function for multistate analysis in Section 3.4.2. Let a = u0 <

u1 < · · · < uR = b define a partition of the interval [a, b] into R subintervals of length
∆ur = ur+1 − ur. If g is a continuous function over the interval [a, b], its product integral
over [a, b] is defined as

R
[a,b]

{1 + g(u)du} = lim
R→∞

R∏
r=0

{1 + g(ur)∆ur} , (3.3.1)

where uR+1 = u+
R. For small ∆ur, the sum 1 + g(ur)∆ur is positive, and we can write

R
[a,b]

{1 + g(u)du} = lim
R→∞

R∏
r=0

exp {log(1 + g(ur)∆ur)}

= lim
R→∞

exp
{

R∑
r=0

log(1 + g(ur)∆ur)
}

= exp
{

lim
R→∞

R∑
r=0

log(1 + g(ur)∆ur)
}

,

(3.3.2)

where the last equality follows from the continuity of the exponential function. When
|x| < 1, the function log(1+x) has the Maclaurin expansion log(1+x) = x+xϵ(x), where
ϵ is a function such that ϵ(x) → 0 as x → 0. By substituting x = g(ur)∆ur into log(1+x)
and using the fact that g is continuous and therefore bounded over [a, b], we get

log(1 + g(ur)∆ur) = g(ur)∆ur + g(ur)∆urϵ(g(ur)∆ur)

= g(ur)∆ur + o(∆ur).
(3.3.3)

Assuming that maxr ∆ur → 0 as R → ∞, the product integral of g over [a, b] is

R
[a,b]

{1 + g(u)du} = exp
{

lim
R→∞

R∑
r=0

(
g(ur)∆ur + o(∆ur)

)}

= exp
{

lim
R→∞

R∑
r=0

(
g(ur) + o(∆ur)

∆ur

)
∆ur

}

= exp
{∫ b

a
g(u)du

}
,

(3.3.4)

where
∫ b

a g(u)du is a Riemann integral.
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3.4 Likelihood function

3.4.1 Model assumptions

The likelihood construction is based on the following assumptions.

1. The observation and covariate processes are noninformative (Cook and Lawless,
2018, p. 33).

2. The probability of two or more transitions over [t, t + ∆t) is of the order o(∆t),
which means that two or more transitions do not occur simultaneously.

3. The hazard functions are continuous.

By the first assumption, modeling the observation and covariate processes does not provide
information on the parameters of the multistate process, and we can restrict attention to
the conditional likelihood of the multistate process given the observed late entry times,
censoring times, and covariate paths. The probability of a k → l transition over [t, t+∆t)
for an individual followed over [t, t + ∆t) is

P(∆Nkl(t) = 1|E ≤ t < t + ∆t ≤ C, Ft−) = P(∆N c
kl(t) = 1|F c

t−)

= λc
kl(t|F c

t−) + o(∆t)

= Yk(t−)αkl(t|F c
t−) + o(∆t).

(3.4.1)

The probability of not observing any transition out of state k for an individual followed
over [t, t+∆t) can be derived similarly. Let ∆Nk·(t) = ∑K

l ̸=k=1 ∆Nkl(t) denote the observed
number of transitions out of state k over [t, t+∆t). By the second assumption and equation
(3.4.1),

P(∆Nk·(t) = 0|E ≤ t < t + ∆t ≤ C, Ft−)

= 1 − P(∆Nk·(t) ≥ 1|E ≤ t < t + ∆t ≤ C, Ft−)

= 1 −
K∑

l ̸=k=1
P(∆Nkl(t) ≥ 1|E ≤ t < t + ∆t ≤ C, Ft−)

= 1 −
K∑

l ̸=k=1
(P(∆Nkl(t) = 1|E ≤ t < t + ∆t ≤ C, Ft−) + o(∆t))

= 1 −
K∑

l ̸=k=1

(
Yk(t−)αkl(t|F c

t−)∆t + o(∆t) + o(∆t)
)

= 1 − Yk(t−)αk·(t|F c
t−)∆t + o(∆t),

(3.4.2)

where αk·(t|F c
t−) = ∑K

l ̸=k=1 αkl(t|F c
t−).
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3.4.2 Likelihood construction

Here we construct a likelihood function for multistate models allowing late entry and
right-censoring (Cook and Lawless, 2018, Section 2.2). Let 0 = u0 < u1 < ... < uR = CA

denote a partition of the study time [0, CA] into R subintervals. In cases of late entry
and random censoring, let um = E and un = CR for some 0 < m < n < R. Let
∆Nkl(ur) = Nkl(ur+1−)−Nkl(ur−) denote the observed number of k → l transitions over
the interval [ur, ur+1). When the partition is sufficiently dense, there will be at most one
transition per subinterval, and the likelihood contribution of an individual can be written
as

R∏
r=0

K∏
k=1

K∏
l ̸=k=1

[
P (∆Nkl(ur) = 1|E ≤ ur < ur+1 ≤ C, Fur−)∆Nkl(ur)

×P (∆Nk·(ur) = 0|E ≤ ur < ur+1 ≤ C, Fur−)1−∆Nk·(ur)
]Y (ur+1)

,

(3.4.3)

where 00 is defined as 1. Using equations (3.4.1) and (3.4.2), the likelihood can be written
in terms of the hazard functions as

R∏
r=0

K∏
k=1

K∏
l ̸=k=1

[ (
Yk(ur−)αkl(ur|F c

ur−)∆ur + o(∆ur)
)∆Nkl(ur)

×
(
1 − Yk(ur−)αk·(ur|F c

ur−)∆ur + o(∆ur)
)1−∆Nk·(ur)

]Y (ur+1)
,

(3.4.4)

By dividing the likelihood by ∏R
r=0

∏K
k=1

∏K
l ̸=k=1(∆ur)∆Nkl(ur), which only depends on the

observed data and the partition points, we get

R∏
r=0

K∏
k=1

K∏
l ̸=k=1

(Yk(ur−)αkl(ur|F c
ur−) + o(∆ur)

∆ur

)∆Nkl(ur)

×
(
1 − Yk(ur−)αk·(ur|F c

ur−)∆ur + o(∆ur)
)1−∆Nk·(ur)

Y (ur+1)

,

(3.4.5)

and by changing the order of multiplication, the likelihood becomes

K∏
k=1

K∏
l ̸=k=1

[
R∏

r=0

(
Yk(ur−)αkl(ur|F c

ur−) + o(∆ur)
∆ur

)∆Nkl(ur)Y (ur+1)

×
R∏

r=0

(
1 − Yk(ur−)αk·(ur|F c

ur−)∆ur + o(∆ur)
)(1−∆Nk·(ur))Y (ur+1)

]
.

(3.4.6)
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To find the limit of (3.4.6) as R → ∞, assume that maxr ∆ur → 0 as R → ∞. Then

lim
R→∞

R∏
r=0

(
Yk(ur−)αkl(ur|F c

ur−) + o(∆ur)
∆ur

)∆Nkl(ur)Y (ur+1)

=
∏

tj∈Dkl

αkl(tj|F c
tj−),

(3.4.7)

where Dkl is the set of observed k → l transition times over [0, CA]. Note that we only
had to consider intervals that contain a transition time. On the other hand, from the
relation between the product integral and the Riemann integral (Section 3.3), it follows
that

lim
R→∞

R∏
r=0

(
1 − Yk(ur−)αk·(ur|F c

ur−)∆ur + o(∆ur)
)(1−∆Nk·(ur))Y (ur+1)

= exp
{

−
∫ ∞

0
Y (u)Yk(u−)αk·(u|F c

u−)du
} (3.4.8)

because ∆Nk·(ur) = 0 for all but a finite number of subintervals. Using the results (3.4.7)
and (3.4.8), we find that the likelihood contribution is

K∏
k=1

K∏
l ̸=k=1

∏
tj∈Dkl

αkl(tj|F c
tj−) exp

{
−
∫ ∞

0
Y (u)Yk(u−)αkl(u|F c

u−)du
}

. (3.4.9)

To extend the model to n independent individuals i ∈ {1, ..., n} and parametric hazard
functions, we can write the likelihood function L as

L(θ) =
n∏

i=1

K∏
k=1

K∏
l ̸=k=1

∏
tij∈Dikl

αikl(tij|θ, F c
i,tij−) exp

{
−
∫ ∞

0
Yi(u)Yik(u−)αikl(u|θ, F c

i,u−)du
}

,

(3.4.10)

where θ is a parameter vector.



4. The illness-death model

4.1 Model definition

In this section, we consider the unidirectional illness-death model. The state space is
S = {1, 2, 3}, and the possible transitions are 1 → 2, 1 → 3, and 2 → 3. The states 1, 2,
and 3 are often labeled as “Healthy”, “Ill”, and “Dead”, respectively. States 1 and 2 are
transient, whereas state 3 is absorbing. A state diagram is shown in Figure 1.

Figure 1: The unidirectional illness-death model.

Using the likelihood expression (3.4.10) from the previous chapter, the likelihood for n

independent individuals is L(θ) = L12(θ)L13(θ)L23(θ), where

L12(θ) =
n∏

i=1

∏
tij∈Di12

αi12(tij|θ, F c
i,tij−) exp

{
−
∫ ∞

0
Yi(u)Yi1(u−)αi12(u|θ, F c

i,u−)du
}

,

L13(θ) =
n∏

i=1

∏
tij∈Di13

αi13(tij|θ, F c
i,tij−) exp

{
−
∫ ∞

0
Yi(u)Yi1(u−)αi13(u|θ, F c

i,u−)du
}

, and

L23(θ) =
n∏

i=1

∏
tij∈Di23

αi23(tij|θ, F c
i,tij−) exp

{
−
∫ ∞

0
Yi(u)Yi2(u−)αi23(u|θ, F c

i,u−)du
}

.

(4.1.1)

13
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There are five types of likelihood contributions. Consider individual i with the entry time
Ei and a possible censoring time Ci. The occurrence times of the transitions 1 → 2,
1 → 3, and 2 → 3 are denoted by ti12, ti13, and ti23, respectively.

(i) If the individual enters the study in state 1 and stays in state 1 until censoring, the
likelihood contribution is

Li(θ) = exp
{

−
∫ Ci

Ei

(αi12(u|θ, F c
i,u−) + αi13(u|θ, F c

i,u−))du

}
. (4.1.2)

(ii) If the individual enters the study in state 2 and stays in state 2 until censoring, the
likelihood contribution is

Li(θ) = exp
{

−
∫ Ci

Ei

αi23(u|θ, F c
i,u−)du

}
. (4.1.3)

(iii) If the individual enters the study in state 1 and makes a 1 → 3 transition, the
likelihood contribution is

Li(θ) = exp
{

−
∫ ti13

Ei

(αi12(u|θ, F c
i,u−) + αi13(u|θ, F c

i,u−))du
}

× αi13(ti13|θ, F c
i,ti13−).

(4.1.4)

(iv) If the individual enters the study in state 1, makes a 1 → 2 transition and stays in
state 2 until censoring, the likelihood contribution is

Li(θ) = exp
{

−
∫ ti12

Ei

(αi12(u|θ, F c
i,u−) + αi13(u|θ, F c

i,u−))du
}

× αi12(ti12|θ, F c
i,ti12−)

× exp
{

−
∫ Ci

ti12
αi23(u|θ, F c

i,u−))du

}
.

(4.1.5)

(v) If the individual enters the study in state 1 and makes the transitions 1 → 2 and
2 → 3, the likelihood contribution is

Li(θ) = exp
{

−
∫ ti12

Ei

(αi12(u|θ, F c
i,u−) + αi13(u|θ, F c

i,u−))du
}

× αi12(ti12|θ, F c
i,ti12−)

× exp
{

−
∫ ti23

ti12
αi23(u|θ, F c

i,u−))du
}

× αi23(ti23|θ, F c
i,ti23−).

(4.1.6)
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4.2 Piecewise constant hazards

4.2.1 A Markov model

Suppose that t represents the attained age of the individual, and that the interest is in
comparing mortality rates between healthy and ill individuals. Let θ = (θ12, θ13, λ) ∈ R3

denote a parameter vector, and for all i ∈ {1, ..., n}, define the constant hazard functions
αi12(t|θ, F c

i,t−) = θ12, αi13(t|θ, F c
i,t−) = θ13, and αi23(t|θ, F c

i,t−) = λθ13, where λ is the
HR for death. Since the transition hazards do not depend on the history of the process,
the model satisfies the Markov property. The likelihood for n independent individuals is
L(θ) = L12(θ)L13(θ)L23(θ), where

L12(θ) =
n∏

i=1

∏
tij∈Di12

θ12 exp
{

−
∫ ∞

0
Yi(u)Yi1(u−)θ12du

}
,

L13(θ) =
n∏

i=1

∏
tij∈Di13

θ13 exp
{

−
∫ ∞

0
Yi(u)Yi1(u−)θ13du

}
, and

L23(θ) =
n∏

i=1

∏
tij∈Di23

λθ13 exp
{

−
∫ ∞

0
Yi(u)Yi2(u−)λθ13du

}
.

(4.2.1)

This simplifies to

L(θ) = θ
|D12|
12 θ

|D13|
13 (λθ13)|D23| exp {−(θ12 + θ13)T1 − λθ13T2} , (4.2.2)

where |Dkl| = ∑n
i=1 |Dikl| is the total number of observed k → l transitions, |Dikl| is the

number of observed k → l transitions for individual i, and Tk = ∑n
i=1

∫∞
0 Yi(u)Yik(u)du is

the total follow-up time in state k. The log-likelihood is

l(θ) =|D12| log θ12 + |D13| log θ13 + |D23| log(λθ13)

− (θ12 + θ13)T1 − λθ13T2.
(4.2.3)

Since the hazard rates are positive but their logarithms are unrestricted, the model may
be reparameterized by the parameter vector β = (β12, β13, βλ) = (log θ12, log θ13, log λ)
(Clayton and Hills, 1993, p. 81). The reparameterized log-likelihood is

l(β) =|D12|β12 + |D13|β13 + |D23|(βλ + β13)

− (exp {β12} + exp {β13})T1 − exp {βλ + β13} T2,
(4.2.4)

and the corresponding score function is
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∇l(β) =
(

∂

∂β12
l(β), ∂

∂β13
l(β), ∂

∂βλ

l(β)
)T

, (4.2.5)

where

∂

∂β12
l(β) = |D12| − exp {β12} T1,

∂

∂β13
l(β) = |D13| + |D23| − exp {β13} T1 − exp {β13 + βλ} T2, and

∂

∂βλ

l(β) = |D23| − exp {β13 + βλ} T2.

(4.2.6)

By solving the equation ∇l(β) = (0, 0, 0)T , we find the maximum likelihood estimate
(MLE)

β̂ = (β̂12, β̂13, β̂λ) =
(

log |D12|
T1

, log |D13|
T1

, log
(

|D23|
T2

/
|D13|
T1

))
. (4.2.7)

The sampling covariance matrix of β̂ can be estimated from the observed information
matrix J (β) = −∇∇T l(β), which is

J (β) =



− ∂2

∂β2
12

l(β) − ∂2

∂β12β13
l(β) − ∂2

∂β12βλ

l(β)

− ∂2

∂β13β12
l(β) − ∂2

∂β2
13

l(β) − ∂2

∂β13βλ

l(β)

− ∂2

∂βλβ12
l(β) − ∂2

∂βλβ13
l(β) − ∂2

∂β2
λ

l(β)



=



exp {β12} T1 0 0

0 exp {β13} T1 + exp {β13 + βλ} T2 exp {β13 + βλ} T2

0 exp {β13 + βλ} T2 exp {β13 + βλ} T2


.

(4.2.8)

The inverse of the observed information matrix is
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J −1(β) =



1
exp {β12} T1

0 0

0 1
exp {β13} T1

− 1
exp {β13} T1

0 − 1
exp {β13} T1

T1 + exp {βλ} T2

exp {β13 + βλ} T1T2


, (4.2.9)

and therefore an estimate of the covariance matrix of β̂ is given by

J −1(β̂) =



1
|D12|

0 0

0 1
|D13|

− 1
|D13|

0 − 1
|D13|

1
|D13|

+ 1
|D23|


. (4.2.10)

Let q1−α denote the (1 − α) quantile of the standard normal distribution. Using the
(1 − α)% Wald confidence interval (CI) for the log HR βλ, we find that a (1 − α)% CI for
the HR λ is

exp
{

β̂λ ± q1−α

√
J −1

3,3 (β̂)
}

=
(

|D23|
T2

/
|D13|
T1

)
exp

{
±q1−α

√
1

|D13|
+ 1

|D23|

}
, (4.2.11)

where J −1
3,3 (β̂) is the third diagonal element of J −1(β̂). CIs for the hazard rates θ12 and

θ13 can be obtained similarly.

4.2.2 A non-Markov model

It may be useful to model transition rates on multiple time scales, such as age, calendar
period, and duration of illness. Here we extend the model of Section 4.2.1 to multiple
time scales. Let t denote the attained age of the individual, Bi denote the calendar time
of birth, and Pi(t) = Bi + t denote the attained calendar period. Duration of illness is
generally defined only after the onset of illness, but for likelihood derivation, it can be
defined as Di(t) = t − ti12 when Yi2(t) = 1 and Di(t) = −∞ otherwise.

Categorize age into p intervals A = {A1, ..., Ap} that partition the interval [0, ∞), calen-
dar time into q intervals P = {P1, ..., Pq} that partition the study period, and duration
of illness into r categories S = {S1, ..., Sr}, where S1 = {−∞}, and S2, ..., Sr partition
the interval [0, ∞). The transition hazard functions are defined as
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αi12(t|θ, F c
i,t−) =

∑
(A,P )∈A ×P

θ
(A)
12A θ

(P )
12PI(t ∈ A, Pi(t) ∈ P ),

αi13(t|θ, F c
i,t−) =

∑
(A,P )∈A ×P

θ
(A)
13A θ

(P )
13PI(t ∈ A, Pi(t) ∈ P ), and

αi23(t|θ, F c
i,t−) =

∑
(A,P,S)∈A ×P×S

θ
(A)
13A θ

(P )
13Pθ

(S)
S I(t ∈ A, Pi(t) ∈ P, Di(t) ∈ S),

(4.2.12)

where θ
(A)
12A and θ

(A)
13A are age-specific baseline hazards for age group A, θ

(P )
12P and θ

(P )
13P are

HRs for calendar period P with respect to period P1, and θ
(S)
S is the HR for duration of ill-

ness S with respect to duration of illness S1. To define P1 and S1 as the reference levels, let
θ

(P1)
12P = θ

(P1)
13P = θ

(S1)
S = 1. The full parameter vector is θ = (θT

12A , θT
12P , θT

13A , θT
13P , θT

S )T ,
where θ12A = (θ(A1)

12A , ..., θ
(Ap)
12A )T , θ12P = (θ(P1)

12P , ..., θ
(Pq)
12P)T , θ13A = (θ(A1)

13A , ..., θ
(Ap)
13A )T , θ13P =

(θ(P1)
13P , ..., θ

(Pq)
13P)T , and θS = (θ(S1)

S , ..., θ
(Sr)
S )T . This framework corresponds to nonpara-

metric regression in the Lexis diagram (Keiding, 1990).

The likelihood is L(θ) = L12(θ)L13(θ)L23(θ), where the first term is

L12(θ) =
n∏

i=1

∏
tij∈Di12

 ∑
(A,P )∈A ×P

θ
(A)
12A θ

(P )
12PI(tij ∈ A, Pi(tij) ∈ P )


× exp

−
∫ ∞

0
Yi(u)Yi1(u−)

 ∑
(A,P )∈A ×P

θ
(A)
12A θ

(P )
12PI(u ∈ A, Pi(u) ∈ P )

 du

 .

(4.2.13)

To simplify L12(θ), define the total number of observed k → l transitions for age group A,
calendar period P , and duration of illness S as

∣∣∣D (A,P,S)
kl

∣∣∣ =
n∑

i=1

∑
tij∈Dikl

I(tij ∈ A, Pi(tij) ∈ P, Di(tij) ∈ S) (4.2.14)

and the total follow-up time in state k by age, period, and duration of illness as

T
(A,P,S)
k =

n∑
i=1

∫ ∞

0
Yi(u)Yik(u−)I(u ∈ A, Pi(u) ∈ P, Di(u) ∈ S)du. (4.2.15)

The sums of
∣∣∣D (A,P,S)

kl

∣∣∣ and T
(A,P,S)
k over S ∈ S are denoted by

∣∣∣D (A,P )
kl

∣∣∣ and T
(A,P )
k . Then

L12(θ) =
∏

(A,P )∈A ×P

(
θ

(A)
12A θ

(P )
12P

)∣∣∣D(A,P )
12

∣∣∣ exp

−
∑

(A,P )∈A ×P

θ
(A)
12A θ

(P )
12PT

(A,P )
1

 , (4.2.16)
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which is proportional to a Poisson likelihood. Correspondingly, the second term is

L13(θ) =
∏

(A,P )∈A ×P

(
θ

(A)
13A θ

(P )
13P

)∣∣∣D(A,P )
13

∣∣∣ exp

−
∑

(A,P )∈A ×P

θ
(A)
13A θ

(P )
13PT

(A,P )
1

 , (4.2.17)

and the third term is

L23(θ) =
∏

(A,P,S)∈A ×P×S

(
θ

(A)
13A θ

(P )
13Pθ

(S)
S

)∣∣∣D(A,P,S)
23

∣∣∣

× exp

−
∑

(A,P,S)∈A ×P×S

θ
(A)
13A θ

(P )
13Pθ

(S)
S T

(A,P,S)
2

 .

(4.2.18)

The likelihood can now be written as

L(θ) = L12(θ12A , θ12P)L13(θ13A , θ13P)L23(θ13A , θ13P , θS ), (4.2.19)

which shows that the parameter vectors (θT
12A , θT

12P)T and (θT
13A , θT

13P , θT
S )T are orthogo-

nal. Therefore, (θT
12A , θT

12P)T can be estimated using the Poisson regression model

log (µA,P ) = log T
(A,P )
1 + β

(A)
12A + β

(P )
12P , (4.2.20)

where µA,P is the mean number of 1 → 2 transitions at age A and calendar period P ,
log T

(A,P )
1 is an offset, and β

(A)
12A and β

(P )
12P are the logarithms of θ

(A)
12A and θ

(P )
12P , respectively.

A Poisson regression model may also be used to estimate (θT
13A , θT

13P , θT
S )T . Since

∣∣∣D (A,P,S)
13

∣∣∣
and T

(A,P,S)
1 are both equal to 0 for S ∈ {S2, ..., Sr}, and θ

(S1)
S = 1, we can rewrite L13(θ)

as

L13(θ) =
∏

(A,P,S)∈A ×P×S

(
θ

(A)
13A θ

(P )
13Pθ

(S)
S

)∣∣∣D(A,P,S)
13

∣∣∣

× exp

−
∑

(A,P,S)∈A ×P×S

θ
(A)
13A θ

(P )
13Pθ

(S)
S T

(A,P,S)
1

 .

(4.2.21)

Now L13(θ) and L23(θ) have a similar form, and
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L13(θ)L23(θ) =
∏

(A,P,S)∈A ×P×S

(
θ

(A)
13A θ

(P )
13Pθ

(S)
S

)∣∣∣D(A,P,S)
13

∣∣∣+∣∣∣D(A,P,S)
23

∣∣∣

× exp

−
∑

(A,P,S)∈A ×P×S

θ
(A)
13A θ

(P )
13Pθ

(S)
S

(
T

(A,P,S)
1 + T

(A,P,S)
2

) .

(4.2.22)

An equivalent Poisson model is

log
(
µ∗

A,P,S

)
= log

(
T

(A,P,S)
1 + T

(A,P,S)
2

)
+ β

(A)
13A + β

(P )
13P + β

(S)
S , (4.2.23)

where µ∗
A,P,S is the mean number of deaths at age A, calendar period P , and duration of

illness S, and the parameters β
(A)
13A , β

(P )
13P , and β

(S)
S are the logarithms of θ

(A)
13A , θ

(P )
13P , and

θ
(S)
S , respectively.



5. Application

5.1 Data sources

The population sample comprised 2,549,992 individuals who were randomly selected from
the Population Information System of Finland on January 1, 2000, covering nearly one half
of the total population of Finland. The Population Information System, maintained by
the Digital and Population Data Services Agency, provided data on date of birth, gender,
first date of emigration after January 1, 2000, and date of death. Personal identity codes
were used to link the data to the Finnish Care Register for Health Care and the Finnish
Cancer Registry.

The Finnish Care Register for Health Care provided nationwide data on inpatient hospital
care in 1970–1997 and both inpatient and outpatient hospital care in 1998–2017. UC
diagnoses were identified by the ICD-8 codes 563.10 and 569.02, the ICD-9 code 556, and
the ICD-10 code K51. For a systematic review of studies on the quality of the Finnish
Care Register for Health Care, see Sund (2012).

The Finnish Cancer Registry provided data on CRC diagnoses in Finland 1953–2017. The
definition of CRC was based on the International Classification of Diseases for Oncology
topography codes C18, C19, and C20 (World Health Organization, 2013). Hematolym-
phoid neoplasms of the colorectum were excluded. The Finnish Cancer Registry collects
data on all cancer diagnoses and deaths among cancer patients in Finland since 1953 and
has nearly complete coverage of solid tumors (Leinonen et al., 2017). Based on special
legislation, health care providers, hospitals, and laboratories are required to report all
newly diagnosed cancers without permission of the patient.

The required permissions for the study were obtained from the Finnish Institute for Health
and Welfare (THL/118/6.02.00/2019) and from the Digital and Population Data Services
Agency (VRK/4504/2019-2).

21



22 Chapter 5. Application

5.2 Statistical analysis

Participants were followed from January 1, 2000, to the date of first CRC diagnosis,
death from other cause, emigration, or December 31, 2017, whichever came first. Patients
diagnosed with CRC before January 1, 2000, were excluded from the study cohort, whereas
patients diagnosed with UC before January 1, 2000, were included. CIs for binomial
proportions were computed using the Clopper-Pearson method (Clopper and Pearson,
1934).

The illness-death model (Chapter 4) was applied to study the incidence rates of UC and
CRC in Finland in 2000–2017. People with neither UC nor CRC were defined as being in
state 1 (“Healthy”), those diagnosed with UC but not CRC in state 2 (“Ill”), and those
diagnosed with CRC in state 3 (“Dead”). A state diagram is shown in Section 4.1.

To describe the follow-up data, we used the illness-death model with constant transition
hazards (Section 4.2.1). MLEs and 95% CIs were computed using the analytical solutions.

To implement the piecewise constant hazard model of Section 4.2.2, age was categorized
into 5-year intervals (0–4, 5–9, ..., 90–94, and ≥ 95), calendar time into 6-year intervals
(2000–2005, 2006–2011, and 2012–2017), and time from UC diagnosis into <1, 1–3, 4–9,
10–19, or ≥ 20 years. Transitions 1 → 2 and 1 → 3 (“Healthy” → “UC” and “Healthy”
→ “CRC”) were modeled using attained age and calendar time as the time scales. For
transition 2 → 3 (“UC” → “CRC”), UC duration was used as an additional time scale.
Separate models were fit for females and males. To estimate HRs for CRC by age at
UC diagnosis (<40 or ≥ 40 years), we combined both genders into a single data set
and extended the model of Section 4.2.2 by adjusting for gender and letting the HRs for
CRC depend on both UC duration and age at UC diagnosis. MLEs and 95% CIs were
computed using the Poisson likelihood and the log link function as explained in Section
4.2.2 (McCullagh and Nelder, 1998).

No adjustments were made for multiple comparisons. Statistical analyses were performed
using R version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria) with the
Epi package version 2.46.
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5.3 Results

5.3.1 Baseline characteristics

Of the 2,549,992 individuals included in the population sample on January 1, 2000,
1,306,261 (51%) were female and 1,243,731 (49%) were male. There were 8,720 indi-
viduals with prevalent UC, 6,392 individuals with prevalent CRC, and 90 individuals
with both conditions before the sampling date. The baseline prevalence of UC was 321
per 100,000 in females (95% CI: 312, 331) and 364 per 100,000 in males (95% CI: 353,
374), whereas the baseline prevalence of CRC was 277 per 100,000 in females (95% CI:
268, 287) and 223 per 100,000 in males (95% CI: 214, 231). After excluding patients
with prevalent CRC, 2,543,600 individuals remained in the study cohort, including 8,630
patients with prevalent UC. Characteristics of the study cohort are shown in Table 1.
The median age at the start of follow-up was 41 years in females (range: 0, 108) and 38
years in males (range: 0, 105).

Table 1: Baseline characteristics of the study cohort on January 1, 2000.

Characteristic Female (N = 1,302,638)a Male (N = 1,240,962)a

Age, years 41 (21, 58) 38 (19, 53)
Ulcerative colitis 4,156 (0.3%) 4,474 (0.4%)
a Median (interquartile range); n (%)

5.3.2 Follow-up data

State diagrams for females and males are shown in Figures 2 (a) and 2 (b). A total
of 23,533 incident CRCs were diagnosed during 41 million person-years of follow-up. In
addition to the 8,630 patients with prevalent UC, there were 19,435 cases of incident UC.
Of the 23,533 incident CRCs, 298 (1.3%) were diagnosed in patients with pre-existing
(prevalent or incident) UC.

Crude CRC incidence was 54.1 (95% CI: 53.1, 55.1) per 100,000 person-years in females
and 59.8 (95% CI: 58.7, 60.9) per 100,000 person-years in males. In patients with UC,
CRC incidence was increased by a crude HR of 1.72 (95% CI: 1.45, 2.05) in females and
1.93 (95% CI: 1.65, 2.24) in males. Crude UC incidence was 45.5 (95% CI: 44.6, 46.5) per
100,000 person-years in females and 49.8 (95% CI: 48.8, 50.7) per 100,000 person-years in
males.
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(a) Female

(b) Male

Figure 2: State diagrams. The numbers in the boxes indicate person-years of follow-up
(middle), persons at the start of follow-up (lower left), and persons at the end of follow-up
(lower right). PYs, person-years.
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5.3.3 Multistate analysis

Results of the multistate analysis, using the model of Section 4.2.2, are shown in Figure 2
and Tables 2 and 3. CRC incidence increased monotonically with age up to a peak age of
85–89 in men and 85–94 years in women. Before age 40 years, CRC incidence was low in
both genders. In people aged 55 years and older, CRC incidence was higher in men than
in women, but in the younger age groups, there were no marked gender differences. There
was an increasing trend of CRC incidence over calendar time in both genders. The HR
for 2012–2017 compared to 2000–2005 was 1.08 (95% CI: 1.03, 1.13; P<0.001) in females
and 1.08 (95% CI: 1.04, 1.13; P<0.001) in males.

Figure 3: Age-specific baseline hazards (incidence per 100,000 person-years) for colorec-
tal cancer and ulcerative colitis. The estimates apply to individuals without ulcerative
colitis or colorectal cancer in Finland in 2000–2005. CRC, colorectal cancer; UC, ulcera-
tive colitis.
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Table 2: Incidence of ulcerative colitis in a population-based cohort in Finland in 2000–
2017. Adjusted hazard ratios for calendar period are shown together with age-specific
baseline hazard rates per 100,000 person-years. The symbols θ12P and θ12A refer to
parameter vectors defined in Section 4.2.2.

Female Male

Characteristic exp(Est.)a 95% CIb P-value exp(Est.)a 95% CIb P-value

Calendar period (θ12P)c

2000–2005 1.00 – – 1.00 – –
2006–2011 1.26 1.20, 1.32 <0.001 1.17 1.12, 1.23 <0.001
2012–2017 1.27 1.21, 1.33 <0.001 1.18 1.13, 1.24 <0.001

Age, years (θ12A )d

0–4 6.89 3.91, 12.1 – 7.73 4.58, 13.0 –
5–9 7.94 5.95, 10.6 – 6.74 4.95, 9.19 –
10–14 15.4 13.2, 18.0 – 19.1 16.6, 21.9 –
15–19 34.7 31.7, 38.0 – 40.3 37.0, 43.9 –
20–24 52.4 48.7, 56.5 – 50.3 46.6, 54.2 –
25–29 60.4 56.2, 64.9 – 63.8 59.6, 68.4 –
30–34 55.2 51.3, 59.4 – 58.4 54.4, 62.7 –
35–39 46.6 43.1, 50.4 – 49.2 45.6, 53.0 –
40–44 39.5 36.4, 42.8 – 48.1 44.6, 51.8 –
45–49 35.7 32.9, 38.8 – 45.5 42.2, 49.0 –
50–54 35.3 32.6, 38.3 – 41.9 38.8, 45.2 –
55–59 37.7 34.8, 40.8 – 41.6 38.5, 45.0 –
60–64 34.1 31.3, 37.2 – 44.2 40.8, 47.9 –
65–69 34.6 31.6, 37.9 – 41.1 37.6, 45.0 –
70–74 36.8 33.4, 40.5 – 47.8 43.4, 52.6 –
75–79 39.4 35.7, 43.5 – 47.5 42.5, 53.1 –
80–84 37.3 33.2, 41.8 – 47.6 41.4, 54.8 –
85–89 39.3 34.2, 45.2 – 36.6 29.1, 46.1 –
90–94 23.7 18.0, 31.2 – 28.6 17.7, 46.0 –
≥ 95 13.7 6.51, 28.7 – 30.1 9.71, 93.4 –

a exp(Est.), exponentiated parameter estimate
b CI, confidence interval
c Adjusted hazard ratio
d Baseline hazard rate per 100,000 person-years
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Table 3: Incidence of colorectal cancer in a population-based cohort in Finland in 2000–
2017. Adjusted hazard ratios for ulcerative colitis and calendar period are shown together
with age-specific baseline hazards per 100,000 person-years. The symbols θS , θ13P , and
θ13A refer to parameter vectors defined in Section 4.2.2.

Female Male

Characteristic exp(Est.)a 95% CIb P-value exp(Est.)a 95% CIb P-value

Ulcerative colitis (θS )c

Absent 1.00 – – 1.00 – –
<1 year 4.67 3.07, 7.09 <0.001 7.62 5.65, 10.3 <0.001
1–3 years 0.85 0.49, 1.51 0.6 0.66 0.36, 1.19 0.2
4–9 years 1.14 0.78, 1.66 0.5 0.77 0.51, 1.17 0.2
10–19 years 1.63 1.19, 2.24 0.002 1.29 0.96, 1.75 0.092
≥ 20 years 1.61 1.13, 2.31 0.009 1.74 1.31, 2.31 <0.001

Calendar period (θ13P)c

2000–2005 1.00 – – 1.00 – —
2006–2011 1.02 0.97, 1.07 0.4 1.02 0.98, 1.07 0.3
2012–2017 1.08 1.03, 1.13 <0.001 1.08 1.04, 1.13 <0.001

Age, years (θ13A )d

0–4 0.00 nae – 0.00 nae –
5–9 0.00 nae – 0.17 0.02, 1.23 –
10–14 1.05 0.57, 1.96 – 0.30 0.10, 0.94 –
15–19 2.03 1.39, 2.96 – 1.36 0.87, 2.14 –
20–24 2.11 1.47, 3.02 – 2.27 1.62, 3.18 –
25–29 2.52 1.81, 3.52 – 2.18 1.54, 3.08 –
30–34 4.03 3.10, 5.25 – 3.75 2.88, 4.90 –
35–39 5.79 4.67, 7.18 – 5.74 4.64, 7.09 –
40–44 11.9 10.3, 13.8 – 10.0 8.57, 11.7 –
45–49 19.4 17.4, 21.7 – 16.9 15.0, 19.0 –
50–54 31.8 29.1, 34.7 – 32.8 30.1, 35.8 –
55–59 46.6 43.3, 50.3 – 63.4 59.3, 67.7 –
60–64 72.7 68.1, 77.6 – 102 96.0, 108 –
65–69 99.7 93.8, 106 – 155 146, 163 –
70–74 141 133, 149 – 224 213, 236 –
75–79 179 170, 189 – 294 279, 310 –
80–84 229 216, 242 – 340 320, 362 –
85–89 253 237, 269 – 368 340, 399 –
90–94 251 229, 276 – 354 307, 409 –
≥ 95 217 177, 265 – 249 166, 376 –

a exp(Est.), exponentiated parameter estimate
b CI, confidence interval
c Adjusted hazard ratio
d Baseline hazard rate per 100,000 person-years
e No incident CRCs were observed in this age group
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In the first year after UC diagnosis, the HR for incident CRC was 4.67 (95% CI: 3.07,
7.09; P<0.001) in females and 7.62 (95% CI: 5.65, 10.3; P<0.001) in males. When 1–3
or 4–9 years had passed from UC diagnosis, CRC incidence did not differ from persons
without UC. In patients with UC diagnosed 10–19 years earlier, the HR for incident CRC
was 1.63 (95% CI: 1.19, 2.24; P=0.002) in females and 1.29 (95% CI: 0.96, 1.75; P=0.092)
in males, and after 20 years from UC diagnosis, the HR was 1.61 (95% CI: 1.13, 2.31;
P=0.009) in females and 1.74 (95% CI: 1.31, 2.31; P<0.001) in males.

UC incidence was highest at ages 25–29 years and lowest in the first decade of life. In
most age groups, UC incidence was slightly higher in males than in females. There was
also an increasing trend of UC incidence over calendar time in both genders. The HR for
2012–2017 compared to 2000–2005 was 1.27 (95% CI: 1.21, 1.33; P<0.001) in females and
1.18 (95% CI: 1.13, 1.24; P<0.001) in males.

Early-onset UC (defined here as age <40 years) was associated with an increased long-
term risk of CRC (Table 4). In late-onset UC, an increased risk of CRC was observed
only in the first year after UC diagnosis. In the first year after UC diagnosis, the HR for
CRC was 28.6 in early-onset UC (95% CI: 14.2, 57.6; P<0.001) and 5.66 in late-onset UC
(95% CI: 4.36, 7.34; P<0.001). After the first year after UC diagnosis, the HR for CRC
in early-onset UC increased over time up to 10–19 years (HR 4.88; 95% CI: 3.46, 6.88;
P<0.001) and then declined after 20 years (HR 2.63; 95% CI: 2.01, 3.43; P<0.001).

Table 4: Hazard ratios for colorectal cancer by duration and age at diagnosis of ulcerative
colitis. The estimates were adjusted for age (0–4, 5–9, ..., 90–94, ≥ 95), calendar period
(2000–2005, 2006–2011, 2012–2017), and gender.

Early-onset UCa (<40 years) Late-onset UCa (≥ 40 years)

Time from UCa

diagnosis HRb 95% CIc P-value HRb 95% CIc P-value

No UCa 1.00 – – 1.00 – –
<1 year 28.6 14.2, 57.6 <0.001 5.66 4.36, 7.34 <0.001
1–3 years 0.97 0.14, 6.92 >0.9 0.74 0.49, 1.12 0.2
4–9 years 4.13 2.28, 7.47 <0.001 0.77 0.56, 1.05 0.10
10–19 years 4.88 3.46, 6.88 <0.001 0.98 0.74, 1.29 0.9
≥ 20 years 2.63 2.01, 3.43 <0.001 0.95 0.63, 1.41 0.8

a UC, ulcerative colitis
b HR, hazard ratio
c CI, confidence interval
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In this large population-based cohort study, including more than 28,000 patients with UC
and more than 23,000 incident CRCs, we studied the risk of CRC in persons with and
without UC, considering both the duration of UC and age at UC diagnosis. Patients with
UC overall, and especially those with early-onset UC, had an increased long-term risk of
CRC. Multistate modeling of UC and CRC in a single population-based cohort provided
a useful framework for studying the relationship between the two disease processes.

Patients with long-standing (≥ 10 years) UC were at increased risk of CRC. Estimated
HRs ranged from 1.3 to 1.7 depending on UC duration (10–19 or ≥ 20 years) and gender.
A recent population-based cohort study in Denmark and Sweden reported HRs of approx-
imately 1.9 for incident CRC in patients with UC diagnosed 10–19 or ≥ 20 years earlier
(Olén et al., 2020). Meta-analyses of population-based cohort studies have reported pooled
standardized incidence ratios (SIRs) of 1.7 and 2.4 for CRC in unselected patients with
IBD and UC, respectively (Jess et al., 2012; Lutgens et al., 2013). The risk of CRC in UC
appears to have decreased over calendar time, which may be due to improved treatments
or surveillance protocols (Castaño-Milla et al., 2014; Olén et al., 2020). The long-term
excess risk of CRC in patients with UC has been primarily attributed to chronic inflam-
mation (Beaugerie and Itzkowitz, 2015). Colitis-associated CRC may develop through
the dysplasia-carcinoma sequence, which differs from the classical adenoma-carcinoma
sequence of colorectal carcinogenesis.

Increased CRC risk in the first year after UC diagnosis may be in part due to detection
bias. Patients with suspected or newly diagnosed UC routinely undergo colonoscopy,
which may reveal CRC shortly before or after the diagnosis of UC. In persons with 1–3 or
4–9 years from UC diagnosis, the incidence of CRC did not differ from persons without
UC.

Early-onset UC (defined here as age <40 years) was associated with an increased long-
term risk of CRC. The HRs for incident CRC were 1.0, 4.1, 4.9, and 2.6 in patients with
early-onset UC diagnosed 1–3, 4–9, 10–19, or ≥ 20 years ago, respectively. The late
decline in the HR may reflect selection bias among those who remain under follow-up
beyond 20 years from UC diagnosis. Olén et al. (2020) reported HRs of 37, 4.1, 1.4,
and 1.0 for incident CRC in patients diagnosed with UC at ages <18, 18–39, 40–59, and
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≥ 60 years, respectively, while adjusting for years of follow-up and other risk factors. In
late-onset UC (age ≥ 40 years), we observed an increased incidence of CRC only in the
first year after UC diagnosis. In patients diagnosed with late-onset UC more than 20
years ago, the 95% CI for the HR ranged from 0.6 to 1.4. Overall, the excess risk of
CRC in UC may be largely attributable to patients with early-onset UC. Adjustment for
disease extent (e.g., using the Montreal classification) and other clinical characteristics
might clarify whether age at UC diagnosis is an independent risk factor for CRC in UC.
Childhood-onset UC, which often presents with extensive colitis, may be biologically and
clinically distinct from UC in young adults.

UC incidence was highest at ages 25–29 years. Some studies suggest a second peak at
older age, but in this regard, our study is inconclusive (Bernstein et al., 2006). The decline
in CRC incidence after a peak age of 85–94 years may be due to challenges in diagnosing
cancer in very old patients, the healthy survivor effect, or age-related biological changes.

Increasing trends of both UC and CRC incidence over calendar time have been observed
worldwide, although in some developed countries, screening may have stabilized or reduced
CRC incidence (Ungaro et al., 2017; Dekker et al., 2019). We did not assess whether the
incidence trends of UC and CRC differed between age groups.

The main strengths of the study are the population-based cohort design and the large
sample size. Tertiary referral center studies are likely to overestimate CRC risk in UC
because patients with less severe disease are typically underrepresented. In the population-
based cohort of 2.5 million individuals, hospital diagnoses were available for 1970–2017.
The quality of the data on UC relies on the Finnish Care Register for Health Care, which
covers both outpatient and inpatient hospital care since 1998. Data on outpatient care
in 1970–1997 are largely missing, and therefore UC cases recorded in 1970–1997 may be
more severe than those recorded in 1998–2017. This may have introduced an upward bias
into the HR estimates and caused misclassification of time from UC diagnosis in some
patients. Diagnoses of CRC are recorded with high quality and nearly complete coverage
in the Finnish Cancer Registry (Leinonen et al., 2017).

Other possible sources of bias should also be considered. Although the confounding
effects of age, gender, and calendar period were controlled in the analysis, there is a risk
of unmeasured confounding by smoking, dietary factors, physical activity, non-steroidal
anti-inflammatory drugs, and other possible common risk factors of UC and CRC. In
addition, comparisons of persons with and without medical conditions are susceptible to
surveillance bias. Patients with UC are likely to use health services more frequently than
healthy individuals and are offered regular medical examinations and colonoscopies, which
may reveal asymptomatic or otherwise undetected CRCs. Studies of CRC mortality in
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UC are at low risk of surveillance bias (Olén et al., 2020). Finally, some patients with UC
are treated surgically, which can greatly reduce CRC risk. Because of the register-based
data collection, we did not have detailed data on surgical treatments and therefore did
not censor patients at the time of colectomy. This may have led to underestimation of
CRC risk.

Statistical methods in previous population-based cohort studies of CRC in UC include the
Cox model and indirect standardization (Cox, 1972; Armitage and Colton, 2005). The
Cox model is often used in cohort designs that include a reference group, whereas indirect
standardization compares observed event counts to expected counts derived from a large
standard population. Both methods provide measures of CRC risk in UC (i.e., HRs or
SIRs), but the incidence of UC is not necessarily modeled. We used the illness-death
model to estimate incidence rates by age, gender, calendar period, age at UC diagnosis,
and time from UC diagnosis. The estimated rates can also be used to derive transition
probabilities for a given individual and time period. The semiparametric Cox model is
also applicable to multistate models. In this setting, the cumulative baseline hazards
can be estimated using the Breslow estimator (Putter et al., 2007). However, parametric
models provide parsimonious summaries of the data and may be more convenient to use
for prediction (Reid, 1994).

The piecewise constant hazard model can approximate a variety of parametric models, and
extensions to multiple time scales are straightforward. The time scales enter the model
in the same way as other covariates. Factorization of the likelihood function into one
or more Poisson likelihoods permits estimation using standard software for generalized
linear models. A disadvantage is the need to categorize the time variables. However,
smooth effects can be estimated using splines or other suitable functions (Carstensen,
2021). Data preparation involves splitting individual follow-up time along one or more
time scales, which produces multiple data rows per individual and may be computationally
demanding. Royston and Parmar proposed a class of flexible parametric survival models
that avoid the need to split the time scale (Royston and Parmar, 2002).

A useful property of multistate models is the possibility to model different transitions
with shared parameters (Putter et al., 2007). This approach may provide more precise
estimates when the data are sparse. In this study, attained age and calendar period were
assumed to have the same effect on CRC risk in persons with and without UC because
only a small proportion of all CRCs are diagnosed in patients with pre-existing UC. In
this study, the proportion of UC-associated CRCs was 1.3%.
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In conclusion, this large-population-based cohort study provides estimates of CRC risk in
persons with and without UC in Finland in 2000–2017, considering both the duration of
UC and age at UC diagnosis. Patients with early-onset UC are at increased risk of CRC,
but the risk is likely to depend on disease duration, extent of disease, attained age, and
other risk factors. Increased CRC risk in the first year after UC diagnosis may be in part
due to detection bias, whereas chronic inflammation may underlie the long-term excess
risk of CRC in patients with UC.



7. Acknowledgments

I am sincerely grateful to Professor Janne Pitkäniemi for supervising this thesis and giving
me the opportunity to work in his excellent team at the Finnish Cancer Registry. Thank
you for your guidance, mentorship, and continued support.

I would like to thank Professor Sangita Kulathinal for her supervision and insightful
comments and suggestions that helped improve the thesis considerably. I am thankful for
the knowledge you shared with me.

Many thanks to all my colleagues at the Finnish Cancer Registry for creating a positive
and supportive work environment.

Lastly, I would like to thank my family for their wonderful support and encouragement.

33



Bibliography

Aalen, O. O., Borgan, Ø. and Gjessing, S. (2008), Survival and event history analysis: a
process point of view, Statistics for biology and health, Springer, New York, NY. OCLC:
ocn213855657.

Andersen, P. K., ed. (1993), Statistical models based on counting processes, Springer series
in statistics, Springer-Verlag, New York, NY.

Andersen, P. K. and Keiding, N. (2002), ‘Multi-state models for event history analy-
sis’, Statistical Methods in Medical Research 11(2), 91–115. URL: http://journals.
sagepub.com/doi/10.1191/0962280202SM276ra

Annese, V., Daperno, M., Rutter, M. D., Amiot, A., Bossuyt, P., East, J., Ferrante, M.,
Götz, M., Katsanos, K. H., Kießlich, R., Ordás, I., Repici, A., Rosa, B., Sebastian,
S., Kucharzik, T., Eliakim, R. and European Crohn’s and Colitis Organisation (2013),
‘European evidence based consensus for endoscopy in inflammatory bowel disease’,
Journal of Crohn’s & Colitis 7(12), 982–1018.

Armitage, P. and Colton, T., eds (2005), Encyclopedia of biostatistics, 2nd edn, John
Wiley, Chichester, West Sussex, England ; Hoboken, NJ. OCLC: ocm57168526.

Beaugerie, L. and Itzkowitz, S. H. (2015), ‘Cancers Complicating Inflammatory Bowel
Disease’, New England Journal of Medicine 372(15), 1441–1452. URL: http://www.
nejm.org/doi/10.1056/NEJMra1403718

Bernstein, C. N., Wajda, A., Svenson, L. W., MacKenzie, A., Koehoorn, M., Jackson,
M., Fedorak, R., Israel, D. and Blanchard, J. F. (2006), ‘The epidemiology of inflam-
matory bowel disease in Canada: a population-based study’, The American Journal of
Gastroenterology 101(7), 1559–1568.

Carstensen, B. (2021), Epidemiology with R, Oxford University Press, Oxford. OCLC:
on1162988032.

34

http://journals.sagepub.com/doi/10.1191/0962280202SM276ra
http://journals.sagepub.com/doi/10.1191/0962280202SM276ra
http://www.nejm.org/doi/10.1056/NEJMra1403718
http://www.nejm.org/doi/10.1056/NEJMra1403718


35 Bibliography

Castaño-Milla, C., Chaparro, M. and Gisbert, J. P. (2014), ‘Systematic review with meta-
analysis: the declining risk of colorectal cancer in ulcerative colitis’, Alimentary Phar-
macology & Therapeutics 39(7), 645–659.

Clayton, D. and Hills, M. (1993), Statistical models in epidemiology, Oxford University
Press, Oxford; New York, NY.

Clopper, C. J. and Pearson, E. S. (1934), ‘The use of confidence or fiducial limits
illustrated in the case of the binomial’, Biometrika 26(4), 404–413. URL: https:
//academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/26.4.404

Cook, R. J. and Lawless, J. F. (2007), The statistical analysis of recurrent events, Statistics
for biology and health, Springer, New York, NY. OCLC: ocn124025386.

Cook, R. J. and Lawless, J. F. (2018), Multistate models for the analysis of life history
data, CRC Press, Boca Raton, FL.

Cox, D. R. (1972), ‘Regression Models and Life-Tables’, Journal of the Royal Statistical
Society: Series B (Methodological) 34(2), 187–202. URL: http://doi.wiley.com/10.
1111/j.2517-6161.1972.tb00899.x

Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. and Wallace, M. B. (2019),
‘Colorectal cancer’, The Lancet 394(10207), 1467–1480. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0140673619323190

Engholm, G., Ferlay, J., Christensen, N., Bray, F., Gjerstorff, M. L., Klint, A., Køtlum,
J. E., Olafsdóttir, E., Pukkala, E. and Storm, H. H. (2010), ‘NORDCAN–a Nordic
tool for cancer information, planning, quality control and research’, Acta Oncologica
(Stockholm, Sweden) 49(5), 725–736.

Fleming, T. R. and Harrington, D. P. (1991), Counting processes and survival analysis,
Wiley series in probability and mathematical statistics, Wiley, New York, NY.

Jess, T., Rungoe, C. and Peyrin-Biroulet, L. (2012), ‘Risk of colorectal cancer in patients
with ulcerative colitis: a meta-analysis of population-based cohort studies’, Clinical
Gastroenterology and Hepatology: The Official Clinical Practice Journal of the Ameri-
can Gastroenterological Association 10(6), 639–645.

Keiding, N. (1990), ‘Statistical inference in the Lexis diagram’, Philosophical Trans-
actions of the Royal Society of London. Series A: Physical and Engineering Sci-
ences 332(1627), 487–509. URL: https://royalsocietypublishing.org/doi/10.
1098/rsta.1990.0128

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/26.4.404
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/26.4.404
http://doi.wiley.com/10.1111/j.2517-6161.1972.tb00899.x
http://doi.wiley.com/10.1111/j.2517-6161.1972.tb00899.x
https://linkinghub.elsevier.com/retrieve/pii/S0140673619323190
https://linkinghub.elsevier.com/retrieve/pii/S0140673619323190
https://royalsocietypublishing.org/doi/10.1098/rsta.1990.0128
https://royalsocietypublishing.org/doi/10.1098/rsta.1990.0128


36 Bibliography

Larønningen, S., Ferlay, J., Beydogan, H., Bray, F., Engholm, G., Ervik, M., Gulbrandsen,
J., Hansen, H., Hansen, H., Johannesen, T., Kristensen, S., Kristiansen, M., Kønig,
S., Lam, F., Laversanne, M., Miettinen, J., Mørch, L., Ólafsdóttir, E., Óskarsson, O.,
Pejicic, S., Petterson, D., Skog, A., Skovlund, C., Tanskanen, T., Tian, H., Virtanen, A.,
Aagnes, B. and Storm, H. (2022), ‘NORDCAN: Cancer Incidence, Mortality, Prevalence
and Survival in the Nordic Countries, Version 9.2 (June 23, 2022). Available from:
https://nordcan.iarc.fr/, accessed on October 11, 2022.’. URL: https://nordcan.iarc.
fr/en

Leinonen, M. K., Miettinen, J., Heikkinen, S., Pitkäniemi, J. and Malila, N. (2017),
‘Quality measures of the population-based Finnish Cancer Registry indicate sound data
quality for solid malignant tumours’, European Journal of Cancer (Oxford, England:
1990) 77, 31–39.

Lutgens, M. W. M. D., van Oijen, M. G. H., van der Heijden, G. J. M. G., Vleggaar,
F. P., Siersema, P. D. and Oldenburg, B. (2013), ‘Declining risk of colorectal cancer
in inflammatory bowel disease: an updated meta-analysis of population-based cohort
studies’, Inflammatory Bowel Diseases 19(4), 789–799.

McCullagh, P. and Nelder, J. A. (1998), Generalized linear models, number 37 in ‘Mono-
graphs on statistics and applied probability’, 2nd edn, Chapman & Hall/CRC, Boca
Raton, FL.

Olén, O., Erichsen, R., Sachs, M. C., Pedersen, L., Halfvarson, J., Askling, J., Ekbom, A.,
Sørensen, H. T. and Ludvigsson, J. F. (2020), ‘Colorectal cancer in ulcerative colitis: a
Scandinavian population-based cohort study’, The Lancet 395(10218), 123–131. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0140673619325450

Peters, U., Bien, S. and Zubair, N. (2015), ‘Genetic architecture of colorectal cancer’, Gut
64(10), 1623–1636.

Porta, M. S., Greenland, S., Hernán, M., Silva, I. d. S. and Last, J. M., eds (2014), A
dictionary of epidemiology, 6th edn, Oxford University Press, Oxford.

Putter, H., Fiocco, M. and Geskus, R. B. (2007), ‘Tutorial in biostatistics: competing
risks and multi-state models’, Statistics in Medicine 26(11), 2389–2430. URL: https:
//onlinelibrary.wiley.com/doi/10.1002/sim.2712

Reid, N. (1994), ‘A Conversation with Sir David Cox’, Statistical Science 9(3).
URL: https://projecteuclid.org/journals/statistical-science/volume-9/
issue-3/A-Conversation-with-Sir-David-Cox/10.1214/ss/1177010394.full

https://nordcan.iarc.fr/en
https://nordcan.iarc.fr/en
https://linkinghub.elsevier.com/retrieve/pii/S0140673619325450
https://onlinelibrary.wiley.com/doi/10.1002/sim.2712
https://onlinelibrary.wiley.com/doi/10.1002/sim.2712
https://projecteuclid.org/journals/statistical-science/volume-9/issue-3/A-Conversation-with-Sir-David-Cox/10.1214/ss/1177010394.full
https://projecteuclid.org/journals/statistical-science/volume-9/issue-3/A-Conversation-with-Sir-David-Cox/10.1214/ss/1177010394.full


37 Bibliography

Rothman, K. J., Lash, T. L., VanderWeele, T. J. and Haneuse, S. (2021), Modern epi-
demiology, 4th edn, Wolters Kluwer, Philadelphia, PA.

Royston, P. and Parmar, M. K. B. (2002), ‘Flexible parametric proportional-hazards and
proportional-odds models for censored survival data, with application to prognostic
modelling and estimation of treatment effects’, Statistics in Medicine 21(15), 2175–
2197.

Sund, R. (2012), ‘Quality of the Finnish Hospital Discharge Register: a systematic review’,
Scandinavian Journal of Public Health 40(6), 505–515.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and
Bray, F. (2021), ‘Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence
and Mortality Worldwide for 36 Cancers in 185 Countries’, CA: a cancer journal for
clinicians 71(3), 209–249.

Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L. and Colombel, J.-F. (2017),
‘Ulcerative colitis’, The Lancet 389(10080), 1756–1770. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0140673616321262

World Health Organization (2013), International classification of diseases for oncology
(ICD-O), 3rd ed., 1st revision edn, World Health Organization, Geneva. Journal
Abbreviation: ICD-O Publication Title: ICD-O Section: viii, 242 p. URL: https:
//apps.who.int/iris/handle/10665/96612

https://linkinghub.elsevier.com/retrieve/pii/S0140673616321262
https://linkinghub.elsevier.com/retrieve/pii/S0140673616321262
https://apps.who.int/iris/handle/10665/96612
https://apps.who.int/iris/handle/10665/96612

	Abbreviations
	Introduction
	Epidemiological research
	Colorectal cancer and ulcerative colitis
	Multistate models
	Organization of the thesis

	Aims of the study
	Multistate models
	Basic concepts
	Stochastic processes
	Right-censoring and left-truncation

	Transition hazard functions
	Uncensored counting process
	Observed counting process

	A product integral
	Likelihood function
	Model assumptions
	Likelihood construction


	The illness-death model
	Model definition
	Piecewise constant hazards
	A Markov model
	A non-Markov model


	Application
	Data sources
	Statistical analysis
	Results
	Baseline characteristics
	Follow-up data
	Multistate analysis


	Discussion
	Acknowledgments
	Bibliography

