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Abstract

The intense nature of pig production has increased the animals’ exposure to stressful condi-

tions, which may be detrimental to their welfare and productivity. Some of the most common

sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing

during housing (social stress), or exposure to pathogens and other microorganisms that

may challenge their immune system (immune-related stress). The stress response can be

monitored based on the animals’ coping mechanisms, as a result of specific environmental,

social, and health conditions. These animal-based indicators may support decision making

to maintain animal welfare and productivity. The present study aimed to systematically

review animal-based indicators of social, thermal, and immune-related stresses in farmed

pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to

pig production was collected using three online search engines: ScienceDirect, Scopus, and

PubMed. The manuscripts selected were grouped based on the indicators measured during

the study. According to our results, body temperature measured with a rectal thermometer

was the most commonly utilized method for the evaluation of thermal stress in pigs

(87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress,

aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publica-

tions examined regarding immune-related stress, cytokine concentration in blood samples

was the most widely used indicator (80.1%). Information about the methods used to mea-

sure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Addi-

tionally, the introduction and wide spreading of alternative, less invasive methods with which

to measure animal-based indicators, such as cortisol in saliva, skin temperature and respira-

tory rate via infrared thermography, and various animal welfare threats via vocalization anal-

ysis are highlighted. The information reviewed was used to discuss the feasible and most

reliable methods with which to monitor the impact of relevant stressors commonly presented

by intense production systems on the welfare of farmed pigs.
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Introduction

Pig production has evolved towards highly intense, large-scale production systems, with an

associated increase in the animals’ exposure to stressors that can affect their welfare and pro-

duction efficiency [1].

Stressors are any environmental, physiological, or social factor that causes poor animal wel-

fare [2]. Pigs are subjected to stressors, such as extreme temperatures [3], which generate ther-

mal stress [4–10], high density and mixed housing, which causes social stress [11–17], and

crowded spaces, which might increase the transmission of pathogens and other microorgan-

isms that may challenge the immune system, causing immune-related stress [18–22].

The stress response is a physiological response aimed at maintaining the body’s physiologi-

cal balance when an individual is experiencing effects of a stressor [23, 24]. However, this

response is associated with a reduction in productive efficiency due to several mechanisms,

such as a reduction in appetite and feed intake, an increase in energy and nutrient expenditure,

and a higher susceptibility to infectious diseases [25]. This reduction in efficiency in turn

directly impacts economic profitability. Furthermore, the negative impact on animal welfare

from the exposure to stressors has a negative impact on consumer perceptions of animal prod-

ucts and reduces their acceptability of these products [26].

The use of animal-based indicators to evaluate animals’ responses to specific circumstances

is a general practice in current animal production systems (i.e., feed quality, environmental

conditions, physiological development, and social interactions, among others) [25]. Animal-

based indicators are obtained accurately and are usually presented quantitatively (measure-

ment method). Of note, there is a difference between the indicator concept and the method

concept, due to which the measurement method can limit the intention of the information

interpreted as an indicator [26]. These indicators (usually a set of indicators, which provides

better conclusions) allow the evaluation of the animals’ efficiency in the use of resources and

predict animal performance under certain conditions. Additionally, animal-based indicators

should fulfil the concepts of validity (the fitness of an indicator = properly developed, opti-

mized, and standardized for an intended purpose), reliability (the ability of an indicator to be

used under different conditions by different persons while still producing similar results), and

feasibility (the practical application and use of an indicator under different circumstances) to

generate accurate and trustworthy observations [26, 27].

Over the last 20 years, several indicators have been proposed for use in monitoring the sta-

tus of pigs. Physiological markers [28–36], performance and body measurements [37–42], and

behavioral parameters [43–53] are some examples of animal-based indicators used to assess

the growth and performance of animals during production. The detection and measurement

of several indicators, however, involve some degree of invasiveness, which can cause discom-

fort, stress, and fear reactions, altering the comfort and behavior of the animals and likely the

accuracy of the measurements [54]. Therefore, it is important to invest resources in the devel-

opment of methods and techniques that minimize animal stress during measurements in an

effort to improve both the quality of the measurements and the welfare of the animal. The opti-

mization and development of less invasive or less stressful measurement techniques would ful-

fill the refinement concept from the “three R’s” principle of animal research (replacement,
reduction, refinement) defined by Russell [55]. Knowing a variety of animal-based indicators

and features of the measurement techniques will provide researchers with the tools with which

to make decisions regarding the techniques available to assess animal performance and wel-

fare, therefore easing experimental design and practical execution.

The aim of the present study was to review animal-based indicators described in current lit-

erature to monitor the impact of different sources of stress in pigs and to highlight new
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methods and techniques that may refine the monitoring of individual pigs under intense farm-

ing conditions. Therefore, a systematic literature review was performed to identify, classify,

and discuss the different methods used in peer-reviewed literature, in order to detect physio-

logical, behavioral, and performance information from pigs under the stress provoked by heat,

social, and immunological challenges.

Materials and methods

Search criteria, strategy, and study selection criteria

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines [56], a single researcher (RDG) performed a literature search, which was

verified by two other researchers (GT and PL). The papers found during this systematic search

were verified via discussions among the researchers (RDG, GT, and PL) regarding the feasibil-

ity of the methods mentioned in the manuscripts collected. A systematic review was performed

to identify animal-based indicators of the following three key sources of stress found in pig

production: 1. thermal stress; 2. social stress; and 3. immune-related stress. Peer-reviewed sci-

entific literature related to pig production published from 2000 to 2020 was collected from

three online search engines: ScienceDirect and Scopus from Elsevier, and PubMed from the

National Center for Biotechnology Information (United States of America). An independent

systematic search was performed for each stress model. Manuscripts were reviewed if they had

at least one open-access abstract, and articles in which the abstract was the only open-access

section were counted as valid if information about animal-based indicators and measurement

techniques were explicitly mentioned in the available text. Studies performed on species other

than pigs, in vitro, reproductive, transportation-related, and social isolation studies, as well as

manuscripts in languages other than English, were omitted, as well as literature reviews, due to

the absence of details about the techniques used for the measurement of indicators. The

included studies were all performed under research or production conditions.

The search terms to find relevant literature were selected based on the primary research

question: “what are the animal-based indicators with which to measure the impact of stress from
different sources (thermal, social, and immune-related) in pigs?” The search criteria were

divided into three main categories: 1. the stress model; 2. the animal model; and 3. the possible

indicators (invasive, less invasive, and non-invasive) used to detect the impacts of stress on the

animals. Therefore, the query line was generated using a combination of three search terms

(one from each search term category) within the title, abstract, and keyword sections (Table 1).

Valid papers were processed to extract information, such as animal-based indicators used

to measure the impact of the stressor, the method utilized to measure that indicator, and the

animals used in the study (including sample size, age, and breed). Additionally, the

Table 1. Search terms used in the systematic searches for thermal, social, and immune-related stresses.

Animal Thermal stress Social stress Immune-related stress

Stress Indicator Stress Indicator Stress Indicator

Pigs Heat stress Physiology Social stress Cortisol Immunological stress Cortisol

Swine Heat load Lying behavior Biting Testosterone Immunological challenge Hormones

Piglets Temperature humidity index Body temperature Tail biting Flight behavior Immune challenge Cytokine

Porcine Hyperthermia Respiration rate Contest Fight behavior Pathogen infection Body temperature

Swine welfare Thermal stress Skin temperature Agonistic behavior Skin lesions Immune response Interleukin

Sow Oxidative stress Vocalizations Beating Inflammatory response Animal performance

Respiratory alkalosis Vitamin E Lipopolysaccharide Glucocorticoids

https://doi.org/10.1371/journal.pone.0266524.t001
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immunological challenges used in the immune-related stress model were recorded. Due to the

nature of the data extracted from the articles (animal-based indicators and measurement

methods), only studies with a bioethical committee approval were considered for the review,

in order to reduce the risk of bias, as measurement protocols should be previously approved

for the performance of the study. No mathematically computed data were extracted for this

review, as the data extracted were qualitative. The primary objective was to quantify the ani-

mal-based indicators and measurement techniques utilized in the available literature. Data

extraction and bias assessment were performed by a single researcher (RDG), and validation

was performed by two researchers (GT and PL).

Processed papers were classified based on the animal-based indicators used to assess the

impact of each stressor, as well as the method used to measure each indicator. Each paper

could fit into multiple categories, as most studies measured several animal-based indicators.

The goal of including the term “vitamin E” was to find studies that measure this metabolite

as an indicator of the oxidative stress level in the animals under thermal stress conditions.

Vitamin E is the primary antioxidant cell protector [57], and can be used as an antioxidant

supplement in porcine diets to neutralize free radicals and reduce oxidative damage resulting

from thermal stress [30, 58, 59].

Results

Thermal stress

The systematic search was conducted until December 1, 2020, and articles selected included

only manuscripts in which the authors assessed the animals’ thermal status under either pro-

duction or research conditions (including any kind of experimental treatment). The systematic

search for thermal stress articles yielded 3,239 results between the 3 search engines. After

removing duplicates, all papers were reviewed and those that were not related to the search

topic were excluded, leaving a total of 166 articles. After the final round of refinement, which

included an inspection of the title, abstract, and materials and methods, and the removal of

articles wrongly accepted during the first selection step because they were performed in other

animal species, such as guinea pigs, or were performed without a real measurement of the ther-

mal status of the animals, there was a total of 144 manuscripts (Fig 1). A list of references

found in the systematic search is available in the S1 Table in S1 File.

Of the 144 articles obtained from the systematic review, there were 39 methods identified

(Fig 2). All of the methods found in the literature, as well as the number of articles that used

them, are presented in the S2 Table in S1 File. These methods were used to measure the ther-

mal status of the animals via the detection of specific animal-based indicators.

The papers were classified into 7 indicator categories: body temperature (97 articles,

67.83% of the articles from the thermal stress search results); respiratory rate (76 articles,

53.14%); physiological markers (68 articles, 47.55%); skin temperature (58 articles, 40.55%);

environmental indices (34 articles, 23.77%); behavior (25 articles, 17.48%); and animal vocali-

zations (8 articles, 5.59%). Physiological markers include all physiological variables reported in

the literature related to blood chemistry, organ integrity assessment, and stress responses.

While behavior focused on lying, assuming that pigs under thermal spent increased time lying

down to facilitate heat dissipation [47, 60, 61]. Animal vocalizations were considered an indi-

vidual indicator category, separate from behavior, because the publications reviewed studied

the meaning of the sounds produced by the animals, and the researchers tried to relate the

characteristics of the sounds with the animals’ environmental, social, or health situations [62].

The inclusion of environmental indices (environmental-based indicators) is justified, as the

severity of the thermal stress model can be estimated from environmental information. For
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example, the temperature and humidity index (THI), calculated using environmental vari-

ables, has been used in several studies to indirectly measure if pigs are being subjected to ther-

mal stress [44, 57, 63–65]. The environmental variables are as follows: temperature (T) and

relative humidity (RH). THI is calculated using the equation defined by the National Research

Council (NRC) in 1971 [66], where T is the maximum daily temperature in degrees Celsius,

and RH is the minimum daily humidity ranging from 0 to 100 [44, 63, 64, 66].

THI ¼ ð1:8� T þ 32Þ � ½0:55 � ð0:0055� RHÞ� � ð1:8� T � 26Þ

Fig 1. PRISMA flow diagram for thermal stress systematic search results.

https://doi.org/10.1371/journal.pone.0266524.g001

PLOS ONE Systematic review of animal-based indicators to measure stress in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0266524 May 5, 2022 5 / 43

https://doi.org/10.1371/journal.pone.0266524.g001
https://doi.org/10.1371/journal.pone.0266524


Of the physiological markers described, 33 biological parameters were identified that were

significantly altered by the heat stress challenge (Fig 3).

Rectal temperature was the most frequently used method for measuring temperature, used

as an indicator of thermal stress, as mentioned in 85 manuscripts (87.62% of the articles that

measured body temperature).

Assessment of respiratory rate was the second most frequent indicator of thermal stress (76

articles, 53.14%). The frequency of flank movements was the primary method used to measure

respiration rate (74 out of 76 articles).

The primary physiological indicators of stress were an increase in glucose, reduction in

ileum integrity, and increase in cortisol concentration. Of these indicators, glucose concentra-

tion (20 articles, 29.11%) was the most frequently used biological marker. Additionally, blood

sampling was the most commonly used method to detect changes in proteomics triggered by

thermal stress (45 articles, 66.1%).

Environmental indices were used in 34 articles. The primary environmental index used to

measure the impact of environmental temperature on animal physiology was the temperature-

humidity index (22 articles, 64.7%). Other environmental indices used in the literature found

Fig 2. Methods used to detect thermal stress indicators from the selected literature: (A) scan sampling; (B) video

behavior classification. Methods pooled in the “Others” domain are presented in the S2 Table in S1 File.

Figure generated through rawgraphs.io.

https://doi.org/10.1371/journal.pone.0266524.g002

PLOS ONE Systematic review of animal-based indicators to measure stress in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0266524 May 5, 2022 6 / 43

https://doi.org/10.1371/journal.pone.0266524.g002
https://doi.org/10.1371/journal.pone.0266524


were the calculation of the head load and the thermal circulation index. Non-contact infrared

thermography (NIFT; 24 articles, 41.37%) was the technique most applied to measure the skin

temperature of the pigs among the literature reviewed, other methods used were the contact

thermometer and the thermographic camera.

Fig 3. Physiological markers used to evaluate thermal stress. Other markers include: amino acids concentration; creatinine; gene expression; glutathione;

lactate; myeloperoxidase; methylhistidine; and vitamin E. The comprehensive list of physiological markers found in the literature and the number of articles

that used them are presented in the S3 Table in S1 File. Figure generated through rawgraphs.io.

https://doi.org/10.1371/journal.pone.0266524.g003
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For the assessment of behavior, scan sampling and video behavior classification (a trained

observer counted the frequency of certain behaviors defined by an ethogram) were the most

commonly used methods, reported in 8 articles (32%) each.

Overall, the analysis of vocalizations (8 articles, 5.59%) was the indicator category least

reported in the literature about thermal stress.

Social stress

The systematic search for studies regarding social stress was completed on December 2, 2020. In

the studies selected for this group, social mixing occurred at some point during the rearing pro-

cess. Isolation and new environmental test studies were excluded from the list. A total of 2,409

results were obtained, of which 1,431 were related to the search topic. After excluding duplicates,

229 references were used for the literature review. The final evaluation based on title, abstract, and

materials and methods allowed us to exclude an additional 31 papers because these studies were

either performed in other animal species, such as guinea pigs, or were performed in other settings,

such as in vitro, genetic, reproductive, or transportation studies. In total, 197 references were used

for the literature review and indicator summary (Fig 4). A list of manuscripts found in the system-

atic literature search is presented in the S4 Table in S1 File.

From the manuscripts found involving the social stress model, a total of 49 assessment

methods were identified (Fig 5). Physiology-related measurement techniques evaluated 47

physiological markers, of which 2 techniques were utilized to evaluate skin lesions in the ani-

mals (either body or tail lesions), and 8 behaviors were observed through the evaluation of

social interactions (Fig 6). A list of the methods and indicators is presented in the S5 Table in

S1 File. The studies reviewed described methods utilizing four animal-based indicators to eval-

uate the effects of the social interactions of pigs.

Manuscripts were classified into 5 categories using animal-based indicators: social behavior

(162 manuscripts, 81.81% of the literature reviewed regarding the social stress model), body

lesions (118 manuscripts, 59.59%), animal performance (54 manuscripts, 27.27%), physiologi-

cal markers (133 manuscripts, 67.17%), and vocalizations (7 manuscripts, 3.53%). Physiologi-

cal markers utilized included all of the physiological variables reported in the literature related

to blood chemistry, organ integrity assessment, and heart rate, among others. Social interac-

tion measurements focused on agonistic behaviors among animals, such as aggression, intimi-

dation, fights, etc.

The observation of social interactions was the most widely used indicator in the literature

reviewed which quantified social interactions (162 manuscripts, 58.02% of the relevant litera-

ture). Direct observation was the most common method with which these interactions were

detected.

Lesion assessment was performed separately for body (front, middle, and rear body areas,

excluding the tail) and tail lesions. Overall, body lesion evaluation was the most commonly

used method (97.45%), compared with tail lesion evaluation (19.49%). Additionally, the lesion

score was the most widely used method to evaluate this indicator category (64 manuscripts,

54.23%) relative to lesion count.

Of the manuscripts reviewed, 133 (67.17%) articles identified 47 physiological markers, the

most common of which were the detection of increases in the concentration of cortisol (84

manuscripts, 63.15%), lactate (7 manuscripts, 5.26%), glucose (6 manuscripts, 4.51%), cate-

cholamines (6 manuscripts, 4.51%), adrenocorticotropic hormone (ACTH; 5 manuscripts,

3.75%), and haptoglobin (5 manuscripts, 3.75%). Blood sampling was the most widely used

method described in manuscripts involving biochemical indicators (57.14%), followed by

saliva sampling (45.11%).
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Weight gain was the most used indicator for animal performance among the manuscripts

reviewed (51 manuscripts, 96.22%), while only 7 manuscripts (3.53%) analyzed the pigs’ vocal-

izations to detect social stress.

Immune-related stress

A systematic search of studies looking at immune-related stress through November 24, 2020,

ultimately yielded 535 relevant manuscripts. A total of 33,727 results were obtained from the

initial search, which included immunological challenges, such as vaccine tests, sanitization

challenges, microorganism exposure, and any other factors that could affect the immune status

of the animals. After excluding studies not relevant to pig production, the number of articles

was reduced to 4,309. After further excluding duplicates and other studies that did not fit the

search profile, such as those involving animal species other than pigs (such as guinea pigs), or

in vitro or genomic studies, a total of 535 studies were included for review. The complete list of

references used in the systematic literature review for the immune-related model is presented

in the S9 Table in S1 File. The manuscripts were classified into separate categories using 4 ani-

mal-based indicators: blood chemistry (452 manuscripts, 82.63%), physiological activity (341

manuscripts, 62.34%), animal performance (228 manuscripts, 41.68%), and behavior (82

Fig 4. PRISMA flow diagram for social stress systematic search results.

https://doi.org/10.1371/journal.pone.0266524.g004
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manuscripts, 14.99%). The physiological activity category included other indicators related to

immune-related stress, such as viral load, organ integrity, body temperature, respiration rate,

and swelling, among others (Fig 7).

After reviewing the articles, 82 indicators were identified for the evaluation of the impact of

immune-related stress in pigs under either research or production conditions (Fig 8). A list of

these indicators is available in the S10 Table in S1 File. According to the initial classification, 6

indicators were identified for the evaluation of animal performance, 6 for behavior, and 49

indicators related to blood analysis. The severity of diarrhea was evaluated using 2 physiologi-

cal indicators, while 26 measures were used to assess the impact of the immunologic

challenges.

Blood chemistry parameters, such as increases in the concentration of cytokine, immuno-

globulin, cortisol, and acute-phase proteins, as well as hematology assessments, were the most

frequent indicators for evaluating immune-related stress (452 manuscripts, 82.63%). More-

over, increased interleukin levels were the most widely reported biomarker in this category,

either in serological concentrations, or less frequently, through gene expression levels in differ-

ent tissues (398 manuscripts, 88.05%), which we opted to include with the blood chemistry

group to avoid confusion. The decision to separate the blood chemistry from the physiological

markers was made based on the variety of markers measured in the blood.

Body temperature was the most frequent indicator among the physiological measurements

(194 manuscripts, 56.7%). Other relevant indicators were organ integrity (153 manuscripts,

44.73%), respiratory rate (69 manuscripts, 20.17%), intensity of diarrhea (64 manuscripts,

28.36%), and viral load (55 manuscripts, 16.08%).

Fig 5. Methods to measure social stress included animal performance, animal vocalizations, physiological

markers, cortisol levels, lesions, and social interactions. Methods pooled in the “Others” domain are presented in the

S5 Table in S1 File. (Source: rawgraphs.io).

https://doi.org/10.1371/journal.pone.0266524.g005
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Animal performance was primarily reported using average daily weight gain, which was

described in 187 studies (82.1%), followed by feed intake (165 manuscripts, 72.36%), and feed

conversion rate (78 manuscripts, 34.21%).

The use of behavioral indicators was minimal for the evaluation of immune-related stress

challenges, only being mentioned in 82 manuscripts (14.99%). Depression at the activity level,

mentioned in 59 manuscripts (71.1%), was the most popular behavioral indicator.

Immune challenges

Immune-related stress has been studied through several microbial challenges (viruses, bacteria,

and vaccines, among others). In the present systematic review, 63 immunological challenges

were identified. Lipopolysaccharides from E. coli were the most widely used (37.2%), followed

by porcine reproductive and respiratory syndrome virus (PRRSV) (14.8%) and salmonellosis

(6.8%) (Fig 9). A complete list of challenge models found in the present systematic review is

presented in the S11 Table in S1 File.

Discussion

From the results obtained through our systematic literature search and subsequent data pro-

cessing, the stress-response indicators have been presented based on their relationship with

stress. As such, the indicator types are as follows: A) causal: indicators that measure the factors

that cause stress; B) biological response: indicators that measure the physiological response of

the organism which help cope with stress; and C) consequence: indicators that quantify the

Fig 6. Physiological markers, lesion assessment, and social behavior indicators found in the literature regarding

the social stress model pulled from the databases. Completed lists of the physiological markers, body lesion markers,

and social behavior indicators are presented in the S6-S8 Tables in S1 File. Figure generated through rawgraphs.io.

https://doi.org/10.1371/journal.pone.0266524.g006
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productive consequences of the physiological responses to stress. Among these indicator cate-

gories, biological response indicators would be those displaying higher sensitivity to stress, as

they are aimed at assessing the physiological reactions which take place in an effort to return

the organism to homeostasis, followed by the consequence indicators.

Additionally, the indicators were assessed using validity, reliability, and feasibility concepts

[26], although it is important to note the limitations of the literature reviewed in the present

systematic review. Due to the search terms selected, it is possible that some manuscripts were

overlooked. The systematic review never intended to show the complete literature regarding

stress in pigs, but to show the most relevant, to provide a clear overview of the methods used

to measure the impact of stressors in pigs.

Thermal stress

Pigs exposed to high temperatures were found to have a decreased voluntary feed intake and

an increased respiratory rate, water intake, and peripheral blood flow, which are all aimed at

reducing the production of body energy and increasing heat dissipation. Furthermore, the

physiological responses to maintain thermal homeostasis require an additional energy expen-

diture, with a consequently negative impact on productive parameters [67–69]. The primary

Fig 7. PRISMA flow diagram for immune-related stress systematic search results.

https://doi.org/10.1371/journal.pone.0266524.g007
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strategies pigs use to cope with high temperatures are physiological responses and behavioral

reactions. Indicators that are more sensitive to an increase in environmental temperatures are

body temperature, respiratory rate, and lying behavior, all of which tend to increase at temper-

atures higher than 32˚C, when compared to lower temperatures (18, 24, and 28˚C) [2, 5].

Therefore, it is worth focusing on the development of technologies and methods for the moni-

toring of these indicators, as they may also facilitate the monitoring of thermal stress with

non- or minimally invasive methods.

Causal indicators. Environmental indices. Thermal stress is generated by a combination of

environmental factors, such as humidity and ambient temperature, and the anatomical fact

that pigs have a decreased perspiration capacity [6, 45, 70–72]. Therefore, environmental indi-

ces and mathematical models have been developed to estimate the impact of the rise in envi-

ronmental temperature on the thermal status of animals [43–46, 64, 65, 73, 74]. In particular,

the increase in the indices measured in the studies relative to the thermoneutral conditions of

each study were reported in each study. Among the literature reviewed, the temperature-

humidity index (THI) has been the most widely used model for predicting pig body tempera-

ture, based on environmental temperature and humidity [64]. Environmental indices, such as

the black globe temperature index, humidity index, THI, thermal circulation index, and heat

load, generate differences in the indices results relative to the animal-based measurements

(rectal or skin temperature), due to variations in factors such as wind speed, air pressure, body

weight, and feed intake. Therefore, factors other than temperature and humidity need to be

considered in environmental indices to improve their accuracy [43, 44, 46, 64, 65].

Fig 8. Animal-based indicators used in the literature from the systematic search for the immune-related stress

model. Methods pooled in the “Others” domain are presented in the S10 Table in S1 File. Figure generated through

rawgraphs.io.

https://doi.org/10.1371/journal.pone.0266524.g008
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The validity of environmental indices has been widely reported in the relevant literature

[43–46, 64, 65, 73, 74], and the reliability of the indices is well defined as described in the litera-

ture. Additionally, environmental indices are a practical technique, as they require only envi-

ronmental data registration with little subsequent data processing. However, the data

processing might require particular attention from personnel to perform the calculations and

properly interpret the results.

Biological response indicators. Body temperature. The determination of body temperature

using rectal thermometers has been widely described in the literature related to the surveil-

lance of the thermal status of animals because of its practical execution and accurate measure-

ment (valid, reliable, and feasible) [69, 73, 75–87]. Rectal temperature measurements,

however, require handling, which may disturb the animal, potentially altering its thermal sta-

tus [87, 88]. Additionally, rectal measurements are time-spot measurements, which may limit

the acquisition of information for the assessment of animal thermal status [54, 71, 87, 89]. Sev-

eral studies have tested alternative measurement techniques to validate indicators used to

check body temperature, which can monitor thermal status in a continuous fashion with less

invasiveness. As such, the frequency of rectal temperature use has increased over the years as

the gold standard with which to validate alternative methods [4, 54, 87, 90–93].

Skin temperature. A less invasive technique for monitoring the thermal status of pigs is the

use of infrared (IR) thermography, which is focused on the detection and increase of IR radia-

tion coming from the skin of pigs subjected to high-temperature environments [50]. The valid-

ity of IR skin temperature measurements has been proven by several authors, who have

evaluated the accuracy of IR temperature results using rectal temperature as the gold standard

Fig 9. Immune challenges identified in the literature from the systematic review. Figure generated through

rawgraphs.io.

https://doi.org/10.1371/journal.pone.0266524.g009
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[55, 88, 94–99, 104–108]. The results of these studies have demonstrated the potential use of IR

temperatures as a reliable indicator to evaluate the thermal status of animals.

In terms of reliability, skin temperature measurement requires adjustments to improve its

accuracy and practicality. One such adjustment is to improve the number of individuals that

can be checked at once, as the temperature data of more than one animal will improve cer-

tainty about the thermal status of a group of animals. This adjustment, however, also requires

individual identification to correlate the measurements taken to a particular animal. Another

such adjustment would be to increase the distance needed for an accurate measurement, as IR

thermometers usually require the operator to be at a certain distance. Under standard produc-

tion conditions, however, pigs may constantly move around a pen, which may complicate the

measurement process. Additionally, the presence of personnel can alter the behavior of ani-

mals by increasing their physical activity (e.g., running around the pens), which would subse-

quently increase the temperatures of the animals. Another adjustment would be to establish a

standard location on the animal where the measurement is taken, as different body parts

release more or less thermal radiation than others [54, 74, 94–97]. The feasibility of using IR

thermography to measure skin temperature depends on the cost of the technology acquisition.

Furthermore, improvements and updates to these technologies will be applied in more animal

production units, as long as the prices remain affordable and generate significant economic

returns.

In summary, the use of IR radiation measurements has a high potential for the monitoring

of body temperature due to its lack of invasiveness and rapid results, which combined with

proper data management and interpretation could be used as an early warning system for the

thermal status of animals. Nonetheless, there are practical limitations which need to be

addressed, such as those mentioned above.

The use of superficial data loggers to record information on skin temperature is gaining

attention, as they can obtain continuous information without disturbing the animals [71, 92,

98, 100–102]. Some of these loggers, however, need to be implanted subcutaneously inside the

body of the animals or attached as ear tags. Consequently, these methods may induce pain in

animals. Furthermore, especially in ear tags, the data logger may be susceptible to damage,

loss, or displacement from the implantation area.

Respiratory rate. Assessment of increased respiratory frequency provides contactless

method for monitoring the thermal state of the animal, as an increased respiratory rate is part

of the adaptation strategy of an organism to cope with high temperature conditions to main-

tain thermoregulation, speeding up cooling through evaporative heat loss [95, 103]. Pigs, in

particular, must dissipate heat through perspiration, as they are deficient in sweat glands [72,

78, 95, 103, 104].

The validity of respiratory rate as an indicator has been proven by several authors [45, 70,

83, 105, 106], who have used it as a thermal status indicator (see the Results section). In terms

of reliability as an indicator, the current method with which this variable is measured has limi-

tations, as counting the movements of the flank requires a trained observer. Additionally,

counting the movements of the flank focuses on just one animal in a group, disregarding infor-

mation about the status of the other animals within the group. Moreover, it is another time-

spot measurement that loses information throughout the day [76, 102, 107–111].

The respiratory rate is a feasible indicator, as it can be performed in most production condi-

tions, although with the previously mentioned limitations (individual animal values and time-

spot measurements). To improve efficacy and usefulness, there is a need to develop a continu-

ous and systemic assessment technique for respiratory rate (refinement). From the relevant lit-

erature reviewed, there are a few innovative alternatives which could potentially optimize the

assessment techniques for respiratory rate: one is the use of acoustic recordings to detect the
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expiratory and inspiratory sounds of the animals [2], and the other is the use of IR thermogra-

phy to monitor heart and respiratory rates [112] by measuring the movements of the chest.

Physiological markers. The primary physiological markers utilized in detecting the impact

of temperature in the animals were the detection of increased glucose concentrations, reduc-

tions of the integrity of the ileum, and increases in cortisol concentrations. These physiological

markers reflect the general reactions of an organism to the high environmental temperatures

mentioned above. Physiological markers are valid, as they have been widely used as a way to

understand the functioning of organisms in a variety of studies (nutrition, genetics, reproduc-

tion, etc.); however, their use as an indicator of thermal stress depends on the interpretation of

the data obtained, and their association with environmental conditions.

The evaluation of physiological indicators involves taking samples from animals, which is

associated with some degree of animal handling; and in some cases, such as blood sampling, is

also associated with pain [8, 29, 31, 45, 77, 84, 99, 105–107, 111, 113–122]. Additionally, some

biomarkers may be altered by handling of the animals and sampling procedures [89]. The reli-

ability of physiological markers as indicators, in general, depends on utilizing an appropriate

sampling process, correct sample analysis, and adequate data interpretation. Potential alter-

ations due to handling stress may affect the accuracy of the measurements, and limit the practi-

cal applications of the indicator.

Additionally, the analysis of the samples (blood, saliva, feces, hair, tissue, etc.) requires labo-

ratory processing and data interpretation, which might result in extra economic expenses,

decreasing its suitability for routine assessment. Moreover, blood or tissue sampling may

require the authorization of a bioethics committee, depending on the degree of severity of ani-

mal pain and suffering. These limitations may affect the feasibility of using physiological mark-

ers as indicators of thermal stress; however, because of their accuracy, physiological markers

are still considered a good alternative for detecting thermal stress in pigs.

Consequence indicators. Behavior. Another indicator of thermal stress is animal behav-

ior, and pigs tend to increase the time spent lying on the ground to maximize heat dissipation

from the floor [60, 61, 123–125]. Lying behavior can be evaluated through various methods.

One is through the direct observation of lying pigs, either by scan sampling (time-spot sam-

pling), continuous video recording [60, 61, 73, 109, 126] or automatic quantification through

machine vision [47, 48, 70, 125–127]. The use of automated algorithms in pigs eliminates the

uncertainty of time-spot sampling, and reduces the time delay of the process and data interpre-

tation method, because the behavior of the animal is recorded and analyzed in real time.

Machine vision software methods are under constant development, and technology is continu-

ously evolving to handle issues such as individual identification within a group of animals,

monitoring during dark hours, and increasing processing speed to generate prompt

notifications.

The use of behavior as a thermal stress indicator is limited by its feasibility, as it is a time-

consuming task (either through direct observation or video review classification). The refine-

ment of taking measurements through machine vision will improve its application, validity (as

more researchers will measure it), and reliability (as computer processing guarantees proper

data analysis).

Animal vocalizations. Alternative methods utilized to evaluate thermal stress, such as behav-

ior or vocalization analysis, require more technical development, as these techniques have lim-

itations, such as the individualization of animals in the pen, classification data, and technical

processing. Sound characteristics (such as intensity, frequency, and tone), however, have accu-

rately provided information about the status of animals, such as pain, thirst, hunger, and

extreme temperature [4, 90, 128–133]. As in the behavior indicator section, the development
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of technologies relating to vocalizations will improve the feasibility of the application of this

indicator, improving its validity and reliability.

Based on the results of the present systematic literature review, the detection of the thermal

status of pigs is based on two primary methods: invasive techniques, which aim to measure the

inner temperature of the organism (used as the gold standard measurement), and remote tech-

niques, which are designed to assess the thermal radiation of the pigs’ bodies (high potential

for the refinement of this method, as it involves the application of automated measurement

and data interpretation).

The use of less invasive methods is still limited, due to the need for minimal manipulation

of the animals (e.g., saliva or urine samples), which can generate confusion, producing a false-

positive diagnosis. These methods, however, allow the measurement of physiological indica-

tors that are sensitive to a variety of stressors (e.g., oxidative, immune-related, and social

stress), which can facilitate the assessment of the efficiency of strategies to maintain the welfare

of pigs and their production level. Therefore, validated measurements and correct data inter-

pretation are necessary to reduce the occurrence of invalid conclusions.

Social stress

Social stress in pigs can be generated in different ways and at different growth stages during

the production cycle. For instance, social stress in pregnant sows can lead to prenatal stress,

resulting in piglets with depressed immune capacities [134–138]. Also, it is well known that

the pigs are social animals that prefer to live in well-established hierarchical groups [139];

therefore, changes in these social orders may induce aggressive behaviors when accessing

resources (food, water, or resting places), which can cause injuries and physiological reactions

that decrease animal welfare [139, 140]. This situation is frequent during the weaning process

and other regrouping events that frequently occur in standard pig production systems [10, 13,

140–146]. Social stress in pigs can increase the concentration of cortisol, acute phase protein

levels, immune activity, and affect several hematological parameters. Additionally, social stress

negatively affects pig performance by reducing animal weight gain and affecting the immune

development of the offspring [139, 147–149]. As such, physiological and behavioral changes

can be used to monitor social stress [139, 140, 150].

Causal indicators. Social interactions. Behavioral and social interactions can be used to

measure the incidence of agonistic behaviors among animals, and the validity of these indica-

tors is reflected in the number of authors who have used them to assess social stress in pigs

(see Results section).

An increase in the frequency of specific interactions, such as fighting, biting, nudging,

mounting, chasing, and intimidating behavior, has been detected through machine vision and

social analysis software packages, such as The Observer series and MatMan from Noldus (Nol-

dus Information Technology, Wageningen, The Netherlands) [13, 151–166], and Interact

from Mangold (Mangold International GmbH, Arnstorf, Germany) [167]. The use of software

packages to detect social interactions ensures the reliability of the results obtained, as the data

computing algorithms have been validated in several studies (see the Results section).

Additionally, researchers still aim to develop and utilize new technologies to detect aggres-

sion, such as three-dimensional (3D) cameras [53], motion detection [168], facial expression

[169], IR thermography [10], and vocalization analyses [136, 155, 170–172]. These technology-

based methods for measuring social interactions are non-invasive, and offer the possibility of

monitoring at a group level. Briefly, the sensor captures the data (sounds, images, radiation,

etc.) that are sent to an external server and processed in the cloud, and as such, the server gen-

erates data records for storage, further processing and interpretation, and electronic
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notifications (e.g., warning alerts) to several portable devices (e.g., smartphones). On the other

hand, however, animal production sometimes occurs in locations with connectivity deficien-

cies, as animal production facilities are usually in rural areas, which limits their potential to use

internet-based programs [173]. There are several commercial projects that develop sensors

and devices to increase the amount of information that can be detected from animals, with the

aim of increasing the traceability and sustainability of animal production systems [174]. An

alternative to these automated detection methods is the observation of animal interactions

through video recording [13, 134, 136, 138, 144, 147, 149, 151, 153, 157, 159, 166, 169, 172,

175–180] or direct observation [35, 140, 165, 170, 171, 181–184]. As mentioned before, how-

ever, these methods are limited in the number of individuals that can be assessed at once, as

well as in the speed of processing.

Refinement of the measurement of social interactions through technology aims to improve

the reliability and feasibility of these indicators. Currently, the identification of behaviors

depends on observers to perform the behavior counts, which consequently may reduce the fea-

sibility of these indicator measurements.

Lesion assessment. Lesion assessment, through a variety of scores and protocols, can be an

indicator of dominant-subordinate relationships, and has been validated in several publica-

tions [14, 35, 52, 138, 145, 152, 153, 160, 161, 163, 167, 168, 176, 177, 182, 184–208]. This

method assumes that more aggressive animals begin more agonistic encounters, generating

higher lesion scores for victimized pen-mates. The measurement method, however, has some

limitations that can affect the reliability of the indicator, such as difficulties in detecting other

agonistic interactions that do not generate injuries but are still stressors, i.e., nudging or intim-

idation, and even shorter agonistic and less intense interactions (do not generate observable

injuries), which would affect the social dynamics of the individuals involved [142, 186, 209].

Therefore, owing to the variability of this method, it must be performed on large groups of ani-

mals to obtain significant conclusions [209]. The measurement protocol of this indicator

makes it a feasible indicator for utilization under most production conditions, although body

lesion assessment should be included as part of a set of indicators to produce robust and reli-

able conclusions [26]. For instance, skin lesions complemented by behavioral observations

have been used to study the genetic correlation of aggressiveness in pigs, as aggression has

been shown to be a heritable component [141, 145, 209–218].

Biological response indicators. Physiological markers. The primary physiological indica-

tor of stress is an increase in the concentration of cortisol in the blood [12, 137, 140, 147, 160,

178, 179, 183, 184, 219–224] or saliva [13, 35, 36, 51, 149, 152, 159, 175, 181, 187, 190, 206, 210,

222, 225–228]. Additionally, other less invasive measurement techniques such as hair [224]

and urine samples [13, 170] have also been used to detect increases in the concentration of cor-

tisol, which is an indicator of the activity of the hypothalamic-pituitary-adrenocortical (HPA)

axis, which controls homeostasis in organisms. An increased concentration of cortisol is asso-

ciated with a reduction in thyroid hormone circulation, a greater risk of ulcers in the stomach,

and a higher risk of immune dysfunction, particularly in the intestinal wall [229], increasing

the animals’ susceptibility to infections and illness. Therefore, cortisol concentration is a rele-

vant biomarker for monitoring pig welfare. Blood cortisol is widely used because of its practi-

cal sampling and relatively affordable cost [134, 160, 220, 221]. As previously mentioned,

however, blood sampling involves animal handling and discomfort for the animals [230], and

requires ethical approval of the sampling protocols. Additionally, blood metabolites, such as

cortisol and acute-phase proteins, have a circadian circulation pattern that affects their con-

centration in the bloodstream during the day [139, 167, 175]. Less invasive sampling methods,

on the other hand, such as saliva, feces, and hair, are less stressful to the animals, and sampling

can be carried out multiple times with fewer detrimental effects on the integrity of the pig.
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Additionally, saliva samples can be used to detect multiple physiological markers [36, 206].

Discord, however, has been observed between salivary and serum cortisol [179, 224], as saliva

samples generate a higher variance among the results than cortisol concentrations in the

plasma because of the higher variance of this variable and its circadian rhythm [206, 231]. Sim-

ilarly, hair cortisol measurements have accuracy limitations related to hair factors, such as hair

longitude, subject sex, and hair color, which may influence the concentration of cortisol in the

sample [224, 232]. Fecal samples have shown a weak relationship with plasma cortisol mea-

surements [233] and the sampling process to obtain fresh and uncontaminated samples

directly from the pig rectum might require handling.

Other physiological stress markers, such as increases in glucose [139, 140, 158, 179, 188,

234, 235], acute phase proteins [12, 36, 147, 183, 206, 224], and catecholamines [36, 134, 147,

149, 219, 224], also measured from blood or saliva, have the same limitations as cortisol con-

centration assessments, such as required handling of the animal, circadian rhythms, sample

processing, and data interpretation-related costs. Additionally, the approval of the sampling

protocols by a bioethics committee reduces the feasibility of measuring physiological markers.

The validity, reliability, and feasibility of physiological marker indicators are discussed

above.

Consequence indicators. Animal vocalizations. Animal vocalizations might be considered

a behavioral indicator, as they are a consequence of environmental stimuli [163]; however, in

the present systematic review, vocalizations were considered an indicator category per se, as

the manuscripts reviewed studied and related the acoustic characteristics of animal vocaliza-

tions with particular social, environmental, or health situations [4, 62, 91, 128–130, 132–134].

The use of this indicator is still under development to increase the interpretation capacity of

the information captured from the sounds recorded in pig farms, and to improve the identifi-

cation of specific individuals in a given production group [236, 237]. The validity, reliability,

and feasibility of animal vocalizations as welfare indicators have already been mentioned

above.

Animal performance. Animal performance indicators, such as growth and feed intake,

reflect the consequences of stress on the integrity of the animal, which may negatively affect

animal production. Nonetheless, these measurements would not be specific enough to eluci-

date the physiology of the animal under stress conditions by themselves, because performance

indicators simply reflect the consequences of stress and not the physiological response to the

stress factor. Typically, these indicators are used to complement other indicators [40, 51, 142,

184, 227, 238–240].

The validity of animal performance indicators has been proven, as they are widely used to

track the development of animals during the production cycle. The feasibility or ease of practi-

cal application makes the results of performance measurements widely reliable.

Immune-related stress

Immune challenges result in reductions in the physiological functions (maintenance, growth,

and reproduction) of the animals, affecting animal performance as well as economic profitabil-

ity [241, 242]. Common responses to immune challenges include increased pro-inflammatory

cytokine activity, such as interleukins (IL-1, IL-2, IL-12, IL-17, IL-18), interferon (IFN-γ), and

tumor necrosis factor (TNF-α), an increase in the production of acute phase proteins, and leu-

kocyte proliferation [16]. These responses generate consequences such as fever [16, 87, 243–

254], diarrhea [34, 244, 253, 255–259], dyspnea [249, 260–269], spontaneous abortions, and

reductions in animal performance parameters (i.e., growth, feed intake, and body conditions)

[147, 268, 270–279]. The observation of these consequences or symptoms can provide an idea
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of the magnitude of the immunologic challenge, but it cannot provide an ultimate diagnosis of

immune function [269, 280]. The primary physiological indicators used to monitor the effects

of immune challenges are the activity of cytokines [16, 270, 271–278, 281, 282], immunoglobu-

lin proliferation [268, 279, 283–290], and blood metabolites such as acute-phase proteins, glu-

cose, and cortisol [18, 33, 291–299].

Causal indicators. The immune-related stress model does not present causal indicators,

as immunological challenges are part of the experimental procedure. Some assessments, how-

ever, are aimed at evaluating the viral load of pigs or the presence of viral ribonucleic acid

(RNA) in the individual [300–303]. These indicators were reviewed in the physiological indica-

tor methods, as those measures are part of the evaluation of clinical symptoms.

Biological response indicators. Blood chemistry. Biochemical indicator measurements

(cytokines, immunoglobulins, and acute-phase proteins) require animal handling for sampling

(blood or tissue). New methods have been developed for the detection of biological markers

using less invasive techniques, such as saliva, urine, feces, and nasal swabs [17, 270, 302, 304–

315]. These methods have shown the potential to detect metabolites, such as acute-phase pro-

teins, immunoglobulins, and cortisol, in saliva samples [17, 231, 286, 306, 316], immunoglobu-

lins and viruses present in nasal secretions [286, 290, 317–320] and immunoglobulins in fecal

samples [321]. An additional advantage of these less invasive methods is the potential habitua-

tion of the animal to the sampling process, which would optimize the procedure and improve

the welfare of the animals [306]. For example, Almeida [322] collected oral fluid samples from

piglets in the lactation area by hanging a cotton rope for one hour. The animals chewed the

rope, from which their saliva was extracted. Furthermore, piglets were more prone to contact

the sampling device (cotton rope) if their mother was in contact with the object. These less

invasive methods, however, are susceptible to higher variation, which require an increased

sample size to obtain significant conclusions [231], and some authors have reported results

contrary to those found through blood sampling [179, 223]. The validity, reliability, and feasi-

bility of the physiological markers using blood samples as welfare indicators have been men-

tioned in previous paragraphs.

Physiological markers. This category covers methods that measure the physiological impact

of immune challenges on animals. In general, the indicators measured were clinical symptoms

which presented in the animals when the infection or challenge was administered [323–326].

This indicator category provides information on how and when the stressor affects the physiol-

ogy of the animals, hampering their welfare and production yield. Additionally, the detection

of clinical signs and symptoms requires trained observers [34, 258, 307, 313, 327–329]. The

validity, reliability, and feasibility of the physiological markers have been discussed previously

in the text.

Consequence indicators. Animal performance. The physiological reaction chain triggered

by an immune challenge manifests in clinical signs that compromise animal performance

parameters (feed intake, feed conversion rate, weight gain, body condition score, etc.) [34, 40,

247, 248, 250, 255, 330–345] and increase the incidence of diarrhea [255, 270, 315, 327, 346–

352]. As in previous stress models, animal performance might be considered an indicator of

other biomarkers. The indicator characteristics (validity, reliability, and feasibility) for the ani-

mal performance indicators are described above.

Behavior Immunologic challenges reduce the energy available for routine activities, forcing

the organism to use this energy to fight infection and maintain homeostasis [241, 242],

depressing the level of physical activity [40, 353–356]. Therefore, methods to monitor pig

activity remotely and continuously are relevant to production systems. Most of the behavioral

analysis packages mentioned in the previous sections, the Observer series and MatMan from

Noldus [13, 151, 160–166, 152–159] and Interact from Mangold [167], can guarantee accurate
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and fast processing of information regarding the pigs’ behavior. Moreover, a variety of sensors

and behavioral analysis packages are constantly under development. For instance, the thermo-

graphic cameras developed by Flir detect changes in the superficial temperature of specific

body parts (udder, hoofs, etc.) or detect fever [357–361]. The validity, reliability, and feasibility

of behavior as a welfare indicator have been previously discussed.

The methods used to monitor immune stress require a higher level of refinement than in

other stress models, because most of the measurements and assessments require sampling that

involves animal handling (blood, tissues, urine, saliva, nasal fluids, etc.). Therefore, methods

that allow the determination of several metabolites in a single sample are highly desirable.

Final considerations (summary)

The primary indicators and methods described in the relevant literature from 2000 to 2020 for

each stress model are well known, and we have described the advantages and limitations of

these methods for measuring the indicators used to determine the impact of stressful factors

on the physiology of animals in porcine production systems. Additionally, future directions

that need to be addressed to optimize the techniques and technologies to detect these indica-

tors were described, always leaning towards protocols that are less stressful to the animals

while providing more accurate results and improving the general welfare of the pigs.

Among the stress models reviewed, three types of indicators were observed: those that eval-

uated the cause of the stress, those that measured the biological response to deal with the

stressor, and those that assessed the consequences of stress. Therefore, it is important to con-

sider that, to generate a proper measurements and correct diagnoses of the status of an animal,

the physiological response enacted to deal with a stressful situation should be measured. As

such, researchers and pig producers can determine the magnitude of the impact of the stressor

on the physiology of an individual. A summary of the primary indicators and their measure-

ment techniques is presented in Table 2, organized based on the type of indicator.

Additionally, we identified three types of methods that are applicable to all stress models:

(A) invasive methods, such as body temperature through rectal measurements and blood

metabolites through blood samples to determine cortisol, acute phase proteins, cytokines,

blood urea nitrogen, and glucose; (B) less invasive methods, such as concentration of cortisol,

acute phase proteins, and immunoglobulins in saliva; and (C) non-invasive methods, such as

animal behavior, skin temperature, and vocalizations.

Invasive methods have a high accuracy, and their performance is relatively affordable and

practical. These methods, however, require animal handling, which may alter the levels of the

measured metabolites. Additionally, invasive methods might require the approval of a bioeth-

ics committee, as these proceedings can generate fear, pain, and distress in animals, which

Table 2. Primary indicators and measurement techniques of each stress model, presented based on the indicator type.

Indicator Thermal Social Immune-related

Indicator Method Indicator Method Indicator Method

Causal • Environmental temp. • THI • Social interactions

• Lesions

• Direct observ.

• Lesion score

• Physiology markers • Viral Load

Biological response • Body temp.

• Skin temp.

• Respiratory rate

• Physiological markers

• Rectal temp.

• NIFT

• Flank moves count

• Glucose

• Physiological markers • Cortisol • Blood chemistry

• Physiological markers

• -Interleukin

• -Body temp.

Consequence • Behavior

• Vocalizations

• Direct observation

• Vocal analyses

• Animals perform.

• Vocalizations

• Weight gain

• Vocal analyses

• Animals perform.

• Behavior

• Weight gain

• Direct observ.

https://doi.org/10.1371/journal.pone.0266524.t002
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might in turn affect the results of the measurements. A limitation of invasive methods is that

these are time-spot measurements, which disregard most of the animal’s information during a

normal day.

Less invasive methods allow for decreased manipulation of the animals (e.g., restraint to

collect the sample), and conditioning the individual to get used to the experimental procedure

(e.g., offering a cotton swab soaked with a sucrose solution). Additionally, the number of

metabolites that can be identified in these samples increases their potential as a more refined

method for measuring biological markers. However, circadian fluctuations in metabolites or

sampling-handling alterations can affect the variability of measured parameters. These alter-

ations would require an increased sample size to obtain statistically significant conclusions.

Remote methods are under constant development and optimization, as technology and sys-

tems are updated regularly. There, the limitations of these methods are the affordability and

feasibility of adding technology to the facilities housing the production system. However, accu-

rate measurements and interpretations make it worth investing in improving animal welfare

and production yield.

One remarkable point is the emerging need to detect universal indicators that are sensitive

to a variety of stressors, which would facilitate the assessment of the physiological status of ani-

mals under different challenging conditions. This would allow researchers, producers, and

stakeholders involved in pig production to optimize the generation and evaluation of strategies

to handle stressors related to pig production to maintain the welfare and production of pigs.

Specific parameters, however, are better for identifying specific problems. Additionally, it is

important to identify methods that are feasible for utilization in farms to control the physiolog-

ical conditions of the animals, and to study the relationship of these biomarkers with produc-

tive parameters to predict the performance of individuals under standard productive

conditions. The use of holistic approaches and the possible complementarity of indicators will

provide a more complete landscape of the animals’ response to stress factors.

As such, remote observation and machine vision methods are promising alternatives for

monitoring animal welfare. Moreover, the development of new technologies and the large-

scale production of these devices and data processing packages will likely make this technology

more affordable and feasible for application in animal production systems. All these new, less

invasive, and remote methods follow the “refinement” concept to improve animal welfare,

wellness, and measurements. Finally, the utilization of complementary indicators will provide

a broader picture of the landscape regarding the physiological status of animals under typical

production conditions.

Conclusion

The present systematic review aimed to review animal-based indicators currently used to mon-

itor the impact of different sources of stress in pigs (thermal, social, and immune-related). The

primary indicators and methods used to measure stress have been reported in the relevant lit-

erature, and methods that rely on technologies such as artificial vision, sound analysis, and IR

technology have been highlighted. These technologies not only improve the accuracy of the

measurements, but also reduce animal handling, thereby improving animal welfare. For

instance, NIFT can be used to measure skin temperature, record vocalizations to detect stress-

ors, or analyze artificial vision to interpret animal behavior.

Additionally, stress assessments based on a single animal-based indicator may fail to pro-

vide a reliable diagnosis of the stress response of an animal. Therefore, researchers have sug-

gested to consider using a set of indicators that cover physiological and behavioral responses

to obtain complete stress monitoring.
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Finally, stressors are implicit in animal production, and the study of these stressors may

lead to more efficient management and nutritional strategies to mitigate the effects of stress on

pig production. Current stress models are based on invasive sampling, which might reduce

animal welfare. Therefore, studies involving stress models should balance the severity of the

invasiveness of the indicators under evaluation with the welfare benefits of the study to obtain

reliable results with minimal negative impacts on the welfare of animals.
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57. Amavizca-Nazar A, Montalvo-Corral M, González-Rios H, Pinelli-Saavedra A. Hot environment on

reproductive performance, immunoglobulins, vitamin E, and Vitamin A status in sows and their prog-

eny under commercial husbandry. J Anim Sci Technol. 2019; 61(6):340–51. https://doi.org/10.5187/

jast.2019.61.6.340 PMID: 31844544

58. Liu F, Cottrell JJ, Furness JB, Rivera LR, Kelly FW, Wijesiriwardana U, et al. Selenium and vitamin E

together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed

pigs. Exp Physiol. 2016; 101(7):801–10. https://doi.org/10.1113/EP085746 PMID: 27064134

59. Lauridsen C, Schönherz AA, Højsgaard S. Effect of maternal dietary redox levels on antioxidative sta-

tus and immunity of the suckling off-spring. Antioxidants. 2021; 10(3):1–13. https://doi.org/10.3390/

antiox10030478 PMID: 33803000

60. Opderbeck S, Keßler B, Gordillio W, Schrade H, Piepho HP, Gallmann E. Influence of a cooled, solid

lying area on the pen fouling and lying behavior of fattening pigs. Agric. 2020; 10(7):1–19.

61. Aarnink AJA, Schrama JW, Heetkamp MJW, Stefanowska J, Huynh TTT. Temperature and body

weight affect fouling of pig pens. J Anim Sci. 2006; 84(8):2224–31. https://doi.org/10.2527/jas.2005-

521 PMID: 16864884

62. Manteuffel G, Puppe B, Schön PC. Vocalization of farm animals as a measure of welfare. Appl Anim

Behav Sci. 2004; 88(1–2):163–82.

63. Fragomeni BO, Lourenco DAL, Tsuruta S, Bradford HL, Gray KA, Huang Y, et al. Using single-step

genomic best linear unbiased predictor to enhance the mitigation of seasonal losses due to heat stress

in pigs. J Anim Sci. 2016; 94(12):5004–13. https://doi.org/10.2527/jas.2016-0820 PMID: 28046178

64. Basak JK, Arulmozhi E, Khan F, Okyere FG, Park J, Kim HT. Modeling of ambient environment and

thermal status relationship of pig’s body in a pig barn. Indian J Anim Res. 2020; 54(8):1049–54.

65. Wegner K, Lambertz C, Das G, Reiner G, Gauly M. Effects of temperature and temperature-humidity

index on the reproductive performance of sows during summer months under a temperate climate.

Anim Sci J. 2016; 87(11):1334–9. https://doi.org/10.1111/asj.12569 PMID: 26989052

66. A Guide to Environmental Research on Animals—National Research Council (U.S.). Committee on

Physiological Effects of Environmental Factors on Animals—Google Libros [Internet]. [cited 2021 May

PLOS ONE Systematic review of animal-based indicators to measure stress in pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0266524 May 5, 2022 26 / 43

https://doi.org/10.1111/asj.13048
http://www.ncbi.nlm.nih.gov/pubmed/29808521
https://doi.org/10.1016/j.compag.2018.12.009
https://doi.org/10.1016/j.compag.2018.12.009
https://doi.org/10.1017/S1751731115001342
http://www.ncbi.nlm.nih.gov/pubmed/26189971
http://dx.doi.org/10.1016/j.biosystemseng.2012.11.015
https://doi.org/10.1016/j.physbeh.2006.07.002
http://www.ncbi.nlm.nih.gov/pubmed/16904137
http://dx.doi.org/10.1016/j.applanim.2013.03.012
https://doi.org/10.1371/journal.pone.0194524
http://www.ncbi.nlm.nih.gov/pubmed/29617403
https://doi.org/10.5187/jast.2019.61.6.340
https://doi.org/10.5187/jast.2019.61.6.340
http://www.ncbi.nlm.nih.gov/pubmed/31844544
https://doi.org/10.1113/EP085746
http://www.ncbi.nlm.nih.gov/pubmed/27064134
https://doi.org/10.3390/antiox10030478
https://doi.org/10.3390/antiox10030478
http://www.ncbi.nlm.nih.gov/pubmed/33803000
https://doi.org/10.2527/jas.2005-521
https://doi.org/10.2527/jas.2005-521
http://www.ncbi.nlm.nih.gov/pubmed/16864884
https://doi.org/10.2527/jas.2016-0820
http://www.ncbi.nlm.nih.gov/pubmed/28046178
https://doi.org/10.1111/asj.12569
http://www.ncbi.nlm.nih.gov/pubmed/26989052
https://doi.org/10.1371/journal.pone.0266524


3]. Available from: https://books.google.es/books/about/A_Guide_to_Environmental_Research_on_

Ani.html?id=gzsrAAAAYAAJ&redir_esc=y

67. Cervantes M, Cota M, Arce N, Castillo G, Avelar E, Espinoza S, et al. Effect of heat stress on perfor-

mance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in

growing pigs. J Therm Biol [Internet]. 2016; 59:69–76. Available from: https://doi.org/10.1016/j.

jtherbio.2016.04.014 PMID: 27264891

68. Collin A, Vaz MJ, Le Dividich J. Effects of high temperature on body temperature and hormonal adjust-

ments in piglets. Reprod Nutr Dev. 2002; 42(1):45–53. https://doi.org/10.1051/rnd:2002005 PMID:

12199375

69. da Fonseca de Oliveira AC, Vanelli K, Sotomaior CS, Weber SH, Costa LB. Impacts on performance

of growing-finishing pigs under heat stress conditions: a meta-analysis. Vet Res Commun. 2019; 43

(1):37–43. https://doi.org/10.1007/s11259-018-9741-1 PMID: 30569275

70. Kpodo KR, Duttlinger AW, Radcliffe JS, Johnson JS. Time course determination of the effects of rapid

and gradual cooling after acute hyperthermia on body temperature and intestinal integrity in pigs. J

Therm Biol [Internet]. 2020; 87(December 2019):102481. Available from: https://doi.org/10.1016/j.

jtherbio.2019.102481 PMID: 32001015

71. Sapkota A, Herr A, Johnson JS, Lay DC. Core body temperature does not cool down with skin surface

temperature during recovery at room temperature after acute heat stress exposure. Livest Sci [Inter-

net]. 2016; 191:143–7. Available from: http://dx.doi.org/10.1016/j.livsci.2016.07.010

72. Chakraborty A, Baruah A, Sarmah BC, Goswami J, Bora A, Dutta DJ, et al. Physiological responses in

pigs on antioxidant supplementation during summer and winter. Indian J Anim Res. 2018; 52

(11):1557–9.
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