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Abstract: The mitochondrial DNA (mtDNA) D-loop of endangered and critically endangered breeds
has been studied to identify maternal lineages, characterize genetic inheritance, reconstruct phyloge-
netic relations among breeds, and develop biodiversity conservation and breeding programs. The aim
of the study was to determine the variability remaining and the phylogenetic relationship of Martina
Franca (MF, with total population of 160 females and 36 males), Ragusano (RG, 344 females and
30 males), Pantesco (PT, 47 females and 15 males), and Catalonian (CT) donkeys by collecting genetic
data from maternal lineages. Genetic material was collected from saliva, and a 350 bp fragment of
D-loop mtDNA was amplified and sequenced. Sequences were aligned and evaluated using standard
bioinformatics software. A total of 56 haplotypes including 33 polymorphic sites were found in
77 samples (27 MF, 22 RG, 8 PT, 19 CT, 1 crossbred). The breed nucleotide diversity value (π) for
all the breeds was 0.128 (MF: 0.162, RG: 0.132, PT: 0.025, CT: 0.038). Principal components analysis
grouped most of the haplogroups into two different clusters, I (including all haplotypes from PT and
CT, together with haplotypes from MF and RG) and II (including haplotypes from MF and RG only).
In conclusion, we found that the primeval haplotypes, haplogroup variability, and a large number of
maternal lineages were preserved in MF and RG; thus, these breeds play putative pivotal roles in the
phyletic relationships of donkey breeds. Maternal inheritance is indispensable genetic information
required to evaluate inheritance, variability, and breeding programs.

Keywords: genetics; mitochondrial DNA; donkey; Martina Franca; Ragusano; Pantesco; Catalonian

1. Introduction

The genus Equus is the only remaining member of the family Equidae, which includes
both extant and fossil species [1]. The noncaballine forms include the African wild ass
Equus africanus; zebras Equus quagga (formerly Equus burchellii), Equus grevyi, and Equus
zebra (with two subspecies Equus zebra zebra of South Africa and Equus zebra hartmannae
of Namibia and Angola); and the Asian wild asses Equus kiang and Equus hemionus (with
subspecies Equus hemionus kulan and Equus hemionus onager) [2,3]. The domestic donkey
E. africanus is accepted as a subspecies of the African wild ass [4,5].

Geographically isolated donkey populations, referred to as breeds here, including
Martina Franca (MF) of the continental Puglia region, Ragusano (RG) of the island province
of Sicily, Pantesco (PT) of the small island of Pantelleria (85 km2), and Catalonian (CT) of the
Spanish Catalonian region, share similar phenotypes due to genetic inheritance/ecological
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constraints and the outcomes of biodiversity conservation programs. The natural history of
the donkey is of interest because the desire to safeguard genetic biodiversity is growing [6]
and because the three autochthonous Italian breeds are considered endangered, including
MF with 160 females and 36 males (Associazione Nazionale Asino Martina Franca) and
RG with 344 females and 30 males (Domestic Animals Diversity Information System),
which are critically endangered, as is PT with 47 females and 15 males (Associazione
Italiana Allevatori).

The phylogeny of the domestic donkey is not yet well understood. Historical files
show that the Roman Empire dominated the Iberian Peninsula for ~613 years from 218 BC
to 395 [7]. At that time, the MF donkey was commonly used for transport and military
operations; thus, it is presumed that it was widely distributed across Spain [8].

Later, Spain dominated central Southern Italy for ~148 years from 1559–1707 BC,
and CT was likely introduced during this time in Italy. However, phenotypic traits and
anthropological documents are often insufficient to ascertain breed history, origin, and the
occurrence of genetic exchange [9]. Instead, mitochondrial DNA (mtDNA) sequencing
can determine intra- and inter-species historical, biogeographic, and phylogenetic rela-
tionships [10]. The extrachromosomal mitochondrial genome, unlike the nuclear one, is
inherited only through the maternal lineage, is haploid, and does not undergo genetic
recombination [11,12].

The application of clonal polymorphisms to study the genetics of domestic animals is
valuable [8,10]. Variation in the D-loop region of mtDNA and the lack of recombination
in mtDNA make it a highly informative tool for matrilineal studies, for determining
intraspecies phylogenetic relationships, and for characterizing intrabreed variation [12–16].
mtDNA studies of dog breeds, which have greater phenotypic and working variability
compared to the donkey, which is relatively uniform, have revealed genetic information on
their domestication, evolution, and hereditary diseases [17,18].

mtDNA studies of equine breeds were used to investigate their origin [19–26] and
to track breed migration and distribution by comparing the maternal lines in different
populations [27,28]. The complete donkey mitochondrial genome sequence was essential
to date the divergence from the horse between 8 and 10 MYA [29,30], which is earlier than
paleontological data [24,31] and data from restriction endonuclease analysis [32].

Interestingly, two lineages of the domestic donkey were identified using mtDNA:
Clade 1 for the Nubian lineage (E. a. africanus) and Clade 2 for the Somali lineage (E. a.
somaliensis). These lineages resulted from two separate domestication events among two
wild ancestral populations located in (1) the Atbara region and Red Sea Hills (NW Sudan)
and in (2) southern Eritrea, Ethiopia, and Somalia [5,33–36]. However, the existence of
another ancestor of the domestic donkey belonging to an unrecognized extinct African
wild population has been suggested [6,36,37].

Genetic studies on the biodiversity of the Italian donkey are limited and have primarily
focused on variability among protein markers and microsatellites [38–40]. Recently, whole
genome sequencing [41] and mtDNA [42] were used to study the evolution and genetic
diversity of Italian donkey populations.

In this study, we evaluated the mtDNA D-loops of endangered and critically endan-
gered Italian donkey breeds. mtDNA sequences, single-nucleotide polymorphisms (SNPs),
and haplotypes were identified and analyzed to investigate the matrilineal assortment
within and between asinine breeds with similar phenotypes and to investigate the ori-
gin and phylogenetic relationships between asinine breeds to better manage rare donkey
breeds by establishing proper breeding and conservation programs.

2. Materials and Methods

One-hundred and twenty-three salivary samples were collected from eight official
breeding stations (Supplementary Table S1 additional material; Istituto Incremento Ip-
pico associated with Facoltà di Medicina Veterinaria Università degli Studi di Teramo
(Fondo Rustico Chiareto) and Centro di Conservazione del Patrimonio Genetico dell’Asino
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della razza Martina Franca (Azienda agricola Russoli Crispiano); Istituto Incremento Ip-
pico Regione Campania Santa Maria Capua Vetere and Azienda Agricola Ciro Schirò
Corleone-Monreale unfortunately have no successful sequenced samples) in accordance
with the standards for care and protection of animals used for scientific purposes Directive
2010/63/EU. This study was approved by the Ethics Committee (Protocol No. 62128 of
27 April 2018). The samples collected were from free-range animals with certificates of
origin, which were used to exclude animals of the same maternal descent, in order to
increase genetic variability in the sample set. Seventy-seven samples, including MF = 27,
RG = 22, PT = 8, CT = 19, and 1 Italian crossbreed, were sequenced successfully (Figure 1),
whereas the remaining 46 samples were corrupted.
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Figure 1. Breed distribution. The red perimeters pinpoint the original Mediterranean distribution of the four donkey breeds
investigated: Martina Franca (MF), Ragusano (RG), Pantesco (PT), and Catalonian (CT).

Genetic material was collected from saliva using a sterile oral swab, transferred to
FTA mini-cards, and stored in multibarrier pouches (Whatman Labware Products, U.K.).
The reference material is available at the O.V.U.D. (University Veterinary Hospital) Centre
for the breeding of large animals at the Faculty of Veterinary Medicine, University of
Teramo, Italy. Based on the complete donkey mtDNA sequence (GenBank X97337) [29],
two pairs of primers were designed to amplify the hypervariable region between sites 15390
and 15750 [43], which is a fragment of the D-loop mtDNA (http://bioinfo.ut.ee/primer3,
accessed on 4 April 2019). After extraction from the FTA mini-card, DNA was amplified
by PCR in a 25 µL reaction containing 50 ng of DNA, 2.5 mM MgCl2, 0.2 mM each dNTP,
0.5 µM PER 5′- CC AAG GAC TAT CAA GGA AG-3′ and FOR 5′-TTG GAG GGA TTG CTG
ATT TC-3′ primers, 1× PCR buffer, and 1 U of Taq DNA polymerase (Fermentas, Thermo
Fischer Scientific). The amplification was performed using the Mastercycler thermal cycler
(Eppendorf, USA) with the following conditions: initial denaturation at 94 ◦C for 5 min
followed by 35 cycles of 94 ◦C for 30 s, 58 ◦C for 30 s, 72 ◦C for 30 s, and then, a final
extension at 72 ◦C for 5 min.

The raw sequence trace files were checked for the presence of ambiguous bases using
the software Chromas v.2.5.1 (http://www.technelysium.com.au/, accessed on 4 April
2019). Sequences were aligned with Muscle; in Supplementary Table S2 of the Supple-
mentary Materials is the alignment with other Italian donkey breeds [42]. The number of
polymorphic sites (parsimony informative and singleton sites), the number of haplotypes

http://bioinfo.ut.ee/primer3
http://www.technelysium.com.au/
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(private and shared haplotypes), nucleotide diversity, and the average number of nucleotide
differences were calculated according to Tajima (1983) and Nei (1987) using MEGA7, Fu’s
neutrality statistic test, and Tajima’s D test with DnaSP 6.12.01, as well as using a maximum
parsimony analysis and the maximum composite likelihood method. The median-joining
network (for sequences, see Supplementary Table S3 in the Supplementary Materials) and
principal coordinates analysis (PCoA) were performed with DARwin software [44–46];
Supplementary Figures S1 and S2 were created by using itol.embl.de/tree [47]. The other
statistical analyses were performed with Statistica 7.0 StatSoft.

3. Results
3.1. Breed Haplotype Analysis

The successfully analyzed samples from the eight certified breeding centers (Table S1)
included MF, RG, PT, and CT donkeys. The mtDNA D-loop hypervariable region between
sites 15390 and 15750 (GenBank ID # 2466755, Table S3) was fully sequenced for 77 sam-
ples, and 56 haplotypes including 33 polymorphic sites were found. Of these, 14.6% of
haplotypes have frequencies greater than 2.7%: Hap 1, 22 and 36; Hap 30, 37, 40 and
53 F = 4.1%; Hap 51 F = 12.2% the most common; while 85.4% of haplotypes are rare and
have frequencies of 1.4%. Table 1 shows molecular diversity indices for each breed. The
breed genetic diversity for all the breeds, evaluated by the nucleotide diversity value (π),
was 0.128. Within subpopulations, π was 0.098, and the mean interpopulation evolutionary
π was 0.03. The haplotypes identified in the analyzed breeds included 6 for PT, 14 for CT,
and 22 each for MF and RG.

Table 1. D-loop nucleotide polymorphisms and molecular diversity indices per breed tested in
the study.

Breed n NHap SNPs π

Martina Franca (MF) 27 22(5 s) 13 0.162 ± 0.022
Ragusano (RG) 22 22(3 s) 15 0.132 ± 0.028
Pantesco (PT) 8 6(3 s) 1 0.025 ± 0.001

Catalonian (CT) 19 13(4 s) 2 0.038 ± 0.009
crossbreed 1 1 1

ALL 77 56 33 0.128
s, shared haplotypes. In this dataset, there is a crossbreed with its own haplotype. n, number of individuals
sampled per breed; NHap, the number of haplotypes in each breed with the number of shared haplotypes in
parentheses; SNPs, the number of polymorphic sites; π, nucleotide diversity with standard deviation.

All the sequenced samples were aligned with a reference sequence (GenBank X97337)
to highlight the presence of SNPs. The absolute number of mutations identified for each
sequenced sample is shown (Figure 2A, Table 2 and Table S4). Moreover, all identified
SNPs were classified according to their positions in the reference sequence and were charac-
terized as transitions (purine–purine and pyrimidine–pyrimidine substitutions) or deletion
(Figure 2B, left panel; every column represents a sequenced sample). The percentages
of samples in which each SNP was identified are shown as histograms (Figure 2B, right
panels, Table 2 and Table S4).

The multivariate test of significance for nucleotide frequencies (Table S5) showed
no differences in nucleotide composition among breeds (p = 0.98). Maximum composite
likelihood estimates of the nucleotide substitution pattern per breed, positions containing
gaps, and missing data were eliminated as recommended by the literature (Supplementary
Table S6) [45].
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Figure 2. SNP analysis performed on mtDNA isolated from Martina Franca (MF), Ragusano (RG), Pantesco (PT), and
Catalonian (CT) donkey breeds. (A) Absolute number of mutations found in each sample by Sanger sequencing. (B) Every
SNP was characterized according to the position on the reference sequence, the kind of mutation, and the percentage of
samples containing the mutation (brown histograms) using MEGA7. R = reference sequence (X97337).
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Table 2. Absolute and relative haplotype frequencies in the four analyzed donkey breeds.

SNP Martina Franca (MF) Catalano (CT) Pantesco (PT) Ragusano (RG)

Position Reference Mutation Samples (n) % Samples (n) % Samples (n) % Samples (n) %
15719 C T 0 0 0 0 0 0 1 5
15699 C T 6 21 0 0 0 0 4 18
15663 A G 6 21 0 0 0 0 4 18
15653 C T 6 21 0 0 0 0 4 18
15646 A G 2 7 0 0 0 0 1 5
15645 G A 6 21 0 0 0 0 4 18
15622 A G 4 14 0 0 0 0 2 9
15600 A G 29 100 19 100 8 100 17 77
15599 C T 6 21 0 0 0 0 4 18
15581 A G 6 21 11 58 0 0 4 18
15570 A G 6 21 0 0 0 0 4 18
15524 C DEL 0 0 0 0 0 0 2 9
15504 T C 6 21 0 0 0 0 4 18
15491 C T 6 21 0 0 0 0 4 18
15485 G A 6 21 0 0 0 0 4 18
15474 C T 0 0 0 0 0 0 2 9

3.1.1. Population Analyses

Higher base composition differences within and between breed sequences were found
for MF and RG (Table 3).

Table 3. Estimates of base composition differences within and between breed sequences using MEGA7.

Breed Mean within Groups

Martina Franca (MF) 0.289
Ragusano (RG) 0.521
Pantesco (PT) 0.044

Catalonian (CT) 0.020

Mean between Groups

MF × CT 0.162
MF × RG 0.387
MF × PT 0.158
RG × CT 0.276
RG × PT 0.278
CT × PT 0.031

Despite the limited number of samples, the following haplotypes were found: 17 in
MF (Hap 1, 3, 5, 9, 10, 11, 15, 20, 24, 25, 34, 39, 41, 46, 47, 50, 54); 19 in RG (Hap 4, 6, 8, 12,
13, 16, 17, 18, 19, 21, 23, 29, 38, 42, 43, 44, 48, 49, 55); 9 in CT (Hap 2, 14, 26, 27, 28, 31, 33,
45, 52); and 3 in PT (Hap 7, 32, 35). The most represented seven haplotypes were Hap 51,
common to all breeds; Hap 22, 36, and 37 found in MF and shared with PT and/or RG;
Hap 30, distinctive of MF and also found in CT; and Hap 40 and 53, characteristic of CT.

The sequences were aligned with the reference sequence GenBank X97337 and other
similar GenBank sequences representative of the Somali and Nubian African donkey lines,
Chinese and other Asiatic E. kiang, E. hemionus, and E. h. kulan lines (Figure S1), and other
Italian breeds (Figure S2, Supplementary Materials as in Ref. [42]: Romagnolo donkey
(ROD), Amiata donkey (AMD), Sardinian donkey (SAD), Asinara donkey (ASD), Ragusano
donkey (RAD)).

3.1.2. Origin and Phylogenetic Relationships

The phylogenetic relationships among the 55 haplotypes were calculated using a
median-joining network. The haplotypes of each breed are color coded, the abundance of
the haplotype indicated by the relative size of the symbol, and diffusion among the breeds
is shown in color-coded pie charts (Figure 3). Looking at the distribution of haplotypes
by breed, most of them are represented alone. In particular, MF and RG diverge from
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the reference sequence X97337 hap and show the highest variability. Conversely, PT is
closely related and even shares haps with MF. Most CTs are grouped into two clusters: CT
hap outgroups are closely related mainly to MF and completely share two haps with MF.
Hap 51 is the most common and is shared among all races. The Fu neutrality statistic test
and Tajima’s D test were performed to address the hypothesis of population expansion,
and the results were Fs = −2.523, p < 0.05, and D = 2.004, p < 0.05, respectively.
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sequences of 77 donkeys (Martina Franca (MF), Ragusano (RG), Pantesco (PT), Catalonian (CT)),
which consists of 55 haplotypes (DARwin 6.0). Each breed is color coded, and for each haplotype,
the proportions of the different breeds are shown, in black the crossbreed haplotype. The reference
sequence X97337 is indicated as x.

PCoA analysis based on the dissimilarity matrix returned two different clusters,
clusters I and II. Interestingly, in cluster II, there are only MF (6, 17, 27, 35) and RG (9, 21,
35, 53), while the rest of the haplotypes are grouped into cluster I. However, six haplotypes
are not included in clusters I and II: they are MF Hap 22, 37, and 40; and RG Hap 13, 16,
and 38 (Figure 4).
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generated using DARwin 6.0. Two different clusters, cluster I and cluster II, included most haplotypes of the breeds studied
(Martina Franca (MF), Ragusano (RG), Pantesco (PT), Catalonian (CT)). Haplotypes that did not fall into either cluster were
MF Hap 22, 37, and 40 and RG Hap 13, 16, and 38.

4. Discussion
4.1. Breed Molecular Analysis

Donkey breeds represent a fascinating model of domesticated biodiversity; thus, a
number of studies have analyzed donkey pedigree and genetics. Pedigree and reconstruc-
tion studies usually lack the corresponding genetics [1,48,49], and genetic studies have
frequently lacked lineage information [39,42,50].

Pedigree studies on Italian (MF, Amiata) and Spanish (CT, Andalusian, Miranda) don-
keys found dramatic losses in genetic variation due to high rates of inbreeding [1,48,49,51].
However, pedigree incompleteness and the occurrence of a bottleneck event (e.g., MF
in 1980) may have led to over- or under-estimations of genetic variation, which could
affect breeding strategies [1,51]. To overcome this bias, in this study, genetic analysis was
performed on subjects with certificates of origin from official authorized breeding centers.
This approach allowed us to link mtDNA data to pedigree record, population, and breed
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to identify the same maternal descendants and to select individuals with presumed higher
genetic variability to preserve biodiversity. A further bias in breed studies comes from
unbalanced sample size comparisons for populations (e.g., difference of five-fold [39,42]),
genetic structure, genetic variability, genetic robustness, average relatedness, inbreeding,
co-ancestry, the degree of nonrandom mating, and origin [50,52]. In this study, we collected
a similar number of samples per breed, except PT because of its limited number of breed
lines; consequently, we analyzed a balanced sample. We found higher genetic variability in
MF and RG, which disagrees with studies based on pedigree [1]. RG and MF are widely
used on farms where natural random mating still occurs, and we believe that is the source
of the variability. We found lower variability in PT, as expected, because of the limited
number of individuals (n = 62) and because of its isolation. In the PT certificates of origin,
eight distinct maternal lineages are attested, which is in agreement with the statement that
the recovery of the PT breed started from a small nucleus of founders [39]. Furthermore,
based on the number of haplotypes, the genetic robustness of PT is dramatically lower
and the pedigree certificate alone cannot predict it. The low variability found in CT was
not predicted because of the number of individuals in the population and the common
distribution in the large region of Catalonia. This phenomenon could be the result of a
breeding program with an unbalanced number of males vs. females (517 vs. 310 respec-
tively; Asociacio del Foment dela Raca Asina Catala), rather than the result of the number
of subjects and area occupied. Consequently, a potential bottleneck was produced by
human artificial selection, which led to a loss in variability [42,49,53]. Because variability,
robustness, and the degree of nonrandom mating decrease as average relatedness increases
due to inbreeding and co-ancestry, a new reproduction program with multiple approaches
is needed.

The molecular characteristics analyzed showed distinct nucleotide frequencies among
breeds, which is in line with the literature [29,30]. The transition rate was greater for
purines, and the transition rate per breed decreased from MF to RG to CT, which is partially
discordant with other studies on the Italian donkey [42]. The nucleotide diversity (π) values
are in line with a previous study on CT [54]. Cozzi et al. 2017 [42] found high nucleotide
diversity in the MF donkey, but found low nucleotide diversity in the RG donkey.

We found the highest diversity in MF followed by RG and the lowest variability in
CT followed by PT. The differences in our results and a previous study on the Italian
donkey could be due to the following biases: (i) a lack of certificate of origin information
leading to uncertain breed origin, (ii) unbalanced sampling between breeds with 74% of
the breeds being Asinara and Sardo donkeys, both from the island of Sardinia [42]. Overall,
molecular indices show greater genetic variability among the Italian than the Spanish
donkeys according to the previous literature [42,49,53].

4.2. Population Analyses

The population analyses showed more differences within RG, followed by MF, CT,
and PT. The RG genetic population structure is analogous to the highly heterogeneous
large maternal Balkan donkey population with a more complex genetic structure than
previously thought [53]. The Balkan donkey population is highly genetically diverse
despite their severe population decline, probably due to introgression of other related
breeds [53]. Introgression probably occurred for RG, but not MF.

Our analysis of PT is consistent with a microsatellite genetic variability study that
showed lower variability in PT compared to RG and another Sicilian breed, the Grigio
Siciliano (GS) [39]. The genetic variability observed in PT, RG, and GS [39] is lower than
that reported in five Spanish breeds [54] and three Croatian breeds [55], but higher than
that observed in the Amiata donkey from Italy [31] and in Chinese breeds [36]. The
comparisons between breeds showed more differences between MF and RG and fewer
differences between PT and CT, between RG and PT, and between RG and CT. The fewest
differences are between PT and CT.
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Two different studies on the Balkan donkey revealed different interpretations. In the
first study, no correspondence between geographical areas and maternal genetic structure
was found. Because the difference between the Balkan donkey and the African Burkina
Faso donkey outgroup was also low, the authors could not trace routes of expansion
in the donkey; consequently, they suggested that the species spread very quickly after
domestication [56]. The second study assessed three Balkan donkey populations: Istrian
(IS), north Adriatic (NA), and Littoral-Dinaric (LD), and their results suggested that IS is a
unique breed, which mixed with LD during sporadic migration events, and that NA and
LD are genetically similar [55]. Our study suggests similar effects of migration by MF on
CT and PT, which are in accordance with historical reconstructions.

4.3. Origin and Phylogenetic Relationships

The well-established identification of two main lineages and the probable existence
of another unrecognized extinct wild ancestor in domestic donkeys are believed to be the
result of separate domestication events [5,6,33–37]. However, the genetic structure of the
Chinese donkey indicates another possible line [36]. Therefore, in the donkey, such as in the
dog [17], genetic data support multicentric breed origins. In agreement with this emerging
theory is the identification of a potential new clade unique from the MF and RG Italian
donkeys. Furthermore, another recent study also suggested multiple breed origins [42].
In Croatian and Serbian donkeys, three haplotype groups were found [55] with distinct
nuclear gene pools [53]. A heterogeneous genetic structure of the Balkan donkey was
hypothesized because there was no geographical structure; thus, it was difficult to trace the
routes of expansion in the donkey [56]. However, other hypotheses for the complex genetic
relationships among Italian donkey breeds and breeds living in the Mediterranean and
Balkan areas [42] include ancestry and the genetic makeup of modern donkey populations.
Our analysis suggests a multicentric domestication phenomena coupled with multiple
waves of colonization and counter colonization, such as what occurred when the Roman
Empire brought the MF donkey to Spain and when Spain brought the MF donkey to Italy;
this is in accordance with the hypothesis suggested by Stanisic and colleagues [53].

There is a rising interest in maintaining genetic diversity in animal populations to
safeguard the widest possible genetic resources through conservation programs [57,58].

For conservation of domestic breeds, the preservation of genetic capital is crucial
because they are already zootechnical forms with reduced original natural variability. The
biodiversity of the domestic form is the result of a genetic pool derived from interaction with
semi-artificial environments regulated by human needs and human migratory movements.
As a result, genetic and phenotypic changes with respect to the wild species of origin have
been addressed slowly based on human necessity.

Donkey conservation represents a biological problem with regard to analogous phe-
notypes. The similar donkey breed phenotypes may be a result of genetic exchange among
breeds, identical origin from an African or Asian population, equivalent climate conditions,
and/or similar types of work carried out by the donkeys.

Our molecular analyses showed a dramatic loss in variability across all breeds tested,
but especially in PT and CT. MF and RG have higher numbers of haplotypes and SNPs
than PT and CT. In practice, the MF donkey is an important reservoir of biodiversity that
must be preserved with the widest possible range of its genetic heritage, and errors of
consanguinity for aesthetic purposes should be avoided with the help of conservation
programs. Future conservation programs should include certificates of origin and genetic
analyses of the matrilines at least.

5. Conclusions

In conclusion, this study: (i) identified D-loop mtDNA characteristics for the MF
donkey and three phenotypically similar breeds, (ii) identified different matrilines in the
MF donkey and similar breeds, (iii) identified the biodiversity of each breed, and (iv) de-
termined the phylogenetic relationships among the breeds. This extensive study on the
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biodiversity and phylogenetic relationships of MF, RG, PT, and CT donkey breeds is useful
for future domestication studies.

In this study, we analyzed the genetics of a limited number of endangered and highly
endangered donkey breeds. The data showed significant loss in variability among all the
breeds evaluated, which is in agreement with previous studies that used different methods.
The primeval haplotypes, haplogroup variability, and large number of maternal lineages
are preserved in the MF and RG breeds; thus, they play putative pivotal roles in the phyletic
relationships of the studied donkey breeds. Given the level of endangerment undergone
by these breeds, actions are necessary to ensure their long-term survival and conservation.
Improving the reproduction and management of existing populations, clarifying their
historic interactions by studying their population genetics, and extending and improved
monitoring of maternal lineages are valid options.
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donkey (AMD), Sardinian donkey (SAD), Asinara donkey (ASD), Ragusano donkey (RAD)); Table S1:
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transversional (G × T and A × C) substitutions are shown in italics.
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