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Abstract

Finding an innovative separation mechanism is a central task in future microfluidic systems. We

propose a size-controllable microfluidic catching device that has a face-to-face structure consisting

of elastic beams that change the acceptable particle size dynamically by hydrodynamic force due

to induced charge electroosmosis (ICEO) in water and numerically examine the novel separation

mechanism consisting of catching and releasing motions with size selectivity. By an implicit strongly

coupled simulation technique between a fluid and an elastic structure based on the boundary

element method, along with the thin double-layer approximation, we find that the catching device

works effectively at low applied voltages in a realistic microfluidic channel and shows a wide range

dynamic size selectivity. Furthermore, by modeling the ICEO phenomena with elastic motion,

we successfully explain the acceptable particle size of the catching device. We believe that our

proposed device will contribute to realizing innovative microfluidic systems in the future.

∗ sugioka.hideyuki@canon.co.jp
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I. INTRODUCTION

Innovative separation mechanisms of chemical substances (e.g., biomolecules and haz-

ardous materials) are always required for promising microfluidic systems such as a lab-on-

a-chip and micro-total-analysis systems (µTASs) [1] since natural samples such as food,

drinking water, blood, oral/fluid, and urine are usually complex. Thus, various separation

techniques have been proposed and examined in the microfluidic field [2], e.g., from funda-

mental physics, Brownian ratchet [3], obstacle array [e.g., deterministic lateral displacement]

[4], side channel (e.g., hydrodynamic filtration) [5], external force (e.g., acoustic and mag-

netic separation) [6], and trapping force (e.g., optical tweezers) [7] have been proposed for

separation. In particular, the obstacle array has attracted much attention since it changes

the flow direction of target particles in the main stream in the channel passively and simply;

for example, Duke and Austin [8] theoretically showed that a sieve consisting of a periodic

array of oblong obstacles can separate biological micromolecules; Davis et al. [9] experimen-

tally showed that circular obstacles can fractionate whole blood components. In addition,

Morton et al. [10] experimentally showed that an obstacle array can be used for a novel

biological processing method that moves selected particles across functional laminar stream-

lines in pressure-driven microfluidic flow; they demonstrated on-chip cell treatments such

as labeling and washing, and bacterial lysis and chromosomal extraction. Since the method

enables sequential chemical operations, it is definitely important.

However, time-consuming manual separation is still used in practice; for example, separa-

tion using a centrifugal machine with a disposable sample preparation kit including several

reagents and glass fibers for adsorption is used as the standard sample preparation before the

polymerase chain reaction process for viral deoxyribonucleic acid (DNA) or ribonucleic acid

(RNA) detection. Thus, from the industrial side, microfluidic systems based on the conven-

tional method are explored extensively. Chung et al. [11] reported that a marine norovirus

in a single oyster was detected within 4 h by using µTAS to perform automatically a series

of essential processes, such as cell concentration, lysis (RNA extraction), nucleic acid am-

plification, and detection. Note that in their approach, charge-switchable microglass beads

are used instead of glass fibers in the ordinary manual process and play a central role; i.e.,

viral materials are separated through the surface adsorption of the beads and a chemical

process is operated sequentially by conveying the beads through the flow channel. Although
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the system shows marked improvement, 4 h is insufficient to cause real innovation; thus,

in addition to the miniaturization of large peripheral equipment, more rapid and efficient

continuous-flow processing is strongly required.

For this requirement, ciliumlike bio-inspired microfluidic devices having curled elastic

filaments or hairlike elastic rods are explored extensively [12], since microorganisms use cilia

to catch suspended particles from surrounding fluids and the catching motion is vital to

maintain their living systems [13, 14]; i.e., similar to cilia, controllable catching and releasing

motions are considered essential to realize a faster process to deal with various chemical

substances even in microfluidic systems. Bhattacharya et al. [13] theoretically showed that,

by assuming an adhesive interaction of cilial tips with a particle’s surface, the particle can be

released, propelled, or trapped by the cilia; Tripathi et al. [14] showed that the particle size

selectivity arises as a result of adhesive and hydrodynamic interactions. However, since those

devices are usually driven by large magnetic or electric equipment [12], they are not suitable

for miniaturization; in addition, the aim of nature is usually different from that of our

individual microfluidic system. For example, using a passive adhesive surface for catching is

not a good strategy at least for high-throughput processing in microfluidic systems since it

requires a stronger swing to release the particle [14]. Thus, for miniaturization, developing a

size-selectable particle catcher based on a different fundamental key technology that enables

a low-voltage drive, high-density fabrication, and high-throughput processing is required.

Recently, induced-charge electroosmosis (ICEO) [15–19] caused by the interaction be-

tween an electric field and ions in an electric double layer formed by the polarizing effect

has been considered to be a key concept for innovative microfluidic devices [15, 20], e.g.,

a pump [15, 21], a valve [22, 23], and a mixer [15, 24], since it causes a large flow (∼1

mm/s) because of the large zeta potential (∼1 V) under ac electric fields (<∼1 kHz) and

it preferably suppresses the dc electric field trouble due to the chemical reaction and the

generation of bubbles. In particular, Gangwal et al. [25] observed the motion of a half-

coated metal sphere using ICEO. Ziebert et al. [19] theoretically showed that the behavior

of a conductive membrane in a static electric field is also related to ICEO. Furthermore, we

proposed an elastic valve using ICEO and numerically showed that it functions effectively

at high frequency with low applied voltages [23]. Note that ICEO includes the concept of

ac electro-osmosis (ACEO) discovered by Ramos et al. [16, 17, 26], who first showed that,

theoretically, the accumulated electric charge in the electric double layer of the pair elec-
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trodes can generate a large flow field by the coulomb force with the existence of a tangential

electric field [26] and experimentally observed the velocities of the vortex flow [16]. Bazant

and Squires showed how general the ACEO phenomenon is and termed it ICEO [15]. In

addition, we also propose an elastic beating pump using ICEO and numerically showed that

it produces a remarkably large peak flow velocity (∼ 7 mm/s at 2 V) [27].

Obviously, ICEO is suitable for realizing a particle catcher in microfluidic systems since it

enables a low voltage drive, high-density fabrication, and high-throughput processing. Fur-

thermore, catching particles in a viscous fluid is a difficult task; for example, the approaching

of an elastic beam to a target particle usually induces the motion of the particle going away

because of hydrodynamic interactions. Furthermore, obtaining a controllable size selectivity

for rapid processing with a novel sequential operation is an indispensable task for future

promising microfluidic applications, as mentioned before. Thus, it is challenging to consider

a size-selectable particle catcher using ICEO in a viscous fluid with a novel sequential rapid

operation. To overcome those problems, we consider a face-to-face structure consisting of

elastic beams that change the acceptable particle size dynamically by hydrodynamic force

due to ICEO in water, in addition to using a vortex flow due to the upward motion of the

elastic beam edges to withdraw a suspended particle into the catching device region. Note

that the face-to-face structure plays a role of a dipping chamber for chemical processing, and

the catching and releasing behavior of a particle can provide an ideal sequential operation for

labeling, washing, and lysis; i.e., in this study, we focus on an elastic particle catcher using

ICEO with a face-to-face elastic beam structure and elucidate its design concept with the

concept of novel sequential processing. In particular, by using the implicit strongly coupled

simulation technique [23] based on the boundary element method (BEM), we analyze the

microfluidic particle catcher using ICEO and clarify the catching behavior.

II. THEORY

A. Particle catcher using a face-to-face elastic beam configuration

Figure 1 shows a schematic view of an elastic particle catcher using induced-charge electro-

osmosis (ICEO). As shown in Fig. 1(c), we propose a particle catcher using a face-to-face

elastic beam configuration with the ICEO phenomena; i.e., we consider a rectangular channel
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FIG. 1. (Color online) Schematic view of an elastic particle catcher using induced-charge electroos-

mosis (ICEO). 1a: upper electrode, 1b: lower electrodes, 2: conductive elastic beam, 3: electric

double layer, 4: insulation layer, 5: particle, 6: main stream, 7a: catching trajectory, 7b releas-

ing trajectory, 8a: up-swing motion of elastic beam, 8b: down-swing motion of elastic beam, and

9: driving voltage. We place a pair of conductive elastic beams of length Le = 1.5w and width

d = 0.07w on the lower electrode in a rectangular channel of length 2L = 4.5w and width w = 100

µm. Here, typically, the applied voltage V0 is 1.2 to 1.7 V, the pressure difference ∆P (≡ P2 −P1)

is 0 Pa, and ym = 0.7w is the beam bottom positions. The Poisson ratio ν and the shear modulus

G of the elastic beams are 0.5 and 500 kPa, respectively, and the viscosity µ is 1 mPa s.

(of length 2L = 4.5w and width w = 100 µm) having parallel electrodes and typically place

a pair of conductive elastic beams of length Le = 1.5w and width d = 0.07w on the lower

electrode at a 20◦ tilt angle θ at y = ye and y = 2L − ye [in Fig. 1(d)]. To draw a particle

at (x/w, y/w) = (0.3, L) (above the device) into the device region, we apply an ac electric

voltage V0 between the electrodes [in Fig. 1(c)] and turn off the electric voltage at t = toff

[in Fig. 1(c)] to release the particle from the device region to the outer stream region. Here,

we assume that the period of the ac frequency is much smaller than toff ; thus, we can expect

that the occurrence of chemical reactions is prevented; in fact, the relatively high applied

voltage condition (e.g., V0 = 3 V) is often common in ACEO experiments [20].

5



B. Numerical method

Simulations of our problem (i.e., particle catcher) are difficult because our problem is a

fluid solid interaction (FSI) problem, which has strong nonlinearity and multidisciplinary

nature. For example, in the finite element method (FEM), the elastic problem is usually

described by the global stiffness equation [K]{u} = {F}, where [K] is the global stiffness

matrix, {u} is the global node displacement vector, and {F} is the global force vector. For

the current system, even though Lame’s constants are assumed to be independent of the

structure, the nonlinearity related to [K] and {F} remains because [K] and {F} strongly

depend on the structure in our large deflection problem of the solid beam. Furthermore,

our fluid problem also has a strong nonlinearity because of the change in both the channel

structure and the exerted force owing to the motion of beams, even though we use the Stokes

equation. That is, our problem requires sophisticated treatment for both elastic and fluid

problems. In particular, the most intrinsic difficulty of our problem is that the boundary

conditions both for a fluid and a solid change over time, and in addition, the two fields

are expressed by related but different quantities, velocity and displacement. This results in

the difficulty in the precise treatment of the boundary between two fields. This is the true

difficulty of our current problem.

Furthermore, from the viewpoint of the numerical calculation method, our problem is a

free boundary problem, which changes the boundary position in time, and the change in

the boundary position often causes inaccurate calculations. For example, FEM often causes

inaccuracy owing to the deformation of meshes or the switching of mesh typologies, while

the finite difference method and other Eulerian methods also cause inaccuracy owing to the

difficulty in determining the precise boundary position in the fixed Eulerian meshes. More-

over, a weak coupled FSI calculation method that calculates a fluid and solid alternatively

often causes serious instability. In addition, we need to consider ICEO flow velocities around

a beam in our problem. Thus, our problem is highly challenging as a numerical simulation

problem. However, we overcome all of the difficulties in solving the problem in the current

system by using the strongly coupled simulation technique that was previously developed

[23]. This is the advantage of this work, i.e., by using the sophisticated method described in

Ref. [23], we first succeeded in the reliable simulations of the motion of the particle catcher.

Namely, on the basis of the the boundary element method (BEM) along with an implicit

6



strong coupled method between a fluid and a solid, we here perform a highly accurate mesh-

less FSI calculation of the current system and clarify the background physics of the particle

catcher numerically.

Specifically, on the basis of the FSI method that we developed [23], we calculate the flow

fields and deflections of the beams using the Steady Stokes equations of fluid and the Steady

Navier’s equations of solid:

µ∇2u̇−∇p = 0, ∇ · u̇ = 0, (1)

(λe + µe)∇(∇ · u) + µe∇2u = 0, (2)

where p is pressure, µ (∼ 1 mPa s) is viscosity, u̇ (= v) is velocity, u is displacement, and

µe and λe are Lame’s constants on solid. Furthermore, we use the boundary condition at

the interface between the fluid and the elastic beams as follows:

u̇ = ṽ + Vs, (3)

fe (= f ′
e + f dep + f rep) = ff , (4)

where ṽ is the velocity on the inside edge of the electric double layer (EDL), fe and ff

are the total surface traction vectors (defined by the opposite normal vectors) of the beam

and fluid, respectively, f ′
e, f

dep
e , and frep are the surface tractions due to the deflection of

solid, the dielectrophoresis (DEP), and the phenomenologically introduced repulsion force

[see Eq. B5 in Appendix B], respectively. Note that, before recognizing the importance of

the ICEO flows around the metal, DEP is the main effect that generates the external force

and torque on the metal in water. Thus, we consider the DEP effects in our calculations, and

we can calculate the DEP traction resulting from the Maxwell stress as f dep = −1
2
ϵE2

s n.

However, nowadays, it is recognized that the contribution of the DEP effects is just 20% in

the bulk region [28] and it is often negligible near the electrode compared with that of the

ICEO effect [22]. Furthermore, by solving the Laplace equation under the Neumann and

Dirichlet boundary condition, we calculate the slip velocity Vs at each time step on the basis

of the Helmholtz–Smoluchowski formula [Eq. A1 in Appendix A]. Note that the neglect of

an unsteady term in the Stokes equation and charging time were discussed in detail and our

calculation method was justified in Ref. [23].
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(a) Flow field at t/T0 = 0 (rp/w = 0.1)
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(b) Flow field at t/T0 = 8 (rp/w = 0.1)
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(c) Flow field at t/T0 = 12 (rp/w = 0.1)
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(d) Flow field at t/T0 = 20 (rp/w = 0.1, ×1.5)
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(e) Flow field at t/T0 = 0 (rp/w = 0.18)
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(f) Flow field at t/T0 = 8 (rp/w = 0.18)

FIG. 2. Catching and releasing motions using ICEO with elastic beams at G = 0.5 MPa at

V0 = 1.5 V. Here, the initial position of the particle is (xp/w, yp/w) = (0.3, 2.25), toff/T0 = 10,

dmin/w = 0.05, rs = L − ye − Lecosθ = 0.14, L/w = 2.25, ye/w = 0.7, ν = 0.5, Le/w = 1.5,

d/w = 0.07, θ = 20◦, w = 100 µm, T0 = 1 ms, µ = 1 mPa s, and ∆P = 0 Pa. Note that in (d), we

magnify the scale of flow vectors by 1.5 since they are too small compared with those of the other

figures.

III. RESULTS

A. Catching and releasing motions

Figure 2 shows the catching and releasing motions of our device when V0 = 1.5 V,

toff/T0 = 10, dmin/w = 0.05, rs = 0.14, L/w = 2.25, ye/w = 0.7, ν = 0.5, G = 0.5 MPa,

Le/w = 1.5, d/w = 0.07, θ = 20◦, w = 100 µm, T0 = 1 ms, µ = 1 mPa s, and ∆P = 0

Pa. In Fig. 2(a), initially (at t/T0 = 0), we observe two vortex flows due to ICEO below

the target particle of radius rp = 0.1w, and the vortex flows pull the particle into the device

region. As a result, we find the particle in the device region at t/T0 = 8 [Fig. 2(b)]. Here,
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we also observe the upward motion of the edge of the elastic beams; because of this motion,

the particle is pulled into the device region. Then, by turning off the applied voltage at

t = toff (= 10T0), we observe the significant upward flow at t/T0 = 12 [Fig. 2(c)]; this

upward flow pops up the particle. Thus, the particle is released into a main stream region

in a channel at t/T0 = 20 [Fig. 2(d)]. Here, the upward flow is generated by the downward

motion of the beam edges owing to the elastic force. Furthermore, in Figs. 2(e) and 2(f),

we find that a large particle (rp/w = 0.18) cannot enter the device region because of the

geometrical condition, although the acceptable particle radius can be changed to some extent

by changing the applied voltages, as explained in Sec. II-C.

B. Size and time controllability

Figure 3 shows the controllability of the keeping time and acceptable size. Here, xp is the

x position of the particle, hm ≡ xmax
p −xt=0

p is the maximum catching distance, and tw is the

keeping (working) time defined as a period that satisfies the condition h(t) ≡ xt=t
p − xt=0

p ≥

0.1w. Note that tw is introduced as a simple mean theory to evaluate complex phenomena

qualitatively. In detail, we consider that the typical radius is rp ≃ 0.1w, the typical initial

particle position is xp ≃ 0.3w, and the typical initial beam edge position is xb ≃ 0.5w. Thus,

if h ≥ 0.1w, the bottom of the particle is lower than the beam edge on average. This is why

we consider the condition h(t) ≡ xt=t
p − xt=0

p ≥ 0.1w to define tw. Although the definition of

tw is too simple, we believe that it is useful for evaluating a complex system that includes

many parameters.

Figures 3(a), 3(c), and 3(e) show that tw is controlled in the range 5 ≤ tw/T0 ≤ 15

by adjusting the switch-off time toff with the considerable catching distance in the range

0 ≤ hm/w ≤ 0.3. Specifically, in Fig. 3(a), the particle starts to move toward the upper

direction at t/T0 ≃ 8 after the particle enters in the trapped region, and it can happen before

t = toff . Namely, when toff is sufficiently large, the particle is trapped but is automatically

released; thus, in the steady state, the particle cannot remain in the trapped region. This is

because the downward ICEO flow at the beam edge position can no longer be accumulated

in the chamber region (trapped region) because of the stoppage of the beams in the steady

state, as explained in detail in Appendix B1. Furthermore, for the same reason, tw saturates

at a large toff when V0 is large, as shown in Fig. 3(e). Namely, the particle cannot be
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FIG. 3. Controllability of the keeping time and acceptable size of the particle catcher using

ICEO. Here, hm ≡ xmax
p − xt=0

p is the maximum catching distance and tw is the keeping time;

xt=0
p /w = 0.3, dmin/w = 0.05, rs = L − ye − Lecosθ = 0.14, L/w = 2.25, ye/w = 0.7, ν = 0.5,

G = 0.5 MPa, Le/w = 1.5, d/w = 0.07, θ = 20◦, w = 100 µm, T0 = 1 ms, µ = 1 mPa s, and

∆P = 0 Pa. Note that the lines [in (c) to (f)] are not analytical results but auxiliary conductors

for clarifying the threshold phenomenon, while the symbols show the numerical results obtained

by the BEM.
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trapped for a long time; instead, the particle is released automatically, after being caught

as explained in Appendix B1. Furthermore, Fig. 3(c) shows the dependence of hm on toff .

In Fig. 3(c), hm reaches a limiting value at a large toff . This is also because the deflection

of the beam reaches its limit. Thus, for a rigid beam with a larger G, we expect that the

limit hm will decrease under the same condition, e.g., hlimit
m /w ≃ 0.15 at G = 1 MPa and

V0 = 1.5 V.

Figures 3(b), 3(d), and 3(f) show that the acceptable particle size is controlled in the range

0.13 ≤ rc/w ≤ 0.17 by adjusting the applied voltage from V0 = 1.2 to 1.7 V. Specifically,

the particles of rp/w = 0.10 and 0.13 can enter the trapped region at V0 = 1.5 V and

toff , whereas the particles of rp/w = 0.15 and 0.18 cannot enter the trapped region under

the same condition. Furthermore, Figs. 3(d) and 3(f) show that the threshold size can

be changed by adjusting the voltage. Furthermore, as V0 decreases the maximum tw (hm)

becomes larger (smaller), as shown in Fig. 3(f) [in Fig. 3(d)]. This is because the decrease

in V0 causes the decrease in the velocity of the pop-up motion. Note that, in Fig. 3(d), the

curves of V0 = 1.5 and 1.7 V show a small discontinuity at around rp/w = 0.15 and 0.16. In

our understanding, near the threshold radius, the increase in radius causes a decrease in the

critical distance between the particle and beam edge surfaces, thus causing a rapid drawing

near the edge. However, the increase in radius generally causes the increase in the shear

stress ps = µVs/dc; this usually causes the delay of the drawing phenomenon. Namely, we

consider that the subtle balance causes the small discontinuity at rp ≃ rc. In fact, in the

calculation of Fig. 3(d), the particle of rp = 0.16 starts the downward motion faster than

the particle of rp = 0.1575 under the condition V0 = 1.7 V.

Figure 4 shows the dependence of rc on V0. Here, the threshold particle radius rc is

defined as the particle radius that satisfies the condition that hm ≥ 0.1. Furthermore, the

triangles, circles, and squares (dashed, solid, and dotted lines) show the numerical results

obtained by the BEM [the analytical results obtained using Eq. (9)] at G = 1.0, 0.5, and

0.2 MPa, respectively. In Fig. 4, our model in Appendix B2 fairly explains the dependence

of rc on V0 for the rigid beams of G = 0.5 and 1.0 MPa, although it does not explain

quantitatively the behavior of the small rigidity beam of G = 0.2 MPa since our analytical

model does not consider the large diffraction in confined space. For example, the large

diffraction due to the small rigidity results in a small gap distance between the beam edge

and the upper wall, and it significantly increases the flow resistance for the drawing flow.
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lines) show the numerical results obtained by the BEM [the analytical results obtained using Eq. B4]

at G = 1.0, 0.5, and 0.2 MPa, respectively; xt=0
p /w = 0.3, dmin/w = 0.05, rs = L− ye − Lecosθ =

0.14, L/w = 2.25, ye/w = 0.7, ν = 0.5, Le/w = 1.5, d/w = 0.07, θ = 20◦, w = 100 µm, T0 = 1 ms,

µ = 1 mPa s, and ∆P = 0 Pa.

Thus, hm decreases; furthermore, as explained in Sec.II-D, the accepted volume results

from the volume expansion of the chamber region due to the upward motion of the beam,

and thus the large volume particle of large radius cannot enter the chamber region from

the beginning. Namely, we think that, by considering the hydrodynamic behaviors near

the upper electrode, the model will improve significantly in the future, whereas our model

probably will not improve significantly even if we consider the nonlinear bending effect,

since the problem is the second issue. Thus, analytically, a lot of challenging work still

remains to improve the catching theory; however, our simple model is useful for predicting

the acceptable radius of the particle catcher, as the first step.

C. Catching and releasing motions in the stream

Figure 5 shows the catching and releasing motions in the stream with the existence of the

pressure difference ∆P = P1 − P2 = 2 Pa. Namely, here, we demonstrate the catching and

releasing motions when there is net flow of the liquid along the device channel and therefore

the particle is carried away by the fluid as it would be the case in a real device. As an
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example, we set a particle of radius rp = 0.1w at (xp/w, yp/w) = (0.3, 2.0) at t/T0 = 0 when

V0 = 1.5 V, in Fig. 5(a), i.e., the particle moves from the left inlet of the channel. When

the particle is passing by the position of (xp/w, yp/w) = (0.3, 2.0), we apply a voltage; thus,

the opening motion of the beams starts in the pressure flow, in Fig. 5(a). Then, the target

particle is drawn by the drawing flow into the chamber region from the main stream region,

reaching a point near the beam edge at t/T0 = 5 [Fig. 5(b)]. Note that the vortex flow near

the beam edge plays an essential role in drawing the particle located relatively far from the

center at x = 2.25. Then, as the beams move to the upper position, the particle is drawn

into the deeper chamber region; thus, the particle is caught at t/T0 = 10 [Fig. 5(c)]. Then,

the particle is popped up into the main stream region at t/T0 = 15 [Fig. 5(d)]. Note that the

pop-up mechanism of Fig. 5(d) is mainly due to the automatic pop-up mechanism by the

stoppage of motion, as mentioned in Sec. II-D, rather than to the pop-up mechanism due

to the returning motion of the elastic beam, since we just switch off the applied voltage at

t/T0 = 15 (i.e., toff/T0 = 15 ). After that, the target particle continues to flow in the main

stream again [Figs. 5(e) and 5(f)]. Figure 5 clearly shows that the catching and releasing

effect is not a specific effect that occurs for the particle at the center of xp/W = 2.25 but

a general effect that occurs for the particle flowing in the main stream, although there is a

finite effective region for catching.

Figure 6 shows the catching region in the main stream. In Fig. 6(a), particles are caught

and released when 2.0 ≤ yp/w at xp/w = 0.3. Furthermore, in Fig. 6(b), particles are

caught and released when 2.5 ≤ xp/w ≤ 3.5 at yp/w = 2.1. Thus, we find that particles

are caught and released in the range |(yc − yp)/w| ≤ 0.25 and (xc − xp)/w ≤ 0.25, where

(xc/w, yc/w) = (1 − Le

w
sin θ, 2.25) ≃ (0.5, 2.25) is the center position of the inlet of the

catcher; i.e., the effective catching radius is approximately rcatch ≤ 0.25. Here, compared

with the particle radius rp/w = 0.1 and the inlet radius rs = 0.14, the effective catching

radius is significantly large. Thus, we can catch particles easily without finding a suitable

pin-point position, i.e., our catching device works well in many different situations of the

system.
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(a) Flow field at t/T0 = 0
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(b) Flow filed at t/T0 = 5
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(c) Flow filed at t/T0 = 10
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(d) Flow filed at t/T0 = 15
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(e) Flow field at t/T0 = 20
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(f) Flow filed at t/T0 = 30

FIG. 5. Catching and releasing motions in the stream. Here, the initial position of the particle

is (xp/w, yp/w) = (0.3, 2.0), G = 0.5 MPa, V0 = 1.5 V. rp/w = 0.1, toff/T0 = 15, dmin/w = 0.05,

rs = L− ye − Lecosθ = 0.14, L/w = 2.25, ye/w = 0.7, ν = 0.5, Le/w = 1.5, d/w = 0.07, θ = 20◦,

w = 100 µm, T0 = 1 ms, µ = 1 mPa s, and ∆P = P1 − P2 = 2 Pa.

IV. DISCUSSION

A. Importance of our findings

We first propose a microfluidic particle catcher using ICEO and examined it theoretically

in this paper. In particular, we find that, using ICEO a pair of conductive elastic beams

having a face-to-face structure can withdraw a target particle from the main stream of a

channel into the device region, keep a controlled period, and then release it into the main

stream again (Fig. 1). Furthermore, we find that we can change the acceptable particle

size of the catching device dynamically by changing the applied voltages. As pointed out

by several researchers [13, 14, 29, 30], the catching and releasing motions are useful for

future microfluidic biomedical applications. For example, although usually the microfluidic
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FIG. 6. Analysis of catching region. From the analysis, we can estimate that the catching region

of our device is approximately at 0.25 ≤ xp/w ≤ 0.35 and 2.0 ≤ yp/w ≤ 2.25 for the stream

of ∆P = 2 Pa. Here, G = 0.5 MPa, V0 = 1.5 V, rp/w = 0.1, toff/T0 = 15, dmin/w = 0.05,

rs = L− ye − Lecosθ = 0.14, L/w = 2.25, ye/w = 0.7, ν = 0.5, Le/w = 1.5, d/w = 0.07, θ = 20◦,

w = 100 µm, T0 = 1 ms, µ = 1 mPa s, and ∆P = P1−P2 = 2 Pa. Furthermore, the symbols show

the numerical results obtained by the BEM.

separation technique requires many channels with different diameters as well as many pumps

[31], the proposed particle catcher may provide a simple system that diagnoses a target cell

selectively at a high processing speed. Note that different from magnetic cilia that need a

large coil, our proposed device can be miniaturized since it functions at low applied voltages

(∼1 V) with simple structures, i.e., it enables the miniaturization of the entire unit including

the surrounding units. Furthermore, although the catching and releasing motions in artificial
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cilia were demonstrated in previous studies [13, 14, 29, 30], external force was assumed as

a given parameter. Thus, our analysis is important since it provides for the first time basic

predictions in the device level. Furthermore, the size selectivity in Ref. [14] is static (i.e.,

the acceptable size is determined by the given parameter), whereas our proposed device has

dynamic selectivity. Thus, our proposed device is definitely important for future systems in

controlling the whole system at will.

B. Merits of a movable polarizable electrode

By using the direct connection between the lower electrode and the conductive elastic

beam, the typical zeta potential of the edge position of the beam becomes comparable to

the applied voltage and thus we can expect a large deflection of the beams, as mentioned in

Ref. [23]. Since the polarizable part is the electrode, the configuration basically belongs to

the ACEO configuration. Thus, this configuration has a merit of the ACEO configuration.

However, different from ordinary ACEO, it is characterized by the movable polarizable elec-

trode, i.e., it includes both ACEO and ICEO aspects and thus is more complex. Namely,

the ICEO phenomenon for a movable polarizable electrode consists of four phenomena: (i)

the electrophoretic phenomenon at the natural beam position, (ii) the mixed phenomenon

consisting of electrophoresis and electroosmosis during an upward beam motion, (iii) the

electroosmotic phenomenon at the maximum beam edge position, and (iv) the elastic phe-

nomenon during a downward beam motion.

C. Justification of 2D calculations

Although we are inspired by the motion of cilia, our catching device is different from cilia

in that it has a pair of conductive elastic plates with a face-to-face structure. Namely, the

novelty of this study comes not from the cilialike structure but from the new device structure,

i.e., the flapping of the face-to-face plates provides a series of catching and releasing functions

above the rectangular inlet of the catching device. Thus, our main problem is intrinsically

two-dimensional (2D) and our 2D calculations are justified as a first approach, although the

problems that analyze the arbitrary-shaped 3D flowing objects might be interesting in the

future. Furthermore, since the continuous process for spherical glass beads [11] is important
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in the novel microfluidic systems, as introduced in Sec. I, we assume the 2D particle along

with the 2D face-to-face elastic beam structure. Here, although some researchers may claim

that the 2D particle is not a spherical particle but a cylinder, the assumption of the 2D

particle is justified since we use it only for evaluating the size selectivity of the device, i.e.,

since the main mechanism of size selectivity for particles results from the length (2rc) of the

inlet of the open state of the catcher [see Sec. II.G], the 2D simulation of the catcher using

the 2D particle of radius rp clarifies the acceptable size for the 3D spherical particle at least.

Furthermore, in a microfluidic setup, anisotropic particles such as cylindrical particles often

change their orientation, from being parallel to the flow to being perpendicular to the flow

[32]; thus, our 2D simulations indicate that the cylindrical particles of the length (> 2rc)

are unlikely accepted by our catching device, whereas the cylindrical particles of the length

(< 2rc) are also caught by our device. Furthermore, to focus on the main mechanism of

size selectivity due to geometrical condition, we model the particle as an elastic material

having the same ν and G as the beams, and the electric permittivity is assumed to be

the same as that of the water, as the first step. Namely, by imposing that the particle

has the same permittivity as the liquid, we neglect the effect of the particle on the electric

field in our setup, i.e., we neglect any possible effect of the polarization charge induced

by the electrodes on the particle in the functioning of our catching device. Note that this

assumption is consistent with our first aim; thus, our 2D simulations are justified as a first

attempt.

V. CONCLUSIONS

We propose a microfluidic catcher using induced charge electro-osmosis and numerically

examine its performance. By multiphysics simulations using an implicit strongly coupled

calculation method between a fluid and an elastic structure along with the thin double layer

approximation, we find the following: (1) Particles are drawn into the device region by the

vortex flow due to the upward motion of elastic beam edges and popped up by the reverse

vortex flow due to the downward motion of the edges in the transient state and by the

ICEO flow itself in the steady state. (2) The predicted drawing distance (0.2 ≤ hm/w ≤

0.3) and detention time (5 ≤ tw/T0 ≤ 15) are sufficiently large to use the catching and

releasing motions in a microfluidic system. (3) The acceptable threshold radius is controlled
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FIG. A.0. (Color online) Bases of ICEO [15] and ACEO [16]. 3: electric double layer.

dynamically (0.12 ≤ rc/w ≤ 0.17 ) by changing the applied voltage (V0 ≃ 1.2 to 1.7 V).

(4) The dependence of the acceptable threshold radius on applied voltage is explained fairly

well by the simple theory that considers a linear elastic beam theory with the ICEO force.

We believe that our device is useful for operating various substances continuously in a

microfluidic channel.
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Appendix A: Bases of ICEO and ACEO

1. ICEO for an isolated polarizable object (“ICEO” configuration)

Figure A.0(a) shows a typical “ICEO” configuration [15] characterized by the isolated

polarizable object. In Fig. A.0(a), a circular metal cylinder of radius a in electrolyte (typi-

cally water) is polarized by an external electric field E0 and forms two electric double layers

consisting of the positive and negative induced charges and counterion clouds on both sides

18



of the metal cylinder. Thus, quadrupolar vortex flows are generated by the interaction of the

electric double layer and the tangential electric field Es. Here, the thickness of the electric

double layer (1 to 1000 nm) is often much smaller than the characteristic length. Thus,

the generated electroosmotic flow velocity of the outer edge of the electric double layer is

called a slip velocity (Vs), even though the zero velocity boundary condition is assumed on

a real metal surface (i.e., the inside edge of the double layer). By using the Helmholtz-

Smoluchowski formula assuming a thin double-layer approximation, we can describe Vs as

Vs = −ϵζ

µ
Es, (A1)

where ϵ (∼80ϵ0) is the dielectric permittivity of the solvent (typically water), ϵ0 is the vacuum

permittivity, µ (∼ 1 mPa s) is the viscosity, and ζ (= ϕi − ϕo) is the zeta potential. Note

that ϕi (= 0) and ϕo are the potentials of the inside and outside edges, respectively, of the

electric double layer. Thus, by using the no-flux electrostatic boundary condition, we can

calculate ϕo and Es around the circular cylinder as ϕo = 2E0a cosφ and Es = −2E0 sinφ

[33]. Therefore, the Vs of the circular cylinder is described as Vs = 2U0 sin 2φ, where

U0 =
ϵaE2

0

µ
(A2)

is a represented flow velocity of ICEO. Interestingly, as predicted by Bazant and Squires

[15] and experimentally examined by Gangwal et al. [25], the Janus particle that has both

metal and insulator surfaces can move in electrolyte at the velocity

Ujanus =
9

64
U0, (A3)

because of the unbalanced ICEO flows, i.e., the generated force due to the ICEO flow is

Fjanus = 6πaµ
9

64
U0 ∼ πaµU0, (A4)

on the basis of Stokes’ law. Note that, under the low Reynolds number condition, the

given total force of the object always balances with the flow resistance; this situation is

very different from that in the ordinary world. Furthermore, Stokes’ law tells us that, when

Fjanus induces Ujanus in the same direction as Fjanus, the opposite force (due to the flow

resistance), the strength of which is proportional to Ujanus, is generated and it balances with

Fjanus. Here, Fjanus is the force to fix the particle as a result of the action-reaction law

concerning the Coulomb force that generates an ICEO flow.
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2. ICEO for a fixed polarizable electrode (“ACEO” configuration)

Figure A.0(b) shows a typical “ACEO” configuration [16] characterized by a fixed polar-

izable electrode. In Fig. A.0(b), by applying an ac voltage of amplitude V0, the electrode

surface is polarized and has a positive or negative charge; then, the counterions are at-

tracted to the surface and form an electric double layer. Thus, by the interaction between

the electric double layer and the tangential electric field Es, a pair of electro-osmotic flows

are generated in the opposite directions on both electrodes. Here, the background physics

of ACEO is the same as that of ICEO configurations. However, practically, the ACEO con-

figuration has some merits over the ICEO configuration. Firstly, since half of the applied

voltage is screened by the counterions in ACEO, we can take a much larger zeta potential

(i.e., ζaceo ≃ V0/2 and typically 0.5 V) than that in ICEO configurations (i.e., ζ iceo ≃ 2aE0

and typically 0.1 V), where W is the distance of the parallel electrodes that generate the

electric field E0 = V0/W ; the typical V0, a, and W are 1 V, 0.1 W , and 100 µm, respec-

tively. Secondly, since we need not put polarizable objects between electrodes in ACEO,

we can also take a much larger tangential electric field (Eaceo
s ≃ V0/2rg) than that in ICEO

configurations (Eiceo
s ≃ V0/W ) by setting a small 2rg (≪ W ), where 2rg is a gap distance

between planar electrodes. Thus, the slip velocity of ACEO is expected to be

V aceo
s ≃ (

1

4rg
)
ϵV 2

0

µ
, (A5)

and under the condition that 4rg ≪ W and 2a/W < 1, it is much larger than that of ICEO

configurations,

V iceo
s ≃ (

2a

W 2
)
ϵV 2

0

µ
. (A6)

Furthermore, since the capacitance CD and the accumulated charge qs of the electric

double layer on the electrode for a unit area at V0 are described as CD = ϵ/λD and qs =

CD(V0/2), respectively, Eq. A6 is rewritten as [16]

V aceo
s ≃

λD(
ϵ

λD
)(V0

2
)Es

µ
≃ λDqsEs

µ
≃ λDf

aceo
c

µ
, (A7)

where λD is the Debye screening length and faceo
c = qsEs is a Coulomb force parallel to the

electrode surface for a unit area. Note that, because of the action-reaction law, the reaction

force

faceo
r = −faceo

c = −µ
V aceo
s

λD

(A8)
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acts on the electrode in the opposite direction, i.e., the force of ICEO is equivalent to the

shear stress characterized by Vs and λD in the double layer and the opposite force acts on

the electrode, although in the ordinary ACEO configurations the electrodes are always fixed

in space.

Appendix B: Analytical models

1. Model of catching and releasing effects using a face-to-face elastic beam con-

figuration

From the argument of Eq. A8, if we assume that the dominant ICEO (ACEO) force only

acts on the beam edge of thickness d, the motion of the single elastic beam is described by

the kinetic equation

faceo
r Led−Rrθ̇ − Te ≃ 0 (= Ibθ̈), (B1)

where θ̇ is angular velocity, θ̈ is angular acceleration, Rr is the resistance coefficient for

rotation, Te is the elastic torque of the beam, Ib is the inertia moment of the beam, and Le

is the beam length. Namely, (1) since Te ≃ 0 in the initial state, the ACEO torque balances

only with the rotational flow resistance (Rrθ̇), i.e., the ACEO torque is mainly used for

opening the beams and the fluid flow velocity due to ACEO is small. (2) During the upward

motion, the ACEO torque balances with the rotational flow resistance and elastic torque.

Thus, as the elastic torque increases, the angular velocity of the beams decreases and the

fluid flow velocity due to ACEO becomes large; the ACEO torque is used both for opening

the beams and for the generation of the drawing flow into the chamber region enclosed

partially by the face-to-face beams. Note that the upward motion of the beams helps the

accumulation of fluid (and a particle) by the drawing flow; this mechanism enables a catching

effect due to the face-to-face beam configuration. (3) In the halt state, the ACEO torque

balances only with the elastic torque, i.e., all the ACEO torque is used for the generation

of the pop-up fluid flow at the center position since the downward ICEO flow at the beam

edge position can no longer be accumulated in the chamber region because of the stoppage

of the beams. Thus, an automatic releasing effect occurs. (4) During the downward motion,

the elastic torque balances with the rotational flow resistance. This situation also causes

the pop-up fluid flow at the center, since the fluid in the chamber region is squeezed out
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by the downward motion of the elastic beams. Consequently, the catching and releasing

effects can be realized by the face-to-face configuration with the ICEO (ACEO) phenomena.

Moreover, in Fig. 1(d), the series of complex phenomena provide the ideal mechanism for

a novel high-throughput continuous processing method, i.e., a particle in the main stream

region can be drawn into the chamber region between the beams and stay during a short

period in the region; then, it is popped up into the main stream region again.

Note that, in Eq. B1, faceo
r is not a body force such as a Coulomb force of the double layer

but a reaction force fixed on the beam, as a result of the action-reaction law, as explained

in Appendix A2. Furthermore, for the calculation of the rigid particle in a fluid at small

Re, we usually consider the force and torque balance equations; i.e.,
∫
Sp

fdl+F ext
t = 0 and∫

Sp
x× fdl+T ext

t = 0, where Sp denotes the surface of the particle, F
ext
t is a total external

force (such as DEP and repulsion forces), and T ext
t is a total external torque (such as DEP

and repulsion torques); the balance equations make sure that the net force and torque are

zero at F ext
t = T ext

t = 0. However, since our problem is the FSI problem, we need to

consider Eq. (4) based on the action-reaction law on the boundary between fluid and solid.

Implicitly, we also consider that fe = fwall at x/w = 1 on the basis of the action-reaction

law. Thus, all of the surface tractions around the beam locally balance with the surrounding

surface tractions of the fluid and wall, although it is a common situation of the stress-strain

calculations of elastic (solid) objects.

2. Model of the size-selectable separation effects

By considering the Lorentz reciprocal theorem [23, 34, 35], we approximate an effective

ICEO force of unit thickness at xp in the upper direction of the beams in the presence of

an electric field as

F ICEO ≃ µV edge
s , (B2)

where V edge
s (≃ ceUw) is the edge slip velocity, Uw = ϵwE2

0/µ is a characteristic velocity of

ICEO of the channel, and ce (≃ 3) is a shape factor related to the strength of the local

electric fields at the beam edge. By considering the linear beam theory, we can approximate

the deflection of the beams [23] as

δbeam ≃ cAF
ICEOL3

e

3EI
, (B3)
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where E = 2G(1 + ν) is Young’s modulus, G is the rigidity modulus, ν is the Poisson ratio,

I = d3/12 is the moment of the inertia for the rectangular cross section of unit thickness, and

cA(≃ 12.5) is the correction coefficient for a real nonlinear problem. From the geometrical

conditions, we obtain an acceptable threshold particle size as

rc ≃ rs + re − ra, (B4)

where rs = L − ye − Le cos θ is a static hole radius, re = δbeam sin θ is an expanded hole

radius due to a ICEO flow, and ra = 0.8dmin is an apparent repulsive radius.

3. Model of a repulsion force

We phenomenologically assume that the repulsive force between the elastic beams and

the target particle is

fbp = −f0
dmin − dbp

dbp

rbp
|rbp|

(at dbp < dmin), (B5)

where rbp = rp − rb, rp and rb are position vectors of the particle and beam surfaces, dbp =

|rbp| is the distance between the particle and beam surfaces, dmin (= 0.05w) is an effective

length of the repulsion force, and f0 (=20 Pa) is a proportionality constant. Note that Eq. B5

is implemented by considering that frep = fbp in Eq. (4) in the numerical calculations. Thus,

implicit and stable calculations are realized even if we use this phenomenological force. In

other words, since Eq. B5 is implemented so that it realizes a complete local force balance

among f ′
e, f

′
e, frep, and ff at each time step at low Reynolds numbers, it prevents the

unphysical invasion of the particle into the beam region. Thus, Eq. B5 is essential to

calculate the threshold of particle size, and without it the calculation of near threshold will

break down.

Similar repulsive forces are commonly used for the calculation at low Reynolds numbers to

prevent mechanical contact [36, 37]; for example, Saintillan et al. [37] performed multifiber

simulations by assuming the strong short-range repulsive forces between fibers. Although

the situation is different from our problem, the repulsive force can be described as fbp =

− f0
dmin

e
−dbp/dmin

1−e
−dbp/dmin

n at dbp < dmin. Thus, when dbp = |rdp| approaches zero (i.e., the particle is

moving close to the beam surface), |fbp| tends to approach infinity in both the above equation

and Eq. B5; thus, the particles never touch the beam surface. Although the behavior is
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unphysical, it is customary to use these repulsive forces to prevent the mechanical contact

causing a serious breakdown of the numerical calculations. However, the repulsion force is

large near the surface (0 < dbp ≪ dmin) but small at dbp ≃ dmin; thus, it requires an extremely

small time step. In addition, the artificial repulsive force has unpreferable infinite effective

distance. Therefore, in Eq. B5, we limit the area of influence within dbp < dmin and avoid the

generation of the extremely large repulsive force. As a result, with a reasonable time step

period, we could prevent the particle from approaching the beam. Specifically, the condition

dmin = 0.05w and f0 = 20 Pa is selected so that it prevents the contact between the particle

and the fluid within a suitable calculation time. Of course, a small dmin/w is preferable but

it has a trade off, i.e., a long calculation time. Thus, our calculations are justified as a first

approach. Furthermore, when the particle of rp ≃ rc passes the inlet of the catcher, the

distance between the beam edge and the surface of the particle is very small. Thus, if we

select the critical distance dc as dmin/2, the shear stress is estimated as ps ≃ µVs/dc = 13.3

Pa at V0 = 1.19 V and w = 100 µm, and the ps is expected to be compatible with the

approaching pressure, since |fbp| = f0 = 20 Pa at dbp = dmin/2 = 0.025w in Eq. B5. Thus,

to prevent serious contact, the conditions dc = 0.025w and f0 = 20 Pa are reasonable as a

first attempt, even though dc = 0.025w may tend to underestimate the threshold value rc.
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