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Abstract. The aerodynamic performance of flapping- and revolving-wing models

is investigated by numerical simulations based on an immersed boundary–lattice

Boltzmann method. As wing models, we use (i) a butterfly-like model with a body

and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as

the flapping case. Firstly, we calculate aerodynamic performance factors such as the

lift force, the power, and the power loading of the two models for Reynolds numbers

in the range of 50–1000. For the flapping-wing model, the power loading is maximal

for the maximum angle of attack of 90◦, a flapping amplitude of roughly 45◦, and a

phase shift between the flapping angle and the angle of attack of roughly 90◦. For

the revolving-wing model, the power loading peaks for an angle of attack of roughly

45◦. In addition, we examine the ground effect on the aerodynamic performance of

the revolving-wing model. Secondly, we compare the aerodynamic performance of the

flapping- and revolving-wing models at their respective maximal power loadings. It

is found that the revolving-wing model is more efficient than the flapping-wing model

both when the body of the latter is fixed and where it can move freely. Finally, we

discuss the relative agilities of the flapping- and revolving-wing models.
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1. Introduction

The flapping flight of insects propelled by flapping is an interesting phenomenon

not only in biology but also in aerodynamics. In addition, its practical use for the

development of micro air vehicles (MAVs) has recently attracted a lot of attention (e.g.,

Ma et al. 2013, Ristroph & Childress 2014). In order to reveal the various mechanisms

that generate aerodynamic forces in flapping flight, much effort has been made over

the past 50 years with analytical, experimental, and computational approaches. Several

wing models that mimic actual insects (known as flapping-wing models) have been

used to investigate the force-generation mechanisms (e.g., Ellington et al. 1996, Liu

et al. 1998, Dickinson et al. 1999). Alternatively, models in which fixed wings revolve

like propellers at constant angle of attack and angular velocity (known as revolving-wing

models) have been used as simpler substitutes for flapping-wing models. Usherwood &

Ellington (2002a) and Usherwood & Ellington (2002b) performed experiments using

a revolving-wing model of a hawkmoth’s wing to study the properties of the leading-

edge vortex (LEV) on the wing. They found that large lift and drag coefficients arise

from the presence of the LEV during steady revolution. Lentink & Dickinson (2009a)

and Lentink & Dickinson (2009b) conducted analytical and experimental investigation

into the stability of the LEV of a fly’s wing using revolving- and flapping-wing models

with three non-dimensional parameters: the Rossby number, the non-dimensional stroke

amplitude, and the Reynolds number Re. They found that the stability of the LEV

depends on the Rossby number rather than the non-dimensional stroke amplitude.

In other words, the LEV is stabilized by the centripetal and Coriolis accelerations,

whereas the mechanism for LEV stability is independent of the Reynolds number. Ozen

& Rockwell (2012) obtained experimental images of the vorticity, velocity contours,

and streamline topology around a revolving-wing model with a rectangular plate in

order to characterize the LEV in relation to the overall flow structure. They found

that a stable LEV is maintained over wide range of angle of attack during steady

revolution, with a structure that is relatively insensitive to the Reynolds number.

Harbig et al. (2013a) and Harbig et al. (2013b) performed numerical investigations

of the effects of the Reynolds number, aspect ratio, and wing camber on the LEV

structure and aerodynamic forces in a revolving-wing model of insect-like wings. They

found that a dual LEV structure develops at the Reynolds numbers associated with

insects, with a structure that is independent of aspect ratio. In addition, they found

that positively cambered wings produce higher lift-to-drag ratios than those of flat

or negatively cambered wings. Garmann et al. (2013) and Garmann & Visbal (2014)

simulated the flow around a rectangular-plate revolving-wing model in quiescent fluid to

examine the vortex structure around and aerodynamic loading on the wing. They found

a coherent vortex system along the LEV throughout the wing motion, with the average

and instantaneous wing loadings increasing with the Reynolds number. Noda et al.

(2014) investigated numerically the aerodynamics of a flexible wing at low Reynolds

numbers using a hawkmoth revolving-wing model. They found that wing deformation
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delays vortex shedding at the leading edge, thereby improving the aerodynamic forces

during steady revolution.

As discussed above, revolving-wing models have been used as a simpler approach to

investigating the flow structures and aerodynamic forces associated with flapping-wings,

especially the properties of the LEV. However, although such models have led a better

understanding of the force-generation mechanisms in flapping flight, the aforementioned

revolving-wing studies did not discuss important aerodynamic performance indices such

as the aerodynamic power expenditure or the power loading (lift force per unit power).

Moreover, at the Reynolds numbers associated with insects, the optimal angle of attack

(i.e., the one that gives the maximum power loading) has not been clarified even for the

simplest revolving-wing model with rectangular wings. In addition, as an interesting

issue concerning the efficiency of revolving wings, the following simple questions have

not been answered sufficiently. Firstly, for flapping- and revolving-wing models with

the same wings, which model generates the larger lift force and expends the least

aerodynamic power? Secondly, what are the advantages and disadvantages of flapping

versus revolving wings? The above two questions are important in the development of

flapping-wing MAVs. Because many practical MAVs use revolving wings, they are the

main competition for flapping wings. Hence, comparing the two wing models would

give valuable data for improving the aerodynamic performance of MAVs. Motivated by

such questions, several studies have compared revolving wings to flapping ones. Mayo &

Leishman (2010) conducted a comparative study using published data for several types of

hover-capable MAVs such as revolving wings, cyclorotors, flotors, and flapping wings and

for avian/entomological flyers. They suggested that power loading is the most objective

index for comparing the aerodynamic efficiency among different types of aircraft. They

concluded that revolving-wing flight efficiency is either comparable to or better than

avian/entomological flight efficiency, including biomimetic flapping wings. Zheng et al.

(2013) used direct numerical simulations to compare the hovering performance and

efficiencies of a hawkmoth-inspired flapping-wing model and a revolving-wing model

with the same wings for Re = 50–4800. They suggested that the lift force and the

power are the most objective indices for comparing the performance. They concluded

that the efficiency of the revolving-wing model declines rapidly with decrease of the

Reynolds number. Consequently, for Re ≲ 100, flapping wings are more advantageous

than revolving wings.

The aformentioned comparative studies were for hovering flight. However, as Zheng

et al. (2013) pointed out, it is difficult to apply results from hovering flight to situations

such as forward flight or maneuvering. For flapping wings in free forward flight, the

simple questions posed above have not been answered adequately. In the present study,

we evaluate not only the lift force but also the aerodynamic power expenditure and

the power loading of a revolving-wing model. We then compare this model with a

butterfly-like model involving a body with flapping wings (referred to as a butterfly-like

flapping wing–body model), which can fly freely both upward and forward (see Suzuki

et al. 2015). In the butterfly-like flapping wing–body model, the wings flap downward
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to generate lift and backward to generate thrust, just like an actual butterfly. Therefore,

this flapping wing–body model utilizes aerodynamic forces that are parallel to the wing-

tip path, i.e., drag-based forces (Ellington 1999, Ristroph et al. 2011). It has been

reported that insects often use drag-based forces in rapid maneuvers such as sudden

starts, stops, and turns (Ristroph et al. 2011). Thus, this flapping wing–body model

incorporates important features of flapping flight by insects, namely free forward flight

and maneuvering; these are also desirable features for MAVs.

In the present study, we attempt to evaluate the lift force, the power, and the power

loading of a revolving-wing model. We use computational approach to seek answers to

the above questions because we can easily and accurately compute moving-boundary

flows around revolving and flapping wings thanks to recent advances in computational

methods (e.g., Liu et al. 1998, Liu & Kawachi 1998, Aono et al. 2008, Liu 2009). In recent

years, various immersed boundary methods (IBMs) have been proposed to simulate

moving-boundary flows in a Cartesian grid (see Mittal & Iaccarino 2005). An IBM is a

simple approach to moving-boundary flows, although certain techniques are necessary

to satisfy the no-slip boundary condition at the moving boundary. In contrast, the

lattice Boltzmann method (LBM) has been developed into an alternative and promising

numerical scheme for simulating viscous fluid flows in a Cartesian grid without having

to solve Poisson equation for the pressure field (see Succi 2001). Since both of these

methods are Cartesian-based, the LBM combined with an IBM (referred to as IB-

LBM) is well suited to simulating moving-boundary flows. Several IB-LBM approaches

have already been presented (e.g., Feng & Michaelides 2005, Sui et al. 2008, Wu &

Shu 2009, Krüger et al. 2011) and applied to flows around flapping wings (e.g., De Rosis

et al. 2014, Lee et al. 2015, Wu et al. 2015). Suzuki & Inamuro (2011) also proposed an

efficient IB-LBM for moving-boundary flows. This IB-LBM has been applied successfully

to the flow and lift generated by a two-dimensional symmetric flapping wing (Ota

et al. 2012, Kimura et al. 2014), a dragonfly-like flapping wing–body model (Minami

et al. 2015), and a butterfly-like flapping wing–body model (Suzuki et al. 2015).

In the present paper, we perform numerical simulations using the IB-LBM proposed

by Suzuki & Inamuro (2011) to compare aerodynamic performance in relation to lift

force, power, and power loading between a butterfly-like flapping wing–body model and

a revolving-wing model. Both models have the same infinitely thin rectangular wings.

We begin by calculating the aerodynamic performance of the flapping wing–body model

for various kinematic parameters and of the revolving-wing model for various angles of

attack for Re = 50–1000. We then compare the aerodynamic performance of the two

models. In the comparison, we consider not only the case in which the body of the

flapping wing–body model is fixed but also the case in which it can move freely, i.e., free

flight.

This paper is organized as follows. In section 2, we introduce the butterfly-like

flapping wing–body model and the revolving-wing model. In section 3, we present

the governing equations and the parameters of the systems. In section 4, we explain

the computational method and conditions. In section 5, we define the aerodynamic
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performance indices. In section 6, we present our results and discussions. Finally, in

section 7, we draw our conclusions.

2. Wing models

2.1. Butterfly-like flapping wing–body model

2.1.1. Components The butterfly-like flapping wing–body model proposed by Suzuki

et al. (2015) is a simple wing–body model with infinitely thin square wings of side L

and a rod-shaped body of length Lb = L. The flexibility and mass of the wings are

neglected. The body has uniform (line) density ρb. Therefore, the center of mass of the

body is at its mid-point, and the total mass of the body is M = ρbLb. The two wings

are connected at the mid-points of the body and the wing root. It should be noted that

the body has a negligible effect on the flow field and the aerodynamic forces acting on

the model.

2.1.2. Wing motion The butterfly-like flapping wing–body model flaps downward and

backward to generate lift and thrust forces, respectively. The motions of the two

wings are symmetrical with respect to the longitudinal plane. The wing motion is a

combination of an attacking motion and a flapping motion (see figure 1), described by

t = 0.0Tf t = 0.1Tf t = 0.2Tf t = 0.3Tf t = 0.4Tf

t = 0.5Tf t = 0.6Tf t = 0.7Tf t = 0.8Tf t = 0.9Tf

(a)

Figure 1. (a) Perspective illustration of the butterfly-like flapping wing–body model.

(b) Time variations of the angle of attack αf and the flapping angle θf during one

period. (c) Wing motion with αm = 90◦, θm = 45◦, and γ = 90◦ during one period.
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the angle of attack αf(t) and the flapping angle θf(t), respectively, at time t as follows:

αf(t) =
αm

2

[
1 + cos

(
2π

Tf

t+
γ

180◦
π

)]
, (1)

θf(t) = θm cos

(
2π

Tf

t

)
, (2)

where αm is the maximum angle of attack, θm is the flapping amplitude corresponding

to half the stroke amplitude, Tf is the period of flapping motion, and γ is the phase

shift (see figure 1b). The wing motion of the butterfly-like flapping wing–body model is

determined by the three parameters αm, θm, and γ. The ranges of the maximum angle of

attack, the flapping amplitude, and the phase shift are 0◦ ≤ αm ≤ 90◦, 0◦ < θm < 90◦,

and 0◦ ≤ γ ≤ 180◦, respectively. The model with αm = 0◦ flaps downward in the

downstroke and upward in the upstroke symmetrically, whereas that with αm = 90◦

flaps downward in the downstroke and directly backward in the upstroke (see figure 1c).

The range of the phase shift is determined so that the value of αf(t) becomes 0◦ during

the downstroke. If not, the model flaps not downward but forward in the downstroke.

For more details about the wing motion of the flapping wing–body model, see Suzuki

et al. (2015).

2.2. Revolving wing model

2.2.1. Components The revolving-wing model has the same components as the

butterfly-like flapping wing–body model, i.e., two infinitely thin square wings of side

L and a rod-shaped body of length Lb = L. The flexibility and the mass of the wings

are neglected. It should be noted that the body has a negligible effect on the flow field

and the aerodynamic forces acting on the model.

2.2.2. Wing motion In the revolving-wing model, the two wings revolve around the

body at a constant angular velocity ω and with a constant angle of attack αr (see

figure 2). The revolution period is given by Tr = 2π/ω. The angle of revolution for one

wing at time t is given by

θr(t) = ωt. (3)

The difference between the angles of revolution of the two wings is set to 180◦, i.e., the

angle of revolution of the other wing is ωt+ π.

3. Governing equations

3.1. Fluid motion

The fluid motion around the butterfly-like flapping wing–body model and the revolving

wing model is governed by the continuity equation and the Navier–Stokes equation for

an incompressible fluid:

∇ · u = 0, (4)
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Connecting point

Body

(Axis of revolution)

Wing

Figure 2. (a) Perspective illustration of the revolving-wing model with two

rectangular wings. (b) Wing motion with αr = 45◦ during half a period as viewed

from the right-hand side of the revolving-wing model.

∂u

∂t
+ (u · ∇)u = − 1

ρf
∇p+ ν∇2u, (5)

where u is the fluid velocity, p is the pressure, ρf is the density of the fluid, and ν is the

kinematic viscosity of the fluid. We consider the fluid to be air at room temperature

(20◦C), and we set ρf = 1.205 kg/m3 and ν = 1.512× 10−5 m2/s. The no-slip condition

should be satisfied on the surfaces of the models, i.e., the fluid velocity must be equal

to the velocity of the wings and the body.

The governing non-dimensional parameter of equations (4) and (5) is the Reynolds

number, which is defined as:

Re =
UrefL

ν
, (6)

where Uref is a characteristic flow speed, and L is a characteristic length. For the latter,

we take the wing length L = 18.1 mm of the small butterfly Janatella leucodesma

(see Dudley 1990). For the former, we take the mean wing-tip speed defined by

Utipf = 4θmL/Tf as the characteristic flow speed for the butterfly-like flapping wing–

body model, whereas we take the mean wing-tip speed defined by Utipr = ωL as the

characteristic flow speed for the revolving-wing model. In the following, we denote the

Reynolds number with Uref = Utipf as Ref and that with Uref = Utipr as Rer.

It should be noted that the flapping wing–body model has a totally different

configuration to that of the revolving-wing model. Therefore, even if Ref = Rer, the two

flows have no similarity. In addition, as Zheng et al. (2013) pointed out, the definition

of Ref is not unique. For example, one might consider that the Reynolds number
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based on the maximum tip speed is more appropriate. In this study, however, we

compare the aerodynamic performance of the flapping wing–body model with that of

the revolving-wing model when Ref = Rer as a first comparison. In section 6, we discuss

an appropriate way to compare the two models.

3.2. Body motion

As mentioned above, the mass of the wings is neglected in the models, and the

aerodynamic forces generated by the wings act on the body through the connecting

point. In the butterfly-like flapping wing–body model, the body motion is governed

by the equation of motion incorporating the aerodynamic forces and the force due to

gravity (see equation (3.5) in Suzuki et al. 2015). In contrast, the revolving-wing model

is assumed to be hovering, i.e., the body of the wing model is fixed.

4. Computational method and conditions

The computational method used in this study is the same as that in Suzuki et al. (2015);

we use the IB-LBM approach (Suzuki & Inamuro 2011) to solve equations (4) and (5).

For details of the numerical method, see Appendix A.

We use the same computational domain for both the butterfly-like flapping wing–

body model and the revolving-wing model. The computational domain is a cube of side

W = 12L as shown in figure 3. The x-, y-, and z-axes are fixed to the domain, and we

consider the directions of the x- and y-axes to be the forward and upward directions,

respectively. The periodic boundary condition is applied to the two sides perpendicular

to the x-axis, and the no-slip boundary condition is applied to the other sides. The

center of the body is fixed at height H from the bottom of the domain. The domain

is initially filled with a stationary fluid at uniform pressure. To save computational

time, we use a multi-block grid (Inamuro 2012) that is composed of a fine grid of lattice

spacing ∆x and a coarse grid of lattice spacing 2∆x. The inner fine grid is a cube of

side D = 3L whose center is placed at the center of the body, whereas the coarse grid

is used in the rest of the domain. The spatial and temporal resolutions for each Ref,r
are given in table 1. It should be noted that the resolutions used for the butterfly-like

flapping wing–body model are the same as those used by Suzuki et al. (2015). Table 1

includes the non-dimensional wing-tip speed Ûtipf,r = Utipf,r/cp (cp is the particle speed)

and the relaxation time τ used in the lattice Boltzmann simulations (see Appendices

A.1 and A.2).

5. Definitions of aerodynamic performance

Before showing computational results, we define the aerodynamic performance factors

that are used to compare the flapping wing–body model and the revolving-wing model.



9

Periodic

Periodic

No-slip

12L

12L

12L

H

Figure 3. Computational domain for simulating flows around the butterfly-like

flapping wing–body model and the revolving-wing model. The revolving-wing model

is displayed in this figure as an example.

Table 1. Parameters used for the butterfly-like flapping wing–body model (left) and

the revolving wing model (right).

Ref L Tf Ûtipf τ Rer L Tr Ûtipr τ

50 40∆x 6000∆t 0.021 0.5503 50 40∆x 6000∆t 0.042 0.6005

100 40∆x 6000∆t 0.021 0.5251 100 40∆x 6000∆t 0.042 0.5503

200 40∆x 6000∆t 0.021 0.5126 200 40∆x 6000∆t 0.042 0.5251

300 50∆x 6000∆t 0.026 0.5139 300 50∆x 6000∆t 0.052 0.5262

500 60∆x 6000∆t 0.031 0.5113 500 60∆x 6000∆t 0.063 0.5226

1000 120∆x 12000∆t 0.031 0.5113 1000 120∆x 12000∆t 0.063 0.5226

We calculate the lift force FL and the power P (which are often used as primitive

aerodynamic performance factors) as follows:

FL = Faero · ey, (7)

P =
∑
wing

flocal · ulocal, (8)

where Faero is the total aerodynamic force acting on the model,
∑

wing means summation

over the Lagrangian points on the wings, flocal is the force acting locally on the fluid at a

Lagrangian point on a wing, and ulocal is the fluid velocity at that point. Therefore, P is

the power expended in moving the wings against the aerodynamic forces. The IB-LBM

calculations of equations (7) and (8) are given in Appendix A.5. Let the time-averaged

values of FL and P over one stroke be FL and P . We define the power loading (i.e., the

lift force per unit power) as

PL =
FL

P
. (9)

As often used in the evaluation of aerodynamic performance, the lift coefficient CL
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and the power coefficient CP, which are non-dimensional forms of FL and P , respectively,

are also defined as follows:

CL =
FL

0.5ρfU2
ref(2L

2)
, (10)

CP =
P

0.5ρfU3
ref(2L

2)
. (11)

Let the time-averaged values of CL and CP in one stroke be CL and CP. We define the

power-loading coefficient as follows:

CPL =
CL

CP

= Uref PL. (12)

It should be noted that the above non-dimensional values depend on the choice of the

characteristic flow speed Uref . Let the non-dimensional values with Uref = Utipf and

with Uref = Utipr have the subscripts “f” and “r,” respectively, in the same way as for

the Reynolds number. In recovering the dimensional values from the non-dimensional

ones, we use the density and viscosity of air and the wing length of a small butterfly, as

discussed in section 3.1.

6. Results and discussion

In this section, we show computational results of the aerodynamic performance of the

butterfly-like flapping wing–body model and the revolving-wing model and compare

their features. We also compare agility (usually regarded as an advantage of flapping

flight) between the flapping wing–body model and the revolving-wing model.

6.1. Aerodynamic performance of the butterfly-like flapping wing–body model

Here, we calculate the aerodynamic performance of the butterfly-like flapping wing–

body model for various maximum angles of attack αm, flapping amplitudes θm, and

phase shifts γ when the body is fixed. We clarify representative parameter values for

efficient lift.

Although the Reynolds number for a small butterfly is Ref ≃ 1000, we set Ref = 500

here to save on computational cost. For the flapping wing–body model, Suzuki et al.

(2015) showed that aerodynamic performance is relatively insensitive to Reynolds

number for values of Re greater than several hundred. In addition, the ground effect on

the aerodynamic performance of the flapping wing–body model was also investigated

by Suzuki et al. (2015), and the current height of H = 6L is sufficient for the ground

effect to be neglected.

Taking the basic set of parameters to be (αm, θm, γ) = (90◦, 45◦, 90◦), we fix two

of the parameters while changing the third to investigate the effect of the latter on

the aerodynamic performance. Figure 4 shows the time-averaged lift coefficient CLf ,

the time-averaged power coefficient CPf in the tenth stroke (9 ≤ t/Tf ≤ 10), and

power-loading coefficient CPLf against each parameter. It can be seen from figure 4(a)
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Figure 4. Time-averaged lift coefficient CLf , time-averaged power coefficient CPf , and

power-loading coefficient CPLf against (a) maximum angle of attack αm with θm = 45◦

and γ = 90◦, (b) flapping amplitude θm with αm = 90◦ and γ = 90◦, and (c) phase

shift γ with αm = 90◦ and θm = 45◦, all for Ref = 500.

that the time-averaged lift coefficient CLf increases with the maximum angle of attack

αm, whereas the time-averaged power coefficient CPf decreases with αm. Therefore,

the power-loading coefficient CPLf increases with αm, and αm = 90◦ is optimal in the

butterfly-like flapping wing–body model. From figure 4(b), we can see that CLf and

CPf decrease with θm in the range of 0 < θm < 45◦ and then remain approximately

steady for θm ≥ 45◦. Consequently, CPLf becomes almost optimal for θm ≥ 45◦. From

figure 4(c), we can see that CLf is maximal for γ = 120◦, CPf is minimal for γ = 90◦,

and the resultant CPLf is maximal for γ = 90◦. From these results, we conclude that

the parameter set (αm, θm, γ) = (90◦, 45◦, 90◦) is effectively optimal for the butterfly-like

flapping wing–body model.

Here, we consider why the lift force can be generated efficiently with the above

set of parameters. Figure 5 shows the time variation of the vortex structure near the

flapping wing–body model for αm = 90◦, θm = 45◦, and γ = 90◦. The vortex structure

is visualized using the Q-criterion (Hunt et al. 1988), i.e., the second invariant of the
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velocity-gradient tensor:

Q = −∂ui

∂xj

∂uj

∂xi

, (13)

where i, j = x, y, z represent Cartesian coordinates and the summation convention is

used. From figure 5, the change in vortex structure can be described as follows.

(i) A leading-edge vortex (LEV) and a wing-tip vortex (WTV) are generated on the

upper surfaces of the wings in the early stage of a downstroke.

(ii) These vortices are then shed from the wing tip and move together down the upper

surfaces of the wings in the later stage of the same downstroke.

(iii) The vortices are then released from the wings in the early stage of the subsequent

upstroke.

(iv) The vortices are advected downward in the later stage of the same upstroke.

Like an actual butterfly (Yokoyama et al. 2013), the LEV and WTV on each wing

upper surface are considered to be primary sources of lift for the flapping wing–body

model. In addition, the aerodynamic performance depends on the generated LEV and

WTV being released and advected downward without interference from the wings. This

is because any such interference would weaken the downward flow induced under the

model and strengthen the resisting force acting against the wings, and consequently the

lift would decrease and the power expenditure would increase. Actually, in the case of

x

y
t = 9.17Tf t = 9.33Tf

t = 9.67Tf t = 9.83Tf t = 10.00Tf

t = 9.50Tf

Generation of 

LEV + WTV

Vortex shedding

from wing tip

Slip-down of 

LEV + WTV

Released vortex Vortex advected 

downward

Figure 5. Time variations of the vortex structure visualized by the Q-criterion for the

butterfly-like flapping wing–body model with αm = 90◦, θm = 45◦, and γ = 90◦ in the

tenth cycle for Ref = 500. The wing–body model is shown in red, and the isosurface

of Q = 15(Utipf/L)
2 is shown in grey.
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a set of inferior parameter values, such interference occurs, or the LEV and WTV are

shed before they grow sufficiently. Therefore, we consider the optimal parameter set

αm = 90◦, θm = 45◦, and γ = 90◦ to be representative of the butterfly-like flapping

wing–body model.

6.2. Aerodynamic performance of the revolving-wing model

Here, we calculate the aerodynamic performance of the revolving-wing model. In the

following, we set the height of the revolving-wing model from the ground toH = 6L, and

then examine the ground effect by changing the value of H. As noted in section 6.2.3,

H = 6L is sufficient for the ground effect to be neglected. We calculate the flow around

the revolving-wing model for various angles of attack and for 50 ≤ Rer ≤ 1000.

6.2.1. Aerodynamic performance for various angles of attack and Reynolds numbers

Firstly, we consider the aerodynamic performance of the revolving-wing model. Figure

6 shows the time variations of the lift coefficient CLr and power coefficient CPr during

9 ≤ t/Tr ≤ 10 with αr = 45◦ for Rer = 50–1000. We see from this figure that the

lift coefficient increases and the power coefficient decreases with the Reynolds number.

These results are consistent with the findings of Lentink & Dickinson (2009b) and Zheng

et al. (2013). Although the time variation becomes larger with the Reynolds number

and a steady state is not achieved even at t = 10Tr, we can see clear differences in the

time-averaged values with the Reynolds number.

r r
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Figure 6. Time variations of (a) the lift coefficient CLr and (b) the power coefficient

CPr with αr = 45◦ for Rer = 50–1000.

Figure 7 shows the time-averaged lift coefficient CLr, the time-averaged power

coefficient CPr in the tenth stroke (9 ≤ t/Tr ≤ 10), and the power-loading coefficient

CPLr. We can see from figure 7(a) that, for any Reynolds number, the time-averaged lift

coefficient CLr increases with the angle of attack αr in the range of αr = 10◦–60◦, peaks

around αr = 60◦, and decreases with αr in the range of αr = 60◦–80◦. For ordinary

rotorcraft, however, the angle of attack for maximal CLr is only a few degrees, i.e., much

smaller than that for the present revolving-wing model. This is because the present
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Figure 7. (a) Time-averaged lift coefficient CLr, (b) time-averaged power coefficient

CPr, and (c) power-loading coefficient CPLr against angle of attack αr for Rer = 50–

1000.

aspect ratio and Reynolds number are much lower than those for ordinary rotorcraft.

Consequently, the effects of the wing tip and the viscosity are significant for the present

revolving-wing model. This is consistent with the experimental results of Usherwood &

Ellington (2002a) that showed that a revolving hawkmoth wing generates its maximal

lift force between 40◦ and 50◦. In addition, we can see from figure 7(a) that, for any

angle of attack except αr = 70◦, the time-averaged lift coefficient CLr increases with

the Reynolds number. The reason for the minor aberration in this overall trend at

Rer ≈ 500 for αr = 70◦ is not understood completely, but it is presumably due to the

secondary vortices that appear under the wings as discussed in the next section.

From figure 7(b), we can see that the time-averaged power coefficient CPr decreases

with the Reynolds number, and increases with the angle of attack. This is because the

viscous skin friction decreases with the Reynolds number, and the drag force increases

with the angle of attack. We can see from figure 7(c) that the power-loading coefficient

CPLr increases with the Reynolds number, and peaks around αr = 45◦.

6.2.2. Flow induced by the revolving-wing model Next, we consider the flow that

is induced around the revolving-wing model. Figure 8 shows corresponding two-

dimensional velocity fields in the x–y plane that includes the axis of revolution at
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t = 10Tr for Rer = 200 and 500. We can see from figure 8 that downward flows, so-called

downwashes, are induced for αr = 45◦, 60◦, and 70◦. Lift force should be generated in

response to the downwash. We can see from figure 8(a) that, for Rer = 200, the

horizontal component of the downwash becomes relatively large as the angle of attack

increases. This is because more fluid is swept by the wings and revolves with them as

the angle of attack increases. Therefore, more fluid should be pushed away from the axis

of revolution by the centrifugal force. In addition, the flow near the wings increases with

the angle of attack. The reason for this is not yet understood completely, but the same

tendency was reported by Ozen & Rockwell (2012). These results mean that the angle of

attack determines the direction and the magnitude of the downwash, and consequently

it determines the lift force. We can see from figure 8(b) that, for Rer = 500, secondary

vortices appear under the wing model and generate an upward jet that can be expected

to disturb the generation of lift somewhat. Actually, for αr = 70◦, the time-averaged

x

y

(a) (b)Rer = 200 Rer = 500

Figure 8. Two-dimensional velocity fields around the revolving-wing model for

αr = 45◦, 60◦, and 70◦ at t = 10Tr for (a) Rer = 200 and (b) Rer = 500 in the

x–y plane that includes the axis of revolution. The revolving-wing model is shown in

red. The colors of the vectors denote the flow speed. The velocity vectors are drawn

at every 8∆x.
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(a) (b)Rer = 200 Rer = 500

Figure 9. Vortex structure on revolving wings visualized by the Q-criterion for

αr = 45◦, 60◦, and 70◦ at (a) Rer = 200 and (b) Rer = 500. Views are from

above in the steady state. The wing model is shown in red, and the isosurface of

Q = 15(Utipr/L)
2 is shown in grey.

lift coefficient for Rer = 500 is smaller than that for Rer = 200 (figure 7a), whereas it

increases with the Reynolds number for the other values of αr.

Figure 9 shows the vortex structure on the wings visualized by the Q-criterion for

αr = 45◦, 60◦, and 70◦ at Rer = 200 and Rer = 500. We can see from this figure that,

even for a large angle of attack, the LEV is stably attached to the upper wing surfaces for

both the Reynolds numbers. Many studies (e.g., Ozen & Rockwell 2012) have reported

that the LEV remains attached even for larger angles of attack at Reynolds numbers of

order 103. Because of this stable LEV, there is no sharp reduction in the lift coefficient

as was seen in figure 7(a). In general, the magnitude of the net aerodynamic force

increases as the LEV intensifies, and the vertical component of the net aerodynamic

force (i.e., the lift force) decreases as the area of the wings projected onto the horizontal

plane decreases. Therefore, the angle of attack that gives the maximal CLr should

be determined by a balance between the LEV intensity and the projected wing area.

Comparing figures 9(a) and (b), we see that the LEV intensifies with the Reynolds
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number; for the high Reynolds number, it is shed near the wing tip while remaining

attached to the leading edge. This is because viscous dissipation of vortices decreases

with the Reynolds number. In addition, it can be seen from figure 9(b) that the shed

LEV tail lengthens with the angle of attack. It is reasonable that the LEV should

separate easily at a high angle of attack, in the same way as the stall of an aircraft.

The shed tail might be responsible for distorting the direction of the downwash and

inducing the secondary vortex under the wing model at Rer = 500, shown in figure 8(b).

Moreover, the LEV structure on the model wings is similar to that on a hawkmoth’s

wings at an angle of attack of 45◦, as reported by Zheng et al. (2013). In other words,

even though the wing planforms are completely different, the LEV thickens toward the

wing tips in both cases and its shed tail can be observed near the wing tip. Therefore,

our results for the revolving-wing model are consistent with those of other studies.

6.2.3. Ground effect for the revolving-wing model Here, we examine the ground

effect for the revolving-wing model. The ground effect for flapping wings has been

investigated both experimentally (e.g., Zhang et al. 2014) and numerically (e.g., Gao &

Lu 2008, Maeda & Liu 2013, Kolomenskiy et al. 2016), and it was reported that the

ground effect for flapping wings in three-dimensional space is not significant. Indeed,

Suzuki et al. (2015) showed that the ground effect is unimportant in simulations of

the butterfly-like flapping wing–body model. From these previous studies, we expect

the ground effect to be not particularly significant for the revolving-wing model as

well. However, we should confirm this expectation for a fair comparison between the

revolving-wing model and the flapping wing–body model.

Figure 10 shows CLr, CPr, and CPLr against H for αr = 45◦ and Rer = 500. We can

see from figure 10(a) that whereas CLr and CPr are almost constant for H ≥ 6L, they

increase as the model approaches the ground. However, such increases in CLr and CPr

are less than 10% of the values for H = 6L. It can be seen from figure 10(b) that CPLr is

almost independent of height H. This means that the ground effect has relatively little

effect on the aerodynamic performance of the revolving-wing model.

6.3. Comparison of the revolving-wing model and the butterfly-like flapping wing–body

model

As shown in sections 6.1 and 6.2, the maximum power loading for the butterfly-like

flapping wing–body model is obtained around αm = 90◦, θm = 45◦, and γ = 90◦, and

that for the revolving-wing model is obtained around αr = 45◦. In the following, we

compare the two models at their respective maximum power loadings.

6.3.1. Comparison at the same Reynolds number We compare the time-averaged lift

coefficient CLr, the time-averaged power coefficient CPr, and the power-loading coefficient

CPLr of the revolving-wing model with those of the flapping wing–body model for

Re = Ref = Rer, which means Utipf = Utipr because the characteristic length and the
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Figure 10. (a) Time-averaged lift and power coefficients CLr and CPr and (b) power-

loading coefficient CPLr against height H of the revolving-wing model from the ground

for αr = 45◦ and Rer = 500.

kinematic viscosity are the same. As mentioned in section 3.1, the flows around flapping-

and revolving-wing models have no inherent similarity, even at the same Reynolds

numbers. However, the flow speeds should be similar. Therefore, this comparison should

be regarded as a comparison between two different wing models that induce flows with

similar speeds.

Figure 11 shows the time-averaged lift and power coefficients and the power-loading

coefficient against the Reynolds number. We see from figure 11(a) that the time-

averaged lift coefficient for the flapping wing–body model is roughly two times that

for the revolving-wing model at the same Reynolds number. However, we see from

figure 11(b) that the time-averaged power coefficient for the flapping wing–body model

is roughly five times that for the revolving-wing model. This means that if the two

models have the same wing-tip speed, the flapping wing–body model generates more lift

but expends much more power than does the revolving-wing model. Consequently, as

shown in figure 11(c), the power-loading coefficient for the flapping wing–body model

is about a third of that for the revolving-wing model at Re = 1000. Figures 11(d–f)

shows the dimensional values of the lift force FL, power P , and power loading PL. We

see that the power loading of the flapping wing–body model is much smaller than that

of the revolving-wing model.

6.3.2. Comparison at the same power expenditure As mentioned in section 3, the choice

of characteristic flow speed for the flapping wing–body model is not unique. Because it

appears in the lift coefficient, the power coefficient, and the Reynolds number, another

characteristic flow speed might lead to significantly different results from the comparison

shown in figure 11. Therefore, in order to compare different wing models, we should

use indices that are independent of the choice of characteristic flow speed. One answer

is to compare the dimensional lift force when the same dimensional power is expended,

since the dimensional values do not require characteristic flow speed. Figure 12 shows

the lift force FL and power loading PL against the power P . We can see from this figure
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Figure 11. Comparisons of (a) time-averaged lift coefficient CL, (b) time-averaged

power coefficient CP, (c) power-loading coefficient CPL, (d) time-averaged lift force FL,

(e) time-averaged power P , and (f) power loading PL at the same Reynolds number

Re = Ref = Rer.

that, at the same power expenditure, the lift force and power loading of the flapping

wing–body model are smaller than those of the revolving-wing model. This means for

the same motor and battery, the revolving-wing model is the more efficient.

However, the above results are inconsistent with other comparable studies in which

flapping wings are compared with revolving or fixed wings. Pesavento & Wang (2009)

compared a two-dimensional hovering flapping wing with a fixed wing in a steady flow,

and concluded that flapping with optimal wing motion uses less power than does a fixed

wing with optimal attack of angle if the flapping and fixed wings generate the same lift.
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Figure 12. Comparisons of (a) lift force FL and (b) power loading PL against power

P .

Zheng et al. (2013) reported that the lift and power expenditure for three-dimensional

hovering flapping are comparable to those of revolving wings for the Reynolds numbers of

an actual insect, and flapping is more advantageous than a revolving wing for Re ≲ 100.

The difference between the present results and those of Pesavento & Wang (2009) is

attributed partly to the dimensionality. The flow is confined to the longitudinal plane

in two-dimensional simulations, whereas it can be induced additionally in the horizontal

plane in three-dimensions. This horizontal flow might increase the power expenditure

while contributing nothing to the lift. Another reason for the difference is considered to

the drag-based thrust (Ellington 1999, Ristroph et al. 2011) of flapping. The lift force

generated by hovering flapping, revolving, and fixed wings is perpendicular to the wing-

tip path. In contrast, butterfly-like flapping utilizes the aerodynamic forces parallel

to the wing-tip path, called drag-based thrust. Since insects use drag-based thrust in

brisk maneuvers (Ellington 1999), the butterfly-like flapping wing–body model might

generate greater lift at the expense of efficiency. This is also a reason for the difference

between the present results and those of Zheng et al. (2013).

It should be noted that the flapping wing–body model can generate thrust as well

as lift. However, we have compared not the net force but the lift force of the flapping

wing–body model with that of the revolving-wing model in the present section. One

might consider the present comparison to be unfair because the thrust is not taken into

account. If we compare the net force, however, the conclusion of the present section is

unchanged. We define the magnitude of the net force as

Fnet = ρfU
2
refL

2

√
CL

2
+ CT

2
, (14)

where CT is the time-averaged thrust coefficient. A comparison of the net-force

magnitudes is shown in figure 13, where we can see that even the net force of the

flapping wing–body model is smaller than that of the revolving-wing model.

6.3.3. Comparison with the flapping wing–body model in free flight In the above

discussions, we considered the aerodynamic performance of the flapping wing–body



21

[m
N

] 

    [mW]

10-5

10-4

10-3

10-2

10-1

100

10-5 10-4 10-3 10-2 10-1 100

Revolving-wing model

Flapping wing-body model

Figure 13. Comparison of net force Fnet against power P .

model when its body is fixed. The answer to the following simple question remains

unclear. How does the aerodynamic performance of the flapping wing–body model

change in free flight? Figure 14 shows the lift and power loading of the flapping

wing–body model in free flight, for which it should be noted that the Froude number

Fr = Utipf/
√
LG (G is the gravitational acceleration) and the non-dimensional mass

NM = M/(ρfL
3) (M is the mass of the body) are taken as the governing parameters

in addition to the Reynolds number. However, because in the Earth’s atmosphere and

gravity the ratio of Fr to Ref is determined by only the wing length L (see Suzuki

et al. 2015), set here as L = 18.1 mm, the Froude number Fr is determined by the

Reynolds number Ref . Therefore, it is enough to specify (Ref , NM) to represent the

results shown in figure 14. When (Ref , NM) = (1000, 2.27) and (1190, 3.36) for

L = 18.1 mm, the flapping wing–body model can fly upward against gravity (see Suzuki

et al. 2015). We can see from figure 14 that at the same power expenditure the lift

and power loading in free flight are larger than those for a fixed body. This is because

the lift increases because of the forward motion. However, in figures 14(a) and (b), the

data for the flapping wing–body model in free flight appear to be under the extension

of the revolving-wing curve. This means that although the flapping wing–body model

in free flight can generate the lift more efficiently than when its body is fixed, the

revolving-wing model is still more efficient.

6.4. Discussion on agility

Since the butterfly-like flapping wing–body model is a highly idealized model, the above

discussions are not directly applied to the case of an actual butterfly. The wing planform,

structure, and flexibility of butterflies might have evolved in order to achieve more

efficient flight. In this section, however, we compare agility (which is regarded as an

advantage of flapping insects) between the flapping wing–body model and the revolving-

wing model. Although the present flapping wing–body model is highly idealized and

far from an actual butterfly, we believe that this discussion provides a suggestion for

understanding the flapping flight of actual butterflies.
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Figure 15. Comparison of instantaneous lift and time-averaged lift of the flapping

wing–body model, and the estimated lift of the revolving-wing model at the same

power expenditure of P = 3.75× 10−1 mW.

In the free flight of the flapping wing–body model under conditions of a small

butterfly (i.e., Ref = 1190 and NM = 3.36), the model generates lift of FL = 2.41× 10−1

mN at power expenditure of P = 3.75×10−1 mW averaged over one stroke. In contrast,

the maximum lift during a stroke is FLmax = 9.37× 10−1 mN. This value is about four

times larger than the time-averaged lift (figure 15). Assuming that the lift and power

coefficients of the revolving-wing model are unchanged for Rer > 1000, we can estimate

the dimensional lift force of the revolving-wing model as FL = 2.84 × 10−1 mN at

the same power expenditure as that of the flapping wing–body model. Therefore, the

maximum lift of the flapping wing–body model is much larger than that of the revolving-

wing model. Although agility refers in general to the rapidity of changes in speed and

direction (Dudley 2002), a quantitative agility index is yet to be established. Because
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large instantaneous aerodynamic force induces a rapid change in speed, we can consider

the magnitude of the instantaneous aerodynamic force an agility index. In this sense,

the flapping wing–body model is more agile than the revolving-wing model. Such agility

might be an advantage for actual butterflies in flight.

7. Conclusions

We have compared aerodynamic performance factors such as lift, power, and power

loading of a butterfly-like flapping wing–body model with those of a revolving-wing

model through numerical simulations using IB-LBM.

Firstly, we calculated the aerodynamic performance of the butterfly-like flapping

wing–body model for various kinematic parameters, and that of the revolving-wing

model for various angles of attack for Reynolds numbers in the range of 50–1000.

For the flapping wing–body model, we found that the set of kinematic parameters

(αm, θm, γ) = (90◦, 45◦, 90◦) is almost optimal in terms of lift efficiency. For the

revolving-wing model, we found that the time-averaged lift coefficient CLr peaks at an

angle of attack of roughly 60◦, whereas the time-averaged power coefficient CPr increases

with the angle of attack. Consequently, the power-loading coefficient CPLr peaks at an

angle of attack of roughly 45◦. In addition, we found that the ground effect has little

effect on the aerodynamic performance of the revolving-wing model.

We then compared the aerodynamic performance of the flapping wing–body model

with that of the revolving-wing model at their respective maximal power loadings. For

the same Reynolds number, we found that the flapping wing–body model generates more

lift but expends much more power than does the revolving-wing model. Consequently,

the power loading of the flapping wing–body model is much smaller than that of

the revolving-wing model. As a more appropriate comparison, we compared the

aerodynamic performance at the same power expenditure, and found that both the

lift and power loading of the revolving-wing model are larger than those of the flapping

wing–body model. Although the flapping wing–body model can generate lift more

efficiently in free flight than when its body is fixed, the revolving-wing model is still

more efficient. Finally, we found that the maximum lift of the flapping wing–body

model is much larger than that of the revolving-wing model. This suggests that agility

might be an advantage for actual butterflies in flight.
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Appendix A. Immersed boundary–lattice Boltzmann method

In this section, we describe the immersed boundary–lattice Boltzmann method (IB-

LBM) for solving the moving-boundary flows around the flapping wing–body model

and the revolving-wing model.

Appendix A.1. Non-dimensional variables for the IB-LBM

We use the following non-dimensional variables defined by a characteristic length

H0 = L, a characteristic particle speed cp, a characteristic time scale t0 = H0/U0

(where U0 = Utipf,r is a characteristic flow speed), and a fluid density ρf :

ĉi = ci/cp, x̂ = x/H0, t̂ = t/t0,

∆x̂ = ∆x/H0, ∆t̂ = ∆t/t0,

f̂i = fi/ρf , û = u/cp, p̂ = p/(ρfc
2
p),

ν̂ = ν/(cpH0), ĝ = gH0/(ρfc
2
p),

X̂k = Xk/H0 Ûk = Uk/cp,

F̂aero = Faero/(ρfc
2
pH

2
0 ), P̂ = P/(ρfc

3
pH

2
0 ).


(A.1)

Note that the circumflex represents “non-dimensional.” It should be noted that the time

step ∆t is equal to the time span during which the particles travel one lattice spacing,

i.e., ∆x/∆t = cp. We can easily obtain ∆t̂ = Sh∆x̂ (where Sh = H0/(t0cp) = U0/cp)

from the above relation. Note that the circumflex in equation (A.1) is omitted in the

following for simplicity.

Appendix A.2. Lattice Boltzmann method

In the LBM, we consider a model gas that is composed of identical particles whose

velocities are restricted to a finite set of vectors (Succi 2001). A three-dimensional

lattice with fifteen velocity vectors (D3Q15 model) is used in the present study. The

D3Q15 model has the following velocity vectors:

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15] = 0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1

0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1

0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1

 . (A.2)

The evolution of the particle distribution function fi(x, t) with the velocity ci at the

point x and time t is computed by the following equations:

fi(x+ ci∆x, t+∆t) = fi(x, t)−
1

τ
[fi(x, t)− f eq

i (p(x, t),u(x, t))] , (A.3)

where ∆x is a lattice spacing, ∆t is the time step during which the particles travel

one lattice spacing, f eq
i is an equilibrium distribution function, τ is a relaxation time of

O(1), and p(x, t) and u(x, t) are the pressure and the fluid velocity, respectively, given
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below. The equilibrium distribution function f eq
i of the incompressible model (He &

Luo 1997) is given by

f eq
i (p,u) = Ei

[
3p+ 3ci · u+

9

2
(ci · u)2 −

3

2
u · u

]
, (A.4)

where E1 = 2/9, E2 = · · · = E7 = 1/9, and E8 = · · · = E15 = 1/72. The pressure and

the fluid velocity are calculated by

p(x, t) =
1

3

15∑
i=1

fi(x, t), (A.5)

u(x, t) =
15∑
i=1

cifi(x, t). (A.6)

The asymptotic expansions of u and p with respect to ∆x can be expressed by

u = (∆x)u(1) + (∆x)2u(2) + (∆x)3u(3) + · · · and p = 1/3 + (∆x)2p(2) + (∆x)3p(3) +

(∆x)4p(4) + · · ·, and u(1) and p(2) satisfy the continuity equation (4) and the Navier–

Stokes equation (5) with the kinematic viscosity ν given by

ν =
1

3

(
τ − 1

2

)
∆x, (A.7)

whereas u(2) and p(3) are zero with appropriate initial and boundary conditions (Junk

et al. 2005). Thus, the solutions of equations (A.3–A.6) give the pressure and the

velocities for incompressible viscous fluid flows with relative errors of O[(∆x)2] (see

Inamuro et al. 1997).

When an external body force g(x, t) is applied, the evolution equation (A.3) of the

particle distribution function fi(x, t) is split into the following two steps:

f ∗
i (x+ ci∆x, t+∆t) = fi(x, t)−

1

τ
[fi(x, t)− f eq

i (p(x, t),u(x, t))] , (A.8)

fi(x, t+∆t) = f ∗
i (x, t+∆t) + 3∆xEici · g(x, t+∆t). (A.9)

Appendix A.3. Immersed boundary method

In the IBM, body forces are applied at lattice points near a boundary in order to enforce

the no-slip condition on that boundary. The idea of the IBM was originally proposed

by Peskin (1972) to simulate flows around flexible membranes in a Cartesian grid, and

various IBMs have been proposed subsequently (see Mittal & Iaccarino 2005). In this

paper, we use the IBM proposed by Wang et al. (2008).

Supposing that fi(x, t), u(x, t), and p(x, t) are known, the temporal f ∗
i (x, t+∆t)

and u∗
i (x, t + ∆t) can be calculated by equations (A.8) and (A.6), respectively. Let

Xk(t + ∆t) and Uk(t + ∆t) (k = 1, 2, . . . , N) be the Lagrangian points of the moving

boundary and the boundary velocity at the points, respectively. Note that the moving

boundary is represented by N points, and the boundary Lagrangian points Xk generally
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differ from the Eulerian grid points x. Then, the temporal velocities u∗
i (Xk, t+∆t) at

the boundary Lagrangian points Xk are interpolated by

u∗(Xk, t+∆t) =
∑
x

u∗(x, t+∆t) W (x−Xk) (∆x)3, (A.10)

where
∑
x

describes the summation over all lattice points x, and W is a weighting

function proposed by Peskin (2002) and given by

W (x, y, z) =
1

∆x
w
( x

∆x

)
· 1

∆x
w
( y

∆x

)
· 1

∆x
w
( z

∆x

)
, (A.11)

w(r) =


1
8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1
8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, otherwise.

(A.12)

The body force g(x, t+∆t) is determined by the following iterative procedure.

Step 0. Compute the initial value of the body force at the boundary Lagrangian points

by

g0(Xk, t+∆t) = Sh
Uk − u∗(Xk, t+∆t)

∆t
, (A.13)

where it is noted that Sh/∆t = 1/∆x as defined in Appendix A.1.

Step 1. Compute the body force at the Eulerian grid points of the ℓth iteration by

gℓ(x, t+∆t) =
N∑
k=1

gℓ(Xk, t+∆t) W (x−Xk) ∆V, (A.14)

where the body force is added not to one boundary Lagrangian point but to a

small volume element whose volume is described as ∆V . In this method, ∆V is

taken as S/N × ∆x, where S = 2L2 is the area of the surface of the wing model,

and S/N is taken to be approximately equal to (∆x)2. It should be noted that

whereas Peskin (2002) imposed S/N < 0.5(∆x)2 in order to avoid leaks, we found

in our preliminary calculations that the results with S/N in the range of 0.5(∆x)2

to 1.0(∆x)2 were almost coincident.

Step 2. Correct the velocity at the Eulerian grid points by

uℓ(x, t+∆t) = u∗(x, t+∆t) +
∆t

Sh
gℓ(x, t+∆t). (A.15)

Step 3. Interpolate the velocity at the boundary Lagrangian points with

uℓ(Xk, t+∆t) =
∑
x

uℓ(x, t+∆t) W (x−Xk) (∆x)3. (A.16)

Step 4. Correct the body force with

gℓ+1(Xk, t+∆t) = gℓ(Xk, t+∆t) + Sh
Uk − uℓ(Xk, t+∆t)

∆t
, (A.17)

then return to Step 1.

From preliminary computations, we found that gℓ=5(x, t+∆t) is sufficient to maintain

the no-slip condition on the boundaries. Therefore, we iterate the above procedure until

ℓ = 5 in the present computations.
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Appendix A.4. Boundary condition of the domain

For the boundary of the computational domain (figure 3), we use periodic and no-slip

boundary conditions. In the LBM, these boundary conditions have to be specified in

terms of the particle distribution function.

The periodic boundary condition on the two sides perpendicular to the x-axis are

satisfied as follows:

f left
2 = f right

2 ,

f left
8 = f right

8 ,

f left
10 = f right

10 ,

f left
11 = f right

11 ,

f left
13 = f right

13 ,



f right
5 = f left

5 ,

f right
9 = f left

9 ,

f right
12 = f left

12 ,

f right
14 = f left

14 ,

f right
15 = f left

15 ,

(A.18)

where the superscripts “left” and “right” mean the left- and right-hand sides in figure 3,

respectively. It should be noted that the right-hand sides in equation (A.18) can be

calculated by the evolution equation (A.3) of the particle distribution functions.

The no-slip boundary condition on the other sides of the domain is satisfied by the

bounce-back method (Succi 2001). In our preliminary calculation, however, when the

relaxation time τ was smaller than about 0.53, the calculation broke down from the walls

at which the bounce-back method was applied. Although the reason for this is not yet

understood, the slip velocity on the walls, which is negligible for small τ (see Inamuro

et al. 1995), seemed to be the origin of the breakdown. In order to prevent it, we add a

body force that eliminates the slip velocity in the same way as an immersed boundary

method. For example, on the bottom wall of the domain, the temporal distribution

functions are calculated by the bounce-back method:

f ∗
3 = f6,

f ∗
8 = f12,

f ∗
9 = f13,

f ∗
11 = f15,

f ∗
14 = f10.

(A.19)

By using the above temporal distribution functions, we can calculate the temporal

velocity u∗ by equation (A.6), which should have an error from the no-slip boundary

condition. In order to eliminate the error, we add a body force g = −u∗Sh/∆t to the

wall. Therefore, the distribution functions on the wall are corrected by the body force

by equation (A.9). With the above correction, the calculation does not break down even

when the relaxation time τ is small.

Appendix A.5. Calculation of aerodynamic performance

The total aerodynamic force acting on the model is obtained by (Lai & Peskin 2000)

Faero(t) = −
∑
x

g(x, t) (∆x)3, (A.20)
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where the internal mass effect (see Suzuki & Inamuro 2011) is neglected, because the

wing model has no volume. It should be noted that equation (A.20) includes the

aerodynamic force and torque acting on not only the wings but also the body. However,

in our preliminary calculations, the aerodynamic force acting on the body was two orders

of magnitude smaller than that acting on the wings. Although the aerodynamic force

acting on the body could be neglected, we choose to take it into account in this study.

The aerodynamic power (8) is calculated by

P (t) =
N∑
k=1

g(Xk, t) · u(Xk, t)∆V. (A.21)

Appendix A.6. Accuracy of the method

The accuracy of the present method has been examined extensively through many

benchmark problems of moving-boundary flows: an oscillating circular cylinder in a

stationary fluid, the sedimentation of an elliptical cylinder, the sedimentation of a

sphere, a flow around the almost impulsively moving plate, and flows around a flapping

wing (Suzuki & Inamuro 2011, Ota et al. 2012, Suzuki et al. 2015). Therefore, the present

method should give accurate and reliable results for the flows around the butterfly-like

flapping wing–body model and the revolving-wing model.
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