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Abstract

We propose an immersed boundary–lattice Boltzmann method using the dis-

continuity of the stress tensor. In the immersed boundary method, the body

force which is applied to enforce the no-slip boundary condition is equivalent

to the discontinuity of the stress tensor across the boundary. In the proposed

method, the boundary is expressed by Lagrangian points independently of the

background lattice points, and the discontinuity of the stress tensor is calcu-

lated on these points from desired particle distribution functions which satisfy

the no-slip boundary condition based on the bounce-back scheme. By using this

method, we can obtain the force locally acting on the boundary from the stress

tensor of one side of the fluids divided by the boundary, and there is no need to

consider the internal mass effect in calculating the total force and torque acting

on the boundary. To our best knowledge, the present method is the first one

which enables us to calculate the stress tensor on the boundary in the class of the

diffusive interface method. In order to validate the present method, we apply

it to simulations of typical moving-boundary problems, i.e., a Taylor–Couette

flow, an oscillating circular cylinder in a stationary fluid, the sedimentation of

an elliptical cylinder, and the sedimentation of a sphere. As a result, the present

method has the first-order spatial accuracy and has a good agreement with other
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numerical and experimental results. In addition, we discuss two problems of the

present method, i.e., penetration and spurious oscillation of local force, and a

possible remedy for them.

Keywords: Immersed boundary method, Lattice Boltzmann method,

Moving-boundary flow, Stress tensor discontinuity

1. Introduction

One of the important issues in computational fluid dynamics is to simulate

moving-boundary flows efficiently and accurately. The simplest way is to ap-

proximate the boundary by staircase-like steps in a fixed Cartesian grid (e.g.,

early investigations into particulate suspensions [1, 2]). In applying the ap-5

proximation to moving-boundary flows, however, it is required to construct new

staircase-like steps in each time step, and the complicated procedure does not

balance with its low accuracy. Other ways are body-fitted or unstructured-

grid methods in which the grid conforms to the boundary. These methods

can express arbitrary boundaries accurately and has traditionally been used for10

moving-boundary flows. However, due to re-meshing procedures, the algorithms

of the methods are generally complicated, and also the computation costs are

expensive. Recently, the immersed boundary method (IBM), which was pro-

posed by Peskin [3, 4] in 1970s in order to simulate blood flows in the heart,

has been reconsidered as an efficient method for simulating moving-boundary15

flows on a fixed Cartesian grid. In the IBM, it is assumed that the boundary

is regarded as an infinitely thin shell, an incompressible viscous fluid is filled

in both inside and outside of the boundary, and the no-slip condition on the

boundary is satisfied by body force applied only near the boundary. The way to

determine the body force is the key concept of the IBM, and a lot of variations20

of the IBM with different ways to determine the body force have been proposed

as reviewed by Mittal and Iaccarino [5].

In general, the body force is determined for satisfying the no-slip condition.

Depending on the variations of the IBM, there are many ways to incorporate the
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no-slip condition into the body force. From this viewpoint, the variations of the25

IBM can be roughly classified into the following two categories: displacement-

based IBM and velocity-based IBM. In the displacement-based IBM, which in-

cludes the original IBM [3, 4] and its modification for rigid boundaries [6], the

displacements of boundary Lagrangian points are determined by the no-slip con-

dition, and then the body force is determined as the surface stress corresponding30

to the displacement derived from a constitutive law. In the velocity-based IBM,

the desired velocity on and/or near the boundary is determined by the no-slip

condition, and then the body force is determined by the difference between the

desired velocity and the flow velocity without regard to the boundary. This

category includes a large class of the variations of the IBM, e.g., the volume pe-35

nalization method firstly introduced by Arquis and Caltagirone [7], the virtual

boundary method proposed by Goldstein et al. [8], the direct forcing method

firstly introduced by Mohd-Yusof [9], the fictitious domain method proposed by

Glowinski et al. [10], the cut-cell method proposed by Udaykumar et al. [11],

the ghost cell method firstly implemented by Majumdar et al. [12], the IBM40

with direct forcing using the Peskin’s regularized delta function [13] proposed

by Uhlmann [14], and their variations and improvements.

In the present study, we propose a new method which does not belong to the

above two categories. The proposed method is based on the discontinuity of the

stress tensor across the boundary (the relation between the body force and the45

discontinuity of the stress tensor is explained in Section 2). If the stress tensors

which satisfy the no-slip condition can be obtained, we can calculate the body

force from their discontinuity. However, it is almost impossible to calculate them

before the pressure and velocity fields are determined, and therefore there has

been no method based on this concept. It should be noted that this concept has50

been utilized in the immersed interface method (IIM) [15] exceptionally. Even

in the IIM, however, the body force is determined independently of it (e.g., the

IIM proposed by Lee and Leveque [16] is categorized to the displacement-based

IBM and that recently proposed by Li et al. [17] is categorized to the velocity-

based IBM), and the way to distribute the body force is determined on the basis55
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of this concept. Then, how can we obtain the discontinuity of the stress tensor

which satisfies the no-slip condition in advance?

We can find a clue to answer the above question from the momentum

exchange-based immersed boundary–lattice Boltzmann method (IB-LBM) [18].

In this method, the pressure and velocity fields are calculated by the lattice60

Boltzmann method (LBM), where finite-difference equations for particle dis-

tribution functions (PDFs) of a modeled gas (which is composed of identical

particles whose velocities are restricted to a finite set of vectors [19]) are solved,

and the macroscopic variables such as the pressure and velocity are calculated

by the moments of the PDFs. The procedure to determine the body force in the65

momentum exchange-based IB-LBM is as follows: (i) the desired PDFs which

satisfy the no-slip condition on the boundary are calculated by using the bounce-

back scheme [20], and (ii) the body force is determined from the amount of the

momentum exchange between the desired PDFs and those without regard to the

boundary. Therefore, this method does not belong to the above two categories70

of the variations of the IBM, too. It should be noted that this method can be

implemented only in the framework of the LBM, since the PDF has an essential

role in determining the body force. Recent improvements and applications of

the momentum exchange-based IB-LBM can be found in Refs. [21–24].

In the present method, the desired PDFs in the above procedure (i) are uti-75

lized for calculating the stress tensors inside and outside the boundary by using

the relation between the stress tensor and the PDFs obtained from the asymp-

totic analysis [25], and then the body force is determined from the discontinuity

of the stress tensor. The advantage in obtaining the stress tensor instead of

calculating the momentum exchange is to be able to calculate the local stress80

acting on the boundary from the external fluid outside the boundary indepen-

dently of the state of the internal fluid inside the boundary. In addition, there

is no need to consider the internal mass effect [26] in calculating the total force

and torque acting on the boundary. The present method can be implemented

only in the framework of the LBM, too. It should be noted that the present85

method is categorized into the diffusive interface method, in which the Peskin’s
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regularized delta function [13] is used for distributing the body force on the

lattice points near the boundary, although the discontinuity of the stress tensor

is sharply determined. To our best knowledge, the present method is the first

one which enables us to calculate the stress tensor on the boundary in the class90

of the diffusive interface method.

The paper is organized as follows. In Section 2, we explain the relation

between the body force and the discontinuity of the stress tensor. In Section 3,

we describe the present numerical method. In Section 4, we validate it through

benchmark problems including two- and three-dimensional flows with moving95

boundaries. In Section 5, we discuss some problems of the present method and

a possible remedy for them. We finally conclude in Section 6.

2. Relation between the body force and the discontinuity of the stress

tensor

First of all, we assume that an incompressible viscous fluid is filled both

inside and outside the boundary. Supposing that the fluids separated by the

boundary be Fluids #1 and #2 only for the purpose of convenience, these fluids

should receive stresses P [1] and P [2] through a small surface element dS of the

boundary, respectively (see Fig. 1). In the IBM, the stresses are distributed as

the body force g to a small volume dV near the surface element as follows:

gdV = (P [1] + P [2])dS, (1)

where we assume that the surface element dS is so small that P [1] and P [2] are

constant in dS, and that the volume element dV is so small that g is constant

in dV . When written out by using the corresponding stress tensors, Eq. (1)

becomes

gdV = −(σ[1] − σ[2]) · ndS, (2)

where σ[ℓ] (ℓ = 1, 2) is the stress tensor acting on the surface element from Fluid100

#ℓ and n is the unit normal vector on the surface element pointing to Fluid

#1. Therefore, the body force in the IBM is equivalent to the discontinuity of

the stress tensor across the boundary.
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Figure 1: Illustration of stresses acting on Fluids #1 and #2 through a small surface element

of the boundary.

3. Stress tensor discontinuity-based immersed boundary–lattice Boltz-

mann method105

3.1. Lattice Boltzmann method

In the LBM, a modeled gas, which is composed of identical particles whose

velocities are restricted to a finite set of vectors, is considered [19]. Two-

dimensional lattice with nine velocity vectors (D2Q9 model) and three-dimensional

lattice with fifteen velocity vectors (D3Q15 model) are used in the present study.110

In the following, we use non-dimensional variables normalized by a character-

istic length Ĥ0, a characteristic particle speed ĉp, a characteristic time scale

t̂0 = Ĥ0/Û0 (where Û0 is a characteristic flow speed), and a fluid density ρ̂f as

shown in Appendix A. It should be noted that the present method uses the

LBM for a single-phase fluid with density ρf = 1 without regard to the bound-115

ary, since we assume that an incompressible viscous fluid is filled both inside

and outside the boundary.

The D2Q9 model has the velocity vectors ci =(0, 0), (0,±1), (±1, 0), (±1,±1)

for i = 1, 2, · · · , 9. The D3Q15 model has the velocity vectors ci =(0, 0, 0),

(0, 0,±1), (0,±1, 0), (±1, 0, 0), (±1,±1,±1) for i = 1, 2, · · · , 15. The evolution

of the particle distribution function (PDF) fi(x, t) with the velocity ci at the
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point x and time t is computed by the following equations:

fi(x+ ci∆x, t+∆t) = fi(x, t)−
1

τ
[fi(x, t)− f eq

i (p(x, t),u(x, t))] , (3)

where ∆x is a lattice spacing, ∆t is the time step during which the particles

travel one lattice spacing, f eq
i is an equilibrium PDF, and τ is a relaxation time

of O(1). Note that ∆t = Sh∆x where Sh is the Strouhal number defined by120

Sh = Ĥ0/(t̂0ĉ) = Û0/ĉ = O(∆x), since Û0/ĉ is of O(∆x) in the LBM.

The equilibrium PDF f eq
i of the incompressible model [27] is given by

f eq
i (p,u) = Ei

[
p

c2s
+

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

]
, (4)

where E1 = 4/9, E2 = · · · = E5 = 1/9, and E6 = · · · = E9 = 1/36 for the

D2Q9 model, E1 = 2/9, E2 = · · · = E7 = 1/9, and E8 = · · · = E15 = 1/72 for

the D3Q15 model, and cs is the lattice sound speed given by cs = 1/
√
3. The

pressure p(x, t) and the flow velocity u(x, t) are calculated by

p = c2s

b∑
i=1

fi, (5)

u =

b∑
i=1

fici, (6)

where b = 9 for the D2Q9 model and b = 15 for the D3Q15 model. In addition,

we can also calculate the stress tensor σ = {σαβ} (α, β = x, y, z) as follows:

σαβ = − 1

2τ
pδαβ − τ − 1/2

τ

[
b∑

i=1

fi(ciα − uα)(ciβ − uβ)− (3p− 1)uαuβ

]
, (7)

where δαβ is the Kronecker delta. Inamuro et al. [25] firstly derived the formu-

lation of the stress tensor σ in terms of the PDF instead of the finite difference

approximation of the velocity gradient. The above equation (7) is derived on

the basis of their work. However, Eq. (7) in the present study is slightly different

from Eq. (6) in Ref. [25], since the equilibrium PDF is different. The derivation

of Eq. (7) is shown in Appendix B. The kinematic viscosity ν of the fluid is

given by

ν = c2s

(
τ − 1

2

)
∆x. (8)
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As described in Ref. [28], it is found that the asymptotic expansions of p

and u with respect to ∆x can be expressed by p = c2s +(∆x)2p(2)+(∆x)3p(3)+

(∆x)4p(4) + · · · and u = (∆x)u(1) + (∆x)2u(2) + (∆x)3u(3) + · · · , and p(2)

and u(1) satisfy the continuity equation and the Navier–Stokes equations for125

incompressible viscous fluid, while p(3) and u(2) are zero with appropriate initial

and boundary conditions [29]. Therefore, the solutions of Eqs. (3)–(6) give the

pressure and the fluid velocity for incompressible viscous fluid flows with relative

errors of O[(∆x)2] (see Ref. [28]).

When an external body force g(x, t) is applied, the evolution equation (3)130

of the PDF fi(x, t) can be calculated in a stepwise fashion as follows:

1. fi(x, t) is evolved without the body force by

f∗
i (x+ ci∆x, t+∆t) = fi(x, t)−

1

τ
[fi(x, t)− f eq

i (p(x, t),u(x, t))] . (9)

2. f∗
i is corrected by the body force:

fi(x, t+∆t) = f∗
i (x, t+∆t) + ∆xEi

ci · g(x, t+∆t)

c2s
. (10)

It should be noted that there are some kinds of the forcing algorithms, e.g.,

the widely-used one proposed by Guo et al. [30] and the simplest one presented

by He et al. [31]. The present forcing algorithm is different not only from the

widely-used one but also from the simplest one. In the simplest algorithm, the135

forcing term is added to the right-hand side of Eq. (3) in the form of ∆xEici ·

g(x, t)/c2s , which means that the second term of the right-hand side of Eq. (10)

is ∆xEici · g(x − ci∆x, t)/c2s . Guo et al. [30] proved that the widely-used

algorithm is more accurate than the simplest one. The validity of the present

forcing algorithm has been confirmed practically in the previous work [26] using140

a combination of the LBM and the multi-direct forcing method [32] (referred to

as MDF-LBM). Also, in our previous works [33, 34] using the MDF-LBM, it has

been confirmed that the present forcing algorithm and the widely-used one give

almost the same results not only in the level of the total force acting on flapping

wings [34] but also in the level of the velocity profile in the laminar boundary145
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layer on a flat plate [33], although we have not yet proved the equality or we

could not find any proof about it.

3.2. Calculation of the body force from the discontinuity of the stress tensor

Supposing that fi(x, t), p(x, t), and u(x, t) are known, the temporary PDF

f∗
i (x, t + ∆t) is calculated by Eq. (9). Let Xk(t + ∆t) and Uk(t + ∆t) (k =

1, 2, · · · , N) be the position of the Lagrangian points of the moving boundary

and the boundary velocity at the points, respectively. Suppose that the fluid

separated by the boundary be Fluids #1 and #2, and that nk(t + ∆t) be the

unit normal vector of the boundary at the Lagrangian point Xk(t+∆t) pointing

to Fluid #1 (see Fig. 2). Note that the moving boundary is represented by

N points, and the boundary Lagrangian points Xk generally differ from the

background lattice points x. Then, the temporary PDF f∗
i (Xk, t + ∆t) at a

boundary Lagrangian point Xk are interpolated by

f∗
i (Xk, t+∆t) =

∑
x

f∗
i (x, t+∆t) W (x−Xk) (∆x)d, (11)

where
∑
x

describes the summation over all lattice points x, d is the dimen-

sionality, and W is a weighting function proposed by Peskin [13] as follows:

W (x, y, z) =
1

∆x
w
( x

∆x

)
· 1

∆x
w
( y

∆x

)
· 1

∆x
w
( z

∆x

)
, (12)

w(r) =



1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1

8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, otherwise.

(13)

It should be noted that Eq. (12) shows that the three-dimensional weighting

function is the product of three one-dimensional weighting functions, and the150

two-dimensional weighting function can be gained as the product of two one-

dimensional weighting functions. In many variations of the IBM, the above

interpolation procedure has been used for interpolating the fluid velocity. In

the present method, we apply the procedure to the interpolation of the PDFs.
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Fluid #2

Fluid #1Boundary

Figure 2: Illustration of boundary Lagrangian points Xk, the unit normal vector nk at the

point, and lattice points x.

This process was firstly adopted in the improved momentum exchange-based155

IB-LBM [21].

The desired PDFs f
[1]
i and f

[2]
i which satisfy the no-slip condition on a

boundary Lagrangian point Xk in Fluids #1 and #2, respectively, are obtained

by the bounce-back scheme [20] as follows:

f
[1]
i (Xk, t+∆t) =


f∗
ī (Xk, t+∆t) + 2Ei

ci ·Uk

c2s
, (nk · ci > ϵ),

f∗
i (Xk, t+∆t), (otherwise),

(14)

f
[2]
i (Xk, t+∆t) =


f∗
ī (Xk, t+∆t) + 2Ei

ci ·Uk

c2s
, (nk · ci < −ϵ),

f∗
i (Xk, t+∆t), (otherwise),

(15)

where ī is the number which satisfies cī = −ci, and ϵ is a small margin value

to eliminate the case of nk · ci = 0. In this study, we set ϵ = 10−14. The stress

tensors σ[1](Xk) and σ[2](Xk) at a boundary Lagrangian point Xk in Fluids

#1 and #2, respectively, are obtained by Eq. (7) as follows:

σ
[ℓ]
αβ = − 1

2τ
p[ℓ]δαβ−

τ − 1/2

τ

[
b∑

i=1

f
[ℓ]
i (ciα − Ukα)(ciβ − Ukβ)− (3p[ℓ] − 1)UkαUkβ

]
, (ℓ = 1, 2),

(16)

where p[ℓ] is the pressure in Fluid #ℓ calculated from Eq. (5) by using f
[ℓ]
i , and

Ukα is the α-component of the velocity Uk of a boundary Lagrangian point. It
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should be noted that the calculation of the stress tensor is implemented only

on the boundary Lagrangian points. Therefore, the computational overhead for160

the calculation is not so large.

The body force is determined by the discontinuity of the stress tensor from

Eq. (2) as follows:

g(Xk, t+∆t)∆V = −[σ[1](Xk)− σ[2](Xk)] · nk∆S, (17)

where ∆S is a small area element given by S/N where S is the area of the body

surface. In this method, we choose N so that ∆S ≲ (∆x)d−1. In addition, the

body force is not added to one boundary Lagrangian point but a small volume

element whose volume is described as ∆V . In this method, ∆V is taken as165

∆S ×∆x.

The body force is distributed on lattice points around the boundary as fol-

lows:

g(x, t+∆t) =

N∑
k=1

g(Xk, t+∆t) W (x−Xk) ∆V, (18)

where the same weighting function (12) as that in the interpolation (11) is used

. Finally, the PDF is corrected by the body force in Eq. (10).

3.3. Force and torque acting on the boundary from the external fluid

Supposing that Fluid #1 is the external fluid outside the boundary, the stress

P (Xk) acting on the boundary from the external fluid around a Lagrangian

point Xk is calculated by

P (Xk) = σ[1](Xk) · nk. (19)

Therefore, the total force acting on the boundary from the external fluid is given

as follows:

F =

N∑
k=1

P (Xk)∆S. (20)

In addition, the total torque around a point Xc (e.g., the center of mass of a

body) acting on the boundary from the external fluid is given as follows:

T =

N∑
k=1

(Xk −Xc)× P (Xk)∆S. (21)
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3.4. Calculation of the body motion and the boundary Lagrangian points170

In simulations of flows with a freely moving body such as particulate flows,

we have to calculate the equation of the body motion with the fluid force (20)

and torque (21). In the present study, we consider a rigid body, and its motion

is governed by the Newton–Euler equations. In the following, we formulate the

Newton–Euler equations and the kinematic equations for a rigid body in the175

same way as the previous work [26].

We consider the motion of the rigid body with density ρb. Let the inertial

reference frame be ΣA, and the reference frame fixed to the body be ΣB. The

origin of ΣB is placed at the center of mass of the rigid bodyXc. In the following,

vectors observed from ΣB have a pre-superscript B, while vectors observed from180

ΣA have no pre-superscript.

Let Uc(t) be the velocity of Xc(t), and
BΩc(t) the angular velocity around

Xc(t). Supposing that we obtain the force F (t) and the torque T (t) acting on

the body at time t, the motion of the body is governed by the Newton–Euler

equations as below:

MSh
dUc

dt
= F , (22)

IBSh
dBΩc

dt
+ BΩc × (IB

BΩc) = STT , (23)

where M is the mass of the rigid body, IB is the inertia matrix in ΣB (that is,

IB is a constant matrix), and S(t) is the rotational matrix which transforms

the basis vectors of ΣA to these of ΣB at time t. Note that ST represents

the transpose of S. It should be noted that the Strouhal number Sh in the185

time derivative terms in the above equations is derived from the definition the

nondimensional variables shown in Appendix A.

A unit quaternion Q = (q0, q1, q2, q3)
T is used to represent S as below:

S =


q20 − q22 − q23 + q21 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q23 − q21 + q22 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 , (24)

12



where

q20 + q21 + q22 + q23 = 1. (25)

The kinematic equations of the rigid body are as below:

Sh
dXc

dt
= Uc(t), (26)

Sh
dQ

dt
= A(t)Q(t), (27)

where A(t) is a 4 × 4 matrix which is determined by BΩc = (ω1, ω2, ω3)
T as

below:

A =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 . (28)

We use the second-order Adams–Bashforth method for calculating the above

Newton–Euler equations (22) and (23) and the kinematic equations (26) and

(27) with the same time step as ∆t for the fluid motion, and we apply a weak-190

coupling procedure where the body and fluid motions are calculated alternately.

The position Xk and velocity Uk of a boundary Lagrangian point are cal-

culated by the following equations:

Xk = Xc + S BXk, (29)

Uk = Uc + S (BΩc × BXk), (30)

where it should be noted that BXk is a constant vector (therefore unchanged

from the inital time step), since BXk represents a boundary Lagrangian point

observed from ΣB.

3.5. Algorithm of computation195

The algorithm of computation by the present numerical method is summa-

rized as below.

0. Suppose the initial value of fi(x, 0) and g(x, 0), and compute u(x, 0) and

p(x, 0) by Eqs. (5) and (6). Also, assign Xc(0), S(0), Uc(0), and
BΩc(0).
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1. Compute the force F (t) and the torque T (t) by Eqs. (20) and (21).200

2. Compute the velocity Uc(t + ∆t) and the angular velocity BΩc(t + ∆t)

of the body by applying the second-order Adams–Bashforth method to

Eqs. (22) and (23).

3. Compute the position Xc(t + ∆t) and the quaternion Q(t + ∆t) of the

body by applying the second-order Adams–Bashforth method to Eqs. (26)205

and (27), and compute the rotational matrix S(t+∆t) by Eq. (24). Then,

determine the position Xk(t+∆t) and velocity Uk(t+∆t) of the boundary

Lagrangian points by Eqs. (29) and (30).

4. Compute the temporary PDFs f∗
i (x, t+∆t) by Eq. (9).

5. Interpolate the temporary PDFs f∗
i (Xk, t + ∆t) on the boundary La-210

grangian points by Eq. (11).

6. Compute the desired PDFs f
[1]
i and f

[2]
i by Eqs. (14) and (15).

7. Compute the stress tensors σ[1](Xk, t + ∆t) and σ[2](Xk, t + ∆t) by

Eq. (16).

8. Compute the body force g(Xk, t+∆t) on the boundary Lagrangian points215

by Eq. (17).

9. Distribute the body force g(x, t+∆t) on the lattice points by Eq. (18).

10. Compute fi(x, t+∆t) by Eq. (10), and p(x, t+∆t) and u(x, t+∆t) by

Eqs. (5) and (6).

11. Advance one time step and return to 1.220

3.6. Advantages of the present method

The advantages of the present method are as follows:

• The boundary is expressed by Lagrangian points whose arrangement can

be independent of the background lattice points.

• The stress tensor can be calculated on the boundary Lagrangian points.225

• The total force and torque acting on the boundary from the external fluid

can be obtained without calculating the internal mass effect.
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Owing to the first advantage, there is no need to search lattice points which

are neighboring on the boundary like staircase-like approximation (e.g., [1, 2])

or to search intersection points where the boundary intersects with the grid230

line like the interpolated bounce-back method [35, 36]. In addition, the algo-

rithm using the boundary Lagrangian points remains simple independently of

the positional relationship between the boundary and the lattice points, even in

moving-boundary flows and/or in three dimensions. This advantage makes the

algorithm simple and enables us to easily make the code for moving-boundary235

flows. As for the second advantage, to our best knowledge, the present method

is the first one which enables us to calculate the stress tensor on the boundary

Lagrangian points in the class of the diffusive interface method, in which the

Peskin’s regularized delta function is used for interpolating the velocity on and

for distributing the body force around the boundary Lagrangian points. In con-240

ventional diffusive interface methods including the momentum exchange-based

IB-LBM [18], it is difficult to calculate the pressure and the derivatives of the

velocity from the data on some points near the boundary, since the boundary is

diffusive. Also, it is impossible to divide the body force into the stress tensors of

the internal and external fluids. Although in the present study we consider only245

rigid boundaries, it is expected that the ability to calculate the stress tensor

on the boundary Lagrangian points might be beneficial in calculating moving-

boundary flows with deformable boundaries. As for the third advantage, if

total force and torque acting on the boundary are calculated by using the sum

of the body force, it has conventionally been needed to consider the internal250

mass effect, i.e., to calculate the change of linear and angular momentums of

the internal fluid [14, 26, 37–39]. The calculation of the internal mass effect

is somewhat cumbersome. In the present method, on the other hand, we can

obtain the total force and torque acting on the boundary from the external fluid

without calculating the internal mass effect thanks to the second advantage.255
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3.7. Similarities and differences between the present method and two related

methods

Here, we discuss similarities and differences between the present method and

two related methods, i.e., the interpolated bounce-back method [35, 36] and the

momentum exchange-based IB-LBM [18].260

In the interpolated bounce-back method, the boundary is expressed by in-

tersection points where the boundary intersects with the grid line. The PDFs

are interpolated at the intersection points (or points located at a distance of

∆x/2 from the intersection points) along the grid line, and the desired PDFs

are calculated by the bounce-back scheme at these points. The PDFs in the265

next time step are calculated at neighboring lattice points by interpolation us-

ing the desired PDFs. In addition, the force and torque acting on the boundary

from the external fluid are often calculated by the momentum exchange [1, 2].

On the other hand, in the present method, the boundary is expressed by La-

grangian points which are independent of the background lattice points (see270

also Section 3.6). One might consider that the present method is similar to

the interpolated bounce-back method, since both methods include procedures

to interpolate the PDF and to calculate the desired PDFs by the bounce-back

scheme. However, the present method uses the desired PDFs for calculating the

stress tensor by Eq. (16) and then the body force by Eq. (17) instead of using275

them for the interpolation of the PDFs in the next time step like the interpo-

lated bounce-back method. The body force is distributed near the boundary

by Eq. (18) to enforce the no-slip condition in the present method. In addi-

tion, the force and torque acting on the boundary from the external fluid are

calculated by the stress tensor as shown in Eqs. (20) and (21) instead of the280

momentum exchange. Therefore, the present method is different from the inter-

polated bounce-back scheme in the following three viewpoints: the expression of

the boundary, the way to utilize the desired PDFs obtained by the bounce-back

scheme, and the way to calculate the force and torque acting on the boundary.

The present method is very similar to the momentum exchange-based IB-285

LBM, since both methods express the boundary by Lagrangian points and in-

16



clude procedures to interpolate the PDF, to calculate the desired PDFs by

the bounce-back scheme, and to calculate the body force from the desired

PDFs. The essential difference between the present method and the momentum

exchange-based IB-LBM is in how to calculate the body force from the desired290

PDFs. In the present method the body force is calculated from the discontinu-

ity of the stress tensor obtained by the desired PDFs, while in the momentum

exchange-based IB-LBM the body force is calculated from the amount of the

momentum exchange obtained by the desired PDFs. The present method uti-

lizes the calculation of the stress tensor, since it gives the second and third295

advantages as shown in Section 3.6.

The present method should be classified into the IBM. We consider the key

concept of the IBM as imposing the no-slip condition by using the body force,

and therefore a method based on the concept should belong to the IBM. One

might consider that the interpolation of the velocity is also a key concept of the300

IBM. Although many variations of the IBM includes the interpolation of the

velocity, it is not a key concept for classifying the variations of the IBM in the

widely accepted review of the IBM by Mittal and Iaccarino [5]. In addition,

the interpolation of the velocity can be replaced by that of the PDF in the

LBM, and at least the momentum exchange-based IB-LBM does not include it.305

Therefore, the interpolation of the velocity is not considered to be an essential

procedure in the IBM.

4. Results

In this section, we examine the accuracy of the present IB-LBM by applying

it to simulations of moving-boundary flows.310

4.1. Taylor–Couette flow

First, we consider flows between two concentric circular cylinders. Let the

axial direction be the z-axis and a plane normal to the z-axis be the x-y plane.

The radius of the inner cylinder is R1 and that of the outer cylinder is R2 = 2R1.
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Supposing that the outer cylinder is fixed, we consider a flow induced by rotating315

the inner cylinder around the z-axis (a Taylor–Couette flow).

At the initial time t = 0, the fluid is at rest, and then the inner cylinder

rotates around the z-axis with the following angular speed:

Ωc(t) =
1

2

[
1 + tanh

(
Umaxt− 0.4R1

0.1R1

)]
Umax

R1
, (31)

where Umax is the maximum rotating speed. It is noted that Ωc(t) tends to

Umax/R1 as t → ∞. The computational result obtained by the condition (31)

can reach its steady value faster than by the condition that the inner cylin-

der impulsively starts, that is, Ωc(t) = Umax/R1, but those steady values are

coincident. The steady solution for this problem is given by

uθ(r) = − R1Umax

R2
2 −R2

1

[
1−

(
R2

r

)2
]
r, (32)

p(r) =

(
R1Umax

R2
2 −R2

1

)2 [
r2

2
− R4

2

2r2
− 2R2

2 ln

(
r

R2

)]
+ p0, (33)

where uθ is the azimuthal flow velocity, r is the distance from the center of

the cylinder, and p0 is a reference pressure. In this simulation, we choose p0

so that the calculated and analytical values of p are coincident at the point

(x, y) = ((R1 +R2)/2, 0). The torque acting on the inner cylinder is given by

Tz = −4πνR1Umax
R2

2

R2
2 −R2

1

. (34)

Since the flow is not induced in the z-direction, we use the two dimensional LBM

and calculate the flow only in the x-y plane. We take a computational domain

of size [−H,H]× [−H,H] where H = R2+3∆x. All sides of the computational

domain are periodic. The Reynolds number defined by Re = UmaxR2/ν is fixed320

to be 10 and the relaxation time is set to τ = 0.68 in this simulation. The

number of Lagrangian boundary points N is set to be 4(2R1 + 1) for the inner

cylinder and 4(2R2 + 1) for the outer cylinder. The volume element ∆V at

each boundary point depends on R1 and R2, but is in the range of 0.7(∆x)2 to

0.8(∆x)2 for both inner and outer cylinders in this calculation.325
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Figure 3: Errors in the velocity, the pressure, and the torque acting on the inner cylinder in

the simulation of a Taylor–Couette flow for various spatial resolutions.

We calculate errors from the above analytical solutions in the velocity, pres-

sure, and torque acting on the inner cylinder. The maximum and mean errors

in the velocity u are given by

Emax(u) =
max{∥ucalc − uex∥;R2

1 ≤ x2 + y2 ≤ R2
2}

Umax
, (35)

Emean(u) =

∑
R2

1≤x2+y2≤R2
2
∥ucalc − uex∥(∆x)2

π(R2
2 −R2

1)Umax
, (36)

where ucalc is a calculated value of u, uex is the analytical value of u, and∑
R2

1≤x2+y2≤R2
2
means the summation over lattice points in the range R2

1 ≤

x2 + y2 ≤ R2
2. The maximum and mean errors in the pressure p are given by

Emax(p) =
max{|pcalc − pex|;R2

1 ≤ x2 + y2 ≤ R2
2}

U2
max

, (37)

Emean(p) =

∑
R2

1≤x2+y2≤R2
2
|pcalc − pex|(∆x)2

π(R2
2 −R2

1)U
2
max

, (38)

where pcalc is a calculated value of p, and pex is the analytical value of p. The

error in Tz is given by

E(Tz) =

∣∣∣∣Tzcalc − Tzex

Tzex

∣∣∣∣ , (39)

where Tzcalc is a calculated value of Tz, and Tzex is the analytical value of Tz.

Fig. 3 shows the decay of the errors against the lattice spacing ∆x. We can see
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from this figure that the present results have almost first-order accuracy in the

velocity, the pressure, and the torque acting on the inner cylinder. Only the

maximum error in the pressure shows a worse convergence rate. This means330

that the order of accuracy of the LBM, which is formally second-order accurate,

decreases by using the IBM. This is because the discontinuities of the pressure

and the velocity gradient (i.e., the stress tensor) make a decrease in the order of

accuracy [6, 40, 41]. It should be noted that the order of accuracy is comparable

with other diffusive IB-LBMs (e.g., [41]).335

It is well known that the relaxation time τ is playing a role in determining the

position of the boundary expressed by the bounce-back scheme [42]. Therefore,

it is important to check the effect of τ on the accuracy. Fig. 4 shows Emean(u),

Emean(p), and E(Tz) against τ in the range of 0.52 ≤ τ ≤ 3.0 for R1 = 30∆x.

In this figure, the numerical results by the MDF-LBM [26] are also shown for340

comparison. We can see from this figure that all kinds of the errors show

a similar tendency, i.e., they decrease for τ smaller than a certain value and

increase for τ larger than the value, although the value of τ which gives the

minimum error depends on the kind of the errors and on the methods. On

the whole, the errors obtained by the present method are reasonably small345

for 0.5 < τ ≲ 1.0, and smaller than those by MDF-LBM in this range of

τ . Therefore, it is recommended that the present method should be used for

0.5 < τ ≲ 1.0.

4.2. Translationally oscillating circular cylinder in a stationary fluid

Next, we consider an oscillating circular cylinder in a stationary fluid. This

problem was studied both experimentally and numerically by Dütsch et al. [43].

The diameter of the cylinder is D, and the width and the height of the compu-

tational domain are 55D and 35D, respectively. The fluid initially at rest, and

the cylinder placed at the center of the domain suddenly starts to oscillate with
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Figure 4: Errors in the velocity, the pressure, and the torque acting on the inner cylinder

in the simulation of a Taylor–Couette flow with R1 = 30∆x for various relaxation times τ

compared with the numerical results by the MDF-LBM [26].

the following speed:

Uc(t) = −Umax cos

(
2π

T
t

)
, (40)

Vc(t) = 0, (41)

where Uc(t) and Vc(t) are the respective velocity components in the x- and y-350

directions of the cylinder, Umax is the amplitude of the velocity, and T is the

period. In the simulation, the diameter of the circular cylinder is D = 50∆x,

and the number of boundary Lagrangian points along the cylinder surface is

N = 204. The Neumann boundary condition is used at the outer boundary

of the domain, i.e., nd · ∇fi = 0 (where nd is the unit vector normal to the355

boundary). The governing parameters of the system are the Reynolds number

Re = UmaxD/ν and the Keulegan–Carpenter number KC = 2πAm/D where
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for Re = 100 with KC = 5. The result obtained by the present method is compared with the

numerical results by Dütsch et al. [43] and with those by Suzuki and Inamuro [26] using the

Lagrangian points approximation.

Am is the spatial amplitude of the oscillation. We calculate a case for Re = 100

with KC = 5. In this simulation, we set Umax = 0.03 and τ = 0.5450.

Fig. 5 shows the time variation of the drag coefficient CD = 2Fx/(ρfU
2
maxD)360

where Fx is the force acting on the body in the x-direction. It should be noted

that since the results by Dütsch et al. [43] are for periods after initial transient

flows, we cut off the transients for the first period (0 ≤ t/T < 1) of our results.

Hence, the data in Fig. 5 begin with the second period. It is seen from Fig. 5 that

the present result quantitatively agrees with the numerical results by Dütsch et365

al. [43] and with those by Suzuki and Inamuro [26] using the Lagrangian points

approximation. In addition, we can see that there is no spurious oscillation

in the time variation of CD of the present result. This result means that the

present method can give an accurate force acting on a moving body.

4.3. The sedimentation of an elliptical cylinder370

Thirdly, we consider an elliptical cylinder falling under gravity in a closed

narrow domain filled with fluid. The computational condition and the coordi-

nate system are shown in Fig. 6. The major and minor axes of the elliptical
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Figure 6: The computational domain for an elliptical cylinder falling in a closed narrow

domain. The elliptical cylinder is driven by a constant gravity acceleration αg. The coordinate

x is taken in the direction of the gravity and y is in the width of the channel. θ is the cylinder’s

angle of inclination with respect to the y-axis.

cylinder are a and b, respectively. The width of the domain is H and the height

of the domain is 17.5H. The major axis is a = H/4 and the minor axis is375

b = H/8. The gravity acceleration is αg. The density of the elliptical cylinder is

ρb. It should be noted that the density of both the fluids inside and outside the

body is the same, and ρb is used only for calculating the equations of the body

motion (22) and (23). Letting the density ratio of the elliptical cylinder to the

fluid be γ = ρb/ρf, the mass and the inertia moment of the elliptical cylinder380

are M = ρb(πab/4) and IB = M(a2+b2)/16, respectively. The net gravitational

force is Fg = (1−1/γ)Mαg. In the simulation, we set H = 200∆x. The number

of boundary Lagrangian points is N = 154. The fluid is initially at rest, and the

elliptical cylinder starts its motion at the initial position of (xc, yc) = (0, 0.5H)
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Table 1: The parameters used and obtained in simulations of the sedimentation of an elliptical

cylinder.

γ τ αg∆x ut Re

1.1 0.6364 1.620×10−4 0.0115 12.6

1.5 0.6364 1.620×10−4 0.0305 33.5

with the initial angle θ = 45◦. The bounce-back scheme [20] is used for the385

outer boundary of the domain. The governing parameters of the system are the

density ratio of the elliptical cylinder to the fluid γ and the Reynolds number

Re = uta/ν, where ut is the terminal velocity of the elliptical cylinder in the

x-direction. It is noted that ut is obtained by calculations with given τ , αg,

and γ. In the cases where the final state of the motion of the cylinder is of an390

oscillating nature, the terminal velocity ut is calculated as the time-averaged

value. We calculate two cases as shown in Table 1.

Fig. 7 shows the trajectory and orientation of the elliptical cylinder for

(γ,Re) = (1.1, 12.6) and (1.5, 33.5). It can be seen from this figure that the

present results have a good agreement with the numerical results of the FEM395

by Xia et al. [44] for (γ,Re) = (1.1, 12.6) and those of the LBM with the inter-

polated bounce-back scheme for (γ,Re) = (1.5, 33.5). This result means that

the present method can calculate accurately flows with a freely-moving body.

4.4. The sedimentation of a sphere

Finally, we consider a sphere falling under gravity in a closed box filled400

with fluid. This problem was measured using a PIV system by ten Cate et

al. [37]. The experimental conditions are presented below with dimensional

variables. The dimensions of the box are depth × width × height = 100 ×

100 × 160mm. The diameter of the sphere is D̂p = 15mm and its density is

ρ̂b = 1120 kg/m3. The fluid is initially at rest, and the sphere starts its motion at405

a height 120mm from the bottom of the domain due to the gravity acceleration

α̂g = 9.8m/s2. In the simulation, the domain is divided into 200 × 200 × 320
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Figure 7: Trajectory and orientation of the elliptical cylinder for (a) (γ,Re) = (1.1, 12.6) and

(b) (γ,Re) = (1.5, 33.5). The left figures show the horizontal position of the center of the

elliptical cylinder, and the right figures show the orientation of the elliptical cylinder. The

present results are compared with the numerical results by Xia et al. [44].

lattice grid. Hence, 30 lattice spacings are used for the diameter of the sphere.

The boundary Lagrangian points on the sphere should be arranged uniformly

and symmetrically. In the present study, we use a spherical geodesic grid with410

refinement loop n = 5 [45]. The number of the boundary Lagrangian points

is N = 10242. The bounce-back scheme [20] is used for enforcing the no-slip

condition on the outer boundary of the box. In the experiments by ten Cate et

al. [37], a liquid free surface exists at the top of the domain. In spite of this,

we use the no-slip condition at the top of the domain instead of the free surface415

condition. This is because it is difficult to achieve the free surface condition,

and the influence of the mismatch of the boundary conditions on the top of the

domain is considered to be small. In addition, several researchers also use the
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no-slip condition and obtain good results in the same problem [38, 46, 47]. We

use no repulsive force when the gap L between the sphere and the bottom of the420

domain is close to zero, while Feng et al. [38, 46] employed in their simulations.

Hence, we stop our simulations when L is less than 3 lattice spacings. The

governing parameters of the system are the density ratio of the sphere to the

fluid γ = ρ̂b/ρ̂f and the Reynolds number Re = ρ̂fû∞D̂p/µ̂, where û∞ is the

sedimentation velocity of a sphere in an infinite domain [37] and µ̂ is the fluid425

viscosity. It is pointed out that the effective radius of the sphere is slightly

bigger than the input radius in the conventional IB-LBM simulations [37, 38].

ten Cate et al. [37] calculated the effective radius by a calibration procedure,

and used a length scale based on the effective radius. Feng and Michaelides [38]

distributed the boundary points on a spherical surface whose radius is slightly430

smaller than that of the sphere. In this simulation, however, we do not use the

effective radius.

We calculate four cases as listed in Table 2. The simulated results of the gap

L and the falling velocity u are shown in Fig. 8 with the experimental results by

ten Cate et al. [37]. We can see from this figure that the present results have a435

good agreement with the experimental results by ten Cate et al. [37] for all four

cases. This result means that the present method can be successfully applied

to three-dimensional moving-boundary flows.

We mentioned that in the present method the effective radius is not used,

Table 2: Fluid properties in the experiment by ten Cate et al. [37] and the parameters used

for simulations of the sedimentation of a sphere.

Re ρ̂f (kg/m
3) µ̂ (×10−3 Ns/m2) τ αg∆x

1.5 970 373 0.8000 8.284× 10−5

4.1 965 212 0.8000 2.538× 10−4

11.6 962 113 0.7328 5.344× 10−4

32.2 960 58 0.5839 2.622× 10−4
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et al. [37]. (a) The time variation of the gap L between the sphere and the bottom of the

domain and (b) the time variation of the velocity of the sphere u.

while in other IB-LBMs [37, 38] some calibrations considering the effective radius440

were implemented. On the other hand, the effective position of the boundary

expressed by the bounce-back scheme is affected by the relaxation time τ [42].
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Therefore, one might consider that the present result is effectively calibrated by

changing τ , rather than the lack of the effective radius. In order to examine the

effect of τ and compare another IB-LBM which does not use the bounce-back445

scheme, we calculate this problem for τ = 0.52, 0.58, and 0.80, and compare

the results of the present method with those of the MDF-LBM [26]. It should

be noted that the MDF-LBM does not use the bounce-back scheme, and any

calibration is not implemented in the simulation by this method. Fig. 9 shows

the time variation of the velocity of the sphere at Re = 32.2. We can see from450

this figure that the results of the MDF-LBM overlap each other, and the results

of the present method have very small deviations by changing τ . In addition,

the difference between the results of the present method and those of the MDF-

LBM is larger than the deviations by changing τ , and the results of the present

method are closer to the experimental results than those of the MDF-LBM. The455

difference between the results of the MDF-LBM and the experimental result is

considered to be the effect of the effective radius. Therefore, we can conclude

that the present method can give a good result without any calibration with

respect to τ and the effective radius.

5. Discussions460

As shown in the previous section, the present method can give accurate

results in moving-boundary flows. However, it still has some problems in other

points of view. In this section, we discuss the problems of the present method

and a possible remedy for them.

5.1. Penetration465

In the present method, the no-slip condition on the boundary is not im-

posed directly unlike the velocity-based IB-LBM such as the implicit velocity

correction-based IB-LBM [48] and the MDF-LBM [26]. This might lead pene-

tration of the fluid across the boundary.

In order to check such penetration, we consider a well-known benchmark470

problem of the flow over a circular cylinder. The diameter of the circular cylinder
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times τ compared with the numerical results by the MDF-LBM [26] and the experimental
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is Ds. The computational domain is [−16Ds, 24Ds]× [−20Ds, 20Ds]. The center

of the circular cylinder is located at (x, y) = (0, 0). The pressure and velocity

on all of the boundaries of the computational domain are imposed as p = p∞

and u = (u∞, 0), where p∞ and u∞ are constant. We assume the unknown475

PDFs on the boundaries are equal to the equilibrium PDFs with the pressure

and velocity on the boundaries. The pressure and velocity are initially set to be

uniform with the same values as those of the boundary condition. The governing

parameter of the system is the Reynolds number defined by Re = u∞Ds/ν. In

this simulation, we set Ds = 50∆x, N = 204, p∞ = 1/3, and u∞ = 0.03.480

Fig. 10(a) shows the streamlines around the circular cylinder at Re = 40

when the flow reaches the steady state. We can see from this figure that pen-

etration occurs across the boundary. This is because the present method does

not impose the no-slip condition directly. Especially when the pressure discon-

tinuity across the boundary is very large like this problem, the embankment of485
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Figure 10: Streamlines in the flow past a circular cylinder at Re = 40 for (a) the present

method and (b) the present method with preprocessing.

the body force might be broken due to the large pressure gradient. Actually, the

streamline penetrates around the stagnation point in the front of the circular

cylinder. Table 3 shows the drag coefficient defined by CD = 2Fx/(ρfu
2
∞Ds)

and the wake length Lw/Ds (where Lw is the length of the recirculation region

from the rearmost point of the cylinder to the end of the wake) with other ex-490

perimental [49, 50] and numerical [48, 51–53] results for Re = 20 and 40. It can

be seen from this table that the present results have a good agreement with the

other results. This suggests that the penetration has a small effect on the net

force and the external flow field at small Reynolds numbers.

Table 4 shows the results for Re = 200, in which the vortex shedding occurs,495

i.e., the drag and lift forces oscillate periodically. This table contains the drag

coefficient defined as above, the lift coefficient defined by CL = 2Fy/(ρfu
2
∞Ds),

and the Strouhal number St = fsDs/u∞ of the vortex shedding (where fs is

the shedding frequency) with other experimental [54] and numerical [53, 55–57]

results. It can be seen from this table that the present method slightly over-500

estimates the drag and lift coefficients compared with other numerical results,

while the present result of the Strouhal number of the vortex shedding has a

good agreement. This overestimation of the force acting on the boundary might

be an effect of the penetration.

As shown above, the penetration might have harmful effects for a higher505

Reynolds number due to unsteadiness and complexity of the flow. In general,
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Table 3: Comparison of the drag coefficient CD and the wake length Lw/Ds at Re = 20 and

40.

Re References CD Lw/Ds

20 Tritton [49] (Exp.) 2.09 –

Coutanceau and Bouard [50] (Exp.) – 0.93

Dennis and Cheng [51] 2.045 0.94

He and Doolen [52] 2.152 0.921

Taira and Colonius [53] 2.07 0.94

Wu and Shu [48] 2.091 0.93

Present 2.091 0.94

Present (preprocessing) 2.070 0.96

40 Tritton [49] (Exp.) 1.59 –

Coutanceau and Bouard [50] (Exp.) – 2.13

Dennis and Cheng [51] 1.522 2.35

He and Doolen [52] 1.550 2.25

Taira and Colonius [53] 1.54 2.30

Wu and Shu [48] 1.565 2.31

Present 1.568 2.36

Present (preprocessing) 1.548 2.34

there are two ways to prevent the penetration. The first way is to enforce

the no-slip condition on the boundary directly and accurately like the implicit

velocity correction method [48] and the multi-direct forcing method [32]. The

second way is to enforce the velocity of a rigid body on the internal fluid inside510

the boundary like the smoothed-profile method (SPM) [58, 59]. In this study,

we consider a simple preprocessing in the second way. It should be noted that

the preprocessing considered here can be applied only to a circular cylinder and

a sphere. As for more complicated and/or deformable bodies, the extension of

this method remains in future work.515
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Table 4: Comparison of the drag coefficient CD, the lift coefficient CL, and the Strouhal

number St of the vortex shedding at Re = 200.

References CD CL St

Roshko [54] (Exp.) – – 0.19

Liu et al. [55] 1.31± 0.049 ±0.69 0.192

Linnick and Fasel [56] 1.34± 0.044 ±0.69 0.197

Taira and Colonius [53] 1.35± 0.048 ±0.68 0.196

Wang et al. [57] 1.43± 0.051 ±0.75 0.195

Present 1.46± 0.050 ±0.74 0.196

Present (preprocessing) 1.39± 0.049 ±0.72 0.194

In the preprocessing for a circular cylinder or a sphere whose center is located

at Xc, we use the following smoothed profile:

ϕ(x) = s(R− |x−Xc|), (42)

where x is a lattice point, R is a radius of the area where the preprocessing is

applied, and s is the following function:

s(r) =


0, (r < −ξ/2),

1
2

[
sin(πrξ ) + 1

]
, (|r| ≤ ξ/2),

1, (r > ξ/2),

(43)

where ξ is a thickness of the interface of the profile. In this study, the parameters

R and ξ are set to R = 0.5Ds − 0.5∆x and ξ = ∆x, respectively, so that the

area where the preprocessing is applied does not interfere the calculation of the

body force on the boundary points. According to the algorithm presented by

Mino et al. [60], the preprocessing body force is calculated as follows:

gp(x, t+∆t) = ϕ(x, t+∆t)
Sh

∆t
[Uin(x, t+∆t)− u∗(x, t+∆t)] , (44)

where Uin(x) is the velocity of the body at a lattice point x inside the boundary

(e.g., Uin(x) = 0 for a stationary body), and u∗(x, t + ∆t) is the temporary
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Figure 11: Comparisons of the time variation of the velocity of the sphere u obtained by the

present method without/with preprocessing to experimental results by ten Cate et al. [37].

In this figure, ‘Present 1’ means the present method without preprocessing and ‘Present 2’

means that with preprocessing.

fluid velocity calculated from Eq. (6) by using the temporary PDF f∗
i (x, t +

∆t) (see Section 3.2), and Sh is the Strouhal number described in Section 3.1.

Finally, the temporary PDF is corrected by gp(x, t+∆t) in Eq. (10). After the520

preprocessing, we start the algorithm shown in Section 3.2. It should be noted

that the preprocessing body force gp is not used in calculating the total force

and torque acting on the boundary.

Fig. 10(b) shows the streamlines for the present method with the prepro-

cessing. We can see from this figure that the penetration does not occur across525

the boundary. In addition, it can be seen from Table 3 that the drag coefficient

and the wake length obtained by the present method with the preprocessing

still have a good agreement with other results, and from Table 4 that the over-

estimation in the drag and lift coefficients decreases compared with the case

without the preprocessing. These results mean that the present preprocessing530

is effective for preventing the penetration.

The present preprocessing can be applied to moving-boundary flows. Actu-

ally, the present method with the preprocessing still gives good results in the
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translationally oscillating circular cylinder in a stationary fluid (Section 4.2)

and the sedimentation of a sphere (Section 4.4). For example, the results in the535

sedimentation of a sphere are shown in Fig. 11. We can see from this figure that

even in a three-dimensional moving-boundary flow, the present method with

preprocessing gives comparable results with the experimental results.

5.2. Spurious oscillation of local force

In the same problem as the previous section, we calculate the pressure coef-

ficient at a boundary Lagrangian point with the argument θ defined by

Cp(θ) =
p[1](θ)− p∞
0.5ρfu2

∞
, (45)

where p[1] is the pressure on the boundary point calculated by f
[1]
i (see Sec-540

tion 3.2), supposing that Fluid #1 is the external fluid. Fig. 12 shows the

pressure coefficients against θ at Re = 40 obtained by the present method with-

out/with preprocessing and other numerical results [52, 61]. We can see from

this figure that the present result without preprocessing has a large error from

other results around the stagnation point in the front of the circular cylinder545

(θ = 0◦), and spurious oscillation is observed around θ = 45◦ and 90◦. The error

around θ = 0◦ should be attributed to the penetration discussed in the previous

section. Actually, the error is eliminated in the result with preprocessing. On

the other hand, the spurious oscillation around θ = 45◦ and 90◦ remains even

in the result with preprocessing. This means that the cause of the spurious550

oscillation is not the penetration. Except the spurious oscillation, the result

with preprocessing has a good agreement with other numerical results [52, 61].

It should be noted that we cannot observe significant effects of the spurious

oscillation on the total force (see Tables 3 and 4) and on the time variation of

the total force (see Fig. 5). The oscillation occurs even when we use not only555

a larger number of the boundary points but also a finer spatial resolution. In

addition, even when the center of the circluar cylinder is slightly deviated from a

lattice point, e.g., (x, y) = (0.5∆x, 0.25∆x), the pressure profile is not changed

and this oscillation occurs around the same points (θ = 45◦ and 90◦). This
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Figure 12: Pressure distributions on the circular cylinder at Re = 40 obtained by He and

Doolen [52], Park et al. [61], and the present method without/with preprocessing.

means that it is independent of the positional relation between the boundary560

points and the lattice points. Although we cannot completely explain the root

cause of the spurious oscillation yet, similar oscillations have been reported in

several studies of the LBM with the interpolated bounce-back scheme [62] and

the velocity-based IBM with other flow solver [63]. Therefore, the cause of the

spurious oscillation has to be investigated from both viewpoints of the LBM565

and the IBM. In particular, the recent study by Goza et al. [63] might give a

potential hint for solving this problem. In their study using the velocity-based

IBM with a finite-volume method for the Navier–Stokes equations, the source of

the spurious oscillation is attributed to the fact that the equation for the body

force is an ill-posed integral equation of the first kind, and an efficient filtering570

technique is proposed for filtering the oscillation out. Although it is interesting

to incorporate the filtering technique into the present method, it should be

somewhat challenging since the flow solver is different, i.e., the present method

is based on the LBM whereas their technique is for a Navier–Stokes solver.

Investigation on the cause of the spurious oscillation and a remedy for it remains575

in future work.
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6. Conclusions

We have proposed an immersed boundary–lattice Boltzmann method using

the discontinuity of the stress tensor. In the present method, (i) the desired par-

ticle distribution functions which satisfy the no-slip condition on the boundary580

are calculated by using the bounce-back scheme, (ii) the stress tensors inside

and outside the boundary are calculated by using the relation between the stress

tensor and the particle distribution functions, and then (iii) the body force is

determined by the relation between the body force and the discontinuity of the

stress tensor. The present method has two advantages, i.e., the stress tensor on585

the boundary in the external fluid can be easily calculated, and the total force

and torque acting on the boundary from the external fluid can be obtained

without calculating the internal mass effect.

In order to validate the present method, we applied it to simulations of typ-

ical moving-boundary flows, i.e., a Taylor–Couette flow, an oscillating circular590

cylinder in a stationary fluid, the sedimentation of an elliptical cylinder, and the

sedimentation of a sphere. As a result, it was found that the present method has

the first-order spatial accuracy and has a good agreement with other numerical

and experimental results.

In addition, we discussed two problems of the present method, i.e., penetra-595

tion and spurious oscillation of local force, and a possible remedy for them. As

for the penetration across the boundary, it was found that the preprocessing by

the smoothed-profile method is effective for preventing the penetration. As for

the spurious oscillation of the local force, we suggested that the cause of the

spurious oscillation might be attributed to the bounce-back scheme in the lattice600

Boltzmann method or to the way to determine the body force in the immersed

boundary method. Investigation on its cause and a remedy for it remains in

future work.
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Appendix A. Nondimensional variables

In Section 3, we use the following nondimensional variables defined by a

characteristic length Ĥ0, a characteristic particle speed ĉ, a characteristic time

scale t̂0 = Ĥ0/Û0 where Û0 is a characteristic flow speed, and a fluid density ρ̂f:

ci = ĉi/ĉ, x = x̂/Ĥ0, t = t̂/t̂0,

∆x = ∆x̂/Ĥ0, ∆t = ∆t̂/t̂0, cs = ĉs/c,

fi = f̂i/ρ̂f, u = û/ĉ, p = p̂/(ρ̂fĉ
2),

σαβ = σ̂αβ/(ρ̂fĉ
2) ν = ν̂/(ĉĤ0), g = ĝĤ0/(ρ̂fĉ

2),

Xk = X̂k/Ĥ0, Uk = Ûk/Û0, P = P̂ /(ρ̂fĉ
2),

F = F̂ /(ρ̂fĉ
2Ĥ2

0 ), T = T̂ /(ρ̂fĉ
2Ĥ3

0 ),

Xc = X̂c/Ĥ0, Uc = Ûc/ĉ,
BΩc = ˆBΩcĤ0/ĉ,

M = M̂/(ρ̂fĤ
3
0 ), IB = ÎB/(ρ̂fĤ

5
0 ), αg = α̂gĤ0/ĉ

2,



(A.1)

where the circumflex represents ‘dimensional.’ It should be noted that the

time step ∆t̂ is equal to the time span during which the particles travel one

lattice spacing, that is, ∆x̂/∆t̂ = ĉ. We can easily obtain ∆t = Sh∆x (where

Sh = Ĥ0/(t̂0ĉ) = Û0/ĉ) from the above relation.610

Appendix B. Derivation of the stress tensor

In this section, we derive the stress tensor given by Eq. (7). In order to

derive the formulation, we have to perform an asymptotic analysis of the lattice

Boltzmann equation. The following analysis is based on Refs. [25, 28, 64]. We

starts the analysis from the formulation shown in Section 3.1. We set cs = 1/
√
3615

in the equations used in the present analysis for simplicity.
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Appendix B.1. Moments of Ei

At first, we prepare the moments of Ei as follows:

b∑
i=1

Ei = 1, (B.1)

b∑
i=1

Eiciα = 0, (B.2)

b∑
i=1

Eiciαciβ =
1

3
δαβ , (B.3)

b∑
i=1

Eiciαciβciγ = 0, (B.4)

b∑
i=1

Eiciαciβciγciδ =
1

9
(δαβδγδ + δαγδβδ + δαδδβγ), (B.5)

b∑
i=1

Eiciαciβciγciδciϵ = 0, (B.6)

where α, β, γ, δ, ϵ = x, y and b = 9 for the D2Q9 model, and α, β, γ, δ, ϵ = x, y, z

and b = 15 for the D3Q15 model. It should be noted that the above moments

has the same form independently of the dimensionality. The following analysis620

is independent of the dimensionality, too.

Appendix B.2. Asymptotic analysis of the lattice Boltzmann equation

We rewrite the lattice Boltzmann equation (3) by shifting the point x to

x− ci∆x as follows:

fi(x, t+∆t) = fi(x− ci∆x, t)− 1

τ
gi(x− ci∆x, t), (B.7)

where

gi(x, t) = fi(x, t)− f eq
i (p(x, t),u(x, t)). (B.8)

We write ∆x = ε for simplicity. We assume that the Mach number is O(ε) and

ε ≪ 1. Since ∆t = Sh∆x and Sh = O(∆x), we can write ∆t = Bε2 where

B = const. = O(1). We express all terms in Eq. (B.7) as their Taylor expansions
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around (x, t) as follows:

fi(x, t+∆t) =

∞∑
n=0

1

n!
(Bε2)n

∂nfi
∂tn

(x, t), (B.9)

fi(x− ci∆x, t) =

∞∑
n=0

1

n!
(−ε)n(ci · ∇)nfi(x, t), (B.10)

gi(x− ci∆x, t) =

∞∑
n=0

1

n!
(−ε)n(ci · ∇)ngi(x, t). (B.11)

The solution of the lattice Boltzmann equation for small ε is investigated in

the form of the following asymptotic expansion:

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ε3f

(3)
i + · · · . (B.12)

We expand f eq
i and gi in the same way by

f eq
i = f

eq(0)
i + εf

eq(1)
i + ε2f

eq(2)
i + ε3f

eq(3)
i + · · · , (B.13)

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + ε3g

(3)
i + · · · , (B.14)

where g
(k)
i = f

(k)
i − f

eq(k)
i (k = 0, 1, 2, 3, . . .). The macroscopic variables p and

uα are expanded as follows:

p =
1

3
+ εp(1) + ε2p(2) + ε3p(3) + · · · , (B.15)

uα = εu(1)
α + ε2u(2)

α + ε3u(3)
α + · · · . (B.16)

Since the Mach number is assumed to be O(ε), i.e., the deviation from the

equilibrium state at rest is O(ε), the term of the order of O(1) in p is constant

and the perturbation in uα starts from the order of O(ε). All the coefficients in

the above expansion and their derivatives are assumed to be O(1). By substi-

tuting Eqs. (B.15) and (B.16) into Eq. (4), we can write the coefficients in the

expansion of f eq
i by those of p and uα as follows:

f
eq(0)
i = Ei, (B.17)

f
eq(1)
i = Ei

[
3p(1) + 3ciαu

(1)
α

]
, (B.18)

f
eq(2)
i = Ei

[
3p(2) + 3ciαu

(2)
α +

9

2
ciαciβu

(1)
α u

(1)
β − 3

2
u(1)
α u(1)

α

]
, (B.19)
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where the summation convention is used. It should be noted that if a different

equilibrium PDF is used alternatively, Eqs. (B.17)–(B.19) will be changed.

By substituting Eqs.(B.9)–(B.12) and (B.14) into Eq. (B.7) and by equating

the terms of the same order of power of ε, we derive the following equations:

g
(0)
i = 0, (B.20)

g
(1)
i = ciα

∂g
(0)
i

∂xα
− τciα

∂f
(0)
i

∂xα
, (B.21)

g
(2)
i = ciα

∂g
(1)
i

∂xα
− 1

2
ciαciβ

∂2g
(0)
i

∂xα∂xβ

− τ

[
B
∂f

(0)
i

∂t
+ ciα

∂f
(1)
i

∂xα
− 1

2
ciαciβ

∂2f
(0)
i

∂xα∂xβ

]
, (B.22)

g
(3)
i = ciα

∂g
(2)
i

∂xα
− 1

2
ciαciβ

∂2g
(1)
i

∂xα∂xβ
+

1

6
ciαciβciγ

∂3g
(0)
i

∂xα∂xβ∂xγ

− τ

[
B
∂f

(1)
i

∂t
+ ciα

∂f
(2)
i

∂xα
− 1

2
ciαciβ

∂2f
(1)
i

∂xα∂xβ
+

1

6
ciαciβciγ

∂3f
(0)
i

∂xα∂xβ∂xγ

]
,

(B.23)

By using the above equations and considering that f
eq(0)
i is constant as shown

in Eq. (B.17), we can write f
(k)
i by the coefficients in the expansion of f eq

i as

follows:

f
(0)
i = f

eq(0)
i , (B.24)

f
(1)
i = f

eq(1)
i , (B.25)

f
(2)
i = f

eq(2)
i − τciα

∂f
eq(1)
i

∂xα
, (B.26)

f
(3)
i = f

eq(3)
i − τ

[
B
∂f

eq(1)
i

∂t
+ ciα

∂f
eq(2)
i

∂xα
+

(
1

2
− τ

)
ciαciβ

∂2f
eq(1)
i

∂xα∂xβ

]
. (B.27)

From the orthogonality conditions
∑b

i=i(fi − f eq
i ) =

∑b
i=i ciα(fi − f eq

i ) = 0,

i.e.,
∑b

i=i(f
(k)
i − f

eq(k)
i ) =

∑b
i=i ciα(f

(k)
i − f

eq(k)
i ) = 0 (k = 0, 1, 2, 3, . . .) [64],
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the partial differential equation (B.26) must satisfy the following conditions:

b∑
i=1

(
−τciα

∂f
eq(1)
i

∂xα

)
= 0, (B.28)

b∑
i=1

ciα

(
−τciβ

∂f
eq(1)
i

∂xβ

)
= 0. (B.29)

Then, we have

∂

∂xα

b∑
i=1

ciαf
eq(1)
i = 0, (B.30)

∂

∂xβ

b∑
i=1

ciαciβf
eq(1)
i = 0. (B.31)

By substituting Eq. (B.18) into the above equations and by using Eqs. (B.1)–

(B.6), we derive the following equations:

∂u
(1)
α

∂xα
= 0, (B.32)

∂p(1)

∂xα
= 0. (B.33)

By applying the same analysis to Eq. (B.27) and by using Eqs. (B.32) and

(B.33), we derive the following equations:

B
∂p(1)

∂t
+

1

3

∂u
(2)
α

∂xα
= 0, (B.34)

B
∂u

(1)
α

∂t
+

∂

∂xβ
(u(1)

α u
(1)
β ) = −∂p(2)

∂xα
+

1

3

(
τ − 1

2

)
∂2u

(1)
α

∂x2
β

. (B.35)

Appendix B.3. Stress tensor625

By using the results of the asymptotic analysis shown in the previous section,

we derive the stress tensor in terms of the PDF.

The definition of the stress tensor is given by

σαβ = −pδαβ + µ

(
∂uα

∂xβ
+

∂uβ

∂xα

)
, (B.36)

where µ is the viscosity given by

µ =
1

3
ρf

(
τ − 1

2

)
ε, (B.37)
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where ρf = 1 in the nondimensional form defined in Appendix A. In the fol-

lowing, we derive the second term of the right-hand side of Eq. (B.36) from the

second moment of the PDF, i.e.,
∑b

i=1 ciαciβfi.630

By substituting Eqs. (B.24)–(B.27) into Eq. (B.12), we have

fi =f
eq(0)
i + εf

eq(1)
i + ε2

(
f
eq(2)
i − τciα

∂f
eq(1)
i

∂xα

)

+ ε3

[
f
eq(3)
i − τ

{
B
∂f

eq(1)
i

∂t
+ ciα

∂f
eq(2)
i

∂xα
+

(
1

2
− τ

)
ciαciβ

∂2f
eq(1)
i

∂xα∂xβ

}]
+O(ε4).

(B.38)

Considering Eq. (B.13), we have

fi =f eq
i − ε2τciα

∂f
eq(1)
i

∂xα

− ε3τ

[
B
∂f

eq(1)
i

∂t
+ ciα

∂f
eq(2)
i

∂xα
+

(
1

2
− τ

)
ciαciβ

∂2f
eq(1)
i

∂xα∂xβ

]
+O(ε4).

(B.39)

Therefore, the second moment of the PDF reduces to

b∑
i=1

ciαciβfi =

b∑
i=1

ciαciβf
eq
i − ε2τ

∂

∂xγ

b∑
i=1

ciαciβciγf
eq(1)
i

− ε3τ

[
B

∂

∂t

b∑
i=1

ciαciβf
eq(1)
i +

∂

∂xγ

b∑
i=1

ciαciβciγf
eq(2)
i

+

(
1

2
− τ

)
∂2

∂xγ∂xδ

b∑
i=1

ciαciβciγciδf
eq(1)
i

]
+O(ε4). (B.40)

By substituting Eqs. (4), (B.18), and (B.19) into the above equation and by

using Eqs. (B.1)–(B.6), we derive the following equations:

b∑
i=1

ciαciβfi =pδαβ + uαuβ − ε2τ
1

3

(
∂u

(1)
α

∂xβ
+

∂u
(1)
β

∂xα
+

∂u
(1)
γ

∂uγ
δαβ

)

− ε3τ

[(
B
∂p(1)

∂t
+

1

3

∂u
(2)
γ

∂xγ

)
δαβ

+
1

3

(
∂u

(2)
α

∂xβ
+

∂u
(2)
β

∂xα

)
+

(
1

2
− τ

)
∂2p(1)

∂xα∂xβ

]
+O(ε4). (B.41)
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By using Eqs. (B.32)–(B.34), we have

b∑
i=1

ciαciβfi =pδαβ + uαuβ − ε2τ
1

3

(
∂u

(1)
α

∂xβ
+

∂u
(1)
β

∂xα

)

− ε3τ
1

3

(
∂u

(2)
α

∂xβ
+

∂u
(2)
β

∂xα

)
+O(ε4). (B.42)

Considering Eq. (B.16), we have

b∑
i=1

ciαciβfi = pδαβ + uαuβ − 1

3
τε

(
∂uα

∂xβ
+

∂uβ

∂xα

)
+O(ε4). (B.43)

Therefore, the following relation can be obtained:

b∑
i=1

(ciα − uα)(ciβ − uβ)fi = pδαβ + (3p− 1)uαuβ − 1

3
τε

(
∂uα

∂xβ
+

∂uβ

∂xα

)
+O(ε4).

(B.44)

Finally, from Eqs. (B.36), (B.37), and (B.44), we can obtain

σαβ = − 1

2τ
pδαβ−

τ − 1/2

τ

[
b∑

i=1

fi(ciα − uα)(ciβ − uβ)− (3p− 1)uαuβ

]
+O(ε4).

(B.45)
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