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Abstract

We extend Bjorner’s characterization of the face poset of finite CW complexes to a
certain class of stratified spaces, called cylindrically normal stellar complexes. As a direct
consequence, we obtain a discrete analogue of cell decompositions in smooth Morse theory,
by using the classifying space model introduced in [NTT]. As another application, we show
that the exit-path category Exit(X), in the sense of [Lur], of a finite cylindrically normal
CW stellar complex X is a quasi-category.
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1 Introduction

In this paper, we study stratifications on classifying spaces of acyclic topological categories. In
particular, the following three questions are addressed.

Question 1.1. How can we recover the original category C from its classifying space BC'?

Question 1.2. For a stratified space X with a structure analogous to a cell complex, the first
author [Tam18] defined an acyclic topological category C(X), called the face category of X, whose
classifying space is homotopy equivalent to X. On the other hand, there is a way to associate an



oo-category Exit(X), called the erit-path category® of X, to a stratified space satisfying certain
conditions [Lur]. Is C'(X) equivalent to Exit(X) as co-categories?

Question 1.3. For a discrete Morse function f or an acyclic partial matching on a regular CW
complex X, Vidit Nanda, Kohei Tanaka, and the first author [NTT] constructed a poset-enriched
category C(f) whose classifying space? is homotopy equivalent to X. Does this classifying space
have a “cell decomposition” analogous to smooth Morse theory?

The original motivation for this work was Question 1.2 posed by the second author during
a series of talks by the first author at the IBS Center for Geometry of Physics in Pohang. For
any stratified space X, Exit(X) can be defined as a simplicial set. Before Question 1.2, the first
question we need to address is if Exit(X) is a quasi-category. Lurie proved as Theorem A.6.4 (1)
in [Lur] that Exit(X) is a quasi-category if X is conically stratified®.

Question 1.4. When is a CW complex X conically stratified?

It turns out that Question 1.1 is closely related to this problem. The stratified spaces in
Question 1.2 are called cylindrically normal stellar stratified spaces*, CNSSS for short, and an
answer to Question 1.1 can be given by using CNSSS.

Theorem 1.5. Let C be an acyclic topological category with the space of objects Cy having
discrete topology. Suppose further that the space of morphisms C(x,y) is compact Hausdorff for
each pair x,y € Cy and the set P(C)ey = {y € Co | C(y,z) # 0 and y # x} is finite for each
x € Cy. Then there exists a structure of CNSSS on the classifying space BC' whose face category
s isomorphic to C as topological categories.

Roughly speaking, CNSSS is a generalization of CW complex with cells replaced by “star-
shaped cells”. For a regular CW complex X, the stratification on the classifying space of its face
poset F(X) obtained by Theorem 1.5 agrees with the original cell decomposition on X under the
standard homeomorphism X = BF(X). However, the use of “star-shaped cells” is essential for
acyclic categories in general. For example, consider the acyclic category C depicted in Figure 1.
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Figure 1: An acyclic category C

Its classifying space BC' and the stratification of BC' obtained by Theorem 1.5 is shown in
Figure 2. The middle stratum in the right-hand side of the equality is the 1-cell [z,y] with x
removed. Similarly in the right stratum, top and bottom edges of the “hourglass” are removed.
The dotted arrows indicate inclusions of strata into boundaries of closures of higher strata. By
regarding the dotted arrows as morphisms and strata as objects, we recover the original category
C.

LA precise definition is given in §4.2.
2See §4.3 for the choice of classifying space of 2-categories used here.
3Definition 4.15.

4Precisely speaking, CNSSS in this paper is slightly different from the one in [Tam18]. See §3.3 for a precise
definition.




Figure 2: The classifying space BC' and its unstable stratification

The stratification in Theorem 1.5 is called the unstable stratification on BC. There is a dual
stratification called the stable stratification. By combining these two stratifications, we obtain
the following result.

Theorem 1.6. Let C be an acyclic topological category satisfying the conditions of Theorem 1.5.
Suppose further that P(C)s, = {y € Co|C(z,y) # 0 and x # y} is finite. Then the unstable
stratification on BC' is conically stratified. Hence Exit(BC) is a quasi-category.

It is shown in [Taml8] that, when a CNSSS X is a CW complex, BC(X) is homeomorphic
to X, and we obtain an answer to Question 1.4.

Corollary 1.7. If a finite CW complex X has a structure of CNSSS, then X is conically stratified,
hence Exit(X) is a quasi-category.

Examples of CW complexes with such a structure are abundant. Regular CW complexes
are CNSSS. Among non-regular CW complexes, real and complex projective spaces are typical
examples. See Example 4.25, 4.26, and 4.27 of [Tam18]. See §4.2 of the paper for more examples.
PLCW complexes introduced by Alexander Kirillov, Jr. [Kir12] also provide non-regular examples
of CNSSS.

Question 1.3 is more directly related to Question 1.1. Since the classifying space in Question
1.3 is defined as the classifying space of an acyclic topological category, Theorem 1.5 can be
applied.

Theorem 1.8. For a discrete Morse function f on a finite reqular CW complex X, there exists
a structure of a CNSSS on the classifying space B2C(f) of the flow category C(f) constructed
in [NTT] satisfying the following conditions:

1. Strata are indexed by the set of critical cells of f.

2. The face category is isomorphic to the topological category BC(f) associated with the 2-
category C(f).

The classifying space B2C(f) has a canonical structure of a cell complex but this cell decom-
position is much finer than the one obtained from smooth Morse theory. For example, consider
the acyclic partial matching on the boundary of a 3-simplex [vg, v1, v2] in Figure 3 which corre-
sponds to a “height function” h.

Matched pairs are indicated by arrows. For example, the O-simplex [v;] is matched with a 1-
simplex [vg, v1] and the 1-simplex [v1, v2] is matched with a 2-simplex [vg, v1, v2]. The 2-category
C(h) has two objects corresponding to critical simplices, i.e. the top face [v1,v2,v3] and the
bottom vertex [vp]. As is shown in Example 3.17 of [NTT], the category (poset) of morphisms
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Figure 3: An acyclic partial matching on d[vg, vy, v2]

from [vg] to [v1,va,v3] is isomorphic to the face poset of d[vy,vs,v3], and hence its classifying
space is the boundary of a hexagon. Thus the classifying space of C(h) is a regular cell complex
consisting of two O-cells, six 1-cells, and six 2-cells. However the cell decomposition of S? we
usually obtain from a height function is the minimal cell decomposition S? = e Ue?. We should
glue six 2-cells, six 1-cells, and one of the 0-cells together to obtain a single 2-cell €2 so that we
have B2C(h) = €° U e2. The motivation for Question 1.3 is to generalize this construction and
Theorem 1.8 solves the problem.

From the viewpoint of topological combinatorics, Theorem 1.5 is closely related to the well-
known characterization of the face poset of a regular CW complex by Bjorner.

Theorem 1.9 ([Bjo84]). The category of finite reqular CW complexes is equivalent to the category
of finite CW posets via the face poset functor.

F : RegCW/ =5 CWPoset’.
Let AcycTopCat and AcycTopCatlf denote the category of acyclic topological cat-

cpt,Haus

egories and the full subcategory of those sgtisfying the conditions of Theorem 1.5, respectively.
The face poset functor for regular CW complexes has been extended to the face category functor
in [Tam18|

C : CNSSS — AcycTopCat (1)
from the category of CNSSSs to the category of acyclic topological categories. Our construction
in Theorem 1.5 is a right inverse to this face category functor when restricted to appropriate
subcategories.

Theorem 1.10. Let CNCW be the full subcategory of CNSSS consisting of cylindrically normal
CW stellar complezes. Then the restriction of the face category functor (1)

l
C:CNCW — AcycTopCatC{)t’Haus
is an equivalence of categories.
This paper is organized as follows.

e §2 is preliminary. We fix notion and terminology for nerves and classifying spaces of small
categories, including simplicial techniques.

o §3 collects necessary materials for stellar stratified spaces from [Tam18] with some gener-
alizations and extensions.

e §4 is the main part. Theorems mentioned above are proved.

e We conclude this paper by a couple of remarks and comments in §5.
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2 Recollections

2.1 Simplicial Terminology
Here we fix notation and terminology for simplicial homotopy theory.
Definition 2.1.

1. The category of isomorphism classes of finite totally ordered sets and order preserving maps
is denoted by A.

2. The wide subcategory of injective maps is denoted by Ajy;.

3. Objects in these categories are represented by [n] = {0 < 1 < --- < n} for nonnegative
integers n.

4. A simplicial space is a functor X : A°? — Top, where Top is the category of topological
spaces and continuous maps.

5. Dually a cosimplicial space is a functor Y : A — Top.

6. A functor X : AP

inj

— Top is called a A-space.
7. For a nonnegative integer n, the geometric n-simplez is defined by

itizl,tizo}.

A" = {(to, oy ty) € R
1=0

8. The geometric realization of a simplicial space X is denoted by |X|, while the geometric
realization of a A-space® is denoted by || X||.

2.2 Nerves and Classifying Spaces

Let us first recall basic properties of the classifying space construction. For a topological category
C, the spaces of objects and morphisms are denoted by Cy and C1, respectively. The space of
morphisms from « to y is denoted by C(z,y). The space N;(C) of k-chains in C is defined to
be the set of all functors [k] — C topologized as a subspace of C¥ under the identification

Nk(C) = {(uk,uk_l,...,ul) € O{C X9 i)l’l — = Tk_1 %xk}

5 A-spaces are sometimes called semisimplicial spaces, e.g. in [Lur09] and [ER].



With this notation the structure of a category is given by a pair of maps

o: Ny(C) — Cy
L OO — 01
satisfying the associativity and the unit conditions.
The collection N(C') = {Ni(C)}r>o0 can be made into a simplicial space, called the nerve of

C. The geometric realization of the nerve is denoted by BC' and is called the classifying space
of C. The defining quotient map is denoted by

pc: [ Ne(C) x AY — BC. (2)

k>0
We are mainly interested in acyclic categories.
Definition 2.2. A topological category C is called acyclic if the following conditions are satisfied:
1. For any pair of distinct objects x,y € Cp, either C(z,y) or C(y,x) is empty.
2. For any object = € Cy, C(x,x) consists only of the identity morphism.

3. Regard Cy as the subspace of identity morphisms in C;. Then C; = Cy II (C; \ Cp) as
topological spaces.

For z,y € Cy, define x < y if and only if C(z,y) # . When C is acyclic, Cy becomes a poset
under this relation. This poset is denoted by P(C).

An acyclic topological category C is called a topological poset if it is a poset when the topology
is forgotten.

The last condition in the definition of acyclicity simplifies the description of the classifying
space BC.

Lemma 2.3. For an acyclic topological category C, define

Ni(C) = Np(C)\ | 5iNi—1(C),

where s; : Ni_1(C) — Ni(C) is the i-th degeneracy operator. Then the collection N(C) =
{Nk(C)} together with restrictions of the face operators in N(C) forms a A-space and the
canonical inclusion N(C) — N(C) induces a homeomorphism HN(C)H ~ |N(C)| = BC.

The A-space N(C) is called the nondegenerate nerve of C.

3 Stellar Stratified Spaces and Their Face Categories

The notion of stellar stratified spaces was introduced by the first author in §2.4 of [Tam18].
Roughly speaking, a stellar stratification on a topological space X is a stratification of X together
with identifications of strata with “star-shaped cells”. In [Taml8], these star-shaped cells are
defined as subspaces of closed disks. Here we extend the definition by using cones on stratified
spaces.



3.1 Stratifications by Posets

Before we give a definition of stellar stratified spaces, we need to clarify what we mean by a
stratification, since the meaning of stratification varies in the literature. Generally, a stratification
of a topological space X is a decomposition of X into a mutually disjoint union of subspaces,
satisfying some boundary conditions. The boundary conditions are often described in terms of
posets.

Decomposing a space X into a union of mutually disjoint subspaces

X:UGA.

AEA

is equivalent to giving a surjective map m : X — A with 771(\) = e;. When can we call such
a decomposition a stratification? Several conditions have been proposed. Recall that a partial
order on A generates a topology, called the Alexandroff topology, on A. Here we use the following
definition from [Tam18].

Definition 3.1. A stratification of a topological space X by a poset A is an open continuous
map 7 : X — A such that 7=1(\) is connected and locally closed for each A € Im 7, where A is
equipped with the Alexandroff topology. Such a pair (X, 7) is called a A-stratified space when m
is surjective.

The image of 7 is denoted by P(X) and is called the face poset of X. It is regarded as a full
subposet of A. For A € P(X), 7~ 1()) is called the stratum indexed by A and is denoted by e,.

Nowadays many authors use simpler definitions. The simplest one only assumes the continuity
of m. On the other hand, we need to impose some additional “niceness” conditions to have a
good hold on the topological properties of stratified spaces.

In order to understand the meanings of these conditions, let us compare the following five
conditions.

1

7 is continuous.

2) 7 is an open map.

(1)
(2)

or any pu, A € A, e, Cey if and only if p < A.
3) F )\A# f and only if A
(4)

4) For any pu, A € A, e, Nex # 0 implies e, C ey, or equivalently, for any A € A, ey =

U e

e, Nex#0

(5) For any closed subset C' C A, U €y is closed.
AeC

The condition (1) seems to be the most popular one these days. It is used in Andrade’s thesis
[And10], Lurie’s book [Lur], papers concerning factorization homology [AFT17b; AFT17a], and
so on. The combination (1)+(2) is used by the first author [Tam18]. The condition (3) is used
by the first author in a series of talks at the Center for Geometry and Physics in Pohang. Cell
complexes satisfying the condition (4) are usually called normal [LW69]. This condition has
been also known as “the axiom of the frontier” in the classical stratification theory due to Thom
[Tho69] and Mather [Mat70]. The condition (5) was mentioned by the second author during the
above mentioned talks in Pohang.

The following fact is stated and proved in [Tam18] as Lemma 2.3.



Proposition 3.2. Suppose (1) is satisfied. Then (2) is equivalent to (3).
For the convenience of the reader, we record a proof. We use the following fact.

Lemma 3.3. A map [ : X — Y between topological spaces is open if and only if f~4B) c
f~YB) for any B C Y. In particular, f is open and continuous if and only if f~*(B) = f~1(B)
forany BCY.

Proof. Suppose f is open. Suppose further that f='(B) ¢ f~1(B). Then there exists z €
f7Y(B)\ f~1(B). In other words, f(z) € B and there exists an open neighborhood U of z such
that U N f~1(B) = (). The first condition implies that V' N B # ) for any open neighborhood V'
of f(z) in Y. The second condition implies that f(U) N B = (. Since f is open, f(U) is an open
neighborhood of f(z) and this is a contradiction.

Conversely suppose that f~1(B) C f~1(B) for any B C Y. For an open set U C X, we have

FAYNF) Cc fAIYN\fU) € X\ U =X\T,

which implies that f~1(Y \ f(U))NU =0or Y \ f(U)Nf(U) = 0. Thus f(U) is an open set. [

Proof of Proposition 8.2. Suppose 7 is continuous. When 7 is open, Lemma 3.3 implies that
71 ({\}) = #=1()\). Thus e, C € if and only if 7= (u) C 7~ 1({\}), which is equivalent to
w € {\}. By the definition of the Alexandroff topology, this is equivalent to p < A. O

Proposition 3.2 suggests a close relationship between the normality condition and the openness
of m. In fact, we have the following.

Proposition 3.4. The conditions (1) and (3) imply the condition (4).
Proof. When = is continuous, we have

ex=7r1({A\}) caH({A)).
If e, Nex # 0, then e, N7 ({\}) # 0, or u € {A}, or 4 < A\. By (3), this is equivalent to
e, Cex. O
Corollary 3.5. Any stratification in the sense of Definition 3.1 is normal in the sense of
Definition 2.6 of [Tam18].

The condition (1) obviously implies (5). For the converse, we have the following.

Proposition 3.6. The conditions (3), (4), and (5) imply (1).
Proof. Suppose C' C A is closed. Then we have

7~ 1(C) D U 7~ 1(A) D U a1\ =77 HO).

AeC AeC

By the condition (5), we obtain
7 1(C) = U 7HA) = U ex.
AeC reC

On the other hand, the conditions (3) and (4) allow us to write each ex as |J,< e,. Since C'is
closed, A € C and g < X imply that u € C' and we have -

Us=U Ue=Ua=r"©
XeC XEC p<A eC

and 7~1(C) is shown to be closed. O



For a cell complex X, define P(X) to be the set of cells of X. Define a partial order < on
P(X) by saying that e < ¢’ if and only if e C /. We have a map 7 : X — P(X) which assigns
the unique cell 7(x) containing z to x € X.

In general, this is not a stratification in the sense of Definition 3.1. Proposition 3.6 implies,
however, that 7 is a stratification if X is normal.

Corollary 3.7. For a normal CW complex X, the map X — P(X) defined by the cell decom-
position is open and continuous, hence is a stratification in the sense of Definition 3.1.

In particular, the geometric realization of a simplicial complex is a stratified space.

Example 3.8. Let K be an ordered simplicial complex. Then the geometric realization || K]|
has a structure of regular CW complex whose cells are indexed by the simplices of K. Since
regular CW complexes are normal, by Corollary 3.7, the cell decomposition is a stratification.
This stratification can be generalized to A-spaces, i.e. simplicial spaces without degeneracies.
For a A-space X, the simplicial stratification

x| X = ]_[anm/ — I X»

n>0 n>0

is defined by 7x ([z,t]) = = when ¢ € Int A", where the topology of each X, is forgotten and the
partial order on ano X, is defined by

xz <y <= Ju € Aiyj([m], [n]) such that X (u)(y) =«
for x € X,,, y € X, See Example 3.16 of [Tam18], for details. O
The definition of morphisms between stratified spaces should be obvious.

Definition 3.9. A morphism of stratified spaces from 7x : X - P(X)tomy : Y — P(Y) is a
pair of a continuous map f : X — Y and a morphism of posets P(f) : P(X) — P(Y) making
the obvious diagram commutative.

A morphism f: X — Y of stratified spaces is called strict if f(ex) = ep(s)(n)-

As is the case of cell complexes, the CW condition plays an essential role when we study
topological and homotopy-theoretic properties.

Definition 3.10. A stratification m on a topological space X is said to be CW if it satisfies the
following conditions:

1. (Closure Finite) For each stratum ey, the boundary dey is covered by a finite number of
strata.

2. (Weak Topology) X has the weak topology determined by the covering {ex}xep(x)-

3.2 Joins and Cones

We need to make use of the join of stratified spaces in order to define stellar structures.
Recall that, for topological spaces X and Y, the join X xY is defined to be the quotient space

X*xY=Xx[0,1] xY/.

where the equivalence relation ~ is generated by the following two types of relations:



1. (2,0,y) ~ (2,0,y) for all z € X and y,y’ €Y.
2. (z,1,y) ~ (2/,1,y) forall x,2’ € X and y € Y.
The class represented by (z,t,y) € X x [0,1] x Y is denoted by (1 — t)z + ty.

Definition 3.11. When X and Y are stratified by maps 7x : X — P(X) and 7y : Y — P(Y),
define
mx x7my i X %Y — P(X) I P(X) x P(Y) 1L P(Y)

by
x(x), t=0
(rx *my)(1=t)z+ty) =< (rx(z), 7y (y)), 0<t<1
Ty (y), t=1.

Lemma 3.12. For stratified spaces nx : X — P(X) and 7y : Y — P(Y), define a partial order
on P(X)II P(X) x P(Y)IT P(Y) by the following rule.

1. P(X) and P(Y) are full subposets.

2. P(X) x P(Y) with the product partial order is a full subposet.
3. A
4o
Let us denote this poset as P(X)x P(Y). Then the map mx xmy : X xY — P(X)* P(Y) defines
a stratification on the join X xY .

< (A p) forall A€ P(X) and u € P(Y).
< (A p) forall € P(X) and p € P(Y).

Proof. Let us denote the strata in X and Y by ey and e} for A € P(X) and p € P(Y),
respectively. Regard X and Y as subspaces of X *Y. Then we have a decomposition

X+xv= [[ &1 11 een I e,
AEP(X) (Mu)EP(X)xP(Y) HEP(Y)

where
el = (mx xmy) ) = e x (0,1) x e

It remains to show that mx * my is open and continuous. By Proposition 3.6 and Proposition
3.2, it suffices to show that mx * 7y satisfies the conditions (3), (4), and (5) in §3.1.

By Proposition 3.2 and Proposition 3.4, 7x and 7y satisfy (3), (4), and (5). By the definition
of the partial order on P(X) x P(Y'), mx x my satisfies (3). The condition (4) follows from the

fact that e xel = e * el. Let C be a closed subset of P(X)x P(Y). Tt decomposes as

C=CxUCxyUCy with Cx C P(X), C(Y) C P(Y), and Cxy C P(X) X P(Y) ‘We have

U (mx *my)~L(v) = U Qu U exX x(0,1) x el U U %

vel AeCx (M\n)ECX,y neCy
_ X X Y oY
~Udv U Fequya
AeCx (/\,,U«)GCX,Y pneCy

10



Let pxsy : X X [0,1] XY — X %Y be the defining quotient map. Then we have

-1 X X LY oY
Pxyy U ey U U ey xe, U U €,
AeCx \p)eCx,y pnelCy
-1 X -1 X LY -1 Y
U Pxuy (e)\) U U Pxyy (e,\ *eu) U U Pxuy (eu)
ANeCx ()\”LL)GCXYY neCy

= efx{opxyu |J e¥x01xelu | X x{1}xe).
AeCx (Mu)eCx,y neCy

Since Cx, Cx,y, and Cy are closed in P(X), P(X) x P(Y), and P(Y'), respectively, this is closed
in X x [0,1] x Y. Hence |, ¢ (mx xmy)~1(v) is closed in X x Y. O

In particular, we have the (closed) cone construction on stratified spaces.

Definition 3.13. For a stratified space mx : X — A, the cone on X is defined by
cone(X) = {x} x X.
The complement
cone(X)\ X x {1} ={(1 —¢) * +tz € cone(X) |0 <t < 1}
is called the open cone and is denoted by cone®(X).

Remark 3.14. Make a set {b,¢} into a poset by b < i. Then the face poset of cone(X) can be
identified with A x {b,i} IT {*}. The element * is the unique minimal element in A x {i} IT {x}
and is unrelated to elements in A x {b}.

With this identification, the stratification on cone(X)

Teone(x) : cone(X) — A x {b,i} II {x}

is given by
*, t=20
7T(:one(X)((l - t) * —|—t.73) = (WX(:L.)ai)v 0<t<1
(Wx(.%‘)’b), t=1.

The face poset of the open cone cone®(X), which is A x {i} IT{x}, is denoted by A< in Lurie’s
book [Lur].

3.3 Stellar Stratified Spaces

Recall that a characteristic map of a cell e in a cell complex X is a surjective continuous map
@ : DI™e 5 & which is a homeomorphism onto e when restricted to the interior of DU™€. The
notion of stellar structure was introduced in [Tam18] by replacing disks by stellar cells, in which
a stellar cell was defined as a subspace of a closed disk DV obtained by taking the join of the
center and a subspace S of the boundary. In other words, it is a cone cone(S) on S embedded
in DV. Here we do not require this embeddability condition.

Definition 3.15. Let S be a stratified space. A subset D C cone(S) is called an aster if, for
any © € D with z = (1 —t) x +ty, (1 —¢') * +t'y € D for any 0 < ¢’ < t. The subset SN D is
called the boundary of D and is denoted by dD. The complement D \ 9D is called the interior
and is denoted by Int(D). An aster D is called thin if D = {*} xdD.

11



Definition 3.16. Let m: X — A be a stratified space. A stellar structure on a stratum ey is a
morphism of stratified spaces ¢y : Dy — €, for an aster D) C cone(S), which is a quotient
map and whose restriction @i |me(p,, : Int(Dx) — ey is a homeomorphism. If Sy is a stratified
subspace of a stratification of a sphere S"~! and Int(D,) = Int(D"), then the stellar structure
is called a cell structure.

A stellar stratified space is a triple (X, 7x,®x) of a topological space X, a stratification
x : X = P(X), and a collection of stellar structures ®x = {@a}rep(x) on strata such that, for
each stratum ey, dey = €, \ ey is covered by strata indexed by P(X)cy = {p € P(X)|pn < A}
When all stellar structures are cell structures, it is called a cellular stratified space.

A stratum ey in a stellar stratified space is called thin if the domain D) of the stellar structure
@x : Dy — €y is a thin aster. A stellar stratified space is called a stellar complex if all strata are
thin.

Remark 3.17. We do not require the restriction ¢|i¢(p,) to be an isomorphism of stratified
spaces.

Example 3.18. Consider a cell ey in a normal CW complex X. The characteristic map ¢y :
Ddimex 5 &% defines a stellar structure on ey by setting Sy, = gDdmer = gdimex—1— The
stratification on Sy is defined by taking connected components of strata obtained by pulling
back the stratification on dey. Thus any normal CW complex can be regarded as a stellar
stratified space. O

Example 3.19. Let Y be the geometric realization of a 1-dimensional simplicial complex of
the shape of Y as is shown in Figure 4. Let €3, ¢, e be the three outer vertices. Denote the

0 0
€1 €2

Figure 4: A stellar stratification on “Y”
complement Y \ {e8,e?,e9} by el. Then the decomposition
Y =eluelue)ue!
is a stellar stratification. The stellar structure on e’ is given by the identity map ¥ — el. O

Definition 3.20. Let (X, 7x,®x) and (Y, 7y, ®y) be stellar stratified spaces. A morphism of
stellar stratified spaces from (X, nx,®x) to (Y, my, Py ) consists of

o a morphism f: (X, nx) — (Y, 7ny) of stratified spaces, and

12



e a family of maps f) : Df\( — D}g(f)()\) indexed by P(X) making the diagrams

X ——Y

[N PYP(F)(N)

X Y
DY —= Pripoy

commutative, where ¢y and 9y (y) are stellar structures in X and Y, respectively.
The category of stellar stratified spaces is denoted by SSS.

The aim of [Taml8] was to find a structure on a stellar stratified space from which the
homotopy type can be recovered. The notion of cylindrical normality was introduced for this
purpose. Let us recall the definition.

Definition 3.21. Let 7 : X — P(X) be a normal stellar stratified space whose stellar structure
is given by {px : Dx = €x}. A cylindrical structure on this stellar stratified space consists of

o aspace P, ) and a strict morphism of stratified spaces
bm)\ : PH7>\ X DH — 8D,\

for each pair of strata e, C Jey, where each P,  is regarded as a stratified space with a
single stratum, and

e a map
CXo,A1,A2 * P/\1,/\2 X P/\07/\1 P)\07>\2
for each sequence ey, C ey, C €y,
satisfying the following conditions:

1. The restriction of b, x to P, x x Int(D,) is a homeomorphism onto its image.

2. The following three types of diagrams are commutative.

P
Dy ———

b[L,AT Tﬁau

pry
PM,)\ X DM E— DM'

P P Dy, o2 p D
A, de X g n X Do A, he X DXy

0*07/\1,%2><1l J/b)\l’)\Q

PAo)\z XD)\O ba > D>\2
0:22

CA1,A2,03 X1
P)\z,)\z X P)\17>\2 X P)\o,)\l > PAL,/\?, X P)\O’)\l

lxckoﬂ*lvbl ‘/CAOAL/\:s

P/\2,>\3 X P/\0,>\2 RSV P/\o)\a'

13



3. We have
U Bua(Pux xInt(D,))

e, COex
as a stratified space.
The space P, is called the parameter space for the inclusion e, C ex. When p = A, we

define Py » to be a single point. A stellar stratified space equipped with a cylindrical structure
is called a cylindrically normal stellar stratified space (CNSSS, for short).

Definition 3.22. For a CNSSS X, define a category C'(X) as follows. Objects are strata of X.
For each pair e, C €y, define
C(X)(e,“ ex) = Py

The composition of morphisms is given by
Cro e P Pae X Pag oy — Pag s
The category C(X) is called the face category of X.
The following fact is obvious from the definition.

Lemma 3.23. For any CNSSS X, its face category C(X) is an acyclic topological category
whose underlying poset is P(X).

Definition 3.24. Let (X, 7x, ®x) and (Y, 7y, Py ) be CNSSSs with cylindrical structures given
by {b PX/\ x DX — Dy} and {bY PYI@ x DY — DY}, respectively.
A morphzsm of CNSSSS from (X, 7x,®x) to (Y Ty, <I>y) is a morphism of stellar stratified
spaces
f : (X ﬁx,i’x) — (Kﬂy,q’y)

together with maps f, » : P = Pp(f)( )P (N making the diagram

fu )\Xfu P D
P\ X Dy == Pp(py.p(Hn) % PP

Y
bff,;i lb.fww(f)m

D, 7 Dpf)ny
A

commutative.

The category of CNSSSs is denoted by CNSSS. The full subcategories of cylindrically
normal CW stellar complexes and of cylindrically normal cellular stratified spaces are denoted
by CNCW and CNCSS, respectively.

One of main results of [Tam18] is the following.

Theorem 3.25 (Theorem 5.16 of [Taml8]). For a CW cylindrically normal cellular stratified
space X, there exists a natural embedding ix : BC(X) < X which is a homeomorphism when
X is a CW compler.

The embedding ix is, in fact, constructed for “cylindrically normal stellar stratified spaces”
in the sense of [Taml8]. They differ from CNSSS in this paper by the requirement that the
domain D) of the stellar structure ¢, : Dy — €, of each stratum is embedded in a disk. This
embeddability condition is not used in the construction of ix.

Corollary 3.26. The embedding in Theorem 3.25 can be extended to CW CNSSSs. When X is
a cylindrically normal stellar complex, the embedding ix : BC(X) — X is a homeomorphism.

14



4 Stellar Stratifications on Classifying Spaces of Acyclic
Categories

Note that the space of objects in the face category C'(X) of a CNSSS X has the discrete topology.
Let us call such a topological category a top-enriched category. In the rest of this paper, we
restrict our attention to acyclic top-enriched categories. We introduce two stellar stratifications
on BC for such a category C.

4.1 Stable and Unstable Stratifications

Let C be an acyclic top-enriched category. We first need to define stratifications on BC. An
obvious choice is the simplicial stratification

TR BC — HNH(C')

n>0
in Example 3.8, since BC is homeomorphic to the geometric realization of a A-space N(C).
Unfortunately this stratification is too fine for our purpose.
Definition 4.1. The composition
TR, J—
BC =5 [ Na(C) = Cy
n>0

is denoted by mo. It is easy to see that this is a stratification when Cj is regarded as the poset
P(C) associated with C'. This is called the unstable stratification on BC.
We also have a dual stratification

meen : BC G T Na(C) = Co,
n>0
which should be called the stable stratification.

Remark 4.2. We regard BC as a stratified space by the unstable stratification. The stable
stratification will be used in §4.2. These terminologies are borrowed from the “classifying space
approach” to Morse theory [CJS; NTT].

Example 4.3. Consider the acyclic top-enriched category C' with two objects x and y and
C(x,y) = S™~ 1. The classifying space BC is a quotient of

Co x A’TI(Cy \ {14,1,}) x A' =2 Co T CO(z,y) x [0,1].

The relation is defined by identifying C(z,y) x {0} and C(z,y) x {1} with = and y, respectively.
Thus it is a suspension of S?~ 1.
The simplicial stratification o : BC = Y(S" 1) — Cy = {z,y} is given by

z, t=0,
wﬁ(c)([u,t]) =qu, 0<t<l,
y, t=1,

while the unstable stratification m¢ is given by

ro([u,1]) = {z, t<1

y, t=1.
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The stratum indexed by x can be identified with the space of flows going out of x. This example
justify the terminology. O

Example 4.4. Let P = [2] = {0 < 1 < 2}. The classifying space BP is homeomorphic to the
standard 2-simplex A%, Under this identification, the unstable stratification T2 A% = [n] is
given by

71'[2](1507151,?52) = max {Z | t; # 0} .

Let e; = W[;]l(i) for i € [2]. This stratification on A? is given as in Figure 5.

Figure 5: The unstable stratification on B[2]

The inclusions eg C €1 and e; C €z imply that the poset [2] can be recovered from this
stratification.
More generally, the unstable stratification on B[n] = A™ is given by

W[n](to,...,tn) :max{i|ti 750}

This is the stratification appeared as Example 2.10 in [Tam18]. This stratification is used in the
definition of the exit-path co-category. See §4.2. O

Our next task is to define a stellar structure on the unstable stratification. This is done by
using comma categories.

Definition 4.5. Let C be an acyclic top-enriched category and x an object of C. The nonde-
generate nerve N(C | z) of the comma category C | z is denoted by St<,(C) and is called the
lower star of x in C.

The full subcategory of C | z consisting of (C' | x)o \ {15} is denoted by C.,. The nonde-
generate nerve N(C.,) is denoted by Lk.,(C) and is called the lower link of x in C.

The functor induced by the source map in C is denoted by

Sm:C<z CC\LQL'—)C
The induced map of A-spaces is also denoted by
sz Lk (C) C St<,(C) — N(C).

Dually, we define St>.(C), C>z, Lk>,(C) and ¢, : C>, C 2 | C — C by using z | C. The
map induced by the functor ¢, is denoted by t, : Lk>,(C') C St>,(C) — N(C).

It is straightforward to verify that C' | x and = | C' are acyclic when C is.
We have the following description of the lower link.

Lemma 4.6. For an acyclic top-enriched category C and an object x € Cy, we have

H Cly,x), k=0
Lk (O)g = § 2y o
{u e N1 (O)|t(u) =2}, k>0
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Proof. By inspection. O
Definition 4.7. For x € Cy, define

D, = [|St<.(C)] = B(C | x)
0D, = ||Lk<,(C)|| = BC,
D3P = ||St>4(C)|| = B(x | C)
The complements D, \ 0D, and D\ 9D are denoted by D and DIP-°| respectively. The maps

induced by the source and the target maps are denoted by s, : D, — BC and t, : D — BC,
respectively.

The geometric realization ||[Lk<,(C)| has a stratification based on the A-space structure.
Lemma 7.12 of [Tam18] says that we have a homeomorphism

D = [[St,(C) | = cone(||Lks, (C) ) = {1, } x ID.
The following is a dual.

Lemma 4.8. For an acyclic top-enriched category C and an object x € Cy, we have a homeo-
morphism
Dy = [|St<o(C)| = cone(||Lk<z(C)|) = 0D * {1 }.

In particular, D3 is an open cone on 0D;.
In order to use explicit descriptions of these homeomorphisms, let us sketch a proof.

Proof. For x € Cj, defined a map h,, : D, = BCpx{1,} as follows. For [(u,a)] € D, = [|[N(x |
O)|, choose a representative (u,a) € Nx(C | ) x A* such that a is in the interior of A*. The
k-chain w in C' | x can be regarded as a (k + 1)-chain in C of the following form

Ul Uk Uk 41
Uu:xrg—>T1 —> - —>Tkg—1 —>Tp — L.

Note that uq, ..., u; are not identity morphisms, but ug4+1 can be. When uy41 is not an identity
morphism, [u, a] defines an element of BC«,. Define

he([u, a]) = 1[u, a] + 01,.

When w11 = 14, use the standard identification AF > AR, {ex+1} to denote a = (1 —t)a’ +
teyt1, where e; is the i-th vertex of AF. And define

hI([u,t]) = (1 — t)[(ul,u27 e, U1 © uk)7a/} +t1,.

Here we regard (u1,us,...,urt1 © ux) as an element of Np_1(C,) under the identification of
Lemma 4.6.

A map AP : D — {1,}  BCs, is defined by reversing arrows. It is straightforward to
verify that these maps are homeomorphisms. O

In order to describe the image of D3 under s, we need the following generalization of the
dual of Lemma 7.15 of [Tam18].
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Lemma 4.9. Let C be an acyclic top-enriched category. Then, for each x € Cy, we have
7o' () = 84(D2) and w5t () = s4(Dy).

Furthermore

D) =pc [T TI  Clnr.2) - x Clag,an) x (A \d*AYD) |, @)

k xo<-<zp_1<T

where pc = |1, Nk(C) x A¥ — BC is the projection.

Proof. Let us first show (3). An element of D2 can be represented by a pair (u,t) of u € Nj(C,)
and t € Ak, where u is a sequence of morphisms vg v = e = v~ g in C., with
v; # 1, for all ¢ and ug = 1,. The only possibility for such an element to be equivalent to an
element of [ [, Nx(C<z) x A" is that ¢ € d*(A*~'). And we obtain (3).

By definition, the composition m¢ o s, is a constant map onto x when restricted to D7 and
thus s, (D) C 75" (2).

Suppose 7c([u,t]) = = for u = (ug,...,u1;) € Nu(C) and t € Int A*. Then t(uy) = = and
the sequence (ug, ..., u1) can be regarded as an element of Nj(C | z) = St<,(C)y as follows

u Uk
xo ! o k X

1, (4)

UK O-+-0UT

x.

Since t € Int A*, the pair (u,t) represents and element of DS whose image under s, is [u, t].
Thus we have s,(D2) = 75" (2).

By taking the closure, we have s, (DS) = wal(x). Since Cy is discrete, the topology of BC is
given by the weak topology defined by the covering

{pc(Clar—1,2k) X -+ x C(20,21) X A*)i>0.00<--<an-

Under the description of (3), the closure of s, (D) is given by adding C(xg_1,z)x- - -xC(xg, 1) X
d*(A%). And we have n5' (z) = s,(Dy). O

Note that we used the fact that Cy has the discrete topology.
In order for s, to be a stellar structure, we need to impose a finiteness condition on C'.

Definition 4.10. An acyclic top-enriched category C is called locally finite if P(C)<, =
{y € Cp |y < x} is finite.

Lemma 4.11. Let C be an acyclic top-enriched category. If C' is locally finite and the morphism
space C(x,y) is compact Hausdorff for each pair x,y € Cy, then s, : D, — BC is a stellar
structure on 7' (z) for each x € Cj.

Proof. By Lemma 4.8, D, is a cone on dD,. By Lemma 4.9, the image of the map s, is ﬂal(x).
By the compactness of each C(x,y) and the finiteness of P(C)(< ), D, is compact. By a result

of de Seguins Pazzis [Segl3|, BC is Hausdorff. Hence s, : D, — wal(as) is a quotient map.

The fact that the restriction of s, to DJ is a homeomorphism onto Wal(x) follows from the
description (3). In fact, the inverse to s;|po is given by assigning (4) to (ug,...,u1) € Np(C)
with t(ug) = . O

18



The stratification we have defined on BC fits well into the face category of CNSSS.
Proposition 4.12. For a CW CNSSS X, the embedding

ix : BO(X) = X

in Theorem 3.25 is a morphism of stratified spaces when BC(X) is equipped with the unstable
stratification. If each parameter space of X is compact Hausdorff, ix is a morphism of stellar
stratified spaces.

In particular, if X is a CW stellar complex, ix is an isomorphism of stellar stratified spaces.

Proof. This follows immediately from the explicit definitions of i x and the unstable stratification
on BC(X). Note that the closure finiteness implies that C(X) is locally finite. O

The next task is to find a cylindrical structure, in the sense of Definition 3.21, on the stellar
stratification on BC we have constructed.

Definition 4.13. Let C be an acyclic topological category. For x,y € Cy with < y, a morphism
u : x — y induces a functor

uo(=):Clae—Cluy.
The induced map on the classifying spaces is denoted by

byy : Clx,y) X Dy — D,,.

We are ready to prove Theorem 1.5.

Proof of Theorem 1.5. It remains to show that maps b, ,, : C(z,y)x D3 — D, define a cylindrical
structure on the unstable stratification on BC'
The fact that each b, , : C(z,y) x D) — D, is an embedding follows from the acyclicity of
C. The associativity of compositions of morphisms in C' implies that the commutativity of three
diagrams in Definition 3.21. By definition, e, C de, if and only if z # y and C(z,y) # 0 and we
have
Dy = U bzy (C(z,y) x D3).

ez COey

Theorem 1.10 is a corollary to the above argument.

Proof of Theorem 1.10. By Lemma 4.8, the structure of CNSSS on BC' constructed in Theorem
1.5 is actually a stellar complex. It remains to verify that it is CW. The closure finiteness follows
from the locally finiteness of C. For the weak topology, consider the commutative diagram

[ Nr(C) x A" IT ITt: @) = A*

k>0 zeCy k

. HIECO PDy

BC H DE?

U;EGCD Sz z€Cp

where t, : Ni(C) — Cy is given by the target map. Since both pc and HiEEC[) pp, are quotient

maps, it follows that Uzec0 Sz 1S a quotient map. O
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4.2 The Exit-Path Category

In this section, we prove Theorem 1.6. Let us first recall the definition of the exit-path category.

Definition 4.14. For a stratified space 7 : X — P(X), define

Exit(X) = {0 € Sing(X) |0 : A" — X stratification preserving}

A" —T > X

=<{o: A" =5 X | T X

] —> P(X),

where Sing(X) is the singular simplicial set of X and 7, is the stratification in Example 4.4.
When Exit(X) is a quasi-category, it is called the ezit-path co-category of X.

The following useful criterion can be found in Lurie’s book [Lur].

Definition 4.15 (Definition A.5.5 of [Lur]). A stratified space 7 : X — P(X) is called conically
stratified if, for each o € X, there exists a P(X)s (,)-stratified space Y, a topological space Z,
and an open embedding Z x cone®(Y) — X of P(X)-stratified space whose image contains z,
where P(X)sr(z) is the full subposet of P(X) consisting of elements A\ with A > 7(x).

Theorem 4.16 (Theorem A.6.4 (1) of [Lur]). If a stratified space 7 : X — P(X) is conically
stratified, the the map pr : Exit(X) — N(P(X)) induced by m is an inner fibration. In particular,
Exit(X) is a quasi-category.

Thanks to this theorem, it suffices to show that the unstable stratification on BC' is conically
stratified in order to prove Theorem 1.6. This is done by combining with the dual stratification,
i.e. the stable stratification on BC'. Namely there exists a map

¢ : Dy x DY — BC (5)

for each object x in C such that the restrictions c;|p, x{1,} and ¢z|(1,}x per coincide with s, and
t., respectively. The map c, is defined by the composition

D, x D P28 DL ({1,} % D) 225 D, % 9D 2 BC,
where hSP is the map defined in the proof of Lemma 4.8 and the map j, is given by j.(a, (1 —
t)1, +tb) = (1 — t)a + tb. Let us define n,.

Definition 4.17. For [u, s] € D,, choose a representative with u € N,(C' | ) and s € Int AP.
The nondegenerate p-chain

Uy u.
wiyo Sy 2Dy, oo

in C | x is regarded as a (p + 1)-chain in C'. Note that this may degenerate in Nj,41(C). For
[v,t] € ODSP, choose a representative with v € N4(Cs,) and t € Int A?. The nondegenerate
g-chain
vo v1 Vq
VX2 —> - — 2

in z | C is also nondegenerate as an element of N,41(C), since vg # 1,.
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Now define

na (1= ), 8] + 1w, ]) = {[(vq,...,vl,vg O Upg1, Up,y ..., U1), (1 —7)s+rt], r>0

(up, ... ,u1), 8] = sz([u, s]), r=0
under the identification of AP x A? = APFI+L
Lemma 4.18. The map n, is an embedding onto its image.

Proof. Consider the simplicial stratification on BC. 1t is a cell decomposition of BC' indexed by
N(C), when the topology of C is discrete. Even when the topology of C is not discrete, we call
a stratum of the simplicial stratification a cell in BC'

By definition, the image of n, is the union of cells whose boundary contains = as a vertex.
On the other hand, the cells in D, x C°(9DSP) are in bijective correspondence with

P(D,) U P(D,) x P(dD%) U P(OD) = N(C | z) UN(C | 2) x N(Css) UN(Cs.).

The set on the right hand side is the set of nondegenerate chains in C' which contains = or factors
through x.

Since n, maps a simplex to a simplex homeomorphically, n, is a bijection onto the stratified
subspace of BC' consisting of cells which contain z as a vertex. By assumption, D, x 0D is
compact and BC' is Hausdorff. And n, is an embedding onto its image. O

Lemma 4.19. The restrictions of ¢, to Dy x {1} and {1} x DSP coincides with s, and t,,
respectively.

Proof. Tt suffices to show that the restrictions of n, to D, and {1,} x DS can be identified
with s, and t,, respectively.

By the very definition, n, agrees with s, when restricted to D,. It remains to verify the
commutativity of the following diagram

Na

D, 0D BC

i

{1,} x 9D <—— D2P.

op
hm

For [v,t] € 0D, we have

[(vo 01z, v1,...,0g), (1 —=7)14+rt]], r>0
(12, 1)], r=20,

which agrees with ¢, under h39P. O

nz((1—7)ly +rv,t]) = {

Corollary 4.20. The restriction of c, to Dy x DP° is an open embedding. Hence BC s
conically stratified.

Proof. The image of DY x DP° under j, o (1p, X hy) is
D3 x0DYP \ 0D = D7 x cone’®(0DP)

and restriction of j, o (1p, X hy) to DY x D2° is a homeomorphism onto its image. These
neighborhoods cover BC' and hence BC' is conically stratified. O

By Proposition 4.12, we may replace X by BC(X) when X is a CW stellar complex.

Corollary 4.21. For any cylindrically normal CW stellar complex X, Exit(X) is a quasi-
category.
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4.3 Discrete Morse Theory

Robin Forman [For95; For98] formulated an analogue of Morse theory for regular cell complexes.
For a discrete Morse function f : F/(X) — R on the face poset of a finite regular cell complex X,
Forman constructed a CW complex X; whose cells are indexed by critical cells of f and showed
that Xy is homotopy equivalent to X.

Although Forman’s discrete Morse theory has been shown to be useful, the construction of
Xy is ad hoc. An explicit and functorial construction would be more useful. Such a construction
was proposed in a joint work of the first author with Vidit Nanda, Kohei Tanaka [NTT], in which
a poset-enriched category C(f) was constructed from a discrete Morse function f : F(X) — R.

For critical cells ¢ and d, the set of morphisms C(f)(c,d) has a structure of poset. By taking
the classifying space B(C(f)(c,d)) of each morphism poset, we obtain an acyclic topological
category BC(f) whose set of objects is C(f)o.

Theorem 4.22 ([NTT]). For a discrete Morse function f on a reqular CW complex X, The
classifying space B>C(f) = B(BC(f)) is homotopy equivalent to X .

As a version of Morse theory, we would like to have a “cell decomposition” of B2C/(f) whose
cells are in one-to-one correspondence with critical cells of f. Theorem 1.5 and Proposition
4.12 tell us that the correct way of decomposing B2C(f) is a stellar stratification, not a cell
decomposition.

Theorem 1.8 can be proved by using the unstable stratification on B>C/(f).

Proof of Theorem 1.8. Let X be a finite CW complex. Given a discrete Morse function f on X,
the topological category BC(f) is an acyclic top-enriched category. The finiteness of X and a
result of de Seguins Pazzis [Segl3] guarantee that the category BC(f) satisfies the conditions of
Theorem 1.5. O

5 Concluding Remarks

o In [Taml8], it is proved that if a CNSSS X has a “polyhedral structure”, BC(X) is a strong
deformation retract of X. It is very likely that the deformation retraction can be used to
extend Corollary 4.21 to CW polyhedral stellar stratified spaces.

o The original motivation of this paper was to study relations between C(X) and Exit(X)
for a stellar stratified space X. We anticipate that C(X) and Exit(X) are equivalent as
oo-categories if X is a cylindrically normal CW stellar complex. This problem will be
studied in the sequel to this paper.

e Besides the assumptions of Theorem 1.5, an extra finiteness condition is added in Theorem
1.6. This condition is introduced only for proving the map n, to be a quotient map in
Lemma 4.18. Probably this condition is not necessary or can be replaced by a weaker
condition.

References

[AFT17a] David Ayala, John Francis, and Hiro Lee Tanaka. “Factorization homology of strati-
fied spaces”. In: Selecta Math. (N.S.) 23.1 (2017), pp. 293-362. 1SSN: 1022-1824. DOI:
10.1007/s00029-016-0242-1. arXiv: 1409.0848. URL: http://dx.doi.org/10.
1007/500029-016-0242-1 (cit. on p. 7).

22


https://doi.org/10.1007/s00029-016-0242-1
http://arxiv.org/abs/1409.0848
http://dx.doi.org/10.1007/s00029-016-0242-1
http://dx.doi.org/10.1007/s00029-016-0242-1

[AFT17b)

[And10]

[Bjo84]

[CJS]
[ER]

[For95]

[For9g]

[Kir12)

[Lur]

[Lur09]

[LW69)]
[Mat70]
INTT

[Seg13]

David Ayala, John Francis, and Hiro Lee Tanaka. “Local structures on stratified
spaces”. In: Adv. Math. 307 (2017), pp. 903-1028. 1sSN: 0001-8708. DOI: 10.1016/.
aim.2016.11.032. arXiv: 1409.0501. URL: http://dx.doi.org/10.1016/j.aim.
2016.11.032 (cit. on p. 7).

Ricardo Andrade. From manifolds to invariants of E,-algebras. Thesis (Ph.D.)—
Massachusetts Institute of Technology. ProQuest LLC, Ann Arbor, MI, 2010, (no
paging). URL: http://gateway .proquest.com/openurl?url_ver=Z39.88-2004&
rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_
dat=xri:pqdiss: 0823483 (cit. on p. 7).

A. Bjorner. “Posets, regular CW complexes and Bruhat order”. In: Furopean J. Com-
bin. 5.1 (1984), pp. 7-16. 1sSN: 0195-6698. URL: https://doi.org/10.1016/S0195~
6698 (84)80012-8 (cit. on p. 4).

R. L. Cohen, J.D.S. Jones, and G. B. Segal. Morse theory and classifying spaces.
preprint. URL: http://math.stanford.edu/~ralph/morse.ps (cit. on p. 15).

Johannes Ebert and Oscar Randal-Williams. Semi-simplicial spaces. arXiv: 1705 .
03774 (cit. on p. 5).

Robin Forman. “A discrete Morse theory for cell complexes”. In: Geometry, topology,
& physics. Conf. Proc. Lecture Notes Geom. Topology, IV. Int. Press, Cambridge,
MA, 1995, pp. 112-125 (cit. on p. 22).

Robin Forman. “Morse theory for cell complexes”. In: Adv. Math. 134.1 (1998),
pp- 90-145. 1sSN: 0001-8708. DOI: 10.1006/aima . 1997 . 1650. URL: http://dx.
doi.org/10.1006/aima.1997.1650 (cit. on p. 22).

Alexander Kirillov Jr. “On piecewise linear cell decompositions”. In: Algebr. Geom.
Topol. 12.1 (2012), pp. 95-108. 1SSN: 1472-2747. DOI: 10.2140/agt .2012.12.95.
arXiv: 1009.4227. URL: http://dx.doi.org/10.2140/agt.2012.12.95 (cit. on
p. 3).

Jacob Lurie. Higher Algebra. URL: http ://www .math . harvard . edu/ ~lurie/
papers/HA.pdf (cit. on pp. 1, 2, 7, 11, 20).

Jacob Lurie. Higher topos theory. Vol. 170. Annals of Mathematics Studies. Princeton
University Press, Princeton, NJ, 2009, pp. xviii+925. 1sBN: 978-0-691-14049-0; 0-
691-14049-9. por1: 10.1515/9781400830558. URL: http://dx.doi.org/10.1515/
9781400830558 (cit. on p. 5).

Albert T. Lundell and Stephen Weingram. Topology of CW-Complexes. New York:
Van Nostrand Reinhold, 1969, pp. viii+216 (cit. on p. 7).

John Mather. Notes on Topological Stability. Harvard University. July 1970 (cit. on
p. 7).

Vidit Nanda, Dai Tamaki, and Kohei Tanaka. Discrete Morse theory and classifying
spaces. arXiv: 1612.08429 (cit. on pp. 1-3, 15, 22).

Clément de Seguins Pazzis. “The geometric realization of a simplicial Hausdorff space
is Hausdorft”. In: Topology Appl. 160.13 (2013), pp. 1621-1632. 1SsN: 0166-8641. DOI:

10.1016/j.topol.2013.06.007. arXiv: 1005.2666. URL: http://dx.doi.org/10.
1016/j.topol.2013.06.007 (cit. on pp. 18, 22).

23


https://doi.org/10.1016/j.aim.2016.11.032
https://doi.org/10.1016/j.aim.2016.11.032
http://arxiv.org/abs/1409.0501
http://dx.doi.org/10.1016/j.aim.2016.11.032
http://dx.doi.org/10.1016/j.aim.2016.11.032
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0823483
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0823483
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0823483
https://doi.org/10.1016/S0195-6698(84)80012-8
https://doi.org/10.1016/S0195-6698(84)80012-8
http://math.stanford.edu/~ralph/morse.ps
http://arxiv.org/abs/1705.03774
http://arxiv.org/abs/1705.03774
https://doi.org/10.1006/aima.1997.1650
http://dx.doi.org/10.1006/aima.1997.1650
http://dx.doi.org/10.1006/aima.1997.1650
https://doi.org/10.2140/agt.2012.12.95
http://arxiv.org/abs/1009.4227
http://dx.doi.org/10.2140/agt.2012.12.95
http://www.math.harvard.edu/~lurie/papers/HA.pdf
http://www.math.harvard.edu/~lurie/papers/HA.pdf
https://doi.org/10.1515/9781400830558
http://dx.doi.org/10.1515/9781400830558
http://dx.doi.org/10.1515/9781400830558
http://arxiv.org/abs/1612.08429
https://doi.org/10.1016/j.topol.2013.06.007
http://arxiv.org/abs/1005.2666
http://dx.doi.org/10.1016/j.topol.2013.06.007
http://dx.doi.org/10.1016/j.topol.2013.06.007

[Tam18]

[Tho69]

Dai Tamaki. “Cellular stratified spaces” In: Combinatorial and toric homotopy.
Vol. 35. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. World Sci. Publ.,
Hackensack, NJ, 2018, pp. 305-435. arXiv: 1609.04500 (cit. on pp. 1-4, 6-9, 11, 13,
14, 16, 17, 22).

R. Thom. “Ensembles et morphismes stratifiés”. In: Bull. Amer. Math. Soc. 75 (1969),
pp. 240-284. 18sN: 0002-9904. por1: 10 . 1090 /50002 ~-9904 - 1969~ 12138-5. URL:
https://doi.org/10.1090/S0002-9904-1969-12138-5 (cit. on p. 7).

24


http://arxiv.org/abs/1609.04500
https://doi.org/10.1090/S0002-9904-1969-12138-5
https://doi.org/10.1090/S0002-9904-1969-12138-5

	Introduction
	Acknowledgments

	Recollections
	Simplicial Terminology
	Nerves and Classifying Spaces

	Stellar Stratified Spaces and Their Face Categories
	Stratifications by Posets
	Joins and Cones
	Stellar Stratified Spaces

	Stellar Stratifications on Classifying Spaces of Acyclic Categories
	Stable and Unstable Stratifications
	The Exit-Path Category
	Discrete Morse Theory

	Concluding Remarks

