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Identification of multiplicatively acting 
modulatory mutational signatures in cancer
Dovydas Kičiatovas1,2, Qingli Guo2,3, Miika Kailas9, Henri Pesonen7, Jukka Corander4,7,8, Samuel Kaski10,11, 
Esa Pitkänen1,6* and  Ville Mustonen2,3,4,5* 

Background
After the first whole genome mutational catalogues of cancer samples were described a 
decade ago, a breakthrough development has been the conceptualization and identifica-
tion of mutational signatures [1–3]. A mutational signature is the imprint left on can-
cer genome by a mutagenic process active over the course of cancer development [2, 3]. 
For instance, UV-light generates a distinct pattern of somatic mutations in melanoma 
genomes (characterised by C:G>T:A at specific nucleotide contexts). There has been 

Abstract 

Background: A deep understanding of carcinogenesis at the DNA level underpins 
many advances in cancer prevention and treatment. Mutational signatures provide a 
breakthrough conceptualisation, as well as an analysis framework, that can be used to 
build such understanding. They capture somatic mutation patterns and at best identify 
their causes. Most studies in this context have focused on an inherently additive 
analysis, e.g. by non-negative matrix factorization, where the mutations within a cancer 
sample are explained by a linear combination of independent mutational signatures. 
However, other recent studies show that the mutational signatures exhibit non-addi-
tive interactions.

Results: We carefully analysed such additive model fits from the PCAWG study cata-
loguing mutational signatures as well as their activities across thousands of cancers. 
Our analysis identified systematic and non-random structure of residuals that is left 
unexplained by the additive model. We used hierarchical clustering to identify cancer 
subsets with similar residual profiles to show that both systematic mutation count 
overestimation and underestimation take place. We propose an extension to the addi-
tive mutational signature model—multiplicatively acting modulatory processes—and 
develop a maximum-likelihood framework to identify such modulatory mutational 
signatures. The augmented model is expressive enough to almost fully remove the 
observed systematic residual patterns.

Conclusion: We suggest the modulatory processes biologically relate to sample 
specific DNA repair propensities with cancer or tissue type specific profiles. Overall, our 
results identify an interesting direction where to expand  signature analysis.
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substantial progress in categorizing these mutation patterns by their endogenous and 
exogenous mutagenic causes through analysis of large-scale cancer sequencing data-
sets [4] and observing effects of specific mutagens in a controlled environment [5]. The 
dynamic change of active mutational signatures during tumour evolution holds great 
potential to guide therapeutic strategies in personalised medicine [6–11]. For exam-
ple, a cell population showing activity of a signature indicating a defect in  DNA dou-
ble stranded break repair would potentially respond to either platinum therapy or PARP 
inhibitors [8, 12].

The cornerstone of mathematical analysis of mutational signatures is the non-negative 
matrix factorization (NMF) [13, 14]. Using NMF-based framework, a state-of-the-art 
single-base substitution (SBS) mutational signature catalogue was recently derived from 
pan-cancer analysis of 2,780 whole genomes (PCAWG) across 37 tumour types (ver-
sion 3, released May 2019 as part of COSMIC v89) [4, 15]. These signatures can explain 
the observed somatic mutation counts with an average reconstruction accuracy (cosine 
similarity) of 0.97 in PCAWG data, using just four mutational signatures per sample on 
average [4]. In this framework, the joint mutational catalogue of a sample is explained as 
a sum over mutational signatures each multiplied by their respective activities. There-
fore, the NMF paradigm-based mutational signature model is inherently additive. This 
means that the NMF-based model cannot distinguish between DNA damage and DNA 
repair processes that can act in a manner of removing mutations in cancer cell DNA. 
As mutational catalogues are a combination of DNA damage and repair processes [16], 
the representation of known mutational signatures may already have been influenced by 
DNA repair mechanisms. Furthermore, these repair processes may be selectively active 
in different cancer genomes, and have cancer or tissue type specific profiles. Repair pro-
cesses would thus be ideally treated independently from DNA damage processes. Conse-
quently, there is a need for extending the additive model to account for repair processes, 
while keeping the basis of the successful, biologically interpretable, NMF mutational sig-
nature model intact. To this end, we propose a multiplicative adjustment, i.e. rescaling 
the net outcome of additive mutation signatures by multiplying the profile with a modu-
latory mutational signature that can be iteratively learned from the observed mutation 
data using the log-likelihood maximization algorithm. We suggest that such modulatory 
processes biologically relate to cancer sample specific DNA repair propensities with tis-
sue or cancer type specific profiles.

Firstly, we investigate to what extent the 96-channel mutational counts across the 
PCAWG-data are explained by the known mutational signatures by carefully examin-
ing the residuals, i.e., the differences between the observed and model-fitted muta-
tion counts. To achieve this, we contrast the observed somatic mutation counts in the 
PCAWG-data against the reconstructed mutation counts by the NMF model [4]. Our 
results reveal systematic structure in the residuals over the 96 mutation types despite 
the high quality of the additive NMF model fits. We next focus on cancer samples that 
cluster in their residual profile and develop a probabilistic model to explain the residu-
als, i.e., cancer-specific multiplicatively acting modulatory mutational signatures. We 
then infer such modulatory signatures and their activities from somatic mutation data, 
applying it across the tumour types in PCAWG-data. We show that the aforementioned 
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non-random structured residuals are almost fully removed by including a multiplicative 
process to extend the additive model.

Results
Residual analysis of the NMF model reveal unexplained structure

We evaluated two residuals, an additive and a multiplicative one,

between the observed mutation data Xk
j  and the NMF model fits X̃k

j  from [4], for each 
sample k and feature j. This resulted in a 96-feature residual profile vector for each can-
cer sample (Fig. 1A).

To investigate the structure of both types of residuals we applied hierarchical cluster-
ing, using correlation as a similarity metric, (see “Hierarchical clustering” in “Methods” 
section) on the sample-wise residues of both types in the PCAWG-data. The clustering 

(1)
δkadd.,j =Xk

j − Xk
j ,

δkmul.,j =Xk
j /X

k
j ,

Fig. 1 A Observed and predicted mutation counts (first and second panels), additive residual X − X̃  
(third panel) and multiplicative residual X/X̃  (fourth panel), where X is observed and X̃  is NMF model fitted 
mutation counts of one example sample (colorectal adenocarcinoma (ColoRect-AdenoCA) PCAWG sample 
SP16934). Bars are colored according to their base SBS type. B Multiplicative and additive residual correlation 
clustering. The upper triangle represents the multiplicative residual correlations, while the lower triangle 
represents the additive residual (the lower triangle correlation values are ordered according to the ordering 
of the upper triangle). Correlation scale is limited to the range of [0, 1]. The color-bar on the right show the 
cancer type (refer to Additional file 1: Fig. S1C for legend). C Mean residual profiles of the zoomed in block 
consisting mostly of Liver-HCC samples (see text). D A scatter plot of the mutation counts vs. NMF model 
predicted counts for this Liver-HCC cluster shows a systematic overestimation of C>G and underestimation 
of T>A mutations. These systematic biases are also evident from the mean multiplicative residual profile of 
panel C 
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results revealed systematic residual structure (Fig. 1B), much of it shared between the 
two types of residues. As a control, we considered a scenario where the model would 
fully explain the observed mutation count data and the residues would consequently 
reflect only genuine stochasticity of the underlying mutational processes as given by the 
noise associated with the Poisson process [17]. To this extent, we re-sampled observed 
mutation counts vectors from the PCAWG data using the counts as Poisson rates. As 
expected, computing residuals between such a “perfect” model and the input data shows 
almost no residual structure upon clustering (Additional file 1: Fig. S2).

Cluster analysis connects residuals structure with cancer type

Visual inspection of samples clustered by residuals Fig. 1B indicated clusters to contain 
same tumor types (201 clusters in total, see “Hierarchical clustering” in "Methods" sec-
tion). We further performed a dimension reduction by uniform manifold approximation 
(UMAP [18]) of multiplicative residuals which also showed considerable clustering by 
cancer type Additional file 1: Fig. S1).

Next, we examined several individual clusters, calculating cluster specific average 
residual and mutation count profiles and inspecting mutation counts with respect to 
each mutation type. The first cluster we examined consists of mostly liver hepatocellular 
carcinomas (henceforth Liver-HCC cluster) (n = 159 out of 163 total) (Fig.  1C,D). In 
this cluster, both systematic underestimation and overestimation of the NMF model pre-
dicted mutation counts are visible in C>G and T>A trinucleotide contexts, respectively. 
The fact that the predicted mutation counts are displaced compared to the diagonal in 
these mutation contexts, resulting in hundreds (mean of 281 mutations per sample in 
C>G and 642 in T>A) of incorrectly predicted mutations, suggests that this deviation is 
inconsistent with random unbiased source, but rather a shortcoming of either the addi-
tive model itself or the mutational signature set.

To check to what extent the clusters tend to form cancer type specific groups, we 
ranked the clusters by their entropy as evaluated by cancer type labels. Clusters con-
sisting of only one type of label would have zero entropy, whereas higher entropy val-
ues signify more varied label composition in the clusters. Several zero-entropy clusters, 
indicating a single cancer type, are formed by skin melanoma samples—(n = 18), (n = 
17), (n = 14) and (n = 10)—and are characterized by distinctively high mutation num-
bers. However, despite these samples having similar overall mutation spectra, their 
residual profiles are quite different, possibly caused by different active mutational signa-
ture assignment based on associated clinical data or different mutagenic processes and 
hypermutability. The aforementioned Liver-HCC cluster is the lowest-entropy cluster (S 
= 0.141) aside from zero-entropy ones above. All clusters had a specific residual pattern 
suggesting a systematic, i.e. non-random, mutation count residue distribution. We used 
the same clustering methodology to analyse the alternative model fit of Bayesian-NMF 
based method SignatureAnalyzer results. Fewer cancer type-specific clusters are formed 
and they have lower residue correlations. This is expected given that SignatureAnalyzer 
model fit allows many more signatures to be active per sample (median is 15, compared 
to 4 in the SigProfiler fit). Nevertheless, the fit is, again, not free of systematic structure 
of the residues (Additional file 1: Fig. S5).
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Extending the additive NMF model to encompass multiplicative modulatory mutational 

signatures

The evident non-randomness of the mutation count residues suggests that the additive 
NMF model does not fully explain the observed mutations. If the number of mutations 
were just underestimated by the model, additional mutational signatures could be a 
solution. However, we also observe systematic mutation count overestimation. It follows 
that either the entire mutational signature set must be edited and refined, perhaps to 
separate DNA damage and DNA repair effects [16], or the additive model modified to 
correct for both underestimation and overestimation of mutations counts.

Here we extend the additive mutational signature model to include a multiplicative 
term, allowing for the correction of both overestimation and underestimation of the pre-
dicted mutation numbers. Biological justification for the modification is to model DNA 
repair processes that may have sample specific propensities, as well as cancer or tissue 
type specific profiles. For a j-th mutation type of the k-th sample, we add a multiplicative 
term (1+ ckrj) , where rj is the j-th multiplier of a global modulatory process and ck is the 
activity of that process in k-th sample. Then the observed counts are distributed as,

where X̃k
j =

∑Nsig

i=1 a
k
i µ

i
j is the standard additive part where each mutational signature, 

µi , contributes by its sample specific activity, aki  . The model allows for the modulatory 
process r to be inactive in any given sample by setting ck = 0 , returning then the additive 
model, X̃k

j  , which is equivalent to the NMF model when Kullback-Leibler matrix norm 
is chosen [17].

Modulatory process inference

Simulated data benchmark

We first performed maximum likelihood inference of simulated modulatory processes 
(Fig.  2A) and their sample specific activities. We generated 50 simulated modulatory 
process mutational signatures which were used to modulate the standard sample spe-
cific additive signatures model. This product was then used to draw a set of 100 can-
cer samples (each had their cancer specific additive signatures and their activities) for 
each modulatory process (see “Data simulation” in "Methods" section). In the inference, 
we took the additive signatures µ as given. The maximum likelihood method inferred 
the signature activities a as well as the data set specific modulatory signatures r with a 
mean cosine similarity of 0.86 (Fig. 2D), together with their activities c with a total mean 
squared error (MSE) of 0.012 (Fig. 2E). Figure 2B depicts a clear systematic discrepancy 
between the observed counts and additive model fits when the simulated data contains 
a modulatory process. The systematic errors mirror the underlying modulatory process 
(Fig.  2A), are closely reminiscent to the Liver-HCC cluster samples shown in Fig.  1C, 
and provide intuition on how would such effects manifest in the PCAWG data and the 
corresponding fits. In contrast, the extended model as given by Eq. 2 can fit the sample 
mutation counts without systematic errors (Fig.  2C).

Additionally, we compared the true mutational signature activities, used to generate 
the synthetic mutation catalogues, to the activities inferred under both models—additive 

(2)Xk
j ∼ Pois((1+ ckrj)X̃

k
j ),
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(no modulatory process active) and extended (incorporating the inferred modulatory 
process). The per-sample (additive) activity vectors are essentially the same regardless 
of the model (mean cosine similarity 0.97 when comparing additive vs. extended model 
inferred activities), suggesting that signature re-fitting is not sufficient in explaining the 
variation induced by multiplicative interactions.

Inclusion of modulatory processes greatly improves the model fits

We next applied the inference method to the Liver-HCC cluster discussed above. The 
fit shows a substantial improvement compared to the NMF additive model, especially in 
C>G and T>A mutation contexts (Fig. 3A,C). The MSE between predicted and observed 

Fig. 2 A An example of a simulated modulatory process: T>C mutation features are modulated 
downwards and T>A mutations are modulated upwards. B Simulated versus predicted mutation counts 
by additive model in one dataset (affected by the example modulatory signature). C Simulated versus 
predicted-modulated with the modulatory process mutation counts in the example dataset (corrected with 
the inferred modulatory process). D The cosine similarity of simulated and inferred modulatory signatures. 
E Simulated versus inferred modulatory process activity values for all 50 datasets (each dataset is colored 
differently)

Fig. 3 A The modulatory process r inferred for samples in Liver-HCC dominated cluster of PCAWG data 
shown in Fig. 1. B The corresponding modulatory signature activity histogram. C SBS base mutation 
type-specific scatter plots of observed vs. predicted (additive + modulatory process model) mutation counts 
in this cluster. In contrast to model without the modulatory process (Fig. 1D), no systematic deviation is 
visible
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mutation counts decreases between two to ten times across all mutation contexts. Aside 
from removing the structured systematic residues in specific base mutation channels, 
the modulatory process also decreases the variance of mutation count predictions in 
base channels where systematic residual patterns were not present.

The inferred modulatory process for the Liver-HCC cluster is highly similar to the 
mean multiplicative residue of the cluster (Fig. 3A). This indicates an efficient capture 
of a multiplicatively acting component that was not part  of the additive NMF model. 
The activities of the modulatory process range from 1.15 to 2.5 (Fig. 3B). It is clear that 
a single modulatory process can in effect remove a large systematic bias with the price 
of only a modest increase in model complexity which we will discuss shortly. As most 
samples in this cluster are liver cancers, this modulatory signature may represent some 
genotoxin-repair process interaction, specific to this cancer type with sample specific 
intensities.

Next, we inferred modulatory processes for each cancer type separately. The log-like-
lihood gain (Fig. 4A) comparing the NMF fits to our extended model show that differ-
ent cancer types are affected to different extents and there is heterogeneity in terms of 
modulation between the cancer samples of the same type, i.e. some samples have much 
higher log-likelihood gain than the rest (e.g. in colorectal adenocarcinoma). Therefore, 
the inferred modulatory processes are selectively active and there is significant variance 
in its strength of activity. The median total log-likelihood gain per cancer type (summed 
over samples) is ∼ 104 . The MSE of predicted mutation counts across all PCAWG sam-
ples is reduced by a factor of ∼ 2.5 . The inclusion of one modulatory process per cancer 
type (96 free parameters) and one extra activity per sample is thus comfortably justifi-
able for majority of cancer types using any reasonable model selection criteria such as 
the BIC.

We ranked the cancer types according to the total log-likelihood gain, normalized by 
the number of mutations in the observed mutation catalogues (Fig. 4D). Three cancer 
types stand out in particular—colorectal adenocarcinoma, skin melanoma and liver 
hepatocellular carcinoma. There is a clear reduction in the normalized additive resi-
due between NMF additive model and the extended model with the modulatory pro-
cess (Fig.  4B), especially so in the liver cancer. All three cancer types show different 
modulatory process impacts (the mean of the modulatory process over the samples, i.e. 
�1+ ckr

j�k ) (Fig. 4C, Additional file 1: Fig. S4). The inferred modulatory signatures have 
both some degree of cancer type specificity and common patterns in modulated muta-
tion channel values, furthermore, certain cancers of related organ systems have similar 
modulatory signatures and are clustered close to each other, e.g. stomach, pancreatic, 
esophageal, liver and biliary cancers (Fig. 4E).

Additive mutational signature activities predict the impact of modulatory processes

We used random forest and linear regression models to assess whether there is a con-
nection between specific mutational signatures from the PCAWG study and the inferred 
impact of the modulatory process. We trained the models on the sample-wise signature 
activities of the PCAWG data, to predict the log-likelihood gains. Stratified, five-fold 
(each fold has the same sample fraction of each cancer type, if possible), cross-validation 
of the random forest regressor model, repeated 10 times, showed that signature activities 
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are good predictors of the log-likelihood gain, with the mean R2 statistic across the folds 
being between 0.85 to 0.93 in each run. Interestingly, signature SBS5 is reported to be by 
far the most important predictor in every fold ( > 0.7 relative importance). However, the 
linear model performed worse in log-likelihood prediction—the best average R2 statistic 
was ∼ 0.5.

Fig. 4 A The log-likelihood gain  (log10 scale) after applying the inferred modulatory processes for each 
type of cancer. The red line marks the mean. B The comparison of additive residues of three models for 
CRC, melanoma and liver cancers. Baseline refers to the Poisson-resampled model, additive model refers 
to the NMF model [4] and extended model—the additive model together with the modulatory process. 
The residues are normalized and colored by total sample-wise mutation burdens. C The impact, i.e. the 
mean of the modulatory process effect in the three selected types of cancer. D The total log-likelihood gain, 
normalized by the total mutation burdens. E Hierarchically clustered modulatory signatures of each cancer 
type. The mean modulatory signature profile across all cancer types is displayed separately at the bottom
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Discussion
We carried out an investigation of mutations left unexplained by the mutational signa-
ture analysis done by Alexandrov et al. in 2,780 cancer whole-genomes (PCAWG) [4, 
15]. While the signature analysis had resulted in an excellent fit in terms of cosine simi-
larity, we were still able to observe non-random structure in the residuals. This struc-
ture was evident in samples clustering by tumor type, most notably in a subset of skin 
melanomas and liver cancers. Potential causes for clustered residuals include biologi-
cal variability in DNA damage and repair mechanisms active in the tumors, interplay of 
these mechanisms [16] as well as technical reasons such as the procedure used to extract 
mutational signatures in PCAWG [4].

To explore the cause of structured residuals, we extended the additive mutational sig-
nature model with a multiplicative term capable of correcting both overestimated and 
underestimated mutation counts. Our modified model, adding only a relatively small 
number of parameters to the original model, was able to find cancer type specific modu-
latory processes explaining a large amount of mutations left unexplained by the additive 
model (Additional file  1: Fig. S3). Particularly in liver, colorectal and skin cancers the 
improvement in model fit was substantial, perhaps due to the heterogeneity in terms of 
mutational mechanisms active in these tumor types.

Surprisingly, we found mutational signature SBS5 activity in a tumor to be a strong 
predictor of inferred modulatory process strength. SBS5 is a clock-like signature with a 
“featureless” mutation spectrum appearing in most cancer samples across all types [4]. 
The signature has been associated with aging, tobacco smoking [19] and deficient nucle-
otide excision repair (NER) [20], but no universally accepted causative mechanism has 
been established to date. Other studies have connected the exposure of SBS5 with the 
extent of oxidative DNA damage and NER activity [21] and pointed out cancer-specific 
transcriptional strand biases of this signature [22]. In some cancers like liver hepato-
cellular carcinoma, SBS5 contributes most mutations to the mutation types where the 
systematic deviation is most observed, i.e. C>G and T>A. In these mutation types, sig-
nature analysis with the additive NMF model results in 24% overestimation in C>G and 
32% underestimation of T>A. These discrepancies are quite substantial—in total, there 
are hundreds of thousands of mutations that are unaccounted for.

Making a definitive disentanglement between DNA damage and repair has proven 
difficult, even though the DNA repair mechanism is a crucial component, as remov-
ing mutations via DNA repair could explain the overestimated mutations. It has been 
previously shown that the mutagenetic interaction between two defective DNA repair 
components—polymerase proofreading and mismatch repair (MMR)—could not be 
summarized as simply an additive product of their separate effects on the genome, 
but rather that such a combination results in unique mutational profiles [23]. Building 
upon increasing evidence of non-additive mutational signature interplay, another recent 
study has also incorporated a similar multiplicative component in mutational signa-
ture interaction modelling, and extracted new MMR signatures [24]—however, unlike 
in that model, our modulatory process is also capable of modelling the reduction, i.e. 
the removal of the mutation counts, rather than just amplification. Similarly, multiplica-
tive interactions, representing various genomic properties, were modelled in Vohringer 
et al. [25]. Knockouts of EXO1 gene, coding for a component in MMR and also DNA 
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double-strand break repair (DSBR) pathways [26], have been implicated to cause muta-
genetic patterns similar to signature SBS5 [27, 28]. Interestingly, EXO1 has been also 
described to have a role in NER pathway [29].

Additionally, we have investigated the possible connection between the log-likelihood 
gain in our model and PCAWG samples, associated with MMR deficiency, i.e. micros-
atellite instability (MSI) positive samples. We discovered a positive correlation between 
the MSI sample mutation burden and the log-likelihood gain ( R2 = 0.45 ). As a follow-
up, we have labelled PCAWG samples with >30,000 mutations as high tumour muta-
tion burden (H-TMB) samples and found that they share the same pattern—consistently 
higher log-likelihood gain within the same cancer type. However, we did not find strong 
evidence that the per-mutation log-likelihood gain represents a similar connection. For 
cancer types with at least n = 5 MSI samples, namely uterine, stomach and colorectal 
adenocarcinomas (12/51, 6/75 and 9/60 MSI samples, respectively), only uterine can-
cers show a significant difference between MSI and non-MSI samples in terms of per-
mutation log-likelihood gain (two-sided Kolmogorov-Smirnov test, p < 0.0001). While 
this finding has a potential for further investigation (outside the scope of this study), we 
believe that this is not yet sufficient evidence to link modulatory processes to the MSI/
H-TMB tumour status.

Our proposed multiplicative model is able to summarize the systematic deviations—
mutation count overestimation and underestimation—to the point that the remaining 
variance is reminiscent of Poisson process related noise. One of the aims of our model 
was that it extends the biologically highly interpretable NMF framework treating the 
modulatory process as a correction to the standard additive model. In this spirit we did 
not seek here a de novo joint inference of mutational signatures and modulatory pro-
cesses but took the PCAWG signature set and analysis as the gold standard baseline and 
built upon that. A joint inference would likely require substantial method development 
and is clearly beyond the scope of our study. We hope that the modulatory signatures 
help to concisely represent and summarize this purported DNA damage/repair interac-
tion, which can be quantified at the sample and mutation type levels. We see that the 
modulatory signatures are often either cancer type-specific or shared amongst cancers 
of organs with a common role in the human body, e.g. gastrointestinal cancers. While 
our analysis was performed with the canonical 96 mutation types (i.e. triplets), similar 
analyses can be conducted in larger contexts (e.g., 5-mers) with sufficient data. Never-
theless, we believe that our study with the proposed model gives of an easily inferrable 
summary of previously undefined DNA repair/damage interactions and undiscovered 
modulatory signatures, and so identifies an interesting direction where to expand the 
important signature analysis field.

Conclusions
The state-of-the-art mutational signature set, derived using additive methods (i.e. NMF) 
[4], exhibits non-additive properties which are visible through non-random residues 
between the data and model. An extension to the additive model to include a multiplica-
tive component—a modulatory process—comprehensively addresses these residues. The 
modulatory processes form cancer specific profiles and may represent sample specific 
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DNA repair propensities. These results are indicative of a promising research direction 
for the mutational signature analysis field.

Methods
Data

We used the mutational signature set, their inferred sample level activities (also known 
as exposure or mutation attribution) and the corresponding mutation count data from 
Alexandrov et al. study [4] to evaluate the residues using Eqs.  1. The mutation count 
data was derived from the Pan-Cancer Analysis of Whole Genomes (PCAWG) [15] and 
consists of 2,780 cancers across 37 cancer types, totalling in 48,276,930 mutations. The 
residues quantify any discrepancies between observed versus model predicted muta-
tional counts in the single-base substitution (SBS) somatic mutation class. The muta-
tional signature set, extracted using NMF-based SigProfiler method in the original study, 
forms the basis of the contemporary mutational signature database in the Catalogue Of 
Somatic Mutations In Cancer (COSMIC) [30], and is used as the primary mutational sig-
nature set for this analysis. Qualitatively similar results are also evident using the alterna-
tive mutational signature set and mutation-sample attributions from the Bayesian-NMF 
method, SignatureAnalyzer [4]. All these data are obtained from the publicly accessible 
Synapse repository (accession ID: syn11726601). Additionally, a list of PCAWG samples 
with the microsatellite instability (MSI) positive label have been obtained from Signatu-
reAnalyzer study source code repository at https:// github. com/ getzl ab/ Signa tureA nalyz 
er. To avoid infinite values in division, i.e. multiplicative residue calculation and also log-
arithmic transformation, a pseudo-count of 1 is added to all mutation counts of every 
mutation type.

Hierarchical clustering

Unsupervised hierarchical clustering was performed using scipy [31] interface (scipy.
cluster.hierarchy). Multiplicative residue correlations are clustered using complete link-
age (farthest-neighbor clustering) using a pre-defined threshold, which in this analysis is 
0.75—this number is chosen arbitrarily to balance the number of clusters and their sizes 
(e.g. to avoid one-sample clusters). In the triangularly split heatmap Fig.  1, the upper tri-
angle represents the multiplicative residue correlations, and the lower—additive residue 
correlations (the sample order is the same as in the upper triangle, i.e. for both residues, 
the sample order is defined by only the multiplicative residue correlations). We calculate 
the entropy as S = −

∑
i pi log(pi) , where pi is the i-th cancer type probability in the 

cluster (calculated from the frequencies of the cancer type labels) and we only consider 
the clusters that have at least 10 samples.

Additive model

Having 6 base mutation types (only the pyrimidine-base of the mutated base pair is 
considered)—C>A, C>G, C>T, T>A, T>C, T>G—mutations are considered in a trinu-
cleotide context (one base from both 5’ and 3’ sequence ends), totalling in 96 mutation 
type mutational signature. The signatures are normalized so that they sum up to 1, i.e. a 
mutational signature is a probability distribution over 96 features. The standard muta-
tional signature model assumes a linear model, i.e. the predicted mutational catalogue 

https://github.com/getzlab/SignatureAnalyzer
https://github.com/getzlab/SignatureAnalyzer
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(spectra) is an additive product of weighted mutational signatures. Given the number of 
samples NS , number of channels/features NC and number of mutational signatures NSig , 
it can be mathematically expressed as follows:

Here X̃k
j , k = 1, . . . ,NS , j = 1, . . . ,NC is the model predicted mutation count for j-th 

channel of sample k, NSig is the number of mutational signatures, µi
j is the mutation 

probability in j-th channel of i-th mutational signature and aki  is the activity of i-th muta-
tional signature in k-th sample.

Data simulation

The simulated mutation catalogues are created by taking 10 random mutational signa-
tures µ from COSMIC (to simulate a biologically plausible cancer type), of which ran-
dom 4 are selected to be active in a sample, simulating their non-negative real-valued 
activities a and then affected by a simulated modulatory process r with randomly drawn 
activities c. The activities a are independently drawn from a log-normal distribution with 
scale 1.5 and mean 0, and the initial mutation counts are given by the dot product of a 
and µ . Under the Poisson model, multiplying the resulting mutation intensities with the 
chosen modulatory process r and the respective activities c gives the synthetic mutation 
spectra, which are then used as Poisson rates to simulate the “observed” data. The linear 
combination of the signatures µ (kept fixed) and the activities a (that are inferred de 
novo with the log-likelihood maximization algorithm) give predicted mutational cata-
logues, representing the additive simulated model fit that does not take into account the 
modulatory process.

In each simulated data instance the simulated modulatory process r affects the muta-
tion channels in two out of 6 SBS base classes so that the mutation channels in one 
have only positive values and in the other—only negative. The value that determines 
the modulation in each mutation channel of the selected base type (e.g. C>G) is drawn 
from U(0, 1) , additionally, noise drawn from N (0, 0.05) is added for all 96 features. The 
strength of modulation effect is dependent on the modulatory process activity vector 
c, which is randomly drawn from U(0, 1) . Both simulated r and c are gauged, meaning 
that r is divided and c is multiplied with the highest absolute value of r (furthermore, 
the modulatory process cannot act negatively, i.e. rj and ck have to meet the condition 
1+ ckrj ≥ 0 ). The gauge plays a role similar to the normalisation of each additive signa-
ture µi to sum up to 1 and removes a degenerate direction from the inference.

Modulatory process inference by maximizing the log‑likelihood

The modulatory process and its activities in samples are inferred using maximum likeli-
hood method by gradient ascent. Given the number of samples NS , number of muta-
tion types (channels) NC , number of mutational signatures NSig , the additive model fit 
X̃k
j =

∑NSig

i=1 aki µ
i
j and the active modulatory process pkj = 1+ ckrj , the likelihood for the 

data Xk
j  under Poisson model (Eq. 1) is given by the function

(3)X̃k
j =

NSig∑

i=1

aki µ
i
j
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The log-likelihood of the above is given by

Since the factorial of Xk
j  is simply an additive constant and not relevant to the log-likeli-

hood score, it is removed for subsequent calculations. The derivatives with respect to a, 
r and c ( µ are treated as given in the inference algorithm) are:

The optimization is done with scipy.minimize interface using truncated Newton (TNC) 
algorithm, passing the log-likelihood score and parameter-specific derivative functions 
described above. The TNC algorithm restarts with randomly initialised parameter val-
ues until a successful convergence is attained or the inference loop exceeds 100 attempts. 
For the simulated data benchmark, the activity and modulatory process inference is iter-
ative, i.e. repeated several times (three by default) inferring one after the other.

After every iteration of the optimization algorithm, both r and c are gauged (see “Data 
simulation” section) to ensure favorable direction of the gradient.
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