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Abstract. The effect of wing mass in free flight of a flapping wing is investigated

by numerical simulations based on an immersed boundary–lattice Boltzmann method.

We consider a model consisting of two-dimensional symmetric flapping wings with

uniform mass density connected by a body represented as a point mass. We simulate

free flights of the two-dimensional symmetric flapping wing with various mass ratios

of the wings to the body. In free flights without gravity, it is found that the time-

averaged lift force becomes smaller as the mass ratio increases, since with a large mass

ratio the body experiences a large vertical oscillation in one period and consequently

the wing-tip speed relatively decreases. We define the effective Reynolds number Reeff
taking the body motion into consideration and investigate the critical value of Reeff
over which the symmetry breaking occurs. As a result, it is found that the critical

value is Reeff ≃ 70 independently of the mass ratio. In free flights with gravity, the

time-averaged lift force becomes smaller as the mass ratio increases in the same way

as free flights without gravity. In addition, the unstable rotational motion around

the body is suppressed as the mass ratio increases, since with a large mass ratio the

vortices shedding from the wing tip are small and easily decay.
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1. Introduction

Butterflies have unique and interesting features compared with other insects. For

example, butterflies flap downward for generating lift force and flap backward for

generating thrust force by changing the stroke plane (Sunada 1993), whereas other

insects merely change the stroke plane. It suggests that butterflies utilize aerodynamic

forces parallel to the wing-tip path, i.e., the drag-based force (Ellington 1999, Ristroph

et al. 2011). In addition, their wings are relatively heavier than other insects. The wing

mass ratio WR, which is defined as the ratio of the wing mass to the total mass, of

butterflies is O[10−1] (Dudley 1990), whereas that of other insects such as flies and bees

is O[10−2] (Shyy et al. 2008). These features suggest that the inertia of the wings should

have a significant effect in flapping flight by butterflies. We can find other features of

butterflies, e.g.,the flapping frequency is small and the aspect ratio of wings is small, by

comparing data for butterflies (Dudley 1990) and other insects (Shyy et al. 2008).

One of the simplest models of butterflies is a two-dimensional symmetric flapping

wing–body model (Iima & Yanagita 2001a, Iima & Yanagita 2001b, Iima & Yanagita

2005, Iima & Yanagita 2006). This model is composed of two line segments (wings)

connected to a point mass (body), and the wings flap upward and downward

symmetrically. Iima and Yanagita considered the motion of the body together with

the fluid motion induced by the wing motion by using a discrete vortex method for

inviscid fluid flow. One might consider that no mean lift force is generated by the

symmetric wing motion, since the upward force generated during the downstroke is

canceled by the downward force during upstroke. However, Iima and Yanagita found

that the wing–body model can generate mean lift force due to the symmetry breaking

of flow with respect to the horizontal line. Actually, Ota et al. (2012) investigated the

symmetry breaking of flow around the wing–body model in viscous fluid by using the

immersed boundary–lattice Boltzmann method (IB-LBM) (Suzuki & Inamuro 2011) and

found that for the Reynolds number of Re ≥ 55, asymmetric vortices with respect to

the horizontal line appear and the time-averaged lift force is induced, whereas for the

Reynolds number of Re ≤ 50, vortices remain symmetric with respect to the horizontal

line and no lift force is induced. These researches revealed an interesting transition

phenomenon induced by the interaction between the fluid motion, the wing motion, and

the body motion. However, they assumed that the total mass of the wing–body model

is concentrated at the body, i.e., the inertia of the wings is neglected, despite of its

significance as mentioned in the previous paragraph. Although there have been other

several researches concerning the two-dimensional symmetric flapping wing–body model

(e.g., Kimura et al. 2014, De Rosis et al. 2014, De Rosis 2014, De Rosis 2015), they

did not regard the wing mass as an important factor in the flapping flight by the wing–

body model, too. Therefore, the following question still remains open: “How does the

wing mass affect the symmetry breaking of flows around the two-dimensional symmetric

flapping wing–body model?”

Motivated from the above question, in the present study, we investigate the effect
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of the wing mass in the flapping flight by the two-dimensional symmetric flapping wing–

body model through simulations using the IB-LBM (Suzuki & Inamuro 2011). We define

the wing mass ratio WR as the ratio of the wing mass to the total mass and calculate free

flights of the wing–body model with various wing mass ratios. We consider the Reynolds

number in the range of 40 ≤ Re ≤ 200, in which the symmetry breaking of flows occurs.

It should be noted that the Reynolds number considered here is smaller than that of

butterflies, Re ∼ O[103]. In this study, we focus on the transition phenomenon rather

than reproducing an actual butterfly. However, it should give some interesting insight

into actual butterfly’s flights.

The paper is organized as follows. In section 2, we explain the two-dimensional

symmetric flapping wing–body model with wing mass. In section 3, we describe the

governing equations and parameters of the system. The computational method and

conditions are presented in section 4. Results and discussions are given in section 5. We

finally conclude in section 6.

2. Two-dimensional symmetric flapping wing–body model with wing mass

The two-dimensional symmetric flapping wing–body model is shown in figure 1. The

model is the same as that in Ota et al. (2012) except that in the present study the

wings have mass. Each of two wings is composed of a straight line with the length of L

and uniform (line) density ρw. The mass of two wings is denoted by mw = 2ρwL, and

the moment of inertia of two wings around the body is denoted by Iw = mwL
2/3. The

body located between both the wings is made up of a point particle with the mass mb

and the moment of inertia Ib. Since the body of the wing–body model is a point mass,

Ib should be zero. In this study, however, we assume that the wing–body model has

a virtual moment of inertia calculated as that of a circular cylinder with diameter d.

Therefore, the moment of inertia of the body is given by Ib = mbd
2/8. The total mass

and moment of inertia of the wing–body model are M = mw + mb and I = Iw + Ib,

respectively. We define the wing mass ratio WR as follows:

WR =
mw

mw +mb

=
mw

M
. (1)

We define two coordinate systems fixed to the space (x, y) and to the body (x′, y′).

The position of the body, i.e., the origin of the body-fixed system is denoted by Xb(t),

and the rotational angle of the body-fixed system from the space-fixed system is denoted

by Θ(t). The wing motion, in which the wings flap symmetrically left and right and

up and down, is represented by a rotation around the body in the body-fixed system.

The angular position θ(t) at time t of the wing in the body-fixed system is given by a

harmonic oscillation as follows:

θ(t) = ∆θ cos

(
2π

T
t+ ϕ

)
, (2)

where ∆θ, T , and ϕ are an amplitude, a period, and an initial phase of the oscillation,

respectively. Note that for ϕ = 0 the wing is initially located at the most upward
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Figure 1. Two-dimensional symmetric flapping wing–body model.

position. Also, the initial position and velocity of the wings are symmetric with respect

to the y′-axis, but asymmetric with respect to the x′-axis for any value of ϕ. That is,

the motion of the wings has an initial vertical directionality, and it is the source of the

symmetry breaking of flows with respect to the horizontal line around the wing–body

model.

The tip velocity of the wing utip(t) in the body-fixed system is obtained by

utip(t) = L
dθ

dt
, (3)

and the time-averaged tip speed Utip of the wing in the body-fixed system is obtained

by

Utip =
1

T

∫ T

0

|utip(t)|dt =
4L∆θ

T
. (4)

3. Governing equations

3.1. Fluid motion

The fluid motion around the wings and the body is governed by the incompressible

Navier–Stokes equations as follows:

∇ · u = 0, (5)

∂u

∂t
+ (u · ∇)u = − 1

ρf
∇p+ ν∇2u, (6)

where u is the fluid velocity, p is the pressure, ρf is the density of the fluid, and ν is

the kinematic viscosity of the fluid. It should be noted that the gravitational term does

not appear in equation (6). This is because the pressure p includes the gravitational

potential. The no-slip condition should be satisfied on the surface of the wing–body

model, i.e., the fluid velocity must be equal to the velocity of the wings and the body.
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In this study, we take the mean wing-tip speed Utip given by equation (4) as a

characteristic flow speed, and the wing length L as a characteristic length. The governing

parameter of the above equations is the Reynolds number Re given by

Re =
UtipL

ν
. (7)

3.2. Wing–body motion

Let Ub(t) and Ω(t) be the velocity of the body and the angular velocity around the

body, respectively, that is,

dXb

dt
= Ub, (8)

dΘ

dt
= Ω . (9)

Supposing that we obtain the total aerodynamic force Faero(t) generated by the wings

and the body and the total aerodynamic torque Taero(t) around the body, and that the

gravitational acceleration G = (0,−G) (G ≥ 0) is added, Ub(t) and Ω(t) are governed

by the Newton equations as follows:

M
dUb

dt
= Faero + Fin +MG, (10)

I
dΩ

dt
= Taero + Tin +

1

2
mwLG sin θ sinΘ , (11)

where Fin and Tin are the respective inertial force and torque required for flapping the

wings with mass given by

Fin =
1

2
mwL

 θ̈ cos θ sinΘ + Θ̈ sin θ cosΘ −
(
θ̇2 + Θ̇2

)
sin θ sinΘ + 2θ̇Θ̇ cos θ cosΘ

−θ̈ cos θ cosΘ + Θ̈ sin θ sinΘ +
(
θ̇2 + Θ̇2

)
sin θ cosΘ + 2θ̇Θ̇ cos θ sinΘ

 , (12)

Tin =
1

2
mwL

(
Ẍb sin θ cosΘ + Ÿb sin θ sinΘ

)
, (13)

where the dot notation is used for time derivative and Xb = (Xb, Yb). It should be

noted that with WR = 0 the inertial force Fin and torque Tin vanish, i.e., the equations

of wing–body motion reduce to those calculated in Kimura et al. (2014). The derivation

of equations (10) and (11) is shown in Appendix A.

The governing parameters of equations (8)–(11) are the non-dimensional total mass

NM, the non-dimensional total moment of inertia NI, and the Froude number Fr defined

as follows:

NM =
M

ρfL2
, (14)

NI =
I

ρfL4
, (15)

Fr =
Utip√
LG

. (16)
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4. Numerical method and computational conditions

In this study, we use the immersed boundary–lattice Boltzmann method (IB-LBM) and

the second-order Adams–Bashforth method for calculating the fluid motion and the

wing–body motion, respectively, in the same way as Ota et al. (2012). As for the fluid

motion, in order to reduce the compressibility errors in the early stage, we obtain the

pressure field satisfying the continuity equation by solving the Poisson equation on the

basis of the immersed boundary–projection lattice Boltzmann method (IB-PLBM) (Ota

et al. 2012) for 0 < t/T < 1, and then the normal IB-LBM, in which the Poisson

equation is never solved, is used for t/T ≥ 1. The combination of the IB-PLBM and

the normal IB-LBM is described in Ota et al. (2012). As for the wing–body motion,

the equations of the wing–body motion (8)–(11) are different from those calculated in

Ota et al. (2012), i.e., the wing mass and the rotational motion of the body were not

considered in the reference. However, the same method and algorithm can be used in

the present study, since Xb, Ub, Θ , and Ω can be explicitly updated with the force

and the torque acting on the wings calculated by the IB-LBM at each time-step. The

explicit forms of equations (10) and (11) are shown in Appendix A.

Figure 2 shows the computational domain. The width and height of the

computational domain are set atW = 12L andH = 24L, respectively. The bounce-back

boundary condition (Succi 2001) is imposed on the walls of the domain. The body of the

wing–body model is initially placed at the center of the domain filled with a stationary

fluid. The effect of the computational domain size was examined in Appendix E of the

Figure 2. Computational domain for simulations of flows around the two-dimensional

symmetric flapping wing–body model.
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Table 1. Parameters used for simulations of flows around the two-dimensional

symmetric flapping wing–body model.

Re L T Ûtip Ma τ

40–150 60∆x 21000∆t 0.009335 0.01617 0.5420–0.5112

160–200 80∆x 28000∆t 0.009335 0.01617 0.5140–0.5112

paper by Ota et al. (2012), and it was found that the present domain size is so large that

the effect of the domain size is considered to be small. This means that the influence of

the enclosing walls is also small.

The spatial and temporal resolutions for each Re are shown in table 1. This table

includes the non-dimensional wing-tip speed Ûtip = Utip/cp, where cp is the characteristic

particle speed, the Mach number Ma = Utip/(cp/
√
3), and the relaxation time τ used

in lattice Boltzmann simulations. The dependence of spatial resolution was examined

in Appendix D of the paper by Ota et al. (2012), and it was suggested that the present

spatial resolution is suitable for calculations of two-dimensional symmetric flapping

wings. As for the temporal resolution, the Mach number must be much smaller than

unity in order to reduce the compressibility effects of the lattice Boltzmann method,

and De Rosis et al. (2014) suggested that the Mach number less than 0.02 is suitable

for calculations of two-dimensional symmetric flapping wings. The present temporal

resolution is consistent with the above-mentioned circumstances, and therefore it is

considered to be suitable. Also, the dependence of temporal resolution is examined in

Appendix B.

In this study, we investigate the effect of WR on the symmetry breaking of flows

with respect to the horizontal line and the lift generation for various Reynolds numbers

in the range of 40 ≤ Re ≤ 200. The non-dimensional total mass, the flapping amplitude,

and the virtual diameter of the body are fixed to NM = 9.05, ∆θ = 46.8◦, and d = L/6,

respectively, which are based on the data of an actual butterfly used in Iima & Yanagita

(2005). It should be noted that in the following simulations we change the wing mass

ratio WR while fixing the non-dimensional total mass NM. For example, WR = 0.1

means that the non-dimensional mass of the wings is 0.1NM and that of the body is

0.9NM. The non-dimensional total moment of inertia NI is determined by NM, d, and

WR. In addition, we change the Froude number Fr in order to examine the effect of the

gravity including the case for no gravity (Fr = ∞).

5. Results and discussions

In this study, we investigate the effect of the wing mass ratio WR on (i) the symmetry

breaking of flows under no gravity (G = 0, i.e., Fr = ∞), (ii) the critical Froude

number between upward and downward flights under gravity, and (iii) the stability

of rotational motion. In simulations (i) and (ii), we fix the rotational angle Θ = 0◦



8

assuming the bilateral symmetry. In simulations (iii), we set the initial rotational angle

Θ(t = 0) = Θ0 = 1◦ as an initial small disturbance for the rotational motion, and we

examine the stability of the rotational motion under the small disturbance.

5.1. Symmetry breaking of flows under no gravity

At first, we calculate free flights of the wing–body model with various wing mass ratios

WR under no gravity. Figure 3 shows the time variations of Yb (the y-position of the

body) at Re = 100. It can be seen from figure 3 that with WR = 0.0 the wing–body

model goes upward after five periods. Similarly, with WR = 0.1–0.7 the wing–body

model goes upward, but the climbing speed decreases as WR increases. With WR = 1.0,

on the other hand, the wing–body model does not go upward but moves up and down

around a position of y > 0. This result means that the wing–body model with small WR

can generate positive time-averaged lift force in one period. However, the time-averaged

lift force decreases as WR increases, and eventually it vanishes with a large WR.

In order to explain the reason why the time-averaged lift force can be generated

despite of the symmetrical flapping motion, we show vortex fields around the flapping

wing–body model in figure 4. In this figure, ‘WTVdn’ and ‘WTVun’ mean the wing-tip

vortex (WTV) generated in downstroke and upstroke of the n-th period, respectively.

The non-dimensional vorticity ω is defined by ω = (∂uy/∂x− ∂ux/∂y)L/Utip, where ux

and uy are the x- and y-components of the fluid velocity u, respectively. It should be

noted that ω > 0 means a counter-clockwise vortex, whereas ω < 0 means a clockwise

vortex. We can see from figure 4(a) that with WR = 0.0, large WTVs are generated in

each downstroke and upstroke, and they remain in the subsequent stroke. Especially,

at t/T = 6.0 the WTVu4 and WTVu5 coalesce together to form a large vortex under

the wing–body model. This means that a history effect of flows causes the symmetry

breaking with respect to the horizontal line. It should be noted that the origin of the

symmetry breaking is the initial stroke, i.e., the wing is initially located at the most

upward position and starts downstroke. Then, the large vortex appearing at t/T = 6.0

0

1

2

3

4

0 2 4 6 8 10 12

= 0.0

0.1

0.3

0.5

0.7

1.0

Figure 3. Time variations of Yb (the y-position of the body) with various wing mass

ratios WR at Re = 100.
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Figure 4. Vortex fields around the flapping wing–body model with (a) WR = 0.0 and

(b) WR = 1.0 under no gravity at Re = 100 for 4.0 ≤ t/T ≤ 7.5 in −3L ≤ x ≤ 3L

and −3L ≤ y ≤ 3L. In this figure, ‘WTVdn’ and ‘WTVun’ mean the wing-tip vortex

generated in downstroke and upstroke of the n-th period, respectively.

carries the WTVd6 down during 6.5 ≤ t/T ≤ 7.0, and the WTVs induce the downward

jet which should induce positive time-averaged lift force as reaction. On the other hand,

we can see from figure 4(b) that with WR = 1.0, WTVs are relatively small and easily

decay. Consequently, the flow fields remain symmetric with respect to the horizontal

line, and time-averaged lift force cannot be generated.

In the previous study (Ota et al. 2012), it was reported that the critical Reynolds

number over which the symmetry breaking occurs is Re ≃ 50 in the case of WR = 0.0.

From the above-described results, however, it is expected that the critical Reynolds

number for other wing mass ratios should be different from that for WR = 0.0. In order

to find the critical Reynolds number for other wing mass ratios, we observe the vertical

position of the body when a sufficient period of time has elapsed after the initial time,

since the vertical position should be an index for the symmetry breaking of flows with

respect to the horizontal line. Figure 5 shows the vertical position Yb of the body at

t/T = 13 with various WR against the Reynolds numbers of 40 ≤ Re ≤ 200. It can
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Figure 5. Vertical position Yb of the body at t/T = 13 with various WR against the

Reynolds numbers of 40 ≤ Re ≤ 200.

be seen from figure 5 that for Re ≤ 60 the body stays at an equilibrium position with

any of the wing mass ratios. With WR = 0.0–0.3 the body starts going upward for

Re > 60, whereas with WR = 0.5–1.0 the body still stays at an equilibrium position.

The Reynolds number at which the body starts going upward corresponds to the critical

Reynolds number over which the symmetry breaking occurs, and from figure 5 the

critical Reynolds number can be identified as Re ≃ 60, 70, 100, and 160 for WR = 0.0–

0.3, 0.5, 0.7, and 1.0, respectively. Therefore, the critical Reynolds number increases

as the wing mass ratio increases. This is because the WTV, which is the source of the

symmetry breaking, is relatively small and easily decays with a large WR.

We discuss the reason why the WTV is relatively small and easily decays with a

large WR. Figure 6(a) shows an illustration of motions of the wing–body model with

a small WR and a large WR. As shown in this illustration, in the case of a large WR

the body largely oscillates vertically in one period compared with the case of a small

WR, since the mass of the body is relatively small for a large WR. This fact can be

confirmed from figure 3. Due to the large vertical oscillation of the body, the wing-tip

speed and the wing-tip path observed in the space-fixed system become small for a large

WR. Actually, the wing-tip speed |u∗
tip| observed in the space-fixed system at Re = 100

decreases as WR increases (figure 6b), and the amplitude of the vertical position of

the wing tip y∗tip observed in the space-fixed system also decreases as WR increases

(figure 6c). Therefore, the Reynolds number effectively decreases as WR increases.

From the above discussion, it can be expected that the transition phenomenon

should be governed by an effective Reynolds number reflecting the changes in the wing-

tip speed and the wing-tip path observed in the space-fixed system. We define an

effective Reynolds number as follow:

Reeff =
U∗
tipLa

ν
, (17)

where U∗
tip is the time-averaged wing-tip speed in the space-fixed system, and La is the
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Figure 6. (a) Illustration of motions of the wing–body model with a small WR (left)

and a large WR (right), (b) time variations of the wing-tip speed |u∗
tip| observed in the

space-fixed system, and (c) time variations of the vertical position of the wing tip y∗tip
observed in the space-fixed system with various wing mass ratios at Re = 100.

mean amplitude of the vertical position of the wing tip, i.e., the average of the amplitude

in downstroke Ldown and that in upstroke Lup (see figure 6c) as follows:

U∗
tip =

1

T

∫ 13T

12T

|u∗
tip(t)|dt, (18)

La =
Ldown + Lup

2
. (19)

It is noted that U∗
tip and La are defined in the 13-th period in this discussion. Figure 7

shows the vertical position Yb of the body at t/T = 13 with various WR against the

effective Reynolds number. We can see from figure 7 that the critical value of the

effective Reynolds number over which the symmetry breaking occurs is around Reeff ≃ 70

independently of WR. However, the height which the body reaches at t/T = 13 decreases

as WR increases. This means that the transition phenomenon is governed by the effective

Reynolds number, but the time-averaged lift force is not determined by the effective

Reynolds number.

Figure 8 shows the vortex fields near the flapping wing–body model with various

WR for almost the same effective Reynolds number of Reeff ≃ 90. From this figure, we

can see that the size of induced WTVs decreases as WR increases even for almost the

same effective Reynolds number. Therefore, the size of induced WTVs is not determined
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Figure 7. Vertical position Yb of the body at t/T = 13 with various WR against the
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Figure 8. Vortex fields near the flapping wing–body model with (a) WR = 0.0

(Re = 80), (b) WR = 0.5 (Re = 120), and (c) WR = 1.0 (Re = 200) under no gravity

for almost the same effective Reynolds number of Reeff ≃ 90 at t/T = 13.

by the effective Reynolds number, and it should significantly affect the time-averaged

lift force.

5.2. Critical Froude number between upward and downward flights under gravity

Next, we calculate flapping flights of the wing–body model with various wing mass

ratios WR under gravity. Figure 9 shows flapping flights at Re = 200 for various Froude

numbers with WR = 0.0 and 0.5. It is found from figure 9(a) that the body goes upward

for Fr = 7, whereas it goes downward for Fr ≤ 6. Therefore, the critical Froude number

between upward and downward flights is between Fr = 6 and 7 for WR = 0.0 and

Re = 200. On the other hand, we can see from figure 9(b) that the critical Froude

number is between Fr = 9 and 10 for WR = 0.5 and Re = 200, which is larger than

that for WR = 0.0. Therefore, it is considered that the critical Froude number between

upward and downward flights can increase with WR.
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Figure 9. Time variations of Yb (the y-position of the body) at Re = 200 under

gravity for various Froude numbers with (a) WR = 0.0 and (b) WR = 0.5.
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Figure 10. The critical Froude number Frc against the Reynolds number with various

wing mass ratios.

Figure 10 shows the critical Froude number Frc against the Reynolds number with

various wing mass ratios. Note that in the present investigation, we define the critical

Froude number as the intermediate value between two transitive cases. We can see

from figure 10 that the critical Froude number Frc decreases as the Reynolds number

increases and as the wing mass ratio decreases. This means that the wing–body model

can generate larger lift force and go upward against gravity more easily for a larger

Reynolds number and a smaller wing mass ratio. These result are consistent with the

fact that the time-averaged lift force decreases as the wing mass ratio WR increases.

5.3. Stability of rotational motion

Finally, we calculate flapping flights of the wing–body model with various wing mass

ratios WR with the initial rotational angle Θ0 = 1◦ as an initial small disturbance. Since

the grid lattice in the computational domain is not inclined, the bilateral symmetry is
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Figure 11. Time variations of the rotational angle Θ with various wing mass ratios

WR for Θ0 = 1◦ at the Reynolds number of Re = 200 under no gravity.
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Figure 12. Vortex fields near the flapping wing–body model with (a) WR = 0.0,

(b) WR = 0.1, (c) WR = 0.5, and (d) WR = 1.0 under no gravity with Θ0 = 1◦ for

Re = 200 at t/T = 10 in −6L ≤ x ≤ 6L and −6L ≤ y ≤ 6L.

broken a little at t = 0. We set Re = 200 for investigating the stability of rotational

motion in the condition where the flow is easily unstable. In addition, we set G = 0,

i.e., Fr = ∞. Figure 11 shows the rotational angle Θ with various WR. It can be seen

from figure 11 that with small WR the rotational motion is unstable, whereas with large

WR the rotational angle remains small. Figure 12 shows the vorticity field around the

flapping wing–body model at t/T = 10. From this figure, we can see that with small WR
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not only vertical symmetry but also bilateral symmetry of flows are broken, whereas with

large WR the flow filed keeps almost bilaterally symmetrical. The symmetry breaking

with respect to the vertical line is induced by the initial small disturbance, and it is the

source of the unstable rotational motion. This result means that the rotational motion

is suppressed with large WR at the cost of lift force, since WTVs, which are the source

of the symmetry breaking and the lift generation, are relatively small and easily decay

with large WR. It should be noted that this conclusion is unchanged in the case where

the gravity is considered.

6. Conclusions

We have investigated the effect of the wing mass on the symmetry breaking of flows and

the lift generation of a two-dimensional symmetric flapping wing–body model through

numerical simulations using the immersed boundary–lattice Boltzmann method. We

considered a model consisting of two-dimensional symmetric flapping wings with uniform

mass density connected by a body represented as a point mass.

At first, we simulated free flights of the two-dimensional symmetric flapping wing–

body model with various mass ratios of the wings to the body under no gravity for the

Reynolds number of 40–200. As a result, it was found that the time-averaged lift force

decreases as the wing mass ratio increases, because the wing-tip speed and the wing-tip

path observed in the space-fixed system become small, and consequently the wing-tip

vortices are relatively small and easily decay with a large wing mass ratio. Therefore,

the critical Reynolds number over which the symmetry breaking occurs increases as the

wing mass ratio increases. Defining the effective Reynolds number based on the wing-tip

speed and the wing-tip path observed in the space-fixed system, however, the critical

value of the effective Reynolds number is around 70 independently of the wing mass

ratio.

Secondly, we investigated the critical Froude number between upward and

downward flights under gravity. As a result, we found that the wing–body model

can generate larger lift force and go upward against gravity more easily for a smaller

wing mass ratio in the same way as the case where the gravity is not considered, and

consequently the critical Froude number decreases as the wing mass ratio decreases.

Finally, we investigated the stability of rotational motion under an initial small

disturbance. As a result, it was found that the rotational motion is suppressed with a

large wing mass ratio at the cost of lift force, since the wing-tip vortices are relatively

small and easily decay with a large wing mass ratio.
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Appendix A. Derivation and deformation of equations of wing–body motion

The system of the two-dimensional symmetric flapping wing–body model (see figure 1)

is a three-body problem composed of two rigid line segments (wings) and one point mass

(body). In order to make the wings and the body connected and to enforce the flapping

angle θ of the wings around the body, we have to consider the force of constraint between

the wings and the body. If the Lagrangian formulation is used, however, the force of

constraint does not have to be formulated explicitly. Supposing that the independent

variables are the position of the body Xb = (Xb, Yb) and the rotational angle of the

body Θ , the Lagrangian for the wing–body system is given by

L =
1

2
M(Ẋ2

b + Ẏ 2
b ) +

1

2
IΘ̇2 + Iwθ̇

2

+
1

2
mwLẊb

[
−(θ̇ + Θ̇) sin(θ +Θ) + (θ̇ − Θ̇) sin(θ −Θ)

]
+

1

2
mwLẎb

[
−(θ̇ + Θ̇) cos(θ +Θ) + (θ̇ − Θ̇) cos(θ −Θ)

]
−MGYb −

1

2
mwLG sin θ cosΘ . (A.1)

The Lagrange equations for the motion of the wing–body system can be obtained as

follows:

d

dt

(
∂L
∂Ẋb

)
− ∂L

∂Xb

= Faerox, (A.2)

d

dt

(
∂L
∂Ẏb

)
− ∂L

∂Yb

= Faeroy, (A.3)

d

dt

(
∂L
∂Θ̇

)
− ∂L

∂Θ
= Taero, (A.4)

where Faerox and Faeroy are the x- and y-components of the aerodynamic force Faero,

respectively. Equations (10) and (11) can be readily obtained from the above equations.

Since equations (10) and (11) include both of Ẍb and Θ̈ , they are not independent

equations. In order to calculate Xb, Ub, Θ , and Ω explicitly, we have to deform

equations (10) and (11) into independent equations. At first, we deform these equations

into a matrix form for a column vector of [Ẍb, Ÿb, Θ̈ ]T (where the superscript T

represents the transpose of a vector or a matrix) by using equations (8) and (9) as

follows:

M

 Ẍb

Ÿb

Θ̈

 = F , (A.5)

where

M =

 M 0 −1
2
mwL sin θ cosΘ

0 M −1
2
mwL sin θ sinΘ

−1
2
mwL sin θ cosΘ −1

2
mwL sin θ sinΘ I

 , (A.6)
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F =


Faerox +

1
2
mwL

{
θ̈ cos θ sinΘ − (θ̇2 + Θ̇2) sin θ sinΘ + θ̇Θ̇ cos θ cosΘ

}
Faeroy +

1
2
mwL

{
−θ̈ cos θ cosΘ + (θ̇2 + Θ̇2) sin θ cosΘ + θ̇Θ̇ cos θ sinΘ

}
−MG

Taero +
1
2
mwLG sin θ sinΘ

 . (A.7)

Then, we obtain independent equations by multiplying both sides of equation (A.5) by

M−1. From the independent equations for [Ẍb, Ÿb, Θ̈ ]T, we can update Ub and Ω by

using the second-order Adams–Bashforth method.

Appendix B. Dependence of temporal resolution

We examine the dependence of temporal resolution, i.e., the dependence of the Mach

number Ma. We calculate the motion of the wing–body model with WR = 0.0 at

Re = 200 under no gravity for various temporal resolutions shown in table A1. Figure A1

shows the time variations of Yb. We can see from this figure that while the results of all

the resolutions are almost the same for 0 ≤ t/T ≤ 5, the results of the low resolutions

start to deviate from that of the highest resolution for t/T > 5. However, the results

of T ≥ 26000∆t almost coincide until t/T = 10. This suggests that the temporal

resolutions of T ≥ 26000∆t are considered to be suitable. This conclusion is consistent

Table A1. Parameters used for examining the dependence of temporal resolution.

T Ûtip Ma τ

20000∆t 0.01307 0.02264 0.5157

22000∆t 0.01188 0.02058 0.5143

24000∆t 0.01089 0.01886 0.5131

26000∆t 0.01005 0.01741 0.5121

28000∆t 0.009335 0.01617 0.5112

30000∆t 0.008713 0.01509 0.5105

0

2
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10

0 2 4 6 8 10 12

Figure A1. Time variations of Yb (the y-position of the body) with various temporal

resolutions for Re = 200 and WR = 0.0.
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with the suggestion of De Rosis et al. (2014), i.e., the Mach number less than 0.02 is

suitable for calculations of two-dimensional symmetric flapping wings. Therefore, the

temporal resolution of T = 28000∆t is used for the present simulations.
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