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Abstract

We show that, if a game satisfies the conditions of anonymity, monotone exter-

nality, and strategic substitutability, then the set of coalition-proof Nash equilibria

under strict domination contains that under weak domination.

JEL Classification Numbers: C72.

Keywords: Coalition-proof Nash equilibrium; Strict domination; Weak domination.

1 Introduction

This paper examines the relationship between coalition-proof Nash equilibria based

on different dominance relations. The notion of a coalition-proof Nash equilibrium was

introduced by Bernheim, Peleg, and Whinston (1987) and is known as a refinement of

Nash equilibria based on the stability against credible coalitional deviations. However,

there are two ways for a coalition to improve payoffs to its members. We consider the

following two dominance relations:
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(i) Strategy profile x strictly dominates strategy profile y if there exists a coalition

S such that all members of S can be better off by switching y to x, taking the

strategies of the players outside S as given.

(ii) Strategy profile x weakly dominates strategy profile y if there exists a coalition S

such that all members are not worse off and at least one member of the coalition

is better off by deviating from y to x, holding the strategies of the others fixed.

Under the notion of strict domination, all of the deviating players are better off,

while, under that of weak domination, all members of a coalition are at least as well off,

and at least one of them is better off. Thus, the set of equilibria under weak domination

may be a subset of that under strict domination. This indeed applies to the strong Nash

equilibrium and the core.

However, the set of coalition-proof Nash equilibria under strict domination does not

contain that under weak domination. Konishi, Le Breton, and Weber (1999) provided

an example in which the set of coalition-proof Nash equilibria under weak domination

and that under strict domination are both non-empty and their intersection is empty.

They also showed that, in the class of common agency games, any coalition-proof Nash

equilibria under weak domination is that under strict domination.

In this study, we consider the class of games with n players in which the strategy

space of each player is a subset of the real line.1 We show that, if a game satisfies the

conditions of anonymity, monotone externality, and strategic substitutability, then the

set of coalition-proof Nash equilibria under weak domination is included in that under

strict domination. It is interesting to point out that the same three conditions yield the

equivalence of the set of coalition-proof Nash equilibria under strict domination and the

weakly Pareto efficient frontier of the set of Nash equilibria (Yi (1999)). The inclusion

relation between the sets of coalition-proof Nash equilibria under the two different dom-

1Note that common agency games do not belong to this class.
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inance relations holds for the games that have interested economists, such as standard

Cournot oligopoly games and voluntary participation games in a mechanism producing

public goods.

2 The Model

We consider a strategic game G = [N, (Xi)i∈N , (ui)i∈N ], where N is a finite set of

players, Xi is the set of pure strategies of player i that is a subset of real numbers, and

ui :
∏

j∈N Xj → R is the payoff function of player i. In this paper, we focus solely on

pure strategy equilibria. Before the coalition-proof Nash equilibria are defined, some

notations will be introduced. For any coalition S ⊆ N , xS ∈
∏

j∈S Xj designates a

strategy profile of S. For any xN ∈
∏

j∈N Xj, xN is denoted by x. For any set of players

S, −S represents the complement of S.

The notions of coalition-proof Nash equilibria are defined under strict domination

and weak domination. First, restricted games are introduced. For any coalition S ⊆ N

and any strategy profile of the complement of S, x̄−S, denote the game restricted by

x̄−S by G|x̄−S in which S is the set of players,
∏

j∈S Xj is the set of pure strategy

profiles, and ui(·, x̄−S) :
∏

j∈S Xj → R is player i’s payoff function. Now, the definitions

of coalition-proof Nash equilibria are provided under the different dominance relations.

Definition 1 A coalition-proof Nash equilibrium under weak domination is defined in-

ductively with respect to the number of players n in the game:

(i) If n = 1, then x∗
1 ∈ X1 is a coalition-proof Nash equilibrium under weak domination

if and only if u1(x
∗
1) ≥ u1(x̃1) for any x̃1 ∈ X1.

(ii) Let n > 1. Assume that the coalition-proof Nash equilibria under weak domination

have been defined for games with fewer than n players.
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(a) For any game G with n players, x∗ ∈
∏

j∈N Xj is a self-enforcing strategy profile

under weak domination if, for all S ( N , x∗
S ∈

∏
j∈S Xj is a coalition-proof Nash

equilibrium under weak domination of the reduced game G|x∗
−S.

(b) Profile x∗ is a coalition-proof Nash equilibrium under weak domination of G

if it is a self-enforcing strategy profile under weak domination and there is no

other self-enforcing strategy profile under weak domination x̂ ∈
∏

j∈N Xj such

that ui(x̂) ≥ ui(x
∗) for all i ∈ N and ui(x̂) > ui(x

∗) for some i ∈ N .

Definition 2 The definition of coalition-proof Nash equilibria under strict domination

is derived from Definition 1 by substituting “strict domination” for “weak domination”.

Note that, in any two-player game, the set of coalition-proof Nash equilibria under

weak domination coincides with the (strictly) Pareto efficient frontier of the set of Nash

equilibria, and so does the set of coalition-proof Nash equilibria under strict domina-

tion with the weakly Pareto efficient frontier of that of Nash equilibria. Therefore, the

set of coalition-proof Nash equilibria under weak domination is a subset of that under

strict domination in two-player games. However, Konishi, Le Breton, and Weber (1999)

pointed out that the inclusion relation does not necessarily hold in games with more

than two players. For details, refer to Konishi, Le Breton, and Weber (1999).

3 Results

In this section, we establish sufficient conditions under which the set of coalition-

proof Nash equilibria under weak domination is a subset of that of a coalition-proof

Nash equilibrium under strict domination.

The first condition is that of anonymity.
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Anonymity. For all i ∈ N , all xi ∈ Xi, and all x−i, x̂−i ∈
∏

j 6=iXj, if
∑

j 6=i xj =∑
j 6=i x̂j, then ui(xi, x−i) = ui(xi, x̂−i).

The anonymity condition means that the payoff function of every player depends on

his strategy and on the aggregate strategy of all other players.

The next condition is that of monotone externality. The condition states that the

payoffs to every player are either non-increasing or non-decreasing with respect to the

sum of strategies of the other players.

Monotone externality. For all i ∈ N , all xi ∈ Xi, and all x−i and x̂−i ∈
∏

j 6=i Xj, if∑
j 6=i xj >

∑
j 6=i x̂j, then either ui(xi, x−i) ≥ ui(xi, x̂−i) or ui(xi, x−i) ≤ ui(xi, x̂−i) holds.

If the former holds, the condition means positive externalities, and it represents negative

externalities if the latter is satisfied.

The third condition is that of strategic substitutability. Under this condition, the

incentive of every player to reduce his strategy gets higher as the sum of the other

players’ strategies increases.

Strategic substitutability. For all i ∈ N , all xi, x̂i ∈ Xi, and all x−i, x̂−i ∈
∏

j 6=iXj,

if xi > x̂i and
∑

j 6=i xj >
∑

j 6=i x̂j, then ui(xi, x−i)−ui(x̂i, x−i) < ui(xi, x̂−i)−ui(x̂i, x̂−i).

Before stating the main proposition, we show the following lemma.

Lemma 1 Any self-enforcing strategy profile under weak domination is that under strict

domination.

Proof. Let x be a self-enforcing strategy profile under weak domination of G. Then,

by definition, xC is a coalition-proof Nash equilibrium under weak domination in the

restricted game G|x−C for every proper subset C of N . By the induction hypothesis,

xC is also a coalition-proof Nash equilibrium under strict domination in G|x−C . That

is, for all proper subsets C of N, xC is a coalition-proof Nash equilibrium under strict
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domination of G|x−C . Hence, x is a self-enforcing strategy profile under strict domination

of G. �

Proposition. Suppose that a game satisfies anonymity, monotone externality, and

strategic substitutability. Then, any coalition-proof Nash equilibrium under weak dom-

ination is a coalition-proof Nash equilibrium under strict domination.

Proof. If the set of coalition-proof Nash equilibria under weak domination is empty,

then the statement of proposition is vacuously true. Hence, we consider the case in which

there is a coalition-proof Nash equilibria under weak domination in the game. Let us

assume that a game satisfies anonymity, positive externality, and strategic substitutabil-

ity.2 We show by induction that the set of coalition-proof Nash equilibria under weak

domination is a subset of that under strict domination. Clearly, the statement is true for

all games with a single player. As stated earlier, in any two-player game, the statement

is also true.

Let n ≥ 3, and suppose that any coalition-proof Nash equilibrium under weak dom-

ination is a coalition-proof Nash equilibria under strict domination for any game with

fewer than n players as an induction hypothesis. Let x∗ denote a coalition-proof Nash

equilibrium under weak domination of a game with n players. By Lemma 1, x∗ is a

self-enforcing strategy profile under strict domination. We need to show that there is

not other self-enforcing strategy profile under strict domination x̃ where ui(x̃) > ui(x
∗)

for every i ∈ N .

Lemma 2 There is no other self-enforcing strategy profile under strict domination x̃

such that ui(x̃) > ui(x
∗) for all i ∈ N .

Proof of Lemma 2. Let us suppose, on the contrary, that there is a self-enforcing

strategy profile under strict domination x̃, at which ui(x̃) > ui(x
∗) for all i ∈ N . Then,

2We can similarly show the statement in the case of negative externality.
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x̃ must satisfy the following condition.

Claim 1 It follows that
∑

j 6=i x
∗
j <

∑
j 6=i x̃j for all i ∈ N .

Proof of Claim 1. Suppose, on the contrary, that there is player i ∈ N such

that
∑

j 6=i x
∗
j ≥

∑
j 6=i x̃j. By the definition of Nash equilibrium, ui(x

∗) ≥ ui(x̃i, x
∗
−i).

Since
∑

j 6=i x
∗
j ≥

∑
j 6=i x̃j and the game satisfies anonymity and positive externality,

ui(x̃i, x
∗
−i) ≥ ui(x̃). Therefore, ui(x

∗) ≥ ui(x̃), which is a contradiction. ‖

Claim 2 The strategy profile x̃ is not a Nash equilibrium of G.

By Claim 1, it is satisfied that
∑

k∈N
∑

j 6=k x
∗
j <

∑
k∈N

∑
j 6=k x̃j. Hence,

∑
k∈N x∗

k <∑
k∈N x̃k. Therefore, i ∈ N exists such that x̃i > x∗

i . By strategic substitutability, for

player i, we have ui(x
∗
i , x̃−i)−ui(x̃) > ui(x

∗)−ui(x̃i, x
∗
−i). Since x

∗ is a Nash equilibrium,

ui(x
∗) − ui(x̃i, x

∗
−i) ≥ 0. Therefore, ui(x

∗
i , x̃−i) > ui(x̃), which implies that x̃ is not a

Nash equilibrium of G. This contradicts the idea that x̃ is a self-enforcing strategy

profile under strict domination. Thus, there is no self-enforcing strategy profile under

strict domination that dominates x∗, which implies that x∗ is a coalition-proof Nash

equilibrium under strict domination in the n-person game. �

Many interesting games in economics satisfy the conditions above. For instance,

Cournot oligopoly games and the other games that have been studied as a part of indus-

trial organization theory satisfy the conditions. For details, refer to Yi (1999). Here, we

give an example in the context of the provision of pure public goods.

Example 1 Consider an economy in which there is one pure public good, one private

good, n players, and a mechanism that implements the Lindahl allocation rule.3 Saijo and

3Many authors have constructed the mechanisms that attain the Lindahl allocation in their equilib-

rium. See Tian (2000), for example.
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Yamato (1999) introduced a model of voluntary participation in a public good mecha-

nism. Their model consists of two stages. In the first stage, players decide simultaneously

whether or not they will participate in the public good mechanism. In the second stage,

only the participants play the mechanism. Following the rule of the mechanism, they

produce the public good and distribute its cost. On the other hand, non-participants

can enjoy the public good produced by the participants at no cost. As a result, the

participants bear the cost of the public good, but the non-participants can free-ride the

public good.

In this example, we suppose that the preference relations of all players are represented

by the same quasi-linear utility function ui(z, ti) = α
√
z+ti, where α > 0, z ≥ 0 denotes

the public good and ti ≤ 0 represents a payment of i for producing the public good. We

assume that one unit of the public good is provided from one unit of the private good.

We fix an outcome of the mechanism as the Lindahl allocation only for the preferences

of participants.

First, we will characterize the equilibrium outcome of the second stage. Let p be

the number of participants in the mechanism. The equilibrium allocation of the second

stage, when p players enter the mechanism, is denoted by (zp, tp1, . . . , t
p
n). Then, the

public good provision zp maximizes the total surplus of participants pα
√
z − z. Hence,

zp = (αp/2)2. Since every participant shares the cost of zp equally, every participant i

pays tpi = −α2p/4. On the other hand, tpj = 0 for every non-participant j. If the payoffs

of participants and non-participants are denoted by u1(p) and u0(p), respectively, then

we have u1(p) = α2p/4 and u0(p) = α2p/2.

Given the equilibrium outcome of the second stage, the participation decision stage

can be reduced to the following simultaneous game. In the game, each player i chooses

either xi = 1 (participation) or xi = 0 (non-participation), simultaneously. In this stage,

the set of actions of player i is Xi = {0, 1}.4 Let px be the number of participants at

4Only the pure strategies are considered.
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an action profile x = (x1, . . . , xn). Then, px participants obtain the utility u1(px), and

n− px non-participants have the payoff u0(px) at the action profile x. The payoff matrix

of the participation stage game in the case of n = 3 appears in Table 1, in which agent 1

chooses rows, agent 2 chooses columns, and agent 3 chooses matrices. The first entry in

each box is agent 1’s payoff, the second is agent 2’s, and the third is agent 3’s. We can

easily check that the participation decision game satisfies the conditions of anonymity,

positive externality, and strategic substitutability. In this example, two agents choose

participation in every coalition-proof Nash equilibrium under weak domination, while

one agent or two agents participate in the mechanism in coalition-proof Nash equilibria

under strict domination.
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1 0

1 3α2

4
, 3α2

4
, 3α2

4
α2

2
, α2, α2

2

0 α2, α2

2
, α

2

2
α2

2
, α2

2
, α2

4

1

1 0

1 α2

2
, α2

2
, α2 α2

4
, α2

2
, α2

2

0 α2

2
, α2

4
, α2

2
0, 0, 0

0

Table 1: Payoff matrix of the participation decision game with n = 3. (Example 1)
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