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Abstract

Microorganisms can generate net flows effectively even in a low Reynolds number regime by

using asymmetric beating motion of hair-like cilia. Here, we demonstrate a high-speed novel

artificial cilium driven by the heat engine using a self-propelled swing motion in a nucleate- to

film-boiling regime. In particular, we report the asymmetrical motion of the thermal cilium with

an asymmetric joint structure. We believe that our thermal cilium opens a new way to develop a

microfluidic circuit.
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I. INTRODUCTION

The pressure-driven flow decreases rapidly as the size of a channel decreases. This problem

should be solved to achieve a high integration of microfluidic circuit, such as a Lab-on-a-chip

and micro total analysis systems. One clue is cilium or its kinetics because microorganisms

can generate net flows effectively even in a low Reynolds number regime by using asymmetric

beating motion or metachronal beating motion of hair-like cilia. Therefore, various studies

have been devoted for this issue; e.g., Eloy and Lauga numerically reported kinematics of the

most efficient cilium [1]. Furthermore, various artificial cilia that mimic biological cilia have

been proposed and investigated [2–7]. For example, Evans et al. demonstrated magnetically

actuated nanorod arrays in water [3]. Hanasoge et al. demonstrated microfluidic pumping

of ∼1.35 mm/s by using asymmetric motion of magnetic cilia [4]. Toonder reported that

electrostatic cilia using curled beams can generate substantial flow of ∼0.6 mm/s in silicon

oil [5]. Masuda et al. reported artificial cilia using a self-oscillating polymer brush surface

[6]. Sugioka theoretically demonstrated that artificial cilium using induced charge electro-

osmosis works in water under AC electric fields [7]. However, artificial cilia using thermal

actuator have not been proposed yet to the best of our knowledge. Therefore, in this study,

we demonstrate a novel artificial cilium driven by the heat engine [8] using a self-propelled

swing motion in a nucleate- to film-boiling regime. In particular, we report the high-speed

asymmetrical motion of the thermal cilium with a joint structure.

II. EXPERIMENTAL METHOD

Figure 1 shows an experimental setup for the thermally driven cilium having an asym-

metric joint structure. As shown in Fig. 1(a), we consider a pair of J-shaped hooks, a

micro-heat engine, and the joint structure consisting of three beam elements (m0, m1,

and m2) with the joint point Xi (i = 0 to 3), where Lm,0 = |X0 − X1| = 8.42 mm,

Lm,1 = |X1 −X2| = 4.00 mm, Lm,2 = |X2 −X3| = 6.89 mm, and L =
∑2

i=0 Lm,i = 19.31

mm. Note that Xi = (Xi, Yi, 0) is a projection point on Z = 0 plane. Further, the joint

structure was attached to the heat engine and then the heat engine was placed on a pair of

J-shaped hooks in water (milli-Q, 18.2 MΩcm). Figure 1(b) shows the heat engine consisting

of a U-shaped nichrome heater and a pair of bent copper wires connected to the heater. Here,
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FIG. 1. (Color online) Experimental setup for the thermally driven cilium having a joint structure.

(a) Experimental Setup. (b) Structure of the micro-heat engine. (c) Three beam elements. (d)

Joint structure. (e) Photograph of the entire device. 1: U-shaped nichrome heater. 2: J-shaped

hook. 11: micro-heat engine part. 12: joint structure. Here, projection length and diameter of the

Cu wires are LCu (≃ 6.5 mm) and ϕCu (= 0.9 mm), respectively, whereas projection length, real

length, diameter, and width of the U-shaped heater are Lh (= 20 mm), lh (= 40 mm), ϕNiCr (= 0.26

mm), and Lw (= 10 mm),respectively.

projection length and diameter of the Cu wires are LCu (≃ 6.5 mm) and ϕCu (= 0.9 mm),

respectively, whereas projection length, real length, diameter, width, and surface area of the

U-shaped heater are Lh (= 20 mm), lh (= 40 mm), ϕNiCr (= 0.26 mm), Lw (= 10 mm),

and A (= πϕNiCrlh = 32.7 mm2), respectively. Note that the heat engine was placed on

the J-shaped hooks with the heater up and the Cu wires down by using the bent structures

and it shows a self-propelled swing motion due to the asymmetrical bubble pressure in the

nucleate- to film boiling regime [8]. Figure 1(c) shows the three beam elements (m0, m1, and
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m2) made of wires of diameter ϕm (= 0.23 mm), whereas Fig. 1(d) shows the joint structure

connected to the one-side of the Cu wire of the micro-heat engine. As shown in Figs. 1(c)

and 1(d), m0 and m1 have the deformed oval ring structures that prevent deformation in

the x direction. In other words, the oval rings provide asymmetric flexibility with the joint

structure; i.e., the joint structure is easy to bent in the −x direction but hard to bend in

the x direction [in Fig. 1(a)]. Furthermore, we set this thermal cilium having the joint at

rest. Then, upon applying a DC electric voltage V0 to the nichrome heater (with a current

I0 and a power P0), we observed a beating motion of this cilium in water under the heat

flux q (= P0

A
) of the heater. Subsequently, we determined the position X3(t) = (X3, Y3) of

the tip of the joint structure at time t by using video data of size 640 × 480 with a frame

rate of 240 fps. Such measurements were repeated Nf times (typically, Nf = 3) under the

same conditions and labeled N = 1 to Nf to differentiate them. Moreover, Fig. 1(e) shows

the photograph of the entire device. From Fig. 1(e), we can see the relative positions of

the pair of J-shaped hooks, joint structure, and heat engine. Note that the entire device

was immersed in water and driven by the pressure of the bubbles; i.e., the heat engine part

placed in water.

III. PRINCIPLE OF THE HEAT ENGINE AND ASYMMETRIC MOTION

Figure 2 shows the principle of the U-shaped heat engine and the asymmetric motion of

the joint structure. Although the principle of the heat engine used here is the same as that

of the self-propelled swing motion due to the growing instability on heat transfer [8], we

briefly explain the principle for reader’s convenience. That is, as shown in Fig. 2(a), the U-

shaped nichrome wire is initially stopped since T1 = T2(> T0), where T1 and T2 are the left-

and right-side temperature of the nichrome wire, respectively, and T0 = 100 ◦C is a boiling

temperature of water. However, because the generation of bubbles at T > T0 is a stochastic

phenomenon, the left average pressure due to the left-side bubbles is slightly different from

the right average pressure due to the right-side bubbles and thus the U-shaped wire moves

slightly. Once the motion starts, the motion is growing until the driving force balances with

the viscous force, because the temperature of the surface in the direction of travel becomes

lower than that in the opposite direction and it increases the pressure difference due to the

generation of bubbles, as shown in Figs. 2(b) and 2(c). In other words, an initial constant
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FIG. 2. (Color online) Principle of the heat engine and asymmetric motion. (a) Initial state. (b)

Motion in the CCW direction. (c) Motion in the CW direction. (d) Motion in the unbendable

(CCW) direction. (e) Motion in the bendable (CW) direction.

heat flux changes into variable once the U-shaped heater moves, because the heat flux at

the surface in the direction of travel is different from that in the opposite direction and it

depends on the angular velocity. Thus, the motion due to the instability is accelerated and

reaches the state of the self-propelled swing motion. Please see the reference [8] for the

detail mathematical descriptions. Note that the term “self-propelling” is normally used for

a motion induced by an internal energy of a system. Thus, the artificial cilium in the present

study is not self-propelling in the narrow sense. However, the energy that cannot be used as

it is in the nonequilibrium dissipation system is considered to be a kind of “internal energy”.

Thus, we expand the concept of “self-propelling”, because the motion of our thermal cilium

is induced by internal motion due to the fluctuation of the average bubble pressure.

Furthermore, Figs. 2(b) to 2(e) show the principle of asymmetric motion due to the
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joint structure. Here, the planes of the ovals are perpendicular to the xy-plane. Thus, on

the one hand, the ovals prevent deformation in the x direction, when the U-shaped heater

generates force fb and torque Tb due bubbles in the counter clockwise (CCW) direction, as

shown in Figs. 2(b) and 2(d). On the other hand, as shown in Figs. 2(c) and 2(e), the joint

structure deforms when the U-shaped heater generates fb and Tb in the clockwise (CW)

direction. Note that viscous force fv works to pull the joints elements away from the rings

when the U-shaped heater generates fb and Tb in the CW direction, while fv works to push

the joint elements against the rings when the U-shaped heater generates fb and Tb in the

CCW direction.

IV. EXPERIMENTAL RESULTS

Figure 3 shows the photographs of the observed typical asymmetric beating motion of

thermally actuated cilium at t = 5.57, 5.60, 5.65, 5.71, 5.76, and 5.78 s under the condition

that V0 = 11.6 V, I0 = 9.3 A, P0 = 107.9 W, R0 = 1.25 Ω, and q = 3.3 MW/m2. As shown

in Figs. 3(a) to 3(c), large deformation of the beam (joint structure) is not observed when

the beam moves in the −x direction, whereas the large deformation in the −x direction is

observed when the beam moves in the x direction as shown in Figs. 3(d) to 3(f). Thus, the

motion in −x direction works as a forward stroke that pushes water strongly, whereas the

motion in x direction works as a recovery stroke that pushes water weakly. Here, the planes

of the oval rings are perpendicular to the xy-plane. Thus, they prevent deformation in the

x direction as shown in Figs. 3(a) to 3(c), whereas they do not prevent deformation in the

−x direction as shown in Figs. 3(d) and 3(e).

Figure 4(a) depicts the trajectory of X3 at t = 0 to 7.46 s for N = 1, which corresponds

to the beating motion in Fig. 3. From Fig. 4(a), we find that large asymmetricity exists

between the forward and recovery strokes. Furthermore, in Fig. 4(a), the trajectory starts

from the origin (0, 0), changes from a small loop to large loops, and reaches a steady state, as t

increases. From this behavior, we find that a large beating motion results in large asymmetry

of outgoing and return routes, which is quantitatively defined as |Y3(x3)
U>0 − Y3(X3)

U<0|,

where U ≡ |dX3

dt
| is the velocity of the edge of the joint structure. Note that from the

overlap of lines around X3 ∼ −2.9 mm shows a large fluctuation of the trajectory at the

steady state. Figures 4(b), 4(c), and 4(d) show the dependences of U , X3, and Y3 on t.
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(a) t = 5.57 s (b) t = 5.60 s (c) t = 5.65 s

(d) t = 5.71 s (e) t = 5.76 s (f) t = 5.78 s

FIG. 3. (Color online) Photographs of the typical asymmetric motion of thermally actuated cilium.

Here, N = 1, V0 = 11.6 V, I0 = 9.3 A, P0 = 107.9 W, R0 = 1.25 Ω, and q = 3.3 MW/m2; ϕm = 0.23

mm, Lm,0 = |X0 −X1| = 8.42 mm, Lm,1 = |X1 −X2| = 4.00 mm, Lm,2 = |X2 −X3| = 6.89 mm,

and L =
∑2

i=0 Lm,i = 19.31 mm.
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FIG. 4. Characteristics of the asymmetric motion of thermally actuated cilium. Here, N = 1,

V0 = 11.6 V, I0 = 9.3 A, P0 = 107.9 W, R0 = 1.25 Ω, and q = 3.3 MW/m2.

From Fig. 4(b), we find that the maximum velocity of U is approximately 6 cm/s in the

initial stage (0.2 < t < 1). Furthermore, from Fig. 4(b) to 4(d), we find that the maximum

velocity is obtained at X3 ∼ 0 during the recovery stroke.

Figure 5(a) shows the maximum trajectories at q = 1.9 to 3.3 MW/m2. Here, the

maximum trajectory is defined as the trajectory of one cycle when ∆Ya ≡ Y max
3 − Y min

3 is

maximum at each heat flux, where Y max
3 and Y min

3 are the maximum and minimum values

of Y3 at the each heat flux. From Fig. 5(a), we find that large trajectories are observed at

q ≥ 2.3 MW/m2 and ∆Ya shows the asymmetricity of the beating motion of the cilium.

Figures 5(b), 5(c), and 5(d) show the dependences of ∆Ya, Umax, and fb, respectively on q,

where Umax is the maximum value of U and fb is the frequency of the beating motion. As

shown in Fig. 5(b), ∆Ya increases monotonically at q > 2 W/m2 as q increases, whereas

Umax ∼ 12 cm/s at q ≥ 2.8 W/m2 as shown in Fig. 5(c). Furthermore, as shown in Fig. 5(d),

fb ∼ 4.5 Hz when we observe a significant beating motion.
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FIG. 5. (Color online) Dependences on q for L = 19.31 mm. Here, Nf = 3,Lm,0 = |X0−X1| = 8.42

mm, Lm,1 = |X1 −X2| = 4.00 mm, and Lm,2 = |X2 −X3| = 6.89 mm.

V. DISCUSSION

A. The threshold and miniaturization of the simple pendulum having a thin film

heater

Although we use a U-shaped heater to demonstrate our concept, it can be replaced by a

thin film heater. Thus, to miniaturize our device, we consider the pendulum having a thin

film heater on the surface, as shown in Fig. 6(a). Here, the pendulum is placed in water of

density ρw ≃ 1000 kg/m3 and the length, width, thickness, volume, and density are l, w,

d, V = lwd, and ρp (2330 Kg/m3 for Si), respectively. In this case, similar to the previous

9



(a) Pendulum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10  12  14  16  18  20  22  24

AD LC
w

 (
m

m
)

∆T (K)

(b) Two parameter (w vs. ∆T ) phase

diagram

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5

AD LC

w
 (

m
m

)

q (MW/m2)

(c) Two parameter (w vs. q) phase

diagram

FIG. 6. (Color online) The threshold of the simple pendulum having a thin film heater.

study [8], the government equations of the pendulum are described as follows:

Iθ̈ ≃ −m′gl

2
sin θ + Tb − Tv, (1)

Tv ≃ 12µl(
l

2
)2θ̇ = 3µl3θ̇, (2)

Tb ≃
l2w

2
∆PRaRb, (3)

∆P = Ps(T0 +∆T )− Ps(T0), (4)

Ps ≃ pae
− r0

RT , (5)

Ra = (1− e−
l|θ̇|
2uc )

θ̇

|θ̇|
, (6)

Rb = (1− e
−∆T
∆Tc )8, (7)

where I = m′l2

3
is the moment of inertia, m′ = (ρp− ρw)V is an effective mass, Tb and Tv are

the torques due to bubbles and viscosity, respectively, ∆T is an average surface temperature

difference of the heater (which is measured from T0 = 100 ◦C), ∆P is an intrinsic pressure

difference, Ps is a saturated vapor pressure determined by the Clausius-Clapeyron equation

[with the constant pa = 0.1013 MPa, the evaporation latent heat r0 = 2256.9 kJ/kg, and

the gas constant R = 0.4616 kJ/(kg K) of water], Ra is the availability rate of the force

difference due to the broken symmetry of the right and left temperature resulting from the

non-zero value of θ̇, Rb is an effective surface bubble coverage rate, uc ≃ 5 mm/s is a critical

velocity causing a significant broken symmetry, ∆Tc ≃ 60 K is the Leidenfrost temperature,
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and θ is an angle of the pendulum measured from the vertical direction. By transforming

Eq. (1), we obtain

θ̇ = ωp, (8)

ω̇ = −C sin θ + fp(θ, θ̇), (9)

C =
3g

2l
, (10)

f(θ, θ̇) ≃
l2w
2
∆PRaRb − 3µl3θ̇

1
3
m′l2

=
w∆PRaRb − 18µlθ̇

2m′ . (11)

Here, since Ra ∼ l
2uc

θ̇ at l|θ̇| ≪ 2uc, we obtain w∆PRaRb − 18µlθ̇ ∼ (w∆PRb
l

2uc
− 18µl)θ̇

for a small motion of the pendulum. Thus, the condition for the amplified oscillation to

start is written as

w ≥ 36µuc

∆PRb

. (12)

Therefore, we find that we can miniaturize our device under the condition of Eq. (12); i.e.,

our device can be miniaturized regardless of the length. Furthermore, Eq. (12) provides the

threshold from a dynamical system point of view. That is, Figs 6(b) and 6(c) show the

two phase diagrams denoting amplitude death (AD) state to limiting cycle (LC) state for

w vs. ∆T and for w vs. q, respectively. Here, similar to the previous study [8], we use the

formulation that q = ( ∆T
∆TA

)3qA, where ∆TA = 20 K and qA = 3.81 MW/m2. From Figs 6(b)

and 6(c), we find that the threshold width w0 =
36µuc

∆PRb
is approximately 50 µm at ∆TA ≃ 20

K and qA ≃ 4 MW/m2.
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B. Characteristics of the miniaturized simple pendulum using the self-propelled

micro heat engine
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FIG. 7. Characteristics of the miniaturized simple pendulum using the self-propelled micro heat

engine. Here, we assume that m′ = 0.266 µg, w = 100 µm, and d = 10 µm.
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Figure 7 shows the characteristics of the miniaturized simple pendulum using the self-

propelled micro heat engine under the condition that m′ = 0.266 µg, w = 100 µm, and

d = 10 µm. Specifically, Figs 7(a), 7(b), and 7(c) show the dependences of θ, ω, and

U (= ωl) on t, respectively, at l = 200 µm and ∆T = 19.0 K (q = 3.27 MW/m2). As shown

in those figures, we find that θmax = 0.48 rad, ωmax = 51, 6 rad/s, Umax = 10.3 mm/s,

and f0 = 43.1 Hz; i.e., the pendulum have the enough performance even for a small length.

Furthermore, we find that the motion of the pendulum becomes steady within two cycles

(within ∼0.01 s); i.e., the response time of the miniaturized device is very short. Moreover,

we find that the wave form of ω(t) [U(t)] is different from the sinusoidal wave. That is,

ω increases rapidly but linearly up to the lowest point from ω = 0 at θ = −θmax. After

passing the lowest point, ω decreases gradually and becomes zero at θ = θmax. Similarly, ω

decreases rapidly but linearly up to the lowest point from ω = 0 at θ = θmax. After passing

the lowest point, ω increases gradually and becomes zero at θ = θmax. As a result, θ changes

linearly in the direction toward the lowest point, while θ changes gradually in the direction

to go up. This is because the effect of gravity is added to the propulsion force due to the

bubbles when the pendulum goes down, whereas the effect of gravity is subtracted from the

propulsion force. Furthermore, Figures 7(d), 7(e), and 7(f) show the dependences of θmax,

ωmax, and Umax on l, respectively, at ∆T = 18.8, 19.0, and 19.2 K (q = 3.16, 3.27, and

3.37 MW/m2). As shown in Figs. 7(d) and 7(e), θmax and ωmax increase as l becomes small;

i.e., the performance becomes large for the miniaturization of our device. Furthermore, as

shown in Fig. 7(f), Umax (= lωmax) becomes almost constant because ωmax increases rapidly

as l decreases; the performance of the velocity in a macro scale is maintained. Hence, the

performance of our device increases due to the miniaturization.
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C. Theory of a double pendulum using the self-propelled micro heat engine

The government equations of a double pendulum consisting of two beam structures

(Beams 1 and 2) of length l1 and l2 and of mass m1 and m2 in water are described as

I1θ̈1 ≃ −1

2
m1l1g sin θ1 +

1

2
l1f1 + l1T1 · q(θ1), (13)

I2θ̈2 ≃
1

2
l2(−T1) · (−q(θ2)), (14)

m2r̈2 = −m2gj − T1 + f2q(θ2), (15)

f1 = wl1∆PRaRb − 12µl1(
l1
2
θ̇1) (16)

f2 = −12µl2ṙ2 · q(θ2) (17)

r2 = l1p(θ1) +
1

2
l2p(θ2) (18)

p(θ) = sin θi− cos θj (19)

q(θ) = cos θi+ sin θj, (20)

where r2 is the center of gravity of Beam 2, T1 is the force that Beam 1 receives from Beam2

at the junction, −T1 is the force that Beam 2 receives from Beam1 at the junction, I1 =∫ l1
0
x2m1

l1
= 1

3
m1l

2
1 is a moment of inertia around the fixed point (origin), I2 =

∫ 0.5l2
−0.5l2

x2m2

l2
=

1
12
m2l

2
2 is a moment of inertia around the center of gravity of Beam 2, f1 is the force due to

bubbles and viscosity for Beam1, and f2 is the viscous force for Beam2. Here, we assume

that a self-propelled micro heat engine (thin film heater) is equipped only on Beam 1.

From Eq. (15), we obtain

T1 = −m2(r̈2 + gj) + f2q(θ2). (21)

Thus, we can calculate time evolution of θ1 and θ2 from Eqs. (13) and (14). In detail, by

transforming Eqs. (13) and (14), we obtain

θ̇1 = ω1, (22)

θ̇2 = ω2, (23)

ω̇1 =
1

I1
[−1

2
m1l1g sin θ1 +

1

2
l1f1 + l1T1 · q(θ1)], (24)

ω̇2 =
1

I2

1

2
l2T1 · q(θ2). (25)

By considering that r̈2 = l1θ̈1(q(θ1)− θ̇21p(θ1))+
1
2
l2θ̈2(q(θ2)− θ̇22p(θ2)), T1 ·q(θ1) = −m2(r̈2 ·

q(θ1) + gq(θ1) · j) + f2q(θ1) · q(θ2), and T1 · q(θ2) = −m2(r̈2 · q(θ2) + gq(θ2) · j) + f2, we
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obtain

d

dt
θ = ω, (26)

d

dt
Aω = φ, (27)

where

A =

 a11 a12

a21 a22

 =

 I1 +
1
4
m2l

2
1

1
4
m2l1l2cos(θ2 − θ1)

1
2
m2l1l2cos(θ2 − θ1) I2 +

1
4
m2l

2
2a

 , (28)

φ =

 φ1

φ2

 =

 −1
2
(m1 +m2)gl1 sin θ1 +

1
4
m2l1l2θ̇

2
2 sin(θ2 − θ1) +

1
2
l1[f1 + f2 cos(θ2 − θ1)]

−1
2
m2gl2 sin θ2 − 1

2
m2l1l2θ̇

2
1 sin(θ2 − θ1) +

1
2
l1f2

 ,

(29)

ω =

 ω1

ω2

 , (30)

and

θ =

 θ1

θ2

 . (31)

Therefore, by solving ω̇ = A−1φ and θ̇ = ω numerically, we can determine the time

evolution of θ1, θ2, ω1, and ω2.
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D. The trajectories and frequencies of various pendulums using the self-propelled

micro heat engine
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FIG. 8. Comparison of of various pendulums using the self-propelled micro heat engine. Here, we

assume that ∆T = 19.5 K, d = 2 mm, w = 2 mm, l1 = l2 = 10.0 mm, and m1 = m2 = 53.2 mg.
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Figure 8 shows the comparison of various pendulums using the self-propelled micro heat

engine under the conditions that ∆T = 19.5 K, l1 = l2 = 10.0 mm, and m1 = m2 = 53.2 mg,

on the basis of the formulations of Secs. V.A and V.C. Specifically, Figs. 8(a), 8(c), and 8(e)

show the trajectories for a symmetrical double pendulum (SDP), an asymmetrical double

pendulum (ASDP), and a single pendulum (SP), respectively, whereas Figs. 8(b), 8(d), and

8(f) show the dependences of ω1 and ω2 on t for the SDP, ASDP, and SP, respectively.

In Fig. 8, (x1, y1) and (x2, y2) show the edge positions of Beams 1 and 2, respectively.

Furthermore, the calculation results of the ASDP are obtained by imposing the condition

that θ2 = θ1 when θ2 becomes larger than θ1 in the numerical simulations. As shown in

Figs. 8(a), 8(c), and 8(e), we find that the amplitude of (x2, y2) decreases in the order the SP,

SDP, ASDP. In other words, the performance the efficiency of motion decreases in the order

the SP, SDP, ASDP. This is because the viscous forces are in the order the SP, SDP, ASDP.

In particular, the average viscous force of the ASDP is much smaller than others because

of the bending in the right and left directions. Furthermore, the left-side amplitude of the

ASDP is the same as that of the SP, whereas the right-side amplitude of the ASDP is much

smaller than that of the SP, since the driving force of Beam 1 is not effectively transmitted

to Beam 2 during the motion of Beam 1 in the left direction because of the bending of

the double pendulum. Moreover, as shown in Figs. 8(b), 8(d), and 8(f), we find that the

frequencies of ω2 for the SP, ASDP, and SDP are 4.31, 5.17, and 5.86 Hz. This is reasonable

because the theoretical natural frequency f sp
0 for the SP is described as f sp

0 = 1
2π

√
3g
2l

= 4.31

Hz, whereas the natural frequencies of the others become higher than that since the effective

length of the pendulum becomes smaller because of the bending of the beams for the ASDP

and the SDP.

E. The efficiency for the ASDP

Figure 9 shows the efficiency for the ASDP in Sec. V.C. Here, a potential net pumping

volume flow rate Qp is defined as

Qp ≡ Swfb. (32)

Here, originally, Qp is a net volume swept by a cilium per unit time, since the net flow of

the region swept in the outgoing and return routes is zero because of the scallop theorem,

which states that time-symmetric motion cannot achieve net displacement in a low Reynolds
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FIG. 9. The efficiency for the ASDP. Here, we assume that d = 2 mm, w = 2 mm, l1 = l2 = l,

and m1 = m2.

regime. In other words, only the region swept differently in the outgoing and return routes

produces a net flow. Note that although a real net volume flow rate (or a net area flow for

two dimensional problems) in a channel depends on the channel structure, Khaderi et al. [9]

numerically showed that the net area flow is approximately proportional to an area swept,
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which corresponds to S, and the proportional constant (efficiency) increases sharply with

Reynolds number. In other words, Qp (discussed above) shows the maximum ability for the

real net volume flow rate. Thus, we can define the dimensional efficiency ηd as

ηd ≡ Qp/P0. (33)

However, ηd is extensive and thus it is not very useful for comparing performance of devices of

various sizes. Therefore, we multiply ηd by the viscous stress Sv and obtain the dimensionless

efficiency ηn, which has a clear physical meaning (the ratio of power used for driving flow),

as

ηn ≡ QpSv/P0, (34)

where

Sv =
12µl( l

2
)ωmax

lw
= 6µ(

l

w
)ωmax (35)

and l = l1 = l2.

Specifically, Figs. 9(a), 9(b), 9(c), 9(d), 9(e), and 9(f) show the dependences of S, fb, Qp,

P0, Sv, and ηn on l, respectively. As l decrease, S decreases rapidly as shown in Fig. 9(a),

whereas fb increases moderately as shown in Fig. 9(b). Consequently, as shown in Fig. 9(c),

Qp decreases moderately as l decreases. Furthermore, as l increases, P0 increases linearly as

shown in Fig. 9(d), whereas Sv increases gently as shown in Fig. 9(e). Thus, as shown in

Fig. 9(f), ηn decreases monotonically as l decreases.

F. Efficiency of our current device

We have succeeded in demonstrating the asymmetrical motion of the thermal cilium with

an asymmetric joint structure of ∆Ya ∼ 1.5 mm at q = 3.3 MW/m2 for L = 19.31 mm. Since

the area S of the trajectory in Fig. 3(a) is ∼ 1
2
∆Ya∆X3 ∼ 2.1 mm2, a potential net pumping

volume flow rate Qp is estimated as Qp ∼ Sϕmfb ∼ 2.2 mm3/s, where ∆X3 ∼ 3 mm is the

width of the maximum trajectory of X3 in the x direction, ∆Ya ∼ 1.4 mm, and fb ∼ 4.5 Hz.

Thus, our cilium has a potential ability to realize a pumping function. That is, we obtain

ηd ∼ 2.2/107.9 = 0.02 (mm3/s)/W for our asymmetrical pendulum in Fig. 3, while ηd = 0

for the previous symmetrical pendulum [8]. In other words, we have first demonstrated a

useful motion of a thermal artificial cilium that uses a self-propelled phenomenon due to

bubbles in a nucleate- to film-boiling regime [8]. Furthermore, we can estimate that Sv ∼
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6µωmaxLh/2ϕNiCr ∼ 1.5 Pa for our experiments, where ωmax ∼ Umax/L ∼ 120/19.3 ∼ 6.2

rad/s. Thus, we obtain ηn = ηdSv ∼ 30 × 10−12 for our experiments. Moreover, since the

theoretical value for the double pendulum in Fig. 9(f) is approximately 10× 10−12 at l = 10

mm and ∆T , we consider that the experimental value is reasonable, although they are not

compared directly because of the difference of their conditions.

Hanasoge et al. [4] showed that the magnetic cilia consisting of ne (∼12) elements of

length l (= 0.2 mm) and width w (= 0.02 mm) produce a net flow of pumping rate of 0.183

mm3/s. Thus, we obtain Qp ∼ 0.183/12 ∼ 0.015 mm3/s for the single magnetic cilium.

Furthermore, if we assume that fb ∼ 24 Hz [10], we obtain Sv ∼ 6µLfb ∼ 1.44 Pa. In

addition, since Hanasoge et al.’s device is driven by the magnet connected to a DC motor,

we can estimate P0 ∼ 0.75 V. Thus, we obtain ηd ∼ 0.015/0.75 ∼ 0.02 (mm3/s)/W and

ηn ∼ 0.02 × 1.44 ∼ 30 × 10−12 for Hanasoge et al.’s device. That is, we find that ηn of our

thermal cilium at l ≃ 20 mm is the same level as that of Hanasoge et al.’s device at l = 0.2

mm. However, ηn decreases rapidly as l decreases as shown in Fig. 9(f). Thus, we need to

improve the efficiency more in the future.

G. The placement of the current work

One may consider that a surprising aspect of the real natural cilium would be its effi-

cient pumping despite its smallness. In this sense, previous studies of artificial cilia mostly

aim at achieving smallness and efficiency at the same time as the ultimate objective, while

fabrication of multiple (arrayed) cilia is another focus of interest. However, in our under-

standing, most of the studies for the artificial cilia have not been in the stage to consider

input power as a real problem yet. In other words, most of researchers seem not to have

pursued to reduce input power of the artificial cilia to the level of the power corresponding to

the efficiency of ATP (adenosine triphosphate) in the natural cilia, as their immediate goal.

Therefore, large magnetic equipment that consumes large electric power has been used so

far for the magnetic artificial cilia without discussing the input power in detail; e.g., Vilfan

et al. [11] used three orthogonal pairs of coils to control their self-assembled magnetic cilia,

while Evans et al. [3] used a permanent magnet to drive their magnetic cilia consisting of

nanorod arrays. Similarly, although the efficiency of our current device might be insufficient

we also aim at achieving smallness and efficiency at the same time as the ultimate objectives.
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FIG. 10. The efficiency of the ASDP using thin film beams. Here, w = 50 µm and ∆T = 20.0 K.

In (c) and (d), l = 100 µm and d = 10 µm.

Through this study, we have developed a micro heat engine that works in water with a

simple structure consisting of a heater and a pair of bend wires, although we demonstrated a

self-propelled swing motion of the pendulum whose beam is partially immersed in water [8].

By using this new micro heat engine, we have first succeeded in demonstrating a high-speed

beating motion of a thermally-driven artificial cilium in a nucleate- to film-boiling regime.

Surprisingly, the maximum velocity of the tip of the cilium is approximately 12 cm/s at

q ≥ 2.8 MW/m2. Therefore, we consider that our thermal artificial cilium is useful. In

addition, we have a chance to achieve smallness and efficiency at the same time in the future

by considering an optimal design. For example, Figs. 10(a) and 10(b) show the dependences

of ηn and P0 on l, respectively, under the condition that ∆T = 20 K, w = 50 µm, and d = 10

to 20 µm, while Figs. 10(c) and 10(d) show the trajectory and the time evolution (of θ1 and

θ2), respectively at l = 100 µm and d = 10 µm. That is, by using thin film beams, we have
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a chance to achieve ηn ∼ 10−11 and P0 ∼ 0.1 W at l ∼ 200 µm in the future, although the

detail analysis is a beyond the scope of this manuscript. Note that since the moment of

inertia of a rod is larger than that of a film, the motion (amplitude) of the film is larger

than the rod. Thus, S of the film becomes larger than that of the rod. This is the intuitive

explanation about why films are more efficient than rods.

VI. CONCLUSION

In conclusion, we have first reported that an asymmetrical joint structure connected to

the micro heat engine consisting of a heater and a pair of bend wires shows an asymmetric

beating motion with high speeds of the order of 5 cm/s at q ≥ 2.3 MW/m2. In particular, by

using an asymmetric joint structure having asymmetric flexibility between the forward and

recovery motions, we have demonstrated the asymmetrical motion of the thermal cilium.
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[11] M. Vilfan, A. Potočnik, B. Kavčič, N. Osterman, I. Poberaj, A. Vilfan, and D. Babič, Pro-
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