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Abstract

Pumping a viscous liquid in a confined space is essential in microfluidic systems because the

pressure-driven flow rate through small channels decreases with the third or fourth power of the

channel size. Hence, inspired by a cilium’s pumping ability in a confined space, we propose an

elastic beating pump using a hydrodynamic force due to induced-charge electro-osmosis (ICEO) and

numerically examine the pumping performance. By the multiphysics coupled simulation technique

based on the boundary element method along with the thin double-layer approximation, we find

that by selecting the optimum rigidity of the elastic beam, the ICEO elastic beating pump functions

effectively at high frequencies with low applied voltages and shows a large average flow velocity

with a remarkably large peak velocity that may be useful to flow a liquid with unexpectedly high

viscosity. Furthermore, we propose a simple model that explains the characteristics of the time

response behavior of the ICEO elastic beating pump to some extent. By this analysis, we can

considerably contribute to developments in studies on the artificial cilia having versatile functions.

∗ sugioka.hideyuki@canon.co.jp
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I. INTRODUCTION

Pumping a viscous fluid in a confined space is a challenging problem because the well-

known Hagen–Poiseuille equation tells us that the volume flow rate due to a pressure dif-

ference in a circular pipe decreases with not the second power but the fourth power of the

radius of the circular pipe. In other words, integrated microfluidic channels lose the ability

to pass fluids by a pressure–driven mechanism. Thus, we need to find other fluid transporta-

tion mechanisms in microfluidic systems to realize a promising microfluidic system. For this

problem, on the one hand, researchers already know that an electro-osmotic flow that uses

an electric double layer is one of the solutions because it produces a plug flow that can avoid

the limitation of the Hagen–Poiseuille principle. However, the ordinary electro-osmotic flow

usually requires a high driving voltage (∼ 1 kV) and the produced flow velocity is relatively

low (∼ 0.1 mm/s). Consequently, even for a low flow velocity (∼0.1 mm/s), it requires

a large power supply and stultifies miniaturization efforts using a microfluidic chip. On

the other hand, it seems that nature has already provided an evolutionary answer to this

problem [1–3]. For example, the plant Chara corallina obtained an excellent microscopic

beating pump driven by the motor protein myosin at the cell periphery more than 500 mil-

lion years ago and can transport fluid at 100 µm/s in a confined space under the condition of

a low Reynolds number Re (≡ µRU/D ∼ 0.05 with radius R = 0.5 mm, diffusion constant

D ∼ 10−9 mm/s, and µ = 1 mPa s) [4]. Furthermore, the spherical alga Volvox also swims

at a high speed (e.g., 200 µm/s) in a confined space under a low Reynolds number condition

(e.g., Re ∼ 0.03) by means of flagella on thousands of surface somatic cells [5]. That is,

in fact, nature (in particular, a cilium) has provided a marvelous pumping function along

with other useful functions (e.g., mixing and sensing) in a microscale region that suggests

innovative design concepts for microfluidic devices. Hence, a biomimic artificial cilium is

promising as a key technology that can be applied to a wide range of microfluidic systems,

such as a Lab-on-a-chip and micro total analysis systems and it has attracted much attention

in this decade [6].

However, the reason why a cilium’s motion is useful for transport in a confined space has

not been understood completely, although it is recognized that there are three fundamental

mechanisms that are active in an a cilia-driven fluid flow, as pointed out by Khaderi et al.

[2]: (i) spatially asymmetric motion, (ii) temporally asymmetric motion, and (iii) orienta-
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tionally asymmetric motion. Obviously, the common key point of the three fundamental

mechanisms is the symmetry breaking of the beating motion of the elastic beam or filament

in a confined space at a small Reynolds number. However, it is still unclear how the symme-

try breaking leads to the effective pumping function in a confined space despite the complete

symmetry of the Stokes equation for the reverse and forward flows at each time step [7],

although the problem has been numerically clarified to some extent [3, 8, 9]. Note that the

Stokes equation governs the flow problem under a low Reynolds number condition. Fur-

thermore, it is still unclear how much pumping efficiency it intrinsically has compared with

conventional microfluidic pumps, although investigations have been performed extensively

for individual problems for a specific motion under a specific condition both experimen-

tally and theoretically. For example, Evans et al. [10] experimentally demonstrated that

the motion of cilia-like superparamagnetic rod arrays can be controlled by an externally

applied magnetic field. Kim and Netz [3] investigated the pumping efficiency of an array

of periodically beating semiflexible filaments by Brownian dynamic simulations. Alexeev et

al. [9] simulated the three-dimensional (3D) movement of actuated cilia consisting of elastic

filaments using the lattice Boltzmann model for the hydrodynamics and the lattice spring

model for the elastics. Nevertheless, the use of biomimetic, artificial cilia is still in its infant

stage, as pointed out by Masoud and Alexeev [11], from the viewpoint of engineering ap-

plications because artificial cilia are usually driven by large magnetic equipment of at least

desktop size [6], which prevents the miniaturization of the microfluidic systems. Obviously,

for this problem, electric-driven cilia using metal filaments are useful because they at least

remove the problem of large magnetic equipment. In other words, to realize a miniaturized

microfluidic system using artificial cilia, it is important to drive the cilia not by magnetic

fields but by electric fields. From this context, Toonder et al. [12] experimentally reported

that two-dimensional (2D) artificial cilia having a platelike but curled microbeam can be

driven by an electric field and can generate a substantial fluid flow (∼ 0.6 mm/s) in silicone

oil whith an external applied voltage (e.g., 140 V). However, the applied voltage of 140 V is

insufficient for realizing a miniaturized microfluidic system because it also requires a large

power supply. Furthermore, electric-driven cilia in oil are insufficient for a wide range of

biomedical microfluidic applications because biomedical applications usually require pump-

ing functions in aqueous solution, although the analysis is much simpler than that of the

electric-driven cilia in water because we need not consider the ion diffusion problem and
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electro-osmotic phenomena. Therefore, the electric-driven cilia using metal filaments in wa-

ter with small applied voltages should be explored more to realize real innovation, although

they have not been explored well, at least theoretically, because of their complexity. That

is, the electric-driven cilia in water include the strong coupled phenomena among the ion

diffusion, electric migration, fluid flow, and elastic deformation phenomena. Namely, the

investigation of the electric-driven (or electrokinetic) cilia requires highly complex multi-

physics analysis with new knowledge of the electric double layer around the metal filaments,

which has been recognized only recently [13], and thus they have not been investigated

extensively yet.

Recently, we have proposed a cilium-like 2D elastic valve using induced-charge electro-

osmosis (ICEO) and elucidated the design concept as a valve [14]. ICEO [13, 15–17], which

includes ac electro-osmosis (ACEO), is caused by the interaction between an electric field

and ions in an electric double layer formed by the polarizing effect of the electric field.

Thus, it generates a large flow velocity (∼ 1 mm/s) proportional to the applied electric

field at low applied voltages (∼ 1 V). Note that conventional linear electro-osmosis only

produces a low flow velocity (∼ 0.1 mm/s) at high applied voltages (∼ 1 kV), as mentioned

before. Consequently, the ICEO phenomenon is promising for microfluidic applications

[13, 18]. Hence, if we can use the hydrodynamic force due to ICEO to drive an artificial

cilium having an elastic beam that can beat water periodically, we can realize an electric-

driven cilium in aqueous solution with a small voltage and can also realize a miniaturized

microfluidic system using innovative artificial cilia because the characteristic of the cilium

pump exists in the beating motion of the elastic beam or filament, as mentioned before.

Namely, a cilium-like elastic beating pump that uses ICEO has high potential. However,

despite its high potential, the elastic beating pump that uses ICEO has not been explored

well because of its complexity, as mentioned before; i.e., whether the pump works well or

not is unclear, and of course, the liquid pumping mechanism is also unclear.

Therefore, in this study, we focus on a cilia-like 2D elastic beating pump using a hydro-

dynamic force due to ICEO in water and elucidate its design concept. In other words, our

objective in this manuscript is to clarify the liquid pumping mechanism in the presence of

an elastic beam driven by the hydrodynamic force due to ICEO. In particular, by the im-

plicit strongly coupled simulation method [14] which solves both fluidic and elastic equations

simultaneously by the boundary element method (BEM) along with the thin double-layer
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approximation, we analyze an elastic beating pump using ICEO having two oblique con-

ductive beams that are connected directly to the lower electrode as the minimum artificial

cilium. Note that usually the numerical calculation of the interaction problem between a

fluid and an elastic is difficult because of the existence of numerical instability, and the

reason why we use the implicit strongly coupled simulation method is that it is a markedly

stabilized meshless method compared with other methods, as explained in [14]. Namely,

through the reliable calculation method, we provide new insight into the liquid pumping

mechanism using ICEO. Therefore, our analysis is important. Furthermore, although we

often express our elastic beating pump as an artificial pump in this paper according to the

convention of the field of artificial cilia [6], it is merely a high-performance elastic beating

pump using ICEO, which is not directly relevant to cilia in nature, in the ordinary sense

of the field of micro-electro-mechanical systems (MEMS). Therefore, what we focus on is

not the relationship between the cilia and our device but the physical pumping mechanism

of the ICEO beating pump. In addition, in this manuscript, we first show a simple kinetic

analytical theory for the beating motion of an elastic beam due to ICEO and clarify how

the symmetry breaking of the ICEO beating pump leads to the effective pumping function

in a confined space despite the complete symmetry of the Stokes equation for the reverse

and forward flows at each time step [7], although we clarified the static problem of an elastic

beam driven by ICEO to realize the valve function in our previous paper [14]. Namely, we

present this paper in five sections. That is, through both analytical and numerical kinetic

analyses in Sect. 2, we show the analytical and numerical results for the pumping motion of

the ICEO beating pump in Sect. 3, and following the discussion in Sect. 4, our conclusions

are summarized in Sect. 5.

II. THEORY

A. Structure of the elastic beating pump

Figure 1 shows a schematic view of an elastic beating pump using ICEO. As shown in

Fig. 1(a), we typically place two conductive elastic beams of length Le = 1.5w and width

d = 0.07w on the lower electrode in a rectangular channel of length 2L = 4.5w and width

w = 100 µm at a 20◦ tilt angle θ. Furthermore, Figs. 1(b) and 1(c) show the up- and

5



FIG. 1. (Color online) Schematic view of an elastic beating pump using induced-charge electro-

osmosis (ICEO). 1a and 1b: upper and lower electrodes. 2: conductive elastic beam. 3: electro

double layer, 4: insulation layer. We place two conductive elastic beams of length Le = 1.5w and

width d = 0.07w on the lower electrode in a rectangular channel of length 2L = 4.5w and width

w = 100 µm at a 20◦ tilt angle θ. Typically, the applied voltage V0 is 1.7 V, ym = 0.4w, the

pressure difference ∆P (≡ P2−P1) is 0 Pa, and P1 and P2 are the pressures at the inlet and outlet,

respectively. The Poisson ratio ν and shear modulus G of the elastic beams are 0.5 and 500 kPa,

respectively, while the viscosity µ is 1 mPa s; furthermore, Vs is the slip velocity that is generated

by the ICEO phenomenon under the existence of the external electric field E0 = V0/W ; Lg = 0.5L

is the gap length and w1 is the thickness of the insulation layer.

downswing motion at the on and off states, respectively. These typical up- and downswing

motion of the elastic beams are shown in Fig. 2. As shown in Figs. 2(b) and 2(c), we

apply an ac electric voltage of amplitude V0 (typically, 1.7 V) between the electrodes (1a

and 1b) during 0 ≤ t ≤ ∆T to move the beam in the upper direction by an ICEO force

and switch off the applied voltage during ∆T < t ≤ 2∆T to return the beam to the initial

position by an elastic force, where 2∆T (= 30T0 = 30 ms, typically) is the period of the

beating of the elastic beam, and T0 = 1 ms and Uc = w/T0 = 0.1 m/s are units for time

and velocity, respectively, for convenience, and we set the external pressure difference as
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∆P (≡ P2 − P1) = 0 throughout this paper. Furthermore, since we assume that the period

of the ac voltage is much smaller than ∆T , we can expect the suppression of chemical

reactions on the electrodes as a typical merit of an ICEO device. Namely, in our proposed

device, the two beams are deflected in the upper direction by the hydrodynamic force due

to ICEO during the on-state [in Fig. 2(b)], whereas they return toward the initial position

during the off-state [in Fig. 2(c)], without problems caused by chemical reactions. Note that

the beams generate an unwanted reverse flow during the on-state [in Fig. 2(b)], whereas

they produce a forward pumping flow by the beating effects of the elastic beams during

the off-state. Hence, without our analysis it is unclear whether the ICEO beating pump

is working. Thus, our analysis is important as a first approach. In particular, there is

complete symmetry of the Stokes equation for the reverse and forward flows at each time

step [7], as mentioned before. Thus, there is no merit in selecting θ ≃ 90◦ because of its

geometrical symmetry; i.e., to obtain the pumping function in microfluidic channels, we

consider the symmetry-breaking structure of the oblique elastic beam of θ = 20◦. Here, we

select θ = 20◦ as a first attempt since we can expect the large deflection of the oblique elastic

beam structure owing to the ICEO hydrodynamic force, at least for the weak-rigidity beam

(G ≃ 0.01 MPa) through our previous analysis of the oblique structure as a valve [14]. Note

that obtaining the optimum liquid pumping efficiency of the beating pump is beyond the

scope of this study, although it might be important as a future problem. Furthermore, for

the sake of practical applications in the future, here we propose the divided structure in the

upper electrodes (1a) and show a minimum unit structure that has two oblique conductive

elastic beams; i.e., the two beams can be controlled individually in the future. Namely, there

is a possibility that the structure will provide another ICEO beating pump that works with

a different driving method using the asynchronized motion of two or more beams similar to

the pumping movement of natural cilia. However, this is also beyond the scope of this study.

Thus, we select the same angle of θ = 20◦ for the two beams and focus on clarifying the

pumping mechanism using the synchronized motion of the two elastic beams as a first step.

In addition, we also assume an insulation layer of thickness dinsulator (= 0.02w) on the upper

electrode to avoid the shortage of the electrical circuit. However, the insulation layer is only

modeled numerically as a repulsion force between the upper electrode and the elastic beam,

and typically, it does not affect the calculation results because the repulsion force acts only

when the beam touches the insulation layer. Furthermore, by using the direct connection
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between the lower electrode and the conductive elastic beam, the typical zeta potential of

the edge position of the beam becomes comparable to the applied voltage and thus we can

expect a large deflection of the beam, as mentioned in Ref. [14].

B. Multiphysics numerical calculation method for the fluid and elastic objects

We analyze the elastic beating pump on the basis of BEM along with the thin double-

layer approximation. Here, the thin double-layer approximation is justified because the

Debye length is approximately 1000 to 10 nm for ion concentration of 10−7 to 10−3 M and it

is much smaller than the channel width w. The multiphysics numerical calculation method

is the same as that described in Ref. [14]. However, for the reader’s understanding, we briefly

explain the method here. Namely, on the basis of the Helmholtz–Smoluchowski formula

Vs = −ϵζ

µ
Es, (1)

we calculate the slip velocity Vs on the outside edge of the electric double layer at each time

step, whereEs (= −∇ϕ) is the tangential electric field, ϵ (∼80ϵ0) is the dielectric permittivity

of the solvent (typically water), ϵ0 is the vacuum permittivity, and ζ is the zeta potential.

Note that since the inside and outside potentials of the electric double layer on the beam (ϕi

and ϕo) are calculated by solving the Laplace equation under the Dirichlet and Neumann

boundary conditions, respectively, at each time step, the zeta potentials [ζ (≡ ϕi − ϕo)] are

also calculated at each time step. Therefore, by using the Stokes equations of a fluid

µ∇2v = ∇p (2)

and Navier’s equations of a solid

∇ · µe[∇u+ (∇u)T ] + λe(∇ · u)I = 0 (3)

with the boundary conditions

du

dt
= ṽ = v − Vs, (4)

fe (= f ′
e + f dep) = ff (5)

on the interface between the fluid and the beams, we can calculate the flow fields and

deflections of the beam, where p is the pressure, v is the fluid velocity, ṽ = du/dt is
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the velocity of the real surface of the beam, u is the displacement, µe and λe are the

Lame’s constants on solid, and fe and ff are the total surface traction vectors (defined by

the opposite normal vectors) of the beam and the fluid, respectively. Note that f ′
e is the

surface traction due to the deflection of the solid and fdep
e is the surface traction due to

the dielectrophoresis (DEP), and it is described as the Maxwell stress fdep = −1
2
ϵE2

s n,

where n is the surface normal unit vector. Furthermore, we use a fixed boundary condition

(i.e., u = du/dt = 0) at the bottom of the elastic beams and we use a constant pressure

condition that P1 = P2 = 0 at y = 0 and 4.5w. Furthermore, note that the neglect of the

unsteady term in the Stokes equation and the charging time is discussed in detail in [14] with

a detailed discussion of the Reynolds number and, consequently, our calculation method is

justified.

C. Simple time response model of the ICEO elastic beating pump

Because of the nonlinearity of the problem, a complete analytical model of the ICEO

elastic beating pump is impossible. However, from the engineering viewpoint, even the

simplest model that includes several fitting parameters is useful as the first step. Thus,

as mentioned in Sect. 1, here, we show a simple kinetic analytical theory for the beating

motion of the elastic beam due to ICEO and clarify how the symmetry breaking of the

ICEO beating pump leads to the effective pumping function in a confined space despite the

complete symmetry of the Stokes equation for the reverse and forward flows at each time

step [7]. By considering the Lorentz reciprocal theorem [14, 19, 20], we approximate the

ICEO force F ∗,ICEO at the peak beam position xp in the upper direction of the beam in the

presence of an electric field as

F ∗,ICEO ≃ µV edge
s , (6)

where V edge
s (≃ ceCθUw) is the edge slip velocity, Uw = ϵwE2

0/µ is the characteristic velocity

of ICEO of the channel, Cθ = sin 2θ/ sin 2θ0 is a factor used to consider the dependence of

V edge
s on θ [13], θ0 = 20◦, and ce is a shape factor related to the strength of the local electric

field near the peak position xp of the conductive elastic beams. Note that ce is determined

as ce ≃ 3 from the previous calculation results [14]. By considering linear beam theory, we

can approximate the concentrated elastic force F ∗,elastic of unit thickness corresponding to
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the deflection δ(t) of the beam at time t as

F ∗,elastic ≃ C1
3EI

L3
e

δ(t), (7)

where E = 2G(1 + ν) is the Young’s modulus, G is the rigidity modulus, ν is the Poisson

ratio, I = d3/12 is the moment of inertia for the rectangular cross section of unit thickness,

and C1(≃ 0.08) is the correction coefficient for the real nonlinear problem. Therefore, by

using the same argument as Eq. (6), we obtain the deflection velocity at the peak position

xp in an electric field as

δ̇up =
C2

µ
(F ∗,ICEO − F ∗,elastic), (8)

where C2(≃ 0.1) is also a correction factor for the nonlinear problem and δ(t) as the deflection

value at the peak position. Note that we define the upper direction perpendicular to the

elastic beam is positive for the force, velocity, and deflection values. Furthermore, since the

phenomenon is complex, we use the superscripts to show the states explicitly; i.e., we use

the superscript “up” for the upswing state (on-state) during 0 ≤ t ≤ ∆T , and we use the

superscript “down” for the downswing state (off-state) during ∆T ≤ t ≤ ∆2T . Therefore,

by integrating Eq. (8), we obtain

δup(t) =

∫ t

0

δ̇up(t′)dt′ (0 ≤ t ≤ ∆T ). (9)

Furthermore, from Eq. (8), the deflection velocity during downswing motion in the absence

of the electric field (F ∗,ICEO = 0) is described as

δ̇down = −C2

µ
F ∗,elastic. (10)

Therefore,

δdown(t) =

∫ ∆T

0

δ̇up(t′)dt′ +

∫ t

0

δ̇down(t′)dt′ (∆T ≤ t ≤ 2∆T ). (11)

Since the beam edge position xp is described as

xp = w − Le sin θ − δbeam cos θ, (12)

we can obtain the peak position xp through the simple time response model by the numerical

integration of Eqs. (10) and (12).
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We also consider a simple flow velocity model that is related to the pumping efficiency.

Firstly, since the volume flow velocities (of unit thickness) due to the up- and downswings

of the beam are proportional to the area swept by a beam whose equivalent length is ap-

proximated by (Le + δ), the spatially averaged flow velocity U∗
p due to the beating motion

of the elastic beam in the y-direction is provided as

U∗,up
p = − 1

2w
(Le + δ)δ̇upt̃up (0 ≤ t ≤ ∆T ), (13)

U∗,down
p = − 1

2w
(Le + δ)δ̇downt̃down (∆T < t ≤ 2∆T ), (14)

where t̃up and t̃down are the transmittance factors of the up- and downswings of the beam

and are approximated as

t̃up = C3(1− xp/w), (15)

t̃down =
1

C3

(1− xp/w), (16)

where C3(≃ 0.8) and 1/C3(≃ 1/0.8) are the proportionality constants for the upward and

downward motion, respectively. Note that it is well known that for a low Reynolds number

flow governed by the Stokes equation (under the condition that there is no movable part),

the flow should be completely reversible and hence the resistance of a channel should be the

same for both flow directions, independent of the channel shape, as discussed clearly in [7].

However, for the same reason, if there is a movable part that has spatial asymmetry, the

transmittance factors should have reciprocal proportionality constants such as C3 and 1/C3;

in other words, C3 is a coefficient concerning the state change from A to B, and 1/C3 is a

coefficient concerning the state change from B to A; i.e., to obtain a complete time-reverse

flow for the reverse motion of the beam, the above reciprocal relation is required. Note

that the above reciprocal relation might not be recognized well because, to the best of our

knowledge, we cannot find any clear explanation for the problem in the literature. However,

the above assumption (i.e., the reciprocal relation) is needed to at least phenomenologically

explain the numerical results for the time response of Up obtained by the BEM. In addition,

since the flow is a laminate flow in the channel, the transmittance constants are proportional

to 1− xp/w as the first approximation.

Secondly, in the presence of the electric field, we need to consider that our proposed

pump has a pumping function even for the steady state because of the ICEO slip velocity

V edge
s as in other ordinary ICEO pumps [18, 21], although the ICEO slip velocity is used to
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move the beam during the motion. Thus, as the first step, we can approximate the spatially

averaging flow velocity due to the ICEO slip velocity itself as

U vs
p = C4(V

edge
s − F ∗,up

µ
) (0 ≤ t ≤ ∆T ), (17)

where F ∗,up = F ∗,ICEO − F ∗,elastic and C4(≃ 0.23) is a proportionality constant. Note that

F ∗,up is balanced with the opposite viscosity force that is produced by the flow velocity F ∗,up

µ

as in the ordinary Stokes resistance problem. From Eqs. (13), (14), and (17), we obtain a

total spatially averaged flow velocity Up that includes both the beating effect and the static

slip velocity effect of ICEO; i.e.,

Up = Uup
p = U∗,up

p + U vs
p (≤ t ≤ ∆T ), Up = Udown

p = U∗,down
p (∆T < t ≤ 2∆T ). (18)

Furthermore, by integrating Up in the time domain, we obtain the pumping liquid volume

Vp of unit thickness; i.e.,

Vp(t) =

∫ t

0

Updt
′. (19)

Thus, we can obtain a time-averaged flow velocity Up,a over the time 2∆T ; i.e.,

Up,a =
1

2∆T
V t=2∆T
p , (20)

which indicates the pumping performance of the ICEO elastic beating pump. Note that

our model includes an integral expression and we use numerical integration to obtain the

specific results of Eqs. (12), (18), (19), and (20) [i.e., xp(t), Up(t), Vp(t), and Up,a], as a first

step. However, for simplicity, we call these results the analytical results throughout this

manuscript.

Furthermore, in our model, we only consider the motion of one beam in the unit region

of length L in Fig. 1. This is because the flow resistance for the beam per unit length L at

time t is considered to be equal in Regions 1 and 2 in Fig. 1 for the synchronized motion,

as a first step. However, strictly speaking, on the one hand, during the upswing motion,

the ICEO flow generated by the the left-hand beam suppresses the upswing motion of the

right-hand beam; thus, there is a possibility that the pump efficiency is slightly suppressed

by the hydrodynamic interaction. On the other hand, during the downswing motion, the

flow generated by the downswing motion of the left-hand beam accelerates the downswing

motion of the right-hand beam; thus, there is a possibility that the pump efficiency is slightly
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(a) Flow field of upward motion at t/T0 = 0
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(b) Flow field of downward motion at t/T0 = 15
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(c) Flow field of downward motion at t/T0 = 17
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(d) Flow field of downward motion at t/T0 = 30

FIG. 2. Upward and downward motion and flow fields of the ICEO elastic beating pump at

G = 200 kPa with V0 = 1.7 V. Here, ν = 0.5, L/w = 2.25, Le/w = 1.5, d/w = 0.07, and θ = 20◦.

increased by the hydrodynamic interaction. Therefore, we think that the pump efficiency of

our model is not significantly changed even if we consider the hydrodynamic interaction effect

between beams, although it might be an important problem to consider the asynchronized

motion of the beams in the future.

III. RESULTS

Figure 2 shows the time evolution of the upward and downward motion and the flow fields

of the ICEO elastic beating pump under the conditions V0 = 1.7 V, 2∆T = 30 ms, ν = 0.5,

G = 200 k Pa, µ = 1 mPa, Le = 1.5w, de = 0.07w, and θ = 20◦. Note that we use ν = 0.5,

w = 100 µm, T0 = 1 ms, µ = 1 mPa s, and ∆P = 0 Pa throughout this manuscript. As

shown in Fig. 2(a), initially (at t/T0 = 0) because of the ICEO slip velocity at the edge of

the beam, the beam edge xp starts to move while generating edge vortices and the upswing

motion produces an unwanted backward flow; then we can observe a large deflection at

t = ∆T = 15T0 = 15 ms, although the forward pumping flow due to the intrinsic edge slip

velocity remains, as shown in Fig. 2(b). Furthermore, Fig. 2(c) shows the downswing motion
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(at t/T0 = 17) that beats the fluid strongly. Namely, the downswing motion produces a main

forward pumping flow in the y-direction and the beam approximately returns to the initial

position, as shown in Fig. 2(d). Note that, different from the ICEO elastic valve reported in

[14], the ICEO elastic beating pump requires much a larger rigidity and beam thickness than

the ICEO elastic valve to beat the fluid strongly and return to the initial position within a

short time (∆T = 15 ms).

Figure 3 (Fig. 4) shows the time response of the ICEO elastic beating pump at G = 200,

500, and 1000 kPa with V0 = 1.7 V (at V0 = 1.2, 1.5, 1.7, and 2.0 V with G = 500 kPa). In

Figs. 3 and 4, the characters show the numerical results obtained by the BEM, whereas the

lines show the analytical results obtained by the simple time response model [i.e., Eq. (12)

for (a), Eq. (18) for (b), and Eq. (19) for (c)], and the numerical results agree fairly well

with the analytical results. From Figs. 3 and 4, we find that our simple model clarifies the

mechanism of the ICEO elastic beating pump to some extent, although we set C1 = 0.08,

C2 = 0.1, C3 = 0.8, and C4 = 0.23 from our numerical simulations. In particular, as shown

in Figs. 3(a) and 4(a), the time response of xp is clearly explained by the force balance

among the elastic force F ∗,elastic, the edge ICEO force F ∗,ICEO, and a generalized Stokes

resistance force (Stokes drag force). Note that usually the Stokes drag force is defined for

a spherical particle; however, a more general flow resistance force and torque that balance

with the external force and torque exist [22]. Furthermore, as shown in Figs. 3(b) and 4(b),

the mechanism of the ICEO elastic beating pump can be characterized by three kinds of

flow velocities; i.e., Uup−swing
p , U vs

p , and Udown−swing
p at t/T0 = 0, 15−, and 15+, respectively.

Note that it is essential to understand the concept of the force balance between the driving

force and the flow resistance in the motion in the low-Reynolds-number world, in which the

inertia force can be neglected and physical phenomena are often very different from those in

the ordinary experienced world; i.e., the force and torque are always balanced and thus Up

can change discontinuously when the force changes discontinuously upon turning off electric

fields, as shown in Figs. 4(b) and 4(c). Furthermore, in Fig. 4(b), we find that we obtain the

highest average flow velocity of ∼7 mm/s at V0 = 2.0 V. This is an impressive flow velocity

for this kind of electro-osmotic pump. Although the Reynolds number also becomes high if

the pumping performance becomes high, the maximum Reynolds number Re of our system

is ρUpw/µ = 0.7 < 1, where ρ (= 1000 kg/m3 for water) is the density. Therefore, we can

neglect the inertia term even for the worst case.
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FIG. 3. Time response of the ICEO elastic beating pump at G = 200, 500, and 1000 kPa with

V0 = 1.7 V. Here, L/w = 2.25, Le/w = 1.5, d/w = 0.07, and θ = 20◦; the dashed, dotted, and solid

lines show the analytical results obtained using the simple response model [i.e., Eq. (12) for (a),

Eq. (18) for (b), and Eq. (19) for (c)] at G = 200, 500, and 1000 kPa, respectively. The triangles,

circles, and crosses show the numerical results obtained by the BEM at G = 200, 500, and 1000

kPa, respectively.
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FIG. 4. Time response of the ICEO elastic beating pump at V0 = 1.2, 1.5, 1.7, and 2.0 V with

G = 500 kPa. Here, L/w = 2.25, Le/w = 1.5, d/w = 0.07, and θ = 20◦; the chained, dashed,

dotted, and solid lines show the analytical results obtained using the simple response model [i.e.,

Eq. (12) for (a), Eq. (18) for (b), and Eq. (19) for (c)] at V0 = 2.0, 1.7, 1.5, and 1.2 V, respectively.

The crosses, circles, squares, and triangles show the numerical results obtained by the BEM at

V0 = 2.0, 1.7, 1.5, and 1.2 V, respectively,
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FIG. 5. Dependences of xp, Up, Vp, and Up,a on G. Here, V0 = 1.7 V, L/w = 2.25, Le/w = 1.5,

d/w = 0.07, and θ = 20◦; the lines show the analytical results obtained using the simple response

model [i.e., Eq. (12) for (a), Eq. (18) for (b), Eq. (19) for (c), and Eq. (20) for (d)], whereas the

characters show the numerical results obtained by the BEM; the velocity unit is Uc = w/T0 = 0.1

m/s.

Figures 5 shows the dependences of xp, Up, Vp, and Up,a on G. In Fig. 5, the lines show

the analytical results obtained by the simple response theory [i.e., Eq. (12) for (a), Eq. (18)

for (b), Eq. (19) for (c), and Eq. (20) for (d)], whereas the characters show the numerical

results obtained by the BEM. Overall, the numerical results agree with the analytical results

to some extent, although we may need to develop a more sophisticated model in the future.

In Fig. 5(a), the beam edge positions at t/∆T = 1 and 2 [xp1 (= xt=∆T
p ) and xp2 (= xt=2∆T

p )]

decrease as the rigidity modulus G increases, and the initial position [xp0 = xt=0
p = w −

Le sin θ)] is constant. These results are reasonable because the deflection of rigid beams

should be small and the returning distance of flexible beams in a fixed time should be small.

What we want to realize is the beam edge reaching the highest position at t/∆T = 1 and
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FIG. 6. Dependences of G, Up,a, and xt=∆T
p on 2∆T . Here, V0 = 1.7 V, L/w = 2.25, Le/w = 1.5,

d/w = 0.07, and θ = 20◦; the dashed lines show the analytical results obtained using the simple

response model [i.e., Eq. (12) with the condition that xt=2∆T
P ≃ xt=0

P , Eq. (12) for (b); Eq. (20)

for (c)] whereas the circles show the numerical results obtained by the BEM; the velocity unit is

Uc = w/T0 = 0.1 m/s. Note that in (a), G is obtained as the optimum value from Eq. (12) with

the condition that xt=2∆T
P ≃ xt=0

P .
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returning to the initial position at t/∆T = 2 for periodic motion. Thus, from Fig. 5(a), we

find that G ≃ 500 kPa is a candidate for the optimum design because xp2 ≃ xp0 (= xt=0
p ) at

G ≥ 500 kPa. In Fig. 5(b), the total average flow velocity Up at t/∆T = 1− (up,1n = U t=∆T−
p )

is almost constant at G ≥ 400 kPa, whereas Up at t/∆T = 1+ (up,1n = U t=∆T+

p ) slightly

decreases in the range G ≥ 200 kPa. Here, please recall that, on the one hand, U t=∆T−
p is

the average flow velocity for the steady force balance state with the existence of the ICEO

torque and it indicates the pump efficiency for the steady mode. Hence, since the average

flow velocity is only determined by the value of the ICEO slip velocity V edge
s , almost constant

value of T0U
t=∆T−
p /w [i.e., T0U

t=∆T−
p /w ≃ 0.01 (U t=∆T−

p ≃ 1 mm/s)] is reasonable. On the

other hand, since U t=∆T+

p is the average flow velocity for the unsteady force-balanced state

between the elastic force and the flow resistance, the decrease is simply explained by the

decrease in xp1 [in Fig. 5(a)]. Furthermore, of course, there is no dependence of up0 (= U t=0
p )

on G, while up,2 (= U t=2∆T
p ) slightly decreases as G increases, corresponding to the decrease

in |xp2 − xp0| [in Fig. 5(a)]. In Fig. 5(c), vp1 (= V t=∆T
p ) is the total pumping volume during

the upward motion of the beam, vp2 (= V t=2∆T
p ) is the total pumping volume at t/∆T = 2

(i.e., the net pumping volume of one cycle), vp3 (= vp2 − vp1) is the pumping volume during

the downward motion of the beam, and s0 is the area of the cross section of the channel.

Here, what we want to determine is the condition for the maximum of vp2 when G ≥ 500

kPa. Since vp2 decreases slightly as G increases, as shown in Fig. 5(b), we find that G ≃ 500

kPa is still the candidate for the optimum design. In Fig. 5(d), Up,a, which indicates the

average pumping performance of the ICEO elastic beating pump, has the maximum value

(Umax
p,a = 7.3× 10−3w/T0 = 0.73 mm/s) at G = 250 kPa. This is because as G increases, the

maximum deflection δt=∆T [corresponding to xp1 in Fig. 5(a)] and the pumping volume in the

downswing motion [vp3 in Fig. 5(c)] decrease, whereas as G decreases, the backward pumping

volume in the upswing motion [vp1 in Fig. 5(c)] increases. Furthermore, rigorously, the final

edge position xp2 does not agree completely with the initial edge position xp0 at G < 500

KPa. Thus, to realize ideal cyclic beating, G ≥ 500 kPa is required. Here, by considering

the previous argument, G = 500 kPa is the optimized value for the period 2∆T = 30 ms [as

is also expected from Figs. 5(a)–5(c)].

Figures 6(a)–6(c) show the dependences of the optimum rigidity Gopt, the edge position

xt=∆T
p , and the optimum time-averaged velocity U opt

p,a on 2∆T under the conditions V0 = 1.7

V, L/w = 2.25, Le/w = 1.5, d/w = 0.07, ν = 0.5, w = 100 µm, T0 = 1 ms, µ = 1 mPa
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s, θ = 20◦, and ∆P = 0 Pa. As shown in Fig. 6(a), Gopt decreases as 2∆T increases.

Thus, as 2∆T increases, xt=∆T
p approaches the upper electrode (at x = 0) and maintains

its position from 2∆T ≃ 70 ms, as shown in Fig. 6(b). Therefore, we can observe the peak

value Upeak
p,a (2∆) (= 0.84 mm/s) at 2∆T ≃ 70 ms (i.e., beating frequency f = 14.3 Hz)

and G = 200 kPa, as shown in Fig. 6(c). In other words, the strategy of a slower beating

frequency with a larger deflection is superior to the strategy of a faster beating frequency

with a smaller deflection until the limit of the maximum deflection because of the channel

width w. Furthermore, in Fig. 6, the dashed lines show the analytical results obtained

using the simple response model [i.e., Eq. (12) with the condition that xt=2∆T
P ≃ xt=0

P ,

Eq. (12) for (b); Eq. (20) for (c)], whereas the circles show the numerical results obtained

by the BEM. As shown in Fig. 6, the simple model explains the fundamental design concept

fairly well. Note that we assume the wall repulsion force F ∗,wall = −F ∗,ICEO |xp−dinsulator|
dinsulator

at

|xp| ≤ dinsulator (= 0.02w) even for the simple model because the limitation of the deflection

due to the channel wall intrinsically provides the optimum beating period at 2∆T ≃ 70 ms.

IV. DISCUSSION

Although an ICEO elastic valve was proposed in a previous paper [14], a cilia-like ICEO

elastic beating pump was first proposed here and the design concept was clarified in this

manuscript. That is, different from the ICEO elastic valve [14], the ICEO elastic beating

pump requires a much higher rigidity to push the fluid strongly and to return to the initial

position within a beating period. The calculation results show that the average flow velocity

in a beating period is larger (∼ 0.7 mm/s) than that of an ordinary dc electro-osmotic pump

(∼ 0.1 mm/s) and it is similar to that of the highest-speed electro-osmotic pumps (∼ 1

mm/s) [18]. Note that the highest-speed pump was obtained using a coplanar asymmetrical

electrode structure having a step-shaped electrode on one side [18] and the pump should

be classified as an ICEO pump in the general sense [13], although the ICEO phenomenon

of the electrodes is called ac electro-osmosis (ACEO) [15]. Furthermore, the ICEO elastic

beating pump has a large peak velocity (∼ 7 mm/s at V0 = 2.0 V) that may be useful to

strongly flow a fluid with an unexpectedly high viscosity in a real application and probably

contributes to making a system robust. In addition, the ICEO elastic beating pump has

various possibilities; e.g., (i) there is a possibility that even an unexpected solid obstacle can
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be transported by the mechanical beating motion of the beams; (ii) the beating motion can

contribute to the self-cleaning function of an active surface and it can be a key technology

because ICEO is sensitive to contamination of the surface [23]; (iii) the motion of the oblique

elastic beam can be used to realize other indispensable functions, such as valves, mixers,

and sensors, with almost the same structure. Hence, the ICEO elastic beating pump is

important, although we need to clarify its various possibilities in the future.

V. CONCLUSIONS

We have proposed an elastic beating pump using induced charge electro-osmosis around a

conductive elastic beam in water and numerically examined the large pumping performance.

By an implicit strongly coupled calculation method between a fluid and an elastic structure

along with a simple analytical time response model, we find that (1) the optimum average

flow velocity in one beating cycle is approximately 0.7 mm/s and the maximum flow velocity

caused by the downswing of the beam is approximately 7 mm/s. (2) The slower beating

strategy provides better pumping performance than the faster beating strategy until the

limit of the deflection due to the channel width. (3) The ICEO elastic beating pump intrin-

sically requires higher rigidity than the ICEO elastic valve because the main forward flow

is generated from the strong elastic downswing within the beating period. (4) The ICEO

elastic beating pump is characterized by the unwanted backward flow velocity due to the

upswing motion of the beam, the main forward flow velocity due to the downswing motion

of the beam, and the intrinsic ICEO slip flow velocity at the edge position. In particular,

we find that by accumulating the ICEO flow energy as an elastic energy, the performance of

liquid pumping in a narrow channel is improved considerably, at least for an instant velocity,

by the beating of elastic beams compared with that of ordinary ICEO pumps, which are

considered to be state-of-the-art microfluidic pumps using an electro-osmotic phenomenon;

i.e., the pumping performance of the ICEO elastic beating pump is the highest ever reported,

at least theoretically, for this kind of pump and we succeeded in clarifying its mechanism.
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