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Abstract. Wing planform is one of important factors for lift and thrust generation

and enhancement in flapping flight. In our previous study using a simple numerical

model of a butterfly, it was found that the wing planform of an actual butterfly

(Janatella leucodesma) is more efficient than any of the rectangular or trapezoidal wing

planforms. In the present study, we make a hypothesis that the efficient aerodynamic

performance of the butterfly’s wing can be reproduced by the following four geometrical

parameters of wing planform: aspect ratio, taper ratio, position of the rotational

axis for the geometric angle of attack, and sweepback angle. In order to test this

hypothesis, we explore a trapezoidal wing planform equivalent to the actual butterfly’s

wing planform in terms of aerodynamic performance in the parameter space consisting

of these four parameters. We use a simple butterfly model composed of two rigid thin

wings and a rod-shaped body, and calculate the aerodynamic performance of the model

by an immersed boundary–lattice Boltzmann method to find such a trapezoidal wing

planform. As a result, we find a trapezoidal wing planform which gives almost the

same lift, thrust, pitching moment, power, and power-loading coefficients as the actual

butterfly’s wing planform. Furthermore, in the free flight of the butterfly model with

pitching motion control, the flight behavior of the model with the resulting trapezoidal

wing planform is almost the same as that with the actual butterfly’s wing planform.

1. Introduction

Butterflies have unique and interesting features compared with other insects. The

most conspicuous example is their erratic trajectory and large variation in speed. This

behavior suggests that butterflies have outstanding agility and maneuverability, which

are attractive features in practical applications such as micro air vehicles (MAVs). In

order to incorporate the outstanding features into artificial aircrafts, we have to know

how butterflies enhance aerodynamic forces, save power expenditure, and control their

attitude while flying.
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One of interesting features of butterflies is the shape of their wings. A variety

of studies in biology have investigated the relationship between the wing shape and

the flight behavior in butterflies. Betts & Wootton (1988) observed free flights of

various butterfly species by using a high-speed camera, and analyzed the geometrical

parameters of wing shapes and the kinematic parameters in representative flight modes.

The analyses of these parameters suggested that butterflies with short broad (low

aspect ratio) wings tend to fly slowly but to have high agility, whereas those with

long slender (high aspect ratio) wings tend to fly fast and to use gliding extensively.

The strong correlation between the wing shape and the flapping frequency has been

studied in more detail by several researchers (Srygley 1999, Kingsolver 1999). Srygley

(1999) compared the morphology and kinematics of four Heliconius species, which

comprised two mimicry pairs containing two distinct lineages. It was found that the

wing shape and the flapping frequency converged not within lineages but within mimicry

groups. This result suggested that similar wing shapes result in similar flight behavior.

Kingsolver (1999) artificially reduced the wing area of western white butterflies (Ponita

occidentalis), and found that the reductions of the wing area significantly increased the

flapping frequency of hovering butterflies in the laboratory experiments. In addition, the

correlation between the wing shape and the acceleration capacity has been investigated

for butterflies tethered to a needle (Berwaerts, van Dyck & Aerts 2002) and for butterflies

in take-off (Berwaerts, Matthysen & van Dyck 2008). As a result, it was found that

the aspect ratios of their forewings were positively related to the acceleration capacity

in males of speckled wood butterflies (Pararge aegeria), although there were different

trends between male and female.

Although the above studies have revealed the strong relationships between the

wing shape and the flight behavior in butterflies, few researchers have investigated the

effect of wing shape on the aerodynamic performance such as force, torque, and power

expenditure from a viewpoint of physics. Recently, Ancel, Eastwood, Vogt, Ithier,

Smith, Wood & Kvac̆ (2017) evaluated aerodynamic forces for various butterfly wing

shapes and wing orientations both in experiments and numerical simulations using a

low-speed wind tunnel. However, they considered only the gliding flight of butterflies,

i.e., the relationship between the wing shape and the aerodynamic performance in

their flapping flight was not investigated. On the other hand, Suzuki & Yoshino

(2018) numerically investigated the effect of wing shape (planform) on the aerodynamic

performance in the flapping flight of a simple butterfly model composed of two thin

rigid wings and a rod-shaped body (Suzuki, Minami & Inamuro 2015). This model

flaps downward to generate lift force and backward to generate thrust force like an

actual butterfly. In this study, the aerodynamic performance was calculated for various

wing planforms such as rectangular wings, trapezoidal wings, triangular wings, and an

actual butterfly’s wing. As a result, it was found that an actual butterfly’s wing can

generate aerodynamic forces more efficiently than the other wing planforms.

From a viewpoint of engineering, it is important to know how to design efficient

wing planforms. In ordinary aircrafts with fixed wings, the effect of wing planform on
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aerodynamic performance is mainly governed by three geometrical parameters: span,

chord, and sweep (Barbarino, Bilgen, Ajaj, Friswell & Inman 2011). In non-dimensional

forms, these parameters are likely to be represented by aspect ratio, taper ratio, and

sweepback angle. On the other hand, such geometrical parameters in the flapping flight

of butterflies have not been clarified. This is because the wing planforms of butterflies

are so complex that they cannot be represented by only a few parameters. In designing

butterfly-like MAVs, however, it would be very convenient if aerodynamic performance

could be governed by a few geometrical parameters like ordinary aircrafts. In the

present study, therefore, we attempt to identify a few geometrical parameters which

can reproduce not the butterfly’s wing itself but the efficient aerodynamic performance

of the butterfly’s wing. It should be noted that we focus on not gliding flight but

flapping flight since the outstanding agility and maneuverability are likely to be caused

by flapping motion.

We can find a clue for the above attempt from our previous parametric study using a

simple butterfly model with rectangular or trapezoidal wings (Suzuki & Yoshino 2018).

In this study, the aerodynamic performance factors such as the lift force, the thrust

force, the power expenditure, and the power loading were calculated for rectangular

wings with various aspect ratios (ratio of the square of the wing length to the wing

area) and for trapezoidal wings with various taper ratios (ratio of the wing-tip length

to the wing-root length) when the wing area and the flapping frequency are fixed. As

a result, it was found that the lift and thrust forces increase at the cost of the power

expenditure as the taper ratio increases and as the aspect ratio increases. This is because

wings with long wing-tip lengths can generate large wing-tip vortices (WTVs), which

are regarded as a major source of the lift generation by a butterfly, (Yokoyama, Senda,

Iima & Hirai 2013) and wings with long wing lengths can generate strong WTVs due

to a high flapping speed at the wing tips. In addition, it was found that the position

of the rotational axis for the geometric angle of attack (AOA) can significantly affect

the aerodynamic performance. For example, in the case when the rotational axis for

the geometric AOA is located near the leading edge, the lift and thrust forces can

be enhanced due to the kicking-down of the trailing edge like a dolphin kick. From

these results, the reason why an actual butterfly’s wing planform has high efficiency

was explained that the aspect ratio is moderate, the taper ratio is effectively less than

1, and the position of the rotational axis for AOA is located near the leading edge.

Therefore, the aspect ratio, the taper ratio, and the position of the rotational axis for

the geometric AOA can be regarded as potential candidates of governing geometrical

parameters.

Another clue can be found from the investigation into the effect of wing orientation

by Ancel et al. (2017). In their study, it was found that the wing orientation, i.e., the

angle of the leading edge relative to the air flow, has a significant effect on the lift–drag

ratio in gliding flight. Since the wing orientation can be represented by the sweepback

angle, it might be a candidate of governing geometrical parameters even in flapping

flight.
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From the above clues, we make a hypothesis that the efficient aerodynamic

performance of the butterfly’s wing can be reproduced by the following four geometrical

parameters of wing planform: aspect ratio, taper ratio, position of the rotational axis

for the geometric AOA, and sweepback angle. If this hypothesis is correct, a trapezoidal

wing planform equivalent to an actual butterfly’s wing planform in terms of aerodynamic

performance must exist, since these four parameters can be defined in trapezoidal wing

planforms. In order to test this hypothesis, therefore, we explore such a trapezoidal wing

planform in the parameter space consisting of these four parameters. In the present

study, we use the butterfly model used in our previous study (Suzuki & Yoshino 2018),

and calculate the aerodynamic performance of the model to find such a trapezoidal wing

planform. In addition, we compare the flight behavior for a resulting trapezoidal wing

planform with that for the actual butterfly’s wing planform in the free flight of the

model.

The paper is organized as follows. In section 2, we present the butterfly model

and define the geometrical parameters of trapezoidal wing planforms. In section 3,

we explain the governing equations and parameters of the system. The computational

parameters are presented in section 4, and results and discussion are shown in section 5.

We finally conclude in section 6.

2. Butterfly model

2.1. Outline

The butterfly model used in this paper and its wing motion are illustrated in figure 1.

It flaps downward and backward to generate lift and thrust forces, respectively. The

motions of the left and right wings are symmetrical with respect to the longitudinal

plane. The wing motion is a combination of a flapping motion and an attacking

motion, described by the flapping angle θ and the geometric angle of attack (AOA)

t = 0.0T t = 0.1T t = 0.2T t = 0.3T t = 0.4T

t = 0.5T t = 0.6T t = 0.7T t = 0.8T t = 0.9T

Forward

Upward

Figure 1. Illustration of a simple butterfly model and its wing motion during one

period. The actual butterfly’s wing planform is displayed in this figure as an example.

This figure is taken from Suzuki & Yoshino (2018).
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α, respectively. The flapping angle θ(t) and the geometric AOA α(t) at time t are given

as follows:

θ(t) = θm cos

(
2π

T
t

)
, (1)

α(t) =
αm

2

[
1 + cos

(
2π

T
t+ γ

)]
, (2)

where θm is the flapping amplitude corresponding to half the stroke amplitude, αm is the

maximum geometric AOA, T is the period of flapping motion, and γ is the phase shift.

In this study, we set θm = 45◦, αm = 90◦, and γ = π/2, which is almost the optimal

set of parameters for the butterfly model in terms of aerodynamic performance (Suzuki

& Yoshino 2017). It should be noted that the wing motion is the same as that of the

model in Suzuki et al. (2015). For more details about the wing kinematics of the model,

see Suzuki et al. (2015).

Although the wing kinematics of the present model are given as simple harmonic

functions, those of actual butterflies are more complex (Sunada, Kawachi, Watanabe &

Azuma 1993, Yokoyama et al. 2013, Fei & Yang 2015). However, the flapping angle and

the geometric AOA of an actual butterfly can be approximated by simple harmonic

functions without damaging the rough shapes of the curves of these angles (Fei &

Yang 2015). Also, in terms of the kinematic parameters (θm, αm, γ), the wing kinematics

of the present model are artificial, since these parameters are determined so that the

efficiency (power-loading coefficient) is almost maximum (Suzuki & Yoshino 2017).

Unfortunately, appropriate kinematic parameters have not been known, since they might

significantly depend on species and flight modes (e.g., take-off, climbing flight, forward

flight, and gliding). In the present study, therefore, we consider the situation where a

butterfly flies most efficiently. It should be noted that we do not consider the clap-and-

fling motion (Weis-Fogh 1973) in the present study, although a butterfly can choose to

use (or not to use) this motion depending on the flight mode (Srygley & Thomas 2002).

In the present study, we explore a trapezoidal wing planform equivalent to an actual

butterfly’s wing planform in terms of aerodynamic performance in the parameter space

consisting of the following four parameters: aspect ratio, taper ratio, position of the

rotational axis for the geometric AOA, and sweepback angle. We assume that all the

wing planforms used in this paper have the common wing area S per one wing. We

define the characteristic length by Lref =
√
S. The wings are infinitely thin and rigid.

It must be mentioned that the aerodynamic performance depends on wing flexibility

and twist (Zhang, Hedrick & Mittal 2013) as well. In addition, the wing inertia affects

the wing flexibility and twist (Combes & Daniel 2003), and consequently affects the

aerodynamic performance. In this paper, however, we focus on the wing shape, and the

wing flexibility and twist are beyond the scope of the present study. In addition, we do

not take the effect of the wing inertia into account, i.e., the wing mass is set to be zero.

The body of the model is a thin rod with length equal to Lref . The wings are

connected to the mid-point of the body. The rotational axis for the geometric AOA

is perpendicular to the body, and that for the flapping angle is parallel to the body.
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Body

Forward

Figure 2. A trapezoidal wing planform. It should be noted that while the body of

the model is infinitely thin, it is depicted with a finite thickness in this figure for ease

of seeing.

It should be noted that the body has a negligible effect on the flow field and the

aerodynamic forces acting on the model. When we simulate the free flight of the model,

we use a body composed of two parts, i.e., thorax and abdomen, like an actual butterfly

to control its attitude (see section 5.2).

2.2. Trapezoidal wing planform

We consider trapezoidal wing planforms with the wing area S. Let the wing length, the

wing-tip length, and the wing-root length be Lw, Ltip, and Lroot, respectively, as shown

in figure 2. Since the wing area is fixed at S, we obtain the following equation:

S =
1

2
(Ltip + Lroot)Lw. (3)

2.2.1. Aspect ratio and taper ratio

The aspect ratio AR and the taper ratio TR for trapezoidal wing planforms are defined

as follows:

AR =
L2
w

S
, (4)

TR =
Ltip

Lroot

. (5)

When we set the values of AR and TR, the lengths Lw, Ltip, and Lroot are determined

as a function of S from (3)–(5). In the wing planforms with AR > 1, the wing length

Lw is larger than the average wing-chord length Lc = (Ltip + Lroot)/2, and vice versa.

The wing planforms with TR < 1 correspond to taper wings, and those with TR > 1

correspond to inverse-taper wings.

2.2.2. Position of the rotational axis for the geometric AOA

The rotational axis for the geometric AOA is the axis which is perpendicular to the

body and passes through the connection point between the body and the wings. The

position of the rotational axis for the geometric AOA is illustrated in figure 3. Let ℓ be

the position of the rotational axis for the geometric AOA relative to the center of the
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wing root, where ℓ > 0 and ℓ < 0 mean that the rotational axis is located on the side

close to the leading edge and the trailing edge, respectively. It should be noted that the

wing area S, the aspect ratio AR, and the taper ratio TR are independent of ℓ.

Forward

Rotational axis 

for AOA

Center of wing root
Connection point

Figure 3. Rotational axis for the geometric angle of attack (AOA) shifted by ℓ relative

to the center of the wing root.

2.2.3. Sweepback angle

The sweepback angle λ is defined by the angle between a line perpendicular to the wing

root and the line through the mod-points of the wing root and the wing tip as shown in

figure 4. We define that the wings have backward sweep and forward sweep when λ > 0

and λ < 0, respectively. It should be noted that the wing area S, the aspect ratio AR,

the taper ratio TR, and the position ℓ of the rotational axis for the geometric AOA are

independent of λ.

The sweepback angles of the leading and trailing edges are different from the above-

described λ, and they depend on λ, Ltip, Lroot, and Lw as follows:

λlead = arctan

(
tanλ− Ltip − Lroot

2Lw

)
, (6)

λtrail = arctan

(
tanλ+

Ltip − Lroot

2Lw

)
. (7)

In the investigation into the effect of wing orientation on the gliding performance

of butterfly wings by Ancel et al. (2017), the best performance was achieved when the

leading edges of the wings are nearly perpendicular to the air flow. Therefore, it might

be expected that such an orientation gives a good aerodynamic performance in flapping

flight as well. In the present study, we define the standard sweepback angle as the angle

which makes the leading edges of the wings are perpendicular to the forward direction.

The standard sweepback angle λ0 is given as follows:

λ0 = arctan

(
Ltip − Lroot

2Lw

)
. (8)

It should be noted that when λ = λ0, we can derive λlead = 0◦ from Eqs. (6) and (8).
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Forward

Figure 4. The sweepback angle λ, the leading edge sweepback angle λlead, and the

trailing edge sweepback angle λtrail.

2.3. Actual butterfly’s wing planform

We explore a trapezoidal wing planform equivalent to an actual butterfly’s wing

planform in terms of aerodynamic performance. As the target wing planform, we use

the wing planform of a small butterfly (Janatella leucodesma) used in our previous

study (Suzuki & Yoshino 2018). The wing planform is shown in figure 5. We assume

that the area of the wing planform has the same wing area S as the trapezoidal wing

planforms.

As mentioned in Suzuki & Yoshino (2018), the wing planform is constructed from a

photograph of a J. leucodesma (Warren, Davis, Grishin, Pelham & Stangeland accessed

2013-10-14). While an actual butterfly has fore-wings and hind-wings, i.e., totally four

wings, we assume that the fore-wing and the hind-wing on each side coalesce together

into one rigid plate, i.e., the model has totally two wings. The aspect ratio of this wing

planform is AR = 1.61. The connection point between the two wings and the body

is set in a manner such that a point obtained by internally dividing the wing root by

0.0792 : 0.9208 (Warren et al. accessed 2013-10-14) is located at the middle point of the

body. This means that the position of the rotational axis for the geometric AOA is at

ℓ = 0.36cmax where cmax = 0.775Lref is the maximum chord length.

Forward
Body

Connection point

Figure 5. The wing planform of an actual butterfly (J. leucodesma). It should be

noted that while the body of the model is infinitely thin, it is depicted with a finite

thickness in this figure for ease of seeing.
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3. Governing equations and non-dimensional parameters

The fluid motion around the butterfly model is governed by the continuity equation and

the Navier–Stokes equation for incompressible fluid as follows:

∇ · u = 0, (9)

∂u

∂t
+ (u · ∇)u = − 1

ρf
∇p+ ν∇2u, (10)

where u is the fluid velocity, p is the pressure, ρf is the fluid density, and ν is the

kinematic viscosity of the fluid. We consider the fluid to be air at room temperature

(20◦C), and we set ρf = 1.205 kg/m3 and ν = 1.512×10−5 m2/s. It should be noted that

the gravitational term does not appear in (10). This is because the pressure p includes

the gravitational potential. The no-slip condition must be satisfied on the surface of

the model, i.e., the fluid velocity must be equal to the velocity of the wings and the

body. It should be noted that the body has a negligible effect on the flow field and the

aerodynamic forces acting on the model, although the no-slip condition is enforced on

the body.

The governing parameter of the above equations (9) and (10) is the Reynolds

number defined as follows:

Re =
UrefLref

ν
, (11)

where Uref is a characteristic flow speed and Lref is a characteristic length. As mentioned

in section 2.1, we take Lref =
√
S where S is the wing area. In this study, we consider

the wing area S = 246.3 mm2 of J. leucodesma calculated from the data in Dudley

(1990). In addition, we take Uref = 4θmLref/T , which means the mean flapping speed of

the reference point separated by Lref from the rotational axis for the flapping angle. It

should be noted that the above definition of the Reynolds number is independent of the

wing planforms, since all the wing planforms considered here have the same wing area

S.

From a practical point of view, the same Reynolds number for the different wing

planforms means the same flapping frequency Freq = 1/T . While the Reynolds number

for a J. leucodesma calculated from the data in Dudley (1990) is Re = 892 and that for

other butterflies Re ∼ O[103], we set Re = 500 in the present simulation. It is known

that at the Reynolds number over several hundreds the effect of the Reynolds number

on the aerodynamic performance is relatively insensitive for the butterfly model (Suzuki

et al. 2015).

In this study, in order to explore a trapezoidal wing planform equivalent to the

actual butterfly’s wing planform in terms of aerodynamic performance, we calculate the

aerodynamic performance when the body of the model is fixed. It should be noted

that we assume that there is no forward velocity in this calculation. Then, we compare

the flight behavior for the resulting trapezoidal wing planform with that for the actual

butterfly’s wing planform in the free flight of the model. In the free flight simulation,
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we have to consider the equations of motion of the model in addition to (9) and (10).

For the detail of the equations of motion of the model, see section 5.2.

It should be noted that in this study the Strouhal number doesn’t appear as a

governing parameter unlike many other studies on flapping wings (e.g., Triantafyllou,

Triantafyllou & Grosenbaugh 1993, Wang 2000, Taylor, Nudds & Thomas 2003). The

Strouhal number is defined by St = FreqLref/Uref where Freq is the flapping frequency,

Lref is the characteristic length, and Uref is the characteristic velocity. In general, the

stroke amplitude and the forward velocity are chosen as Lref and Uref , respectively (e.g.,

Shyy, Lian, Tang, Viieru & Liu 2008). The Strouhal number is an important governing

parameter when the forward velocity is chosen as the characteristic velocity. In this

study, however, we assume that there is no forward velocity when we calculate the

aerodynamic performance, and we use the flapping velocity as the characteristic velocity.

Therefore, the Strouhal number is not included in governing parameters here. For the

same reason, the reduced frequency (see Shyy et al. 2008, Shyy, Aono, Chimakurthi,

Trizila, Kang, Cesnik & Liu 2010) doesn’t appear as a governing parameter. On the

other hand, in the free flight simulation, we can calculate the Strouhal number by using

the forward velocity of the model obtained as a resulting motion of the model. However,

it is not a parameter but a result.

In this study, we calculate the following aerodynamic performance factors, i.e., the

lift coefficient CL, the thrust coefficient CT, the pitching moment coefficient CM, and

the power coefficient CP:

CL =
Flift

0.5ρfU2
ref(2S)

, (12)

CT =
Fthrust

0.5ρfU2
ref(2S)

, (13)

CM =
Mpitch

0.5ρfU2
ref(2S)Lref

, (14)

CP =

∫
wing

plocal · ulocaldS

0.5ρfU3
ref(2S)

, (15)

where Flift and Fthrust are the lift and thrust forces acting on the model, i.e., the

components of the aerodynamic force in the upward and forward directions, respectively,

Mpitch is the pitching moment acting on the model, plocal is the local stress acting on

the fluid by a unit area of the wing surface, and ulocal is the flow velocity at the point.

Also,
∫
wing

dS means the integral over the wings. Therefore, the power coefficient CP

represents the non-dimensional form of the power expenditure to move the wings against

the aerodynamic force. It should be noted that the above definitions of the aerodynamic

performance factors are also independent of the wing planforms, since all the wing

planforms considered here have the same wing area S.

The time-averaged values of CL, CT, and CP are important indices of the

aerodynamic performance. Let the time-averaged values of CL, CT, and CP in one
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stroke be CL, CT, and CP. We define the power-loading coefficient as follows:

CPL =

√
CL

2
+ CT

2

CP

. (16)

It should be noted that in this study the power-loading coefficient is defined by using

the magnitude of the vector (CT, CL), while in general it is defined by the ratio of the

lift coefficient to the power coefficient. Since the present butterfly model generates the

thrust force as well as the lift force, the above definition should be more appropriate as

an index of efficiency.

4. Numerical method and computational parameters

The numerical method used in this study is the same as that in Suzuki et al. (2015);

we use the IB-LBM approach (Suzuki & Inamuro 2011) to solve (9) and (10). The

aerodynamic forces Flift and Fthrust and the pitching moment Mpitch are calculated by

the summation of the body force which is applied to enforce the no-slip condition on the

model in the immersed boundary method. In this calculation, the internal mass effect

(see Suzuki & Inamuro (2011)) is neglected, since the model has no volume. The wings

and the body of the model are represented by an arrangement of boundary Lagrangian

points. The position and velocity of the boundary Lagrangian points on the wings and

the body are updated by orthogonal transformation of the coordinate systems fixed to

the wings and the body relative to that fixed to the flight space. For details of the

numerical method, see Suzuki & Inamuro (2011). The verification of the numerical

method and the convergence studies for temporal and spatial resolutions have been

extensively checked in Suzuki et al. (2015) and Suzuki & Yoshino (2018). In addition,

Engels, Kolomenskiy, Schneider & Sesterhenn (2016) simulated the same problem as

Suzuki et al. (2015) to verify their proposed method (a Fourier method with volume

penalization), and they reported that their result for the free flight of the butterfly

model had a good agreement with that obtained in Suzuki et al. (2015).

The computational domain is the same as that used in Suzuki & Yoshino (2018):

we use a cuboid of 18Lref × 12Lref × 12Lref . The x-, y-, and z-axes are fixed to the

domain, and we denote the directions of the x- and y-axes as forward and upward,

respectively. The boundary condition on two sides perpendicular to the x-axis is the

periodic boundary condition, and on the other sides the no-slip condition is used. The

center of the body is fixed at the center of the domain. The domain is initially filled

with a stationary fluid at uniform pressure. We use a multi-block grid (Inamuro 2012)

in order to save computation time. The multi-block grid is composed of a fine grid with

a lattice spacing ∆x and a coarse grid with 2∆x. The size of the inner fine grid is set

to 4.5Lref sin θm × 4.5Lref sin θm × 4.5Lref , in order to confine the butterfly model to the

inner fine grid including a sufficient margin. In order to reduce the computational

cost, we calculate one-half of the computational domain with the mirror boundary

condition on the longitudinal plane which passes through the center of the domain and
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is perpendicular to z-axis. This implies that the flow field is assumed to be symmetrical

with respect to the longitudinal plane. In the present simulations, we set the spatial and

temporal resolutions to Lref = 60∆x and T = 6000∆t (where ∆x is a lattice spacing

and ∆t is the time step), respectively.

5. Results and discussion

In this section, we explore a trapezoidal wing planform equivalent to the actual

butterfly’s wing planform in terms of aerodynamic performance in the parameter space

consisting of the aspect ratio AR, the taper ratio TR, the position ℓ of the rotational

axis for the geometric AOA, and the sweepback angle λ, when the body of the model is

fixed. Then, we compare the flight behavior for the resulting trapezoidal wing planform

with that for the actual butterfly’s wing planform in the free flight of the model.

5.1. Aerodynamic performance when the body of the model is fixed

As mentioned in section 1, the reason why an actual butterfly’s wing has high efficiency

was explained that the aspect ratio is moderate, the taper ratio is effectively less than

1, and the position of the rotational axis for the geometric AOA is located near the

leading edge (Suzuki & Yoshino 2018). In addition, it might be expected from the

results by Ancel et al. (2017) that the sweepback angle which makes the leading edge of

the wings perpendicular to the forward direction gives a good aerodynamic performance

even in flapping flight. From these considerations, we explore in the parameter space

(AR, TR, ℓ, λ) where 1 ≤ AR ≤ 2 (the aspect ratio of the actual butterfly’s wing is

1.61), 0 ≤ TR ≤ 1, ℓ ≥ 0, and 0 ≤ λ/λ0 ≤ 1.25 (the leading edge of the wings is

perpendicular to the forward direction when λ = 1.0λ0).

5.1.1. Adjusting aspect ratio AR

First, we adjust the aspect ratio AR when the other parameters (TR, ℓ, λ) are fixed to

(1.0, 0.0, 0.0). Figure 6 shows the time variations of the lift coefficient CL, the thrust

coefficient CT, the pitching moment coefficient CM, and the power coefficient CP for

9.0 ≤ t/T ≤ 10. It should be noted that the simulations are conducted until t/T = 20,

but the results during each stroke are almost the same after t/T = 9. Thus, we present

the results of the 10th period here. As seen in figure 6 (a), the positive lift is produced

during downstroke and the negative lift force is produced during upstroke. This is

attributed to the wing kinematics that the wings are flapped downward and backward

during downstroke and upstroke, respectively. Similar phenomenon can be seen from

other numerical results using more realistic butterfly models whose wing kinematics were

derived directly from those of actual butterflies (Yokoyama et al. 2013, Fei & Yang 2015).

We can see from figures 6 (a) and (b) that the positive peaks of CL and CT

significantly increase with AR, while the phases of the peaks are almost independent

from AR in the range 1.0 ≤ AR ≤ 2.0. This is attributed to the fact that the wing
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length Lw increases with AR. The flapping speed at the wing tip increases with Lw,

and therefore the wing-tip vortex (WTV), which is regarded as a large source of the lift

generation by a butterfly (Yokoyama et al. 2013), is intensified. The intensified WTV

is likely to be a cause of the lift and thrust enhancement. In addition, we can see that

the positive peaks of CL and CT for the rectangular wing planform with AR = 1.6 are

comparable to those for the actual butterfly’s wing planform, while there is a large phase

difference between the results for the two wing planforms.

We can see from figure 6 (c) that the magnitude of CM decreases with AR. This is

because the average wing-chord length Lc decreases with AR, and consequently the wing

surface points where the aerodynamic forces are applied come near the rotational axis

of the geometric AOA. In addition, we can see that the magnitude of CM for the actual

butterfly’s wing planform is much larger than that for the rectangular wing planforms.

We can see from figure 6 (d) that the magnitude of CP significantly increases with

AR. This is because the flapping speed at the wing tip as well as the aerodynamic forces

increase with AR. In addition, we can see that the magnitude of CP for the rectangular

wing planform with AR = 1.4 are comparable to those for the actual butterfly’s wing
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Figure 6. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT,

(c) pitching moment coefficient CM, and (d) power coefficient CP. The results of

the trapezoidal wing planforms for various values of AR when the other parameters

(TR, ℓ, λ) are fixed to (1.0, 0.0, 0.0) are compared with those of the actual butterfly’s

wing planform.
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planform, while there is a large phase difference between the results for the two wing

planforms.

Since the parameter space is still large, we cannot determine the aspect ratio AR

only from the above results. In this study, we set AR = 1.6, since this value is close to

the aspect ratio of the actual butterfly’s wing and makes the positive peaks of CL and

CT comparable to those for the actual butterfly’s wing planform.

5.1.2. Adjusting taper ratio TR

Second, we adjust the taper ratio TR when the other parameters (AR, ℓ, λ) are fixed to

(1.6, 0.0, 0.0). We can see from figures 7 (a), (b), and (d) that the positive peaks of CL,

CT, and CP decrease as the value of TR decreases, while the phases of the peaks are

almost independent from TR in the range 0.0 ≤ TR ≤ 1.0. This is attributed to the fact

that the wing-tip length Ltip decrease as the value of TR decreases. The WTV is likely

to be smaller as Ltip decreases, and therefore both the aerodynamic forces and the power

expenditure decrease. In addition, we can see that the positive peaks of CL and CT for

the trapezoidal wing planforms are smaller than those for the actual butterfly’s wing

t / T t / T

C
L

t / T

C
P

t / T

C
T

C
M

(a) (b)

(c) (d)

Actual butterfly's wing

1.0
0.75

0.50

0.25

0.0

-2

-1

0

1

2

3

4

5

6

9 9.2 9.4 9.6 9.8 10
-2

-1

0

1

2

3

4

5

6

9 9.2 9.4 9.6 9.8 10

-1

-0.5

0

0.5

1

9 9.2 9.4 9.6 9.8 10
0

1

2

3

4

5

6

7

8

9 9.2 9.4 9.6 9.8 10

Figure 7. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT,

(c) pitching moment coefficient CM, and (d) power coefficient CP. The results of

the trapezoidal wing planforms for various values of TR when the other parameters

(AR, ℓ, λ) are fixed to (1.6, 0.0, 0.0) are compared with those of the actual butterfly’s

wing planform.
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planform, and the magnitude of CP for the trapezoidal wing planform with TR = 0.50

is comparable to that for the actual butterfly’s wing planform.

On the other hand, we can see from figure 7 (c) that magnitude of CM increases as

the value of TR decreases. This is because the wing surface points around the wing root

become more distant from the rotational axis of the geometric AOA as the value of TR

decreases. However, the magnitude of CM for the actual butterfly’s wing planform is

much larger than that for the trapezoidal wing planforms in the range 0.0 ≤ TR ≤ 1.0.

From the above results, all the curves of CL, CT, CM, and CP for the trapezoidal

wing planforms are still far from those for the actual butterfly’s wing planform. In this

study, we set TR = 0.25, since it can be expected from the results by Suzuki & Yoshino

(2018) that the positive peaks of CL, CT, and CP increase when the position of the

rotational axis for the geometric AOA is shifted forward.

5.1.3. Adjusting position ℓ of the rotational axis for the geometric AOA

Third, we adjust the position ℓ of the rotational axis for the geometric AOA when

the other parameters (AR, TR, λ) are fixed to (1.6, 0.25, 0.0). Figure 8 shows the time

variations of the aerodynamic performance factors for various values of ℓ normalized by
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Figure 8. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT, (c)

pitching moment coefficient CM, and (d) power coefficient CP. The results of the

trapezoidal wing planforms for various values of ℓ normalized by the maximum chord

length cmax when the other parameters (AR, TR, λ) are fixed to (1.6, 0.25, 0.0) are

compared with those of the actual butterfly’s wing planform.
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the maximum chord length cmax. It should be noted that cmax = Lroot for the trapezoidal

wing planform with TR < 1. We can see from figures 8 (a), (b), and (d) that the positive

peaks of CL, CT, and CP increase with ℓ, i.e., the position of the rotational axis comes

near the leading edge, and the phases of these curves delay with ℓ. This is attributed to

the fact that the distance of the trailing edge from the rotational axis for the geometric

AOA increases with ℓ. This intensifies the effect of the kicking-down of the trailing edge

like a dolphin kick, and this effect enhances the aerodynamic forces at the cost of the

power expenditure and shifts these peak values (Suzuki & Yoshino 2018).

We can see from figure 8 (c) that the magnitude of CM increases with ℓ. This is

because the wing surface points around the trailing edge become more distant from the

rotational axis of the geometric AOA as ℓ increases. In addition, we can see that the

magnitude of CM for the trapezoidal wing planforms with ℓ ≥ 0.2cmax is larger than

that for the actual butterfly’s wing planform.

From the above results, we can see that the trapezoidal wing planform with

(AR, TR, ℓ, λ) = (1.6, 0.25, 0.2cmax, 0.0) gives quite similar aerodynamic performance to

the actual butterfly’s wing planform. However, the magnitude of CM for this trapezoidal
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Figure 9. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT,

(c) pitching moment coefficient CM, and (d) power coefficient CP. The results of

the trapezoidal wing planforms for various values of λ when the other parameters

(AR, TR, ℓ) are fixed to (1.6, 0.25, 0.3cmax) are compared with those of the actual

butterfly’s wing planform.
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wing planform exceeds that for the actual butterfly’s wing planform, and the curves of

CP still have a phase difference. In this study, we set not ℓ = 0.2cmax but ℓ = 0.3cmax in

order to leave place for the effect of the sweepback angle λ.

5.1.4. Adjusting sweepback angle λ

Finally, we adjust the sweepback angle λ when the other parameters (AR, TR, ℓ) are

fixed to (1.6, 0.25, 0.3cmax). Figure 9 shows the time variations of the aerodynamic

factors for various λ in the range 0 ≤ λ/λ0 ≤ 1.25. This range of λ is determined

so that it includes the range where the leading edge sweepback angle λlead is nearly

equal to 0◦. This comes from the expectation that when λlead ≃ 0◦, i.e., the leading

edge of the wings is almost perpendicular to the forward direction, a good aerodynamic

performance can be achieved even in flapping flight like the results by Ancel et al.

(2017). It should be noted that from the definition of the standard sweepback angle

(8), λ0 is equal to −20.56◦ in this set of the parameters. This means that the wings

have more forward sweep as λ/λ0 increases. We can see from figure 9 that all the peaks

of CL, CT, CM, and CP decrease with λ. This is because the wing surface points around

the leading edge come near the rotational axis of the geometric AOA as λ increases,

and consequently the kicking-down effect is weakened. As a result, we can see that

the trapezoidal wing planform with (AR, TR, ℓ, λ) = (1.6, 0.25, 0.3cmax, λ0) gives almost

equivalent aerodynamic performance to the actual butterfly’s wing planform.

5.1.5. Butterfly-equivalent trapezoidal wing planform

In summary, the resulting trapezoidal wing planform is shown in figure 10, and its

geometrical parameters are shown in table 1. Hereafter, we will call it butterfly-equivalent

trapezoidal wing planform.

Figure 11 shows the locations of the centroids of the butterfly-equivalent trapezoidal

wing planform and the actual butterfly’s wing planform. We can see from this figure

that the centroid of the former one is close to that of the latter one. This means that if

the mass densities on these wings are assumed to be uniform and the same, the centers

of mass of these wings are close to each other as well. Therefore, the inertial force and

Forward

Connection point Body

Figure 10. A trapezoidal wing planform equivalent to an actual butterfly’s wing

planform in terms of aerodynamic performance. It should be noted that while the

body of the model is infinitely thin, it is depicted with a finite thickness in this figure

for ease of seeing.
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Table 1. Parameters for a trapezoidal wing planform equivalent to an actual

butterfly’s wing planform in terms of aerodynamic performance, where AR is the aspect

ratio, TR is the taper ratio, ℓ is the position of the rotational axis for the geometric

AOA, cmax is maximum chord length, λ is the sweepback angle, and λ0 is the standard

sweepback angle.

AR TR ℓ/cmax λ

1.6 0.25 0.3 −20.56◦ (= λ0)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 11. Locations of the centroids of the butterfly-equivalent trapezoidal wing

planform (red) and the actual butterfly’s wing planform (black). The outlines and

centroids of these wing planforms are shown in solid lines and bullets, respectively,

in the coordinate whose axes are normalized by the reference length Lref and origin

is located at the intersection point of the wing root and the rotational axis for the

geometric AOA.

torque of these wings might be close to each other. In this paper, however, we focus

on not the inertial force and torque but the aerodynamic force and torque generated by

the wings, and the wing inertia is beyond the scope of the present study.

Figure 12 shows the time variation of the vortex structure near the butterfly

model with the butterfly-equivalent trapezoidal wing planform and the actual butterfly’s

wing planform in the tenth period. The vortex structure is visualized by the Q-

criterion (Hunt, Wray & Moin 1988), i.e., the second invariant of the velocity gradient

tensor given by

Q = −∂ui
∂xj

∂uj
∂xi

, (17)

where i, j = x, y, z represent the Cartesian coordinates and the summation convention

is used. We can see from figure 12 that the structures of the leading-edge vortex,

the wing-tip vortex, and the separated vortices behind the model for the butterfly-
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(a)

(b)

Forward

 t / T = 9.00  t / T = 9.17  t / T = 9.33  t / T = 9.50  t / T = 9.67  t / T = 9.83 

Figure 12. Vortex structures viewed from the upper side of the butterfly model: (a)

the butterfly-equivalent trapezoidal wing planform and (b) the actual butterfly’s wing

planform. The model is shown in red, and the isosurface of Q = 3(Uref/Lref)
2 is shown

in gray.

equivalent trapezoidal wing planform are very similar to those for the actual butterfly’s

wing planform, although the geometries of the two wing planforms are largely different.

Figure 13 shows the time variations of the lift coefficient CL, the thrust coefficient

CT, the pitching moment coefficient CM, and the power coefficient CP for 9.0 ≤ t/T ≤ 10.

Although the results for (AR, TR, ℓ, λ) = (1.6, 0.25, 0.3cmax, λ0) are included in figure 9,

we show them again in order to make it easy to compare the results of the butterfly-

equivalent trapezoidal wing planform with those of the actual butterfly’s wing planform.

We can see from figures 13(a)–(c) that the curves of CL, CT, and CM for the two

wing planforms are almost coincident with each other. In addition, we can see from

figure 13(d) that the peak value of CP for the butterfly-equivalent wing planforms is

slightly smaller than that for the actual butterfly’s wing planform. This suggests that

trapezoidal wing planforms with a good set of parameters can have a smaller power

expenditure than the actual butterfly’s wing, and consequently it is possible to construct

more efficient trapezoidal wing planforms than the actual butterfly’s wing.

Table 2 shows the time-averaged values of CL, CT, and CP in the tenth period. In

addition, the power-loading coefficient CPL is shown in this table. It should be noted

that the time-averaged value of CM is not shown in this table, since it is more than

two orders of magnitude smaller than the peak value, i.e., negligibly small. We can

see from table 2 that CL, CT, and CP for the butterfly-equivalent wing planform are

slightly smaller than those for the actual butterfly’s wing planform. Consequently, in

terms of the power-loading coefficient CPL, the efficiency of the two wing planforms is

comparable.

The differences in the aerodynamic performance between the two wing planforms

shown in figure 13 and table 2 are likely to come from the difference in the detailed

shape (e.g., smoothness of the outline) between the two wing planforms. However,
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Figure 13. Time variations of (a) lift coefficient CL, (b) thrust coefficient CT,

(c) pitching moment coefficient CM, and (d) power coefficient CP for the butterfly-

equivalent trapezoidal wing planform and the actual butterfly’s wing planform.

Table 2. The time-averaged lift coefficient CL, the time-averaged thrust coefficient

CT, the time-averaged power coefficient CP, and the power-loading coefficient CPL

for the butterfly-equivalent trapezoidal wing planform and the actual butterfly’s wing

planform.

CL CT CP CPL

Present trapezoidal wing 0.758 0.770 1.97 0.548

Actual butterfly’s wing 0.812 0.794 2.13 0.533

the differences in the aerodynamic performance are very small. This suggests that the

four geometrical parameters (AR, TR, ℓ, λ) have a dominant effect on the aerodynamic

performance for the present wing kinematics, and the detailed shape of the wing

planform is not significant.

From the above results, we can find a trapezoidal wing planform equivalent to an

actual butterfly’s wing planform in terms of aerodynamic performance. This suggests

that our hypothesis that the efficient aerodynamic performance of the butterfly’s wing

can be reproduced by AR, TR, ℓ, and λ is valid when the body of the model is fixed.
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5.2. Free flight with pitching motion control

Next, we compare the flight behavior for the butterfly-equivalent trapezoidal wing

planform with that for the actual butterfly’s wing planform in the free flight of the

butterfly model. In this simulation, we calculate the free flight with pitching motion

control. We use the control strategy used in Suzuki et al. (2015), i.e., we use a modified

model whose body is composed of the thorax and the abdomen like an actual butterfly.

Here, we assume that the body moves only in the x (forward) and y (upward) directions

and rotates only in the pitching motion for simplicity.

It is known that the body of an actual butterfly is composed of the thorax and the

abdomen, and the pitching angle of the body might be controlled by flexing at the joint

between the thorax and the abdomen (Dudley 2002). As a simple model of the butterfly

body, let the body of the model be composed of two straight infinitely-thin rods as shown

in figure 14 (a): the thorax with the length Lt and the abdomen with the length La.

The total length of the body is Lb = Lt+La. Let the mass of the thorax beMt and that

of the abdomen be Ma. The total mass of the body is Mb =Mt +Ma. The connection

point between the thorax and the wings is located at the distance of ℓ0 from the head of

the thorax. In this study, we set Lb = 0.86Lref , Lt : La = 3 : 7, Mt : Ma = 44 : 51, and

ℓ0 = 0.77Lt, which are the same as a J. leucodesma (Dudley 1990). We assume that

the thorax and the abdomen are connected by a rotary actuator with no mass and no

rotation friction.

We control the pitching angle of the thorax θt by the input torque T cont produced

by the rotary actuator. In the same way as Suzuki et al. (2015), we determine the input

torque T cont by the proportional-plus-integral-plus-derivative (PID) control as follows:

T cont(t) = Kp(θ0(t)−θt(t))+Ki

∫ t

0

(θ0(t
′)−θt(t′)) dt′+Kd(θ̇0(t)−θ̇t(t)),(18)

where θ0 is the target pitching angle of the thorax, Kp is the proportional gain, Ki is

the integral gain, and Kd is the derivative gain. In order to suppress the increase in the

pitching angle θt, we set θ0(t) = 0◦.

The equations of motion of the model are the same as those in Suzuki et al. (2015),

and we calculate them by the second-order Adams–Bashforth method in the same way

as Suzuki et al. (2015). The governing parameters of these equations are the Froude

number Fr and the non-dimensional mass NM as follows:

Fr =
Uref√
LrefG

, (19)

NM =
Mb

ρfL3
ref

, (20)

where G = 9.807 m/s2 is the gravitational acceleration.

Totally, the governing parameters of this system are the Reynolds number Re,

the Froude number Fr, and the non-dimensional mass NM. For an actual butterfly

(J. leucodesma), these parameters are (Re Fr, NM) = (892, 2.19, 5.16) (Dudley 1990).
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However, we use (Re Fr, NM) = (300, 8.815, 38), which are comparable to the

parameters for a fruit fly rather than a butterfly, in order to reduce the computational

cost. In addition, we set Kp = −MaL
2
aF

2
req × 0.698, Ki = −MaL

2
aF

3
req × 0.698, and

Kd = −MaL
2
aFreq × 9.65, which are the same as used in Suzuki et al. (2015).

Figures 14 (b)–(d) show the trajectory of the center of the thorax, the time variation

of the pitching angle θt of the thorax, and the time variation of the relative angle ψ

of the abdomen to the thorax. We can see from these figures that the results for the

two wing planforms are comparable with each other. Therefore, the butterfly-equivalent

trapezoidal wing planform has almost the same flight behavior as the actual butterfly’s

wing planform. This suggests that our hypothesis that the efficient aerodynamic

performance of the butterfly’s wing can be reproduced by AR, TR, ℓ, and λ is valid

even in the free flight with pitching motion control.
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Figure 14. (a) The body composed of the thorax and the abdomen to control the

pitching angle of the butterfly model, (b) trajectory of the center of the thorax, (c)

time variation of the pitching angle θt of the thorax, and (d) time variation of the

relative angle ψ of the abdomen to the thorax when the pitching angle of the thorax

is controlled by flexing the abdomen. In (b), the initial position of the center of the

thorax is (x/Lref , y/Lref) = (0, 0), and the symbols on the trajectories indicate the

position of the center of the thorax when the wings are at θ = θm.
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6. Conclusions

We made a hypothesis that the efficient aerodynamic performance of the butterfly’s wing

can be reproduced by the following four geometrical parameters of wing planform: aspect

ratio, taper ratio, position of the rotational axis for the geometric AOA, and sweepback

angle. In order to test this hypothesis, we explored a trapezoidal wing planform

equivalent to an actual butterfly’s wing planform in terms of aerodynamic performance

in the parameter space consisting of these four parameters through immersed boundary–

lattice Boltzmann simulations of the flapping flight of a simple butterfly model. As

a result, we found that a trapezoidal wing planform with the parameters shown in

table 1 is equivalent to an actual butterfly’s wing planform in terms of the aerodynamic

performance factors such as lift force, thrust force, pitching moment, power expenditure,

and power loading. In addition, we found that the resulting trapezoidal wing planform

has almost the same flight behavior as the actual butterfly’s wing planform. From these

results, we can conclude that our hypothesis is valid, and we believe that these four

parameters can be useful in designing butterfly-like MAVs.
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