

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

ELSEVIER

Contents lists available at ScienceDirect

Medical Hypotheses

journal homepage: www.elsevier.com/locate/mehy

Letter to Editors

Diabetes and severity of COVID-19: What is the link?

ABSTRACT

In Diabetes Mellitus the loss of capacity to regulate immunity, the reduction of pulmonary functions and the pro-thrombotic state determine the severity of COVID-

Diabetes could be a risk factor for severity in patients with Covid-19. Acute respiratory distress syndrome and Disseminated Intravascular Coagulation usually occur in the second week of the disease, concomitantly with cytokine storm and hypercoagulable state [1].

Diabetes could contribute to the loss of capacity to regulate immunity. The dysfunction of the autonomic nervous system might determine the pro-inflammatory state in diabetic Covid-19 patients, as a result of a dysregulation of the inflammatory reflex, where vagal afferent fibres, receiving sensory inputs from the immune cells, activate vagal efferent fibres, responsible for mitigating macrophage activation [2].

Furthermore, diabetes is associated with structural alterations in the lung, as the thickening of the pulmonary basal laminae and of the alveolar epithelium, concurrent with reduction of DLCO [3]. Other aspects are a higher prevalence of a restrictive spirometry pattern and a decreased respiratory muscle endurance [4]. These abnormalities might worsen conditions associated with increased pulmonary demands, such as respiratory infections [4]. In addition, Diabetic Autonomic Neuropathy could induce functional alterations in the regulation of bronchomotor tone and in the control of ventilation [3].

Finally, diabetes mellitus is considered a pro-thrombotic state in which hyperglycemia and inflammation directly contribute to abnormal platelet activation, higher concentration of fibrinogen and other coagulation factors [5]. Moreover generation of AGEs and ROS leads to an endothelial injury, with an increased levels and structural alterations in von Willebrand factor, that are associated with thrombotic angiopathies [6]. In Covid-19, which may be associated with both venous and arterial thromboembolic disease, due to inflammation, hypoxia, immobilization, and disseminated intravascular coagulation [7], diabetes could further contribute to hypercoagulable state.

Funding

The authors did not receive any specific grant from funding agencies

in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mehy.2020.109923.

References

- Li Taisheng, et al. Clinical observation and management of COVID-19 patients. Emerg Microbes Infect 2020;9(1):687–90.
- [2] Tracey KJ. The inflammatory reflex. Nature 2002;420(6917):853-9.
- [3] Pitocco D, et al. The diabetic lung A new target organ? Rev Diabet Stud 2012;9(1):23–35.
- [4] Fuso L, et al. Diabetic lung, an underrated complication from restrictive functional pattern to pulmonary hypertension. Diabetes Metab Res Rev 2019;35(6):e3159.
- [5] Soares AL, et Al. Hemostatic changes in patients with type 2 diabetes mellitus. Rev. Bras. Hematol. Hemoter. vol.32 no.6 S\u00e3o Paulo 2010.
- [6] Oggianu L, et al. The oxidative modification of von Willebrand factor is associated with thrombotic angiopathies in diabetes mellitus. PLoS ONE 2013;8(1):e55396.
- [7] Klok FA, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020.

D. Pitocco^{a,*,1}, L. Viti^{a,1}, L. Tartaglione^a, M. Di Leo^a, G.E. Rizzo^a, A. Manto^a, A. Rizzi^a, S. Caputo^a, A. Pontecorvi^b

^a Diabetes Care Unit, Fondazione Policlinico A.Gemelli IRCCS, Rome, Italy
^b Department of Endocrinology, Fondazione Policlinico A. Gemelli IRCCS,
Rome, Italy

E-mail address: dario.pitocco@policlinicogemelli.it (D. Pitocco).

¹ Have equally contributed to the manuscript.