1	Toxicoproteomic evaluation of carbon nanomaterials in vitro
2	
3	Hisao Haniu ^{a,} *, Yoshikazu Matsuda ^b , Yuki Usui ^c , Kaoru Aoki ^c , Masayuki Shimizu ^c ,
4	Nobuhide Ogihara ^c , Kazuo Hara ^c , Masanori Okamoto ^c , Seiji Takanashi ^c , Norio
5	Ishigaki °, Koichi Nakamura °, Hiroyuki Kato ° and Naoto Saito ${}^{\rm d}$
6	
7	^a Institute of Carbon Science and Technology, Shinshu University, 3-1-1 Asahi,
8	Matsumoto, Nagano 390-8621, Japan
9	^b Integrative Medicine Educational Center, Nihon Pharmaceutical University, 10281
10	Komuro, Ina-machi, Saitama 362-0806, Japan
11	^c Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1
12	Asahi, Matsumoto, Nagano 390-8621, Japan
13	^d Department of Applied Physical Therapy, Shinshu University School of Health
14	Sciences, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
15	
16	* To whom correspondence should be addressed: Hisao Haniu
17	Institute of Carbon Science and Technology, Shinshu University
18	3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan

- 19 Tel: +81-263-37-2659; Fax: +81-263-35-8844
- 20 E-mail: hhaniu@shinshu-u.ac.jp
- 21
- 22 Keywords
- 23 Toxicoproteomics; Chronic toxicity; Carbon nanotubes; Nanomaterials; *in vitro*

24	Carbon nanotubes (CNTs) have already been successfully implemented in various fields,
25	and they are anticipated to have innovative applications in medical science. However,
26	CNTs have asbestos-like properties, such as their nanoscale size and high aspect ratio
27	(>100). Moreover, CNTs may persist in the body for a long time. These properties are
28	thought to cause malignant mesothelioma and lung cancer. However, based on
29	conventional toxicity assessment systems, the carcinogenicity of asbestos and CNTs is
30	unclear. The reason for late countermeasures against asbestos is that reliable,
31	long-term safety assessments have not yet been developed by toxicologists. Therefore, a
32	new type of long-term safety assessment, different from the existing methods, is needed
33	for carbon nanomaterials. Recently, we applied a proteomic approach to the safety
34	assessment of carbon nanomaterials. In this review, we discuss the basic concept of our
35	approach, the results, the problems, and the possibility of a long-term safety assessment
36	for carbon nanomaterials using the toxicoproteomic approach.

37

38 Conventional Safety assessments of CNTs

39 During the past 10 years, many studies have examined the toxicity of CNTs in vivo 40 and *in vitro* (Table 1). Cytotoxicity, cytokine production and oxidative stress occur when various types of cells are cultured with CNTs [1-5]. Pulmonary exposure to CNTs caused 41 42rats and mice to develop fibrosis, granulation and inflammation in their lungs [6-8]. 43Takagi et al. found that the intraperitoneal injection of CNTs into p53^{-/-} mice caused 44 malignant mesothelioma [9], and Poland et al. reported that CNTs exhibit asbestos-like 45pathogenicity in mice [10]. However, published replies to these reports questioned the appropriateness of the administration sites or CNT dosage [11, 12]. Moreover, Muller et 4647al. found no carcinogenic response to CNTs placed in the peritoneal cavity of rats for 2 years [13]. Many factors may be responsible for these conflicting results, but we do not 4849yet have sufficient information about the factors that contribute to CNT toxicity in rodents or in cell culture [6]. 50

51 Biological responses to CNTs are affected by multiple properties that include length, 52 shape (single-wall or multi-wall), fibrous surface area, aspect ratio and aggregability 53 with or without the involvement of dispersion medium [10, 14-22]. Impurities, such as 54 iron and polycyclic aromatic hydrocarbons, are introduced into CNTs by the production 55 process. These impurities have intrinsic toxicities, and their interaction with CNTs in

56	cells can be cytotoxic [23-26]. Conventional methods suitable for the examination of
57	acute or subacute toxicity have been used to examine the properties of CNTs that
58	contribute to biological responses.
59	Mesothelioma caused by asbestos exposure cannot be reliably reproduced in a
60	conventional toxicity assay <i>in vitro</i> . Asbestos does not induce transformation of primary
61	human mesothelial cells in tissue culture. Rather, asbestos represents cytotoxicity that
62	leads the cell death to human mesothelial cells grown in vitro [27-29]. Therefore, it is
63	difficult to design an experiment that contains a positive control because the
64	mechanism for the development of mesothelioma remains unclear [30]. Essentially, the
65	present scientific evidence is insufficient to conclude the possible long-term toxic effects
66	of CNTs, such as development of mesothelioma.
67	Animal experiments used to evaluate chronic toxicity are also controversial. When
68	CNTs are greater than 5 μ m in length, it is thought that they are too large to reach the
69	distal portions of the lungs in mice or rats [31]. In fact, there are few reports of
70	mesothelioma onset in rodents by asbestos exposure (especially particles $\geq 8~\mu m$ in
71	length $\leq 0.25~\mu m$ in width). Therefore, out of public concern, evaluating intraperitoneal
72	injection of CNTs for the development of lung mesothelioma, commonly seen in cases of
73	asbestos exposure, has been attempted. However, as mentioned, the effectiveness of this

74 method is not without controversy. Indeed, it is difficult to predict the long-term safety 75 of CNTs in humans based on the results of animal studies. Therefore, a *de novo* 76 procedure must be developed to evaluate the safety of long-term exposure to carbon 77 nanomaterials containing CNTs.

78

79 Safety evaluation of carbon nanomaterials by proteomics

80 Witzmann and Monteiro-Riviere have used a proteomic approach to study the 81 biological responses of human keratinocytes to multi-walled CNTs [32]. Their analysis 82 identified proteins related to metabolism, cell signaling and stress, as well as 83 cytoskeletal elements and vesicular trafficking components. Chang et al. used a 84 proteomic analysis to study the mechanism of ultrafine carbon black-induced lung 85injury in mice [33]. They analyzed proteins in bronchoalveolar lavage fluid and 86 identified 33 proteins, including leukemia inhibitory factor receptor (LIFR) and 87 epidermal growth factor receptor (EGFR). In these experiments, the exposure to carbon 88 nanomaterials was for less than 2 days, and cell viability [5] and total protein 89 concentration in bronchoalveolar lavage fluid had already been changed. Although it 90 may be said that these experiments evaluated the biological response of acute toxicity 91by a proteomic approach, many of the expression-altered proteins in keratinocytes were

92	related to stress or the tox/detox response, and some of the proteins were altered by jet
93	fuel exposure [34]. Although jet fuel exposure caused acute and severe toxicity, it is not
94	the focus of our goal, which is to predict the long-term toxicity of CNTs.
95	The purpose of conventional proteomics is to detect alterations in protein expression
96	at the time of dynamic physiological phenomena or in the state of disease alteration [35].
97	On the other hand, few reports have examined the altered expression of proteins when
98	the external stimulus requires a long time to elicit a biological response. Such altered
99	protein expression would almost certainly occur if a biological response is predicted. We
100	analyzed protein alterations in cells exposed to carbon nanomaterials at concentrations
101	that either suppressed or did not alter cell proliferation which is the standard indicator
102	of the acute toxicity.
103	Human monoblastic leukemia cells (U937) were exposed to three grades of multi-wall
104	CNTs (MWCNTs), As-grown, HTT1800 and HTT2800 (Table 2), and carbon black (CB;
105	particle diameter = 85 nm) for 96 h [36, 37]. The iron and polycyclic aromatic
106	hydrocarbons in HTT1800 and HTT2800 were removed by thermally treating As-grown
107	MWCNTs at temperatures greater than 1800°C in argon. In our experiment, As-grown
108	MWCNTs exhibited significant inhibition of cell proliferation $(n = 4)$. Therefore, we
109	thought that the As-grown MWCNTs produced a cytotoxic and/or cytostatic response (n

110	= 4). On the other hand, the proliferation of cells exposed to $HTT1800$ and $HTT2800$
111	tended to be inhibited, although this tendency was not statistically significant as
112	compared to the control ($n = 4$). HTT1800, with an amount of residual iron greater than
113	that of HTT2800, strongly inhibited the cell proliferation compared to HTT2800 [37].
114	CB did not affect cell proliferation at all [36]. Cell lysates were subjected to 2-DE and
115	the subsequent images were analyzed by PDquest software (Fig. 1). The proteins listed
116	in Table 3 were identified by peptide mass fingerprinting with matrix-assisted laser
117	desorption ionization time-of-flight mass spectrometry and had quantitatively
118	significant differences ($p < 0.05$) as compared to the control. The expression of many
119	proteins was altered in cells treated with HTT1800, HTT2800 or CB, a number of
120	proteins with altered expression were related to the degree of cell proliferation
121	inhibition. Altered expression of two proteins was shared by cells treated with any of the
122	three carbon materials. Expression alterations in these two proteins and an additional
123	12 were shared by cells treated with either HTT1800 or HTT2800. These proteins are
124	involved in: metabolic processes, signal transduction/cell communication, response to
125	stress, transport, cell differentiation, cell cycle and cell death. It is noteworthy that
126	there are proteins related to the response to stress or cell death that are altered without
127	the suppression of cell proliferation. However, the proteins that function in cell

128	proliferation and transcription were changed only in the case of cells exposed to
129	MWCNTs with impurities. We can speculate on the farsighted cellular conditions from
130	the current information available on function of the proteins that were altered by
131	stimulation and the remarkable quantitative changes in these altered proteins.
132	However, the function of these proteins is revealed at the time of remarkable alterations
133	in their expression. Chronic toxicity attributed to slow alterations over time cannot be
134	predicted due insufficient information on the relationship between chronic disease and
135	alterations in protein expression. On the other hand, 22 proteins altered only in
136	HTT1800 and six proteins altered only in HTT2800 and CB, respectively, may reflect
137	the cellular response to fiber or particle properties or structural defects and impurities
138	in each carbon nanomaterial. For example, annexin A2 is increased by MWCNTs but
139	decreased by CB. Annexin A2 is modulated by TLR4, resulting in the secretion of
140	inflammatory mediators [38]. The differences in the expression alteration of annexin A2
141	may be linked to cytokine production [19]. Alterations in cells that are divided two or
142	three times while continually exposed to non-biodegradable CNTs, without exhibiting
143	acute cytotoxic responses, may lead to CNT-induced chronic toxicity. Thus, we believe
144	that the proteomic technique could be used to evaluate details of proteins related to
145	CNT-induced chronic toxicity and clarify the pathophysiology of CNTs.

147 Problem and direction of toxicoproteomics for carbon nanomaterials

148In this review, we do not speculate on the toxicity of CNTs based on the functions of 149proteins with altered expression levels, because the scientific evidence on relationships 150between the known functions of altered proteins and chronic toxicity is overwhelmingly 151lacking. Chronic biological responses are highly influenced by environmental factors 152and differences in individuals, whereas most of the acute toxic responses are 153programmed with the conserved gene. Recently, clinical proteomic profiling to search for 154biomarkers has been undertaken [39, 40], but the correlation coefficient to an individual 155biomarker in a chronic disease is generally lower than that of an acute disease [41, 42]. 156This fact seems to be associated with the observation that higher organisms can adapt 157to environmental alterations because they have multiple pathways for maintaining homeostasis. For example, higher organisms may not develop a disease even if a 158159diagnostic biomarker is outside of its normal range. Therefore, in toxicoproteomic 160 research, only one or a few protein biomarkers are insufficient to assess long-term 161toxicity. As a result, the hazard of useful compounds is overestimated; a wrong 162conclusion may be drawn. To avoid such problems, all clinical and experimental 163 proteome data with quantitative information should be compiled into a database

164	without selecting specific proteins based on their degree of alteration. Multiple data
165	from the same patients in different stages of a disease and different patients in the
166	same disease stage are needed for successful applications of clinic proteomics, because
167	the homeostasis and the state of a disease are kinetically altered [35, 43]. In other
168	words, the key to the success of toxicoproteomic predictions of toxicity is the
169	construction of a database of the detailed clinical proteome. Meanwhile, proteome data
170	must be accumulated to investigate interspecies differences, individual differences and
171	tissue differences using experimental animals and cultured cells with an ultimate goal
172	of determining "personalized safety" from toxicoproteome data using novel models and
173	tools, such as induced pluripotent stem cells derived from a specific individual.
174	In this review, we mainly introduced the proteomic approaches based on the 2-DE/MS
175	strategy. Although the 2-DE/MS strategy can provide valuable information about
176	protein profile changes associated with exposure to carbon nanomaterials, it may not
177	allow for quantitative comparison of low abundant proteins. From this perspective, new
178	quantitative proteomic approaches, such as isotope-labeled or label-free quantitative
179	LC-MS/MS, also should be used to obtain more proteome information.
180	

Conclusion 181

182Based on the results of currently available toxicoproteomics, it is not yet clear if 183carbon nanomaterials will be hazardous in applications in various fields, including 184medical sciences. The most promising materials in the field of nanotechnology are 185carbon nanomaterials; therefore, their safety assessment should be performed very 186 carefully. Carbon nanomaterials elicit different biological responses based on their 187 shape, as seen from a comparison of MWCNTs and CB. As toxicoproteome data on the 188 mechanisms of biological responses become available, the cytotoxicities of 189 morphologically different carbon nanomaterials can be determined. The possibility of 190 mesothelioma caused by CNTs is of particular importance; thus, a comprehensive safety 191 assessment comprised of both toxicoproteomic analysis and other evaluation procedures 192should be performed. The properties of carbon nanomaterials, unlike the properties of 193asbestos, can be modified because the carbon nanomaterials are artificially produced. 194 Therefore, if a hazard can be precisely identified, a new carbon nanomaterial without 195the hazardous property can be designed and produced. We believe that our lives will be 196 enhanced by the development and medical application of nonhazardous carbon 197 nanomaterials.

198

199 Acknowledgements

This work was supported by the Regional Innovation Cluster Program of Nagano and a
Grant-in-Aid (No. 19002007) from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.

203

204 Conflicts of Interest

205 The authors declare that they have no conflicts of interest.

206

207 References

[1] Hirano S, Fujitani Y, Furuyama A, Kanno S. Uptake and cytotoxic effects of multi-walled
carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol.
2010;249:8-15.

[2] Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, et al. Genotoxicity,
cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and
C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol
Mutagen. 2008;49:476-87.

- [3] Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, et al. Raw
 single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1,
 NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health
 Perspect. 2008;116:1211-7.
- [4] Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but
 induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett.
 2007;168:58-74.
- [5] Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled
 carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett.
 2005;155:377-84.
- [6] Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: a
 review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol
 Sci. 2006;92:5-22.
- [7] Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. Mouse
 pulmonary dose- and time course-responses induced by exposure to multi-walled carbon
 nanotubes. Toxicology. 2010;269:136-47.
- [8] Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. Inhalation vs.
- aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis,
- 233 oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008;295:L552-65.
- 234 [9] Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. Induction of
- 235 mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube.

- 236 J Toxicol Sci. 2008;33:105-16.
- 237 [10] Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon
- nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity ina pilot study. Nat Nanotechnol. 2008;3:423-8.
- 240 [11] Donaldson K, Stone V, Seaton A, Tran L, Aitken R, Poland C. Re: Induction of
- 241 mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube.
- 242 J Toxicol Sci. 2008;33:385; author reply 6-8.
- [12] Ichihara G, Castranova V, Tanioka A, Miyazawa K. Re: Induction of mesothelioma in
 p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci.
 2008;33:381-2; author reply 2-4.
- 246 [13] Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. Absence of carcinogenic
- response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the
 rat. Toxicol Sci. 2009;110:442-8.
- [14] Tabet L, Bussy C, Amara N, Setyan A, Grodet A, Rossi MJ, et al. Adverse effects of
 industrial multiwalled carbon nanotubes on human pulmonary cells. J Toxicol Environ
 Health A. 2009;72:60-73.
- [15] Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-wall carbon
 nanotubes on human fibroblasts. Toxicol In Vitro. 2006;20:1202-12.
- [16] Raffa V, Ciofani G, Vittorio O, Riggio C, Cuschieri A. Physicochemical properties
 affecting cellular uptake of carbon nanotubes. Nanomedicine (Lond). 2010;5:89-97.
- [17] Soto K, Garza KM, Murr LE. Cytotoxic effects of aggregated nanomaterials. Acta
 Biomater. 2007;3:351-8.
- [18] Inoue K, Takano H, Koike E, Yanagisawa R, Sakurai M, Tasaka S, et al. Effects of
 pulmonary exposure to carbon nanotubes on lung and systemic inflammation with
 coagulatory disturbance induced by lipopolysaccharide in mice. Exp Biol Med (Maywood).
 2008;233:1583-90.
- 262 [19] Walker VG, Li Z, Hulderman T, Schwegler-Berry D, Kashon ML, Simeonova PP.
- Potential in vitro effects of carbon nanotubes on human aortic endothelial cells. Toxicol Appl
 Pharmacol. 2009;236:319-28.
- [20] Hu X, Cook S, Wang P, Hwang HM, Liu X, Williams QL. In vitro evaluation of
 cytotoxicity of engineered carbon nanotubes in selected human cell lines. Sci Total Environ.
 2010;408:1812-7.
- 268 [21] Herzog E, Byrne HJ, Davoren M, Casey A, Duschl A, Oostingh GJ. Dispersion medium
- 269 modulates oxidative stress response of human lung epithelial cells upon exposure to carbon
- 270 nanomaterial samples. Toxicol Appl Pharmacol. 2009;236:276-81.
- 271 [22] Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, et al.

- In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes
 after oral and intraperitoneal administration to Swiss mice. ACS Nano. 2010;4:1481-92.
- 274 [23] Guo L, Morris D, Liu X, Vaslet C, Hurt R, Kane A. Iron bioavailability and redox 275 activity in diverse carbon nanotube samples. Chem Mater. 2007;19:3472-8.
- 276 [24] Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, et al. Direct
- and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of
- 278 iron. Toxicol Lett. 2006;165:88-100.
- [25] Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, et al.
 Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes
 and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett.
 2009;186:166-73.
- [26] Rice JM, Kovatch RM, Anderson LM. Intraperitoneal mesotheliomas induced in mice by
 a polycyclic aromatic hydrocarbon. J Toxicol Environ Health. 1989;27:153-60.
- [27] Bocchetta M, Di Resta I, Powers A, Fresco R, Tosolini A, Testa JR, et al. Human
 mesothelial cells are unusually susceptible to simian virus 40-mediated transformation and
 asbestos cocarcinogenicity. Proc Natl Acad Sci U S A. 2000;97:10214-9.
- [28] Carbone M, Kratzke RA, Testa JR. The pathogenesis of mesothelioma. Semin Oncol.
 2002;29:2-17.
- 290 [29] Xu L, Flynn BJ, Ungar S, Pass HI, Linnainmaa K, Mattson K, et al. Asbestos induction
- of extended lifespan in normal human mesothelial cells: interindividual susceptibility and
 SV40 T antigen. Carcinogenesis. 1999;20:773-83.
- [30] Yang H, Testa JR, Carbone M. Mesothelioma epidemiology, carcinogenesis, and
 pathogenesis. Curr Treat Options Oncol. 2008;9:147-57.
- [31] Tanaka I. Respiratory tract deposition and clearance of inhaled particles in laboratory
 animals. J Aerosol Res Japan 1988;3:104-10
- [32] Witzmann FA, Monteiro-Riviere NA. Multi-walled carbon nanotube exposure alters
- 298 protein expression in human keratinocytes. Nanomedicine. 2006;2:158-68.
- 299 [33] Chang CC, Chen SH, Ho SH, Yang CY, Wang HD, Tsai ML. Proteomic analysis of
- 300 proteins from bronchoalveolar lavage fluid reveals the action mechanism of ultrafine carbon
- 301 black-induced lung injury in mice. Proteomics. 2007;7:4388-97.
- 302 [34] Witzmann FA, Monteiro-Riviere NA, Inman AO, Kimpel MA, Pedrick NM, Ringham HN,
- 303 et al. Effect of JP-8 jet fuel exposure on protein expression in human keratinocyte cells in
- 304 culture. Toxicol Lett. 2005;160:8-21.
- 305 [35] Haniu H, Komori N, Takemori N, Singh A, Ash JD, Matsumoto H. Proteomic trajectory
- 306 mapping of biological transformation: Application to developmental mouse retina.
- 307 Proteomics. 2006;6:3251-61.

- 308 [36] Haniu H, Matsuda Y, Takeuchi K. Potential of a novel safety evaluation of
 309 nanomaterials using a proteomic approach. J Health Sci. 2009;55:428-34.
- 310 [37] Haniu H, Matsuda Y, Takeuchi K, Kim YA, Hayashi T, Endo M. Proteomics-based safety
- 311 evaluation of multi-walled carbon nanotubes. Toxicol Appl Pharmacol. 2010;242:256-62.
- [38] Swisher JF, Burton N, Bacot SM, Vogel SN, Feldman GM. Annexin A2 tetramer
 activates human and murine macrophages through TLR4. Blood. 2010;115:549-58.
- 314 [39] Shitama T, Hayashi H, Noge S, Uchio E, Oshima K, Haniu H, et al. Proteome Profiling
- 315 of Vitreoretinal Diseases by Cluster Analysis. Proteomics Clin Appl. 2008;2:1265-80.
- 316 [40] Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, et al.
- 317 Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J
 318 Respir Cell Mol Biol. 2004;31:114-21.
- [41] Yanagisawa K, Shyr Y, Xu BJ, Massion PP, Larsen PH, White BC, et al. Proteomic
 patterns of tumour subsets in non-small-cell lung cancer. Lancet. 2003;362:433-9.
- [42] Suzuki T, Nagai R. Cardiovascular proteomic analysis. J Chromatogr B Analyt Technol
 Biomed Life Sci. 2007;855:28-34.
- [43] Negishi A, Ono M, Handa Y, Kato H, Yamashita K, Honda K, et al. Large-scale
 quantitative clinical proteomics by label-free liquid chromatography and mass spectrometry.
 Cancer Sci. 2009;100:514-9.
- [44] Ellinger-Ziegelbauer H, Pauluhn J. Pulmonary toxicity of multi-walled carbon
 nanotubes (Baytubes(R)) relative to [alpha]-quartz following a single 6 h inhalation
 exposure of rats and a 3 months post-exposure period. Toxicology. 2009;266:16-29.
- 329 [45] Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, et al. Structural defects
- play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicologicalaspects. Chem Res Toxicol. 2008;21:1698-705.
- 332 [46] Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, et al. Inhalation toxicity
- of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 2009;112:468-81.
- [47] Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, et al. Induction of
 mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in
 intact male Fischer 344 rats. J Toxicol Sci. 2009;34:65-76.
- 337 [48] Li JG, Li QN, Xu JY, Cai XQ, Liu RL, Li YJ, et al. The pulmonary toxicity of multi-wall
- carbon nanotubes in mice 30 and 60 days after inhalation exposure. J Nanosci Nanotechnol.
 2009;9:1384-7.
- 340 [49] Li XY, Brown D, Smith S, MacNee W, Donaldson K. Short-term inflammatory responses
- following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol.1999;11:709-31.
- 343 [50] Magrez A, Kasas S, Salicio V, Pasquier N, Schwaller B, Forrò L. Cellular toxicity of

- 344 carbon-based nanomaterials. Nano Lett. 2006;6:1121-5.
- 345 [51] Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. Cytotoxicity of carbon nanomaterials:
- single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol.2005;39:1378-83.
- 348 [52] Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M. Single walled carbon
- nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett.
- 350 2008;179:78-84.
- [53] Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, et al. SWCNT suppress
 inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl
 Pharmacol. 2009;234:378-90.
- 354 [54] Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, et al.
- 355 Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes 356 and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett.
- 357 2009;186:166-73.
- 358 [55] Mroz RM, Schins RP, Li H, Drost EM, Macnee W, Donaldson K. Nanoparticle carbon
- 359 black driven DNA damage induces growth arrest and AP-1 and NFkappaB DNA binding in
- 360 lung epithelial A549 cell line. J Physiol Pharmacol. 2007;58 Suppl 5:461-70.
- 361

362

363 Figure Legends

- 364 **Figure 1.** Proteome map [36, 37]. Numbered spots were changed by more than two-fold
- 365 with statistically significant differences (p < 0.05) in cells treated with HTT1800,
- 366 HTT2800 or CB as compared to the control cells (n = 4).

Table 1. Summary of recent toxicological evaluation in carbon nanomaterials

in vivo				
Type of carbon nanomaterials	Model	Methods	Summary results F	Reference
MWCNT (Baytubes; Bayer MaterialScience)	Wistar rats	BAL analysis	Pulmonary inflammogenicity	[44]
<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	(Innalation exposure) Wistor rate	BAL analysis	Inflammatory response	[45]
Φ: 20-50 nm. L: 5.9 . 0.7 μm	(i.t. instillation)	Micronucleus analysis	Cytotoxicity	[40]
(grinded, ungrinded, heated to 600°C, 2400°C; 2400°C then	rat lung epithelial cells		Genotoxicity	
grinded)	0 1		(lower effects with 2400°C sample in comparison	
			to 600°C and unheated)	[(())
MWCNT (Nanocyl NC 7000; Nanocyl S.A.)	Wistar rats	BAL analysis	No systemic toxicity but multifocal granulomatous	[46]
Φ, 5-15 μμ, Δ, 0.1-10 μμ	(innalation exposure)	Ristopathology analysis	inflammation, and intra-alveolar lipoproteinosis	
MWCNT	Wistar rats	Histopathology analysis	No mesothelioma	[13]
Φ; 11.3 nm, L; 0.7 μm	(i.p. administration)		No sustained inflammatory reaction	
MWCNT (MWNT-7; Mitsui)	Fischer 344 rats	Histopathology analysis	Intraperitoneally disseminated mesothelioma with	[47]
	(i.t. instillation)		bloody ascites	
MWCNT (MWNT-7; Mitsui)	C57BL/6J mice	BAL analysis	Pulmonary inflammation and damage	[7]
	(i.t. instillation)	Histopathology analysis	Pulmonary fibrosis	
MWCNT (MWNT-7: Mitsui)	n53 (+/-) mice	Histopathology analysis	MW/CNT induced mesothelioma	[9]
Φ; 100 nm, L; 10-20 μm	(i.p. administration)	Thereparately analysis	C ₆₀ was no effect	[0]
C ₆₀ (Nanom purple; Frontier Carbon)	()		- 00	
MWCNT (Shenzhen Nanotech Port)	Kunming mice	BAL analysis	Pulmonary toxicity in 60-day	[48]
Φ; 50 nm, L; 10 μm	(inhalation exposure)	Histopathology analysis		
SWCNT (HiPco; Carbon Nanotechnologies)	C57BL/6 mice	BAL analysis	Inflammatory response	[8]
Φ; 0.8-1.2 nm, L; 0.1-1 μm	(inhalation exposure)	Histopathology analysis	Oxidative stress	
	(i.t. instillation)	Collagen measurements	Collagen deposition	
		K-ras mutation analysis	FIDIOSIS Mutations of K-ras gene locus	
		it has matalion analysis	Inhalation > instillation	
SWCNT (HiPco; Carbon Nanotechnologies)	Swiss mice	Histopathology analysis	Neither death nor growth or behavioral troubles	[22]
Φ; 0.8-1.2 nm, L; 0.1-1 μm	(i.t. instillation)	Biomedical test	were observed. (oral)	
SWCNT which was cut chemically	(i.p. administration)		SWCNT (>10 µm) induced granuloma formation (i.p.)	
Ф; 0.8-1.2 nm, L; 20-80 nm				
Carbon black (Printex 90; Evonik Degussa)	Wistar rats	BAL analysis	Lung inflammation and oxidant stress	[49]
Ψ; 14 nm Cathan black (Lubar 000: LL Llasffner)	(i.t. instillation)		(Printex 90 > Huber 990)	
Φ. 260 nm				
¢, 200 mm				
in vitro				
Type of carbon nanomaterials	Model used	Model methods	Summary results F	Reference
MWCN1 (XNRI WMV1-7; Bussan Nanotech Research)	BEAS-2B human bronchial	Cell viability assay		[1]
Φ, 67 mm, L, 1-13.5 μm	epittellal cella	Cytokine assay	innammatory response	
MWCNT (Graphistrength C100, ARKEMA)	A549 human lung epithelial	Cell viability assay	MWCNT; decrease in metabolic activity without	[14]
Φ; 12 nm, L; 0.1-12 μm	cells	Cell proliferation assay	changing cell membrane permeability or	11
Carbon black (FR101; Evonik Degussa)	MeT5A human mesothelial	Apoptosis assay	apoptosis	
Φ; 95 nm	cells	Oxidative stress assay	Carbon black; any adverse effects	
MWCNT	Human lung tumor cells	Cell viability assay	Cytotoxicity;	[50]
Φ; 20 nm, L; 1.7 μm	Calu-1 epidermoid		Carbon black>Carbon nanotibers>MWCN1	
the test and the test and test	• H446 small cell carcinoma			
Carbon black (obtained after grinding graphite)	H596 Adenosquamous			
submicrometer	carcinoma			
MWCNT (Shenzhen Nanotech Port)	Alveolar macrophage form	Cell viability assay	Cytotoxicity; SWCNT>MWCNT>C ₆₀	[51]
Φ; 10-20 nm, L; 0.5-40 μm	guinea pig	Phagocytic ability	SWCNT significantly impaired phagocytosis.	
SWCNT				
Φ; 1.4 nm, L; 1 μm				
C_{60}		O - II. de hilfer	No size of south (suicity)	[4]
MVVCNT (Nanostructured & Amorphous Materials)	NR8383 rat alveolar	Cell viability assay	No sign of acute toxicity	[4]
SWCNT (Nanostructured & Amorphous Materials)	A549 human lung epithelial	Cytokine assay		
Φ: 1-2 nm	cells	NO assav		
Carbon black (Printex 90; Evonik Degussa)				
Φ; 14 nm				
SWCNT (HiPco; Carbon Nanotechnologies)	A549 human lung epithelial	Cell viability assay	Cytotoxicity	[52]
<u>Φ; 0.8-1.2 nm, L; 0.1-1 μm</u>	cells	Clonogenic assay	(reduction of proliferative capacity)	(50)
SWCNT (HIPco; Carbon Nanotechnologies)	A549 numan lung epitneliai	Cell viability assay	Low cytotoxicity	[53]
	Normal human primary	Cytokine assay	Suppression of innaminatory responses	
	bronchial epithelial cells			
SWCNT (EliCarb; Thomas Swan)	EE1Muta [™] mouse lung	LDH assay	No cytotoxicity	[2]
Φ; 0.9-1.7 nm, L; <1 μm	epithelial cells	Cell cycle analysis	SWCNT slowed cell proliferation.	
C ₆₀ (Sigma-Aldrich)	•	ROS analysis	Carbon black produced ROS most and induced	
Φ; 0.7 nm		Comet assay	mutation.	
Carbon black (Printex 90; Evonik Degussa)		Mutagenicity analysis	SWCNT and C_{60} were less genotoxic.	
Ψ; 14 nm SWCNT (Notional Institute of Standards and Technology)	Normal 9 malianest house	Mutation analysis	POS constation	103
Or the model institute of Standards and Technology)	normai & malignant human	Cell viability assay	Coll death	[3]
Ψ, ι. τ ΙΙΙΙΙ, L , Ζ- υ μΙΙΙ	mesourellal Cells	Comet assav	DNA damage	
SWCNT + CNT (Sigma-Aldrich)	BEAS-2B human bronchial	Cell viability assav	Cytotoxicity	[54]
Φ; 1.1 nm, L; 0.5-100 μm	epithelial cells	Comet assay	Genotoxicity	[0.]
Graphite nanofibres (Sigma-Aldrich)		Micronucleus assay	Comet assay; dose-dependent	
Outer Φ; 80-200 nm, L; 5-20 μm			 Micronucleus assay; Not dose-dependent 	
Carbon black (Printex 90; Evonik Degussa)	A549 human lung epithelial	LDH assay	Printex 90 induced DNA damage and altered cell	[55]
Ψ; 14 nm Carbon block (Livbor 000: LL Lise (free)	cells	Comet assay	CYCIE KINETICS.	
oarbon black (nuber 990; n. naettner) d: 260 nm		Cell cycle analysis		

Φ; diameter, L; length, C₆₀; fullerene, i.t.; intratracheal, i.p.; intraperitoneal, BAL; bronchoalveolar lavage, ROS; reactive oxygen species, LDH; lactate dehydrogenase

	As-grown	HTT1800	HTT2800	Testing method
Diameter (nm)	100-150	100-150	100-150	FE-SEM
Length (µm)	10-20	10-20	10-20	FE-SEM
d ₀₀₂ (Å)	-	-	0.339	X-ray diffraction
R value $(I_d/I)^a$	1.041	0.855	0.051	Raman spectroscopy
Specific surface area (m ² /g)	g) - 26 13		N ₂ adsorption	
Real density (g/cm ³)	-	-	2.09	Pycnometer
Iron content (ppm)	12,000	80	<20	ICP-MS
Soluble iron content (%) ^b	0	91	100	ICP-MS
Polycyclic aromatic hydrocarbons (wt%) ^c	0.19	None	None	GC-MS
Oxidation temperature (°C) ^d	630	720	820	TGA

Table 2. Basic properties of multi-walled carbon nanotubes [37]

a R refers to the intensity of D band over the intensity of G band.

b We have determined the dissolved amount of iron by refluxing 5 g of nanotubes in hydrochloric acid (0.6 N) for 25 h.

c We have measured acetone-soluble components.

d We have determined the oxidation temperatures via the derivation of TGA curve.

FE-SEM; Field emission-scanning electron microscopy, ICP-MS; Inductively coupled plasma-mass spectrometry,

GC-MS; Gas chromatograph-mass spectrometry, TGA; Thermogravimetric analysis

Table

Table 3 Identified proteins [36,37]

								Ratio	
Spot No.	Protein Name	Theoritical MW	Theoritical pl	MOWSE Score	Coverage	Matched Peak	HTT 1800	HTT 2800	Carbon black
1	heterogeneous nuclear ribonucleoprotein A2/B1	37478	8.97	141	43%	14/18	* 2.12	# 1.45	1.08
2	DnaJ homolog subfamily C member 8	29823	9.04	89	28%	10/12	1.00	0.74	* 0.42
3	small nuclear ribonucleoprotein polypeptide A'	28540	8.72	97	29%	8/11	* 0.23	0.55	0.30
4	proteasome subunit β type-1	26757	8.27	82	27%	7/8	* 0.36	# 0.59	0.76
5	annexin A2	38864	7.57	114	28%	11/12	* 3.58	2.50	* 0.34
6	vasodilator-stimulated phosphoprotein	39977	9.05	78	24%	8/15	* 3.20	1.58	3.21
7	heterogeneous nuclear ribonucleoprotein M	77819	8.84	186	32%	24/26	* 2.01	1.25	1.23
8	phosphatidylethanolamine-binding protein 1	21186	7.01	107	45%	8/13	* 0.35	* 0.44	0.87
9	flavin reductase	22248	7.13	74	40%	6/9	* 0.13	0.42	0.68
10	pyruvate kinase isozymes M1/M2	58664	7.60	129	16%	14/14	* 2.62	1.29	1.82
11	transketolase	68687	7.58	242	30%	23/25	* 2.22	1.84	1.37
12	proteasome subunit α type-2	26024	6.92	76	17%	6/9	* 0.47	0.56	0.69
13	triosephosphate isomerase	27008	6.45	134	42%	11/15	* 0.43	* 0.45	0.77
14	phosphoglycerate mutase 1	28928	6.67	84	20%	6/6	* 0.49	# 0.51	# 0.71
15	actin related protein 2/3 complex subunit 2	34454	6.84	72	19%	8/16	0.88	# 0.60	* 0.49
16	actin related protein 2/3 complex subunit 2	34454	6.84	72	19%	7/10	0.59	* 0.50	1.22
17	6-phosphogluconate dehydrogenase, decarboxylating	53745	6.80	71	12%	6/6	0.58	* 0.49	* 0.47
18	far upstream element-binding protein 2	73542	6.84	140	22%	12/13	* 2.35	2.06	1.20
19	cytosolic malate dehydrogenase	36687	6.91	87	20%	9/11	* 0.49	# 0.65	0.84
20	lamin A/C	65167	6.40	193	34%	19/19	1.73	* 2.47	0.84
21	mitochondrial import receptor subunit TOM70	68264	6.75	69	12%	7/8	* 2.34	1.81	0.87
22	polvribonucleotide nucleotidvltransferase 1	86664	7.87	86	13%	12/18	* 2.32	1.82	0.88
23	δ-1-pvrroline-5-carboxvlate synthetase	88171	6.66	87	9%	8/8	* 2.10	# 1.79	1.50
24	transaldolase	37730	6.36	167	36%	16/18	* 0.45	0.58	0.69
25	squalene synthetase	48724	6 10	68	17%	8/12	* 0 47	0.65	0.98
26	a-ketoalutarate dehydrogenase	117353	6.40	119	12%	14/15	* 4 13	* 4 10	1 02
27	protein D.I-1	20092	6.33	114	43%	12/13	* 0.42	* 0.35	0.89
28	heat shock protein B-1	22840	5.98	90	26%	8/9	# 0.59	* 0.42	0.00
20	transaldolase 1	37730	6 36	150	20%	14/15	* 0.35	0.42	0.52
30	serine/threonine-protein phosphatase PP1-α	38411	5.94	120	34%	11/18	# 0.52	* 0.29	0.92
21		10957	5.00	122	200/	12/11	0.65	* 0.49	0.00
ა აე	acrine/threeping protein pheephotoge 24 55	42007	5.90	100	32% 160/	0/10	0.00	0.40	1.20
52	kDa regulatory subunit B α isoform	52299	5.62	103	10%	9/10	0.72	0.49	1.20
33	interferon-induced protein 53	49247	6.03	76	10%	6/6	* 0.43	0.80	0.78
34	DNA mismatch repair protein Msh2	105600	5.58	69	10%	9/12	* 3.13	* 3.78	1.97
35	neutral α-glucosidase AB	107375	5.74	183	19%	21/24	* 3.09	* 3.05	2.15
36	F-actin capping protein subunit β	31036	5.69	104	26%	10/13	* 0.36	0.42	1.34
37	Thioredoxin domain-containing protein 5	44636	5.77	68	12%	6/8	1.21	1.04	* 0.20
38	heat shock protein 60	61229	5.70	172	28%	15/15	* 2.70	1.43	1.70
39	lamin-B2	67790	5.29	183	31%	19/19	* 2.44	1.71	0.99
40	14-3-3 protein γ	28498	4.80	150	36%	16/19	# 0.50	* 0.48	* 0.39
41	elongation factor 1-δ	31245	4.90	124	34%	8/8	0.33	* 0.18	0.53
42	Ubiquitin thioesterase OTUB1	31549	4.85	81	26%	6/8	0.48	0.23	* 0.23
43	Spermine synthase	24942	5.16	71	19%	6/10	0.68	0.67	* 0.34
44	splicing factor 3A subunit 3	59238	5.27	76	14%	9/10	1.60	1.52	* 0.46
45	78 kDa glucose-regulated protein	72431	5.07	176	27%	19/20	* 2.33	1.27	0.73
46	transportin 1	103091	4.81	102	13%	12/15	1.47	4.35	* 3.80
47	DNA damage-binding protein 1	128470	5.16	84	7%	10/11	2.10	* 2.82	1.82
48	14-3-3 protein ε	29369	4.63	150	43%	17/21	* 0.41	0.59	0.89
49	proliferating cell nuclear antigen	29177	4.57	115	28%	12/15	* 0.47	0.63	0.78
50	splicing factor SC35	25461	11.86	100	38%	10/12	* 0.27	0.30	1.02
51	ribonuclease inhibitor	52214	4.71	68	15%	6/8	* 0.44	0.61	0.61
52	calreticulin	48325	4.29	68	13%	6/8	* 4.88	1.52	12.02

Ratios of protein expression were compared to the control. n=4. *; p < 0.05 and two-fold change, #; p < 0.05 only

Figure Click here to download high resolution image

Figure 1