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Abstract 

 

In Japan, interest in personal health care has increased with the graying of 

society, and the term “healthy life expectancy” has gained prominence year by year. 

Dietary habits are known to be closely related to lifestyle-related diseases such as 

obesity, high blood pressure, hyperglycosemia, and hyperlipidemia. Poor chewing 

and fast eating are especially associated with obesity. Objective evaluation of dietary 

habits adopted by a nonprofessional person outside of hospital is less effective than 

the objective evaluation of exercise. Moreover, chewing relates not only to obesity, 

but also to exercise capacity. People with high chewing potential can self-support 

their health to a certain degree by maintaining their exercise capacity, and can 

maintain high nutritional status by eating foods with any degree of hardness. For 

these reasons, chewing can largely dictate the healthy life expectancy. Therefore, I 

aim to develop a measurement device that monitors chewing (occlusal force) during 

mealtimes by an earphone-type wearable device. The device is expected to provide 

objective evaluations by nonprofessional persons in general environments. 

In this thesis, I propose two objective measurement techniques of dietary 

habits using the earphone-type wearable device. Both evaluation techniques assess 

the dietary habits at mealtimes to discourage fast eating, and measure the occlusal 

forces to promote good chewing capacity. 

The first technique detects mealtimes among the everyday life activities of 

the wearer by a small optical sensor inserted into the ear hole of the user. The sensor 

is composed of a light-emitting diode and a phototransistor, and estimates the 

mealtimes from the time variations in the amount of received light as the ear canal 

deforms during chewing. This measurement technique can also measure the body 



 

motions associated with running. Using the data obtained from the ear-inserted 

optical sensor, the wearer can support a healthy eating, and exercise lifestyle. The 

proposed algorithm in the wearable ear sensor distinguishes mealtimes and running 

activities without error, despite the similar characteristics of the two signal types. 

The second technique estimates the occlusal force without inserting a sensor 

into the mouth. The occlusal force during eating can be measured from the movement 

of the ear canal. Electrode pads, which impede the movement of the masticatory 

muscle and the jaw joint, are not required. Within the range of occlusal forces exerted 

by typical healthy adults, this method estimates the occlusal force with comparable 

accuracy to conventional methods that measure the myoelectricity of the masseter 

muscle. 

The proposed portable mealtime monitoring device and non-intraoral 

occlusal force meter can contribute to the lifestyle improvement of humans, 

providing an objective numerical value of the dietary habits in individual homes. 

Such devices can monitor the exercise quantity and body weight of the user, 

promoting health self-maintenance by allowing users to review their own state.
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Introduction 
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1.1 Background 

 

1.1.1 Current status of wearable devices 

 

Wearable devices are used in various scenarios such as daily life support, 

sports coaching, healthcare monitoring, and vital-signs management [1]. Most 

wearable devices are shaped as accessories such as watches and wristbands, which 

directly contact the skin of the wearer. These products consist of plural sensors 

arranged to suit their purpose, as shown in Figure 1.1. 

 
Figure1. 1. Various scenarios of consumer wearables [2] 

 

A wearable device measures various biological information. The recorded 

and visualized activity data are used to improve the operational efficiency and self-
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management of the wearer. The information is processed by a portable computer such 

as a smart phone or tablet terminal. Irrespective of other movements, a wearable 

device such as a smart watch continuously collects information and communications 

throughout the day without the user’s awareness, unless the user’s movements are 

obstructed. In contrast, a smartphone is carried and used consciously. 

The future development of wearable devices is expected to be divided into 

four main categories: smart textiles, systems and applications, situation recognition, 

and human–computer interactions [3]. The technological developments and the 

themes attracting attention in each category are outlined below. 

(1) Smart textiles 

Design, usage, and evaluation remains an important field in wearable 

computer study. The development of mature electronic systems such as 

electronic matrix fibers with elasticity is gaining traction. 

(2) Systems and applications 

Research hotspots are the utilization of wearable devices in health and 

exercise, and their cooperation with other wearable systems as new 

wearable applications. 

(3) Situation recognition 

Situation recognition by sensors attached to the body have long been the 

mainstay of wearable computer study. Current topics are the feasibility of 

dynamic sensor configurations previously learned from recognition 

systems in complicated and difficult situations. 

 (4) Human–computer interactions 

Wearable computer study is dominated by interactions between humans 

and portable devices. Important issues are communication with a portable 
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device and the improved flexibility of other interfaces such as textile 

products. 

 

1.1.2 Wearable devices in health care 

 

With each passing year, interest in personal healthcare has increased with 

the graying of Japanese society and the growing emphasis on “healthy life 

expectancy.” 

Smart watches can record the wearer’s walking distance and heart rate in 

real-time. Besides warning the user of sudden rises in heart rate, a smart watch makes 

an emergency call with a preset application when it detects a cardiopulmonary arrest. 

 
Figure1. 2. Technology of “hitoe” [4] 

 

The hitoe device [4] (Nippon Telegraph and Telephone Corporation, Toray 

industries Inc.) is a wearable device for health-risk management. Hitoe detects heat 

stroke during exercise and assesses the health condition of long-distance drivers and 

workers at construction sites, thus preventing diseases and accidents. The hitoe 

device is sewn inside a sports T-shirt and directly touches the skin above the heart. A 

data transmitter that downlinks to a recording medium is worn outside the sportswear, 

��������Wear�utilizing�hitoe����������hitoe�transmitter� � � Smart�phone�
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as shown in Figure 1.2. During training, this transmitter sends the heartbeat 

information into a recording medium and a computing apparatus in a smartphone. 

 

1.1.3 Earphone-type wearable device 

 

The body of earable is a standard earphone for music players. The body 

contains an optical distance sensor that measures distance changes of the ear canal. 

The light emitted from the diode inside the earphone is reflected back by the eardrum 

and the ear canal. The amount of light received at the sensor depends on the distance 

between the sensor and the eardrum and between the sensor and the ear canal (Figure 

1.4). During chewing, the ear canal moves in conjunction with the masticatory 

muscle operating the jaw, because the two structures are contiguous. Other facial or 

head motions such as eye blinking, nodding, and tongue motions also influence the 

state of the ear canal. By analyzing the amount of receiving light and the 

characteristics of the transition, the device can detect jaw and body movements [5, 

6], tongue movements [7], breathing rates [8], and concentration states from the 

breathing rate and head-shaking movements [9]. 

 

 

Figure1. 3. Appearance of “earable” 
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1.1.4 Significance of human motion detection using an earphone-type 

wearable device 

 

The earphone-type wearable device is more easily integrated into everyday 

life and can be worn for a longer time than other wearable devices, because it does 

not disturb the wearer’s hand and eye movements. Meanwhile, the hearing sense is 

unaffected unless the device completely blocks the earhole. Furthermore, earable can 

gather the face information, which is difficult to measure by wearable devices placed 

on the limbs. The device is easily arranged on the body (like other wearable devices), 

and is merely inserted into the ear like a regular earphone. 

The earphone-type wearable device provides an objective evaluation for 

nonprofessional persons in general environments. It assists health self-maintenance 

by reviewing the wearer’s own state and outputting an objective numerical value 

reflecting the wearer’s dietary habits in his or her home, similarly to an exercise 

monitoring meter and a body weight meter. 

Figure 1. 4. Measurement principle of earable [5] 
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1.2 Targets for measurement 

 

Based on the characteristics in Section 1.1.4, I develop a “how to eat” 

measure of health, alongside exercise monitoring. As is well-known, poor dietary 

habit is closely related to lifestyle-related diseases such as obesity, high blood 

pressure, hyperglycosemia, and hyperlipidemia. Poor chewing and fast eating are 

especially associated with obesity [10, 11]. In dietary counseling, a medical staff 

member guides the slowing down eating and promotes good chewing. However, an 

objective measure of chewing amount in a self-made effort, such as counting the 

chews, is lacking. 

Chewing is related not only to obesity, but also to exercise capacity [12]. 

People with high chewing potential can largely self-support a high exercise capacity, 

and can maintain good nutritional status because their meal choices are not limited 

to soft food materials. Thus, chewing deeply relates to the extent of a healthy life 

expectancy. 

One objective indicator of chewing is the value measured by an occlusal 

force meter. However, this value is not a suitable health care index in the present case, 

because the continuously measured data of the same person by an occlusal force 

meter must be corrected by a medical specialist [13]. 

Two elements in a person’s dietary habit are important for extending the 

healthy life expectancy. First, meals should be eaten leisurely at regular and 

appropriate times. Second, the bite force (occlusal force) should be sufficient for 

consuming various foods without hesitating. 

The aim of this thesis is to develop techniques for measuring these two 

elements, and hence support health maintenance by an objective evaluation. 
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1.2.1 Mealtimes 

 

In dietary support, the measured results of meals are as important as the 

measured results of exercise amount. Calorie control is the main form of mealtime 

support, but support based on mealtime management is growing in popularity. 

Irregular meal times and eating before bedtime are among the factors that promote 

the onset and progression of lifestyle-related diseases [14]. However, mealtime 

management support for ordinary individuals remains limited by various challenges, 

namely, lack of awareness on the importance of mealtimes in society, and the lack of 

wearable devices that can easily, and automatically estimate mealtimes without 

interfering with lifestyle. 

 

1.2.2 Occlusal force 

 

The elderly population is growing steadily, spurring the demand for 

technologies that monitor dental occlusion and chewing. Improving the meal-intake 

method of elderly people is important for preventing nutritional disorders. Good 

chewing ability is reported to greatly extend their healthy life expectancy [13, 15]; 

moreover, epidemiological studies report that chewing ability in the elderly is closely 

related not only to bodily functioning, but also to mental activities, and even vital 

functions [16]. 

Patients who undergo a gastrectomy operation for gastric cancer are at 

increased risk of nutritional disorders because their gastric function is reduced [17]. 

The meal-intake method of such patients would be improved by ensuring that their 

food is well chewed; that is, by ensuring sufficient occlusal force. 
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1.2.3 Utilization of the earphone-type wearable sensor in health care 
 

A reliable earphone-type chewing-count measurement device has been 

researched and developed by a co-researcher of the present study [18]. To measure 

the number of chews performed by the user, this device detects the ear canal 

movements by the earphone-type sensor (ear sensor) embedded within it. The device 

displays the total number of chews on a tablet terminal in real-time. It also records 

the number of chews and the measured waveform on the tablet. The device is used 

in experimental analyses of the dietary behaviors of adipose patients, and in the 

provision of meal instructions for post-gastrectomy patients in a medical institution 

in Japan. 

Based on the present research, we considered that the signals of the ear 

sensor reflect the volumes of movement and power. I thus aim to develop two 

techniques using the ear sensor, which closely relate to dietary healthcare. First is the 

detection of mealtimes among daily life activities, and second is the measurement of 

occlusal force by the device, which then acts as a non-intraoral type occlusal force 

sensor. 

 

1.3 Organization of this thesis 

 

The remainder of this thesis is organized as follows.  

In Chapter 2, I describe the technique for estimating meal times by the 

earphone-type wearable sensor. A small optical sensor composed of a light-emitting 

diode and phototransistor is inserted into the ear hole of the user. The device estimates 

the mealtimes of the user from the time variations in the amount of light received. To 

this end, the light is emitted toward the inside of the ear canal and is reflected back 
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from the canal wall. The proposed technique differentiates meals from other activities 

such as conversing, sneezing, walking, ascending, and descending stairs, operating a 

computer, and using a smartphone. When food intake is measured by conventional 

devices worn on the heads of users, the measurements are affected by movements 

such as running, which introduce strong vibrations as the body is jolted more 

violently than during walking. In such cases, conventional devices can misclassify 

running as eating. The data transitions during running and chewing share similar 

characteristics. Preventing confusion with other movements is important for daily 

life monitoring, and bars the use of conventional sensors as monitoring devices. To 

solve this problem, I simultaneously insert a wearable ear sensor into the left ear and 

another sensor in the right ear. The measurements from the left and right ear canals 

are strongly correlated during running, but are uncorrelated during eating. This 

difference is caused by the uneven chewing of food on the teeth of both sides. 

Therefore, running and eating can be distinguished from their correlation coefficients, 

thus reducing the misidentification instances. Moreover, the semiconductor-based 

optical sensor realizes a small and lightweight device. Because the same 

measurement technique can measure the body motions associated with running and 

eating, the data obtained from the optical sensor can support a healthy lifestyle 

regarding both eating and exercise. 

In Chapter 3, I investigate the correlation between occlusal force and the 

movement of the ear canal. Through this basic study, I investigated my aim of 

measuring the occlusal force by the earphone-type wearable device. For health 

maintenance by chewing and eating, the amount and time of chewing dictate the 

digestibility of the food, and the biting power should be sufficient for consuming 

various foods. Supporting occlusal force maintenance is expected to extend the 

healthy life expectancy. Therefore, dentists require an objective and continuous 
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device that measures the occlusal force of a given patient. I here propose a 

measurement technique for occlusal force using the wearable ear sensor, which is 

easily used by non-professionals in daily life. The proposed estimation method uses 

the least-squares method and the weighted average. The experimental device, which 

simultaneously measures the occlusal force and the ear canal movements, primarily 

consists of an occlusal force sensor, and a wearable ear sensor. The analog signals 

from both sensors are converted into digital signals by an analog-to-digital converter. 

The data are then recorded as signals associated with the measurement time. Six 

experimental subjects were requested to chew for two seconds while their 

masticating force was measured by the occlusal force sensor. The experiment was 

performed five times. The occlusal force sensor was placed on the right second molar, 

and the wearable ear sensor was placed in the right ear. Throughout the experiment, 

the occlusion, and the ear canal movements were strongly correlated. The average 

correlation coefficients consistently exceeded 0.89 for all subjects. 

In Chapter 4, I proposed a measurement technique of occlusal force by the 

wearable ear sensor. To this end, I simultaneously measured the ear canal movements 

(ear sensor values), the surface electromyography (EMG) of the masseter muscle, 

and the occlusal force of five subjects following the study of Chapter 3. This 

experiment was performed six times per subject. I then investigated the correlation 

coefficient between the ear sensor value and the occlusal force, and the partial 

correlation coefficient between the ear sensor values. Additionally, I averaged the 

partial correlation coefficients and considered the absolute value of the average for 

each subject. The absolute values of the coefficient were strongly correlated for all 

subjects. Partial correlations between the ear sensor values and the occlusal forces 

were also confirmed in each subject. Finally, I estimated the occlusal force exerted 

by each subject in a regression analysis, and evaluated the proposed method by the 
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cross-validation method. The root-mean-squared error between the actual and 

estimated values was evaluated for each of the five subjects. 

Chapters 5, 6, and 7 give the overall conclusions, accomplishments, and 

acknowledgments of the thesis, respectively. 
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Chapter 2:  

Mealtime detection  

using an earphone type sensor 
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2.1 Background and objectives 

 

The use of wearable devices is growing in popularity in the field of 

healthcare [19–34]. Wristwatch-type wearable devices are particularly widespread 

and estimate the amount of exercise by measuring body temperature and heart rate, 

thereby supporting a users’ diet by presenting these estimates to users. In dietary 

support, the use of measured results for meals is just as important as support that uses 

measured results for the amount of exercise. Calorie control is the main form of 

support for meals; however, support using meal time management has recently 

received growing attention. Irregular meal times and eating before bedtime have been 

found to be some of the factors that promote the onset and progression of lifestyle-

related diseases [14]. However, support for ordinary individuals using meal time 

management remains limited due to some challenges, including the lack of awareness 

among society regarding the importance of meal times and the lack of wearable 

devices that can easily and automatically estimate meal times without interfering 

with lifestyle. 

Recently, measurements of food intake have been performed using eyeglass-

type wearable devices [37]. Eyeglass-type devices use optical, strain, and other 

sensors to measure food intake. Strain sensors require close contact between the 

sensor and skin during measurement, whereas optical sensors can take measurements 

without bringing the sensor in close contact with the skin. Thus, optical sensors have 

a greater advantage over strain sensors as they are minimally impacted by the shape 

and amount hair growth on the surface of a user’s skin. Moreover, studies that have 

used strain sensors have been able to differentiate walking from eating by combining 

strain sensors with accelerometers. In eyeglass-type devices, the vibration of the 

devices themselves during walking affects the measured data; however, these 
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measured values obtained from walking can be removed because they are smaller 

than the values measured during chewing. However, violent body motion (e.g., 

during running) also increases the vibration of the device itself, which can increase 

the effect on the values measured by this vibration, making it difficult to remove. A 

device can be fixed to a user’s head to minimize vibrations; however, this is more 

uncomfortable for a user. Therefore, vibrations of a device due to running are a 

difficult issue to overcome with eyeglass-type wearable devices. 

The objective of my study was to develop a wearable device capable of 

measuring food intake and differentiating eating from running. In this chapter, we 

described a technique for estimating meal times as the first stage in reporting these 

research results. The measurements of food intake by eyeglass-type devices use a 

sensor to measure the “movement of the masticatory muscles, including mainly the 

temporal muscle (temporalis)” and “movement of the skin in the temporal region 

resulting from the movement of the temporomandibular joint (TMJ).” I discussed the 

measurements of chewing from the relationship between the anatomical position of 

the temporal muscle and TMJ in humans, as shown in Figure 2.1, and revealed that 

changes to the shape of the ear canal during chewing are useful for measuring food 

intake [5]. While the shape of the ear canal also changes during facial expressions 

[6], chewing tends to repeatedly change the ear canal shape, which makes it possible 

to distinguish chewing from facial expressions. In this chapter, I described a 

technique for estimating the meal times of users based on temporal changes in the 

amount of light received by a small optical sensor composed of a light-emitting diode 

(LED) and phototransistor inserted into the ear hole, which emits light toward the 

inside of the ear canal and receives light reflected back from the ear canal, to measure 

the change in the amount of light. I also proposed a method for differentiating eating 

from running. 
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Figure 2.1. Anatomical positional relationship between the ear canal, 

temporal muscle (temporalis), and TMJ. Chewing occurs by moving the 

TMJ and the temporal muscle. The ear canal is anatomically close to the 

TMJ and temporal muscle and is susceptible to mechanical force exerted 

by the TMJ and temporal muscle. 

 

2.2 Materials and methods 

 

2.2.1 Measurement principle and sensor prototype 

 

Figure 2.2 presents a schematic diagram of a sensor designed to estimate 

meal times. The sensor in Figure 2.2 measures movement in the ear associated with 

eating. Using this method, movement in the ear is measured by light. Using light, 

eating can be measured without the sensor irritating the sensitive ear. Eating 

measurements are done by inserting an earphone-type sensor into the ear hole (ear 

canal), as shown in Figure 2.2. This earphone-type sensor has a built-in optical 

distance sensor that is composed of a light-emitting portion (LED) and a light-

receiving portion (phototransistor). The earphone-type sensor receives the light 

emitted from the optical distance sensor that is reflected back by the eardrum and ear 

canal. During chewing, the shape of the ear canal changes, which alters the distance 

between the optical distance sensor and the eardrum and ear canal. The amount of 
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light received changes over time in association with this change in distance. In this 

study, I estimated meal times by analyzing temporal changes in the amount of light. 

The LED of the optical distance sensor used in the earphone-type sensor emits 

infrared light at a wavelength of 940 nm, which is rare in the natural world (sunlight 

does not contain a substantial amount of this wavelength of infrared light). 

 
Figure 2.2. Measurement principle for changes in the shape of the ear 
canal. The earphone-type sensor receives the light emitted from the 
optical distance sensor that is reflected back by the eardrum and ear canal. 
During chewing, the shape of the ear canal changes, which alters the 
distance between the optical distance sensor and the eardrum and ear 
canal. The amount of light received changes over time in association with 
this change in distance. 

 

The optical distance sensor within the earphone-type sensor takes 

measurements within the closed space of the ear canal, which limits the effect of light 

from outside the body and does not restrict the environments in which a user can 

employ the sensor (it can be used both indoors and outdoors, during summer and 

winter, and in the day and at night). While the earphone-type sensor only vibrates 

slightly as a result of intense movement (e.g., running), the sensor is securely 

surrounded by the ear canal, which minimizes vibrations compared with eyeglass-

type devices. The earphone-type sensor is also fitted with an optical distance sensor 
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inside a casing that is the same as that widely used in conventional inner ear-type 

earphones, which allows the earphone-type sensor to be worn as easily as a 

conventional earphone. 

Figure 2.3 shows the outer appearance of the prototype earphone-type sensor, 

while Figure 2.4 is a representation of its electronic circuit. As shown in Figure 2.3, 

the earphone-type sensor has the same shape as a conventional inner ear-type 

earphone, and is worn and used in both ears. This prototype optical distance sensor 

uses a KODENSHI SG-105 photo reflector (a Fairchild QRE1113 Reflective Object 

Sensor can also be used). As shown in Figure 2.3, infrared light from an LED is in 

the vicinity of the eardrum and is received by a phototransistor by placing an optical 

distance sensor in the same casing as a conventional inner ear-type earphone. In the 

circuit presented in Figure 2.4, it is evident that the reflected light changes based on 

the distance d between the phototransistor and vicinity of the eardrum, which causes 

the collector current IC of the phototransistor to change in response to fluctuations in 

the shape of the ear canal associated with chewing. The change in the collector 

current IC obtained here is converted into a change in the voltage of the resistor RL. 

This change in voltage is considered as the output voltage of the sensor. 
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Figure 2.3. Sensor prototype. The earphone-type sensor has the same 
shape as a conventional inner ear-type earphone. The sensor is worn and 
used in both ears. 

 

 

Figure 2.4. Electronic circuit around the sensor. The circuit is evident 
that the reflected light changes based on the distance d between the 
phototransistor and vicinity of the eardrum, which causes the collector 
current IC of the phototransistor to change in response to fluctuations in 
the shape of the ear canal associated with chewing. The change in the 
collector current IC obtained here is converted into a change in the voltage 
of the resistor RL. This change in voltage is considered as the output 
voltage of the sensor. 
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2.2.2 Meal time estimation algorithm 

 

To obtain preliminary data to design a meal time estimation algorithm, I 

measured the movement of the ear canal of subject X by means of the earphone-type 

sensor shown in Figure 2.4. The measured results are presented in Figures 2.5–2.7. 

Figure 2.5 (a) shows the measured values for movement of the ear canal during 

conversations, and Figure 2.5 (b) presents the amount of change in these measured 

values. The amount of change was obtained by subtracting the immediately 

anteceding measured value (100 ms prior to obtaining measurements because 

measurements are performed at 10 Hz) from the current measured value. Figure 2.6 

(a) shows the movement of the ear canal during yawning, while Figure 2.6 (b) shows 

the corresponding amount of change. Figure 2.7 (a) presents the movement of the ear 

canal while chewing gum, while Figure 2.7 (b) shows the corresponding amount of 

change. Figures 2.5 (b) and 2.7 (b) show that the amount of change is  

V during conversations and  V while chewing gum. A comparison of 

the amount of change during conversations and chewing gum reveals that the amount 

of change is greater during chewing gum; this is because the movement of the ear 

canal is greater. Furthermore, Figure 2.6 shows that the amount of change during 

yawning is   V, which is similar to the amount of change during 

chewing and greater than the amount of change during conversations. Yawning and 

chewing gum are similar in that they involve greater movement of the ear canal than 

conversation. However, a comparison of Figures 2.6 and 2.7 reveals that chewing 

gum is characterized by a large “continuous” change. 
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Figure 2.6. Ear-canal movement of yawn: (a) shows the movement of 

the ear canal during yawning, while (b) shows the corresponding amount 

of change. 

 

 

 

 

 

 

Figure 2.5. Ear-canal movement of conversation: (a) shows the 

measured values for movement of the ear canal during conversation; (b) 

shows the amount of change in these measured values. The amount of 

change was obtained by subtracting the immediately anteceding 

measured value (100 ms before obtaining the measurements because 

measurements are performed at 10 Hz) from the current measured value. 
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In this study, I used the fact that shape changes to the ear canal persist longer 

than changes due to facial expressions during chewing to estimate meal times. I 

aimed for an accuracy of within five minutes and used the newly defined “Meal 

Quality Feature (MQF)” for meal time estimation. The MQF is determined by 

obtaining the absolute value of the amount of change based on shape changes to the 

ear canal and calculating the sum of the mean and standard deviation of this absolute 

value within a certain period. During eating, the ear canal changes in shape 

considerably more than during facial expressions as a result of chewing. Because this 

change is continuous, the MQF of the time spent eating is greater than the MQF of 

the time spent not eating. A threshold is introduced to determine the size relationship 

of the calculated MQF. Shape changes to the ear canal differ among individuals, 

which results in a different MQF value being calculated for each subject. In this study, 

a threshold that differs depending on the subject was introduced instead of a uniquely 

determined threshold. The threshold was 50% of the difference between the 

maximum (max) and minimum (min) MQF calculated for each subject. The time 

during which the MQF continues to remain above the threshold is the meal time. The 

 

Figure 2.7. Ear-canal movement of chewing: (a) shows the movement of 

the ear canal during chewing of gum, while (b) shows the corresponding 

amount of change.
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MQF is calculated by grouping the measured values into five-minute intervals, such 

that the estimated meal time includes approximately five minutes of error. The details 

of the meal time estimation algorithm are written below. Furthermore, while the 

sensor is worn and used in both ears, this algorithm is capable of estimating meal 

times using only the sensor information obtained from either the left or right ear 

Step 1. The mealtime estimation interval tinterval is set at 5 min (i.e., 300 s). The 

sampling frequency f of the 10-bit analog to digital (AD) converter used in 

the measurements is set at f = 10 Hz. This is because chewing involves a 

constant cycle of repetitive, alternate contractions of the mouth’s opening 

and closing muscles within the frequency range of 1.1–1.7 Hz [38]. 

Step 2. The sensor wearing time twear is at first decided, and then shape changes to 

the ear canal are measured for twear (seconds) by the sensor shown in Figures 

2.3 and 2.4. The measured values are converted to measured data using a = 

{a1, a2, . . . ,an} (unit: V), where n represents the number of data 

measurements, and n = twear × f. For example, when a subject wears the 

sensor for two hours a day (twear = 7200 s), n = 7200 × 10 = 72000. 

Step 3. Outlying values included among the measured data a are found. The overall 

mean of the measured data a is determined. Then 130% and 70% of this 

overall mean are set as the upper limit Su and lower limit Sl, respectively, to 

establish a tolerance range [Sl, Su]. Considering measured data ai (i = 1, 

2, . . . ,n) outside the range [Sl, Su], all values within one second before and 

after this range {ai−5, . . . ,  ai , . . . ,ai+5} are set as outlying values. The 

identification of outlying values helped to eliminate sensor signals with an 

amplitude greater than that of chewing, which were observed during the 

removal of the earphone-type sensor and readjustment its position. It also 
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allowed for the elimination of signals with an amplitude smaller than that of 

chewing, which were observed during vibration of the sensor cable. 

Step 4. The absolute value ci of the amount of change in the shape of the ear canal is 

determined using Equation (2.1) and is set as the data for the amount of 

change c = {c1, c2, . . . , ci, . . . , cn}. 

 (2.1) 

Step 5. The calculated data c = {c1, c2, . . . , cn} is divided into {b1, b2, . . . ,bj , . . . ,bp}, 

where p = twear / tinterval, and the number of elements included in each bj (called 

n′) is given by n′ = n/p. In this case, bj = {cmin(j), cmin(j)+1, . . . , cmax(j)−1, cmax(j)}, 

where min(j) = (j − 1) × n′, and max(j) = j × n′(j = 1, 2, . . . , p).  

For example, when a subject wears the sensor for two hours per day (twear = 

7200 s), p = 7200/300 = 24, and n′ = 72000/24 = 3000. As a result, the calculated 

data c = {c1, c2, . . . ,c72000} is divided into {b1, b2, . . ., b24}, where b1 = {c1, c2, . . ., 

c3000}, b2 = {c3001, c3002, . . ., c6000}, . . ., and b24 = {c69001, c69002, . . ., c72000}. 

Step 6. The mean  and standard deviation  of the elements in each  (except 

outlying values) are calculated, and Equation (2.2) is used to find the sum  

of these values and set as the MQF  = {d1, d2, . . ., dj, . . ., dp}. 

 (2.2) 

Chewing is characterized by greater and continuously changing amplitude. 

Taking the absolute value of the amount of change and the sum of its mean value and 

standard deviation produces a larger value for dj during chewing (greater amplitude 

indicates a larger mean value and continuous changes in amplitude result in a larger 

standard deviation). 
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Step 7. The maximum and minimum MQF are found, and the mean of these two 

values is set as the threshold. The time during which the MQF is above the 

threshold represents the mealtime.  

For example, when a subject wears the sensor for two hours per day from 

11 a.m. to 1 p.m., the MQF d1 corresponds to 11:00–11:05, the MQF d2 corresponds 

to 11:05–11:10, and the MQF d24 corresponds to 12:55–13:00. 

Notice that there exists neither threshold training nor a testing phase in this 

mealtime estimation algorithm. The threshold for determining whether it is the 

mealtime or not is always an unknown parameter before executing the algorithm, and 

it is adaptively calculated at step 7 without prior knowledge about the subject’s 

personal information. Thus, the threshold differs each time a user wears the sensor 

regardless of whether or not he or she is the same person. On the other hand, the 

algorithm is based on the assumption that the measured data will always include 

mealtimes. A training phase to learn the threshold in advance may be necessary to 

accurately estimate mealtimes, even for cases in which this prerequisite is not 

satisfied. 

 

2.2.3 Data collection protocol 

 

The following two experiments were performed to confirm if meal times 

could be measured by the proposed method and if eating could be differentiated from 

running. 

The first experiment was designed to demonstrate the usefulness of the 

proposed method (sensor and meal time estimation algorithm) for estimating meal 

times. The subjects of this experiment comprised one woman and six men, all healthy 

individuals aged 22 years, who were labeled as subjects A to G. These subjects wore 
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the sensor in Figure 2.3 in their right ear for two hours a day (11 a.m. to 1 p.m.) and 

also wore a small PC on their body to record voltages from the sensor and the times 

of these voltages. The subjects were then asked to spend their daily lives freely 

without any restrictions in their activities (e.g., eating, conversations, walking, 

climbing stairs, using a computer, or using a smartphone removal and insertion of 

an earphone-type sensor). Once the experiment ended, the subjects were asked to 

answer a questionnaire about their meal start and end times during the experiment. 

Moreover, because the sensor used in the experiment has almost the same shape and 

weight as an ordinary, commercially-available earphone, no discomfort is 

experienced from the long-term wear of the sensor. The measurement time in this 

experiment, however, was set at 2 h to minimize subjects' time constraints. This 

experiment was performed during lunchtime hours (from 11 a.m. to 1 p.m.) to 

accurately evaluate the utility of the meal time estimation algorithm. 

The second experiment was designed to investigate if chewing could be 

differentiated from running. The subjects of this experiment included four fit and 

healthy men with good dentition and a mean age of 22.8 years (±0.75 years) and 43 

years who were labeled as subjects H to K. Shape changes to the ear canal were 

measured during chewing and running in these four subjects, and the correlation 

coefficient of shape changes to the ear canals of the left and right ears was determined. 

In this experiment, the subjects were asked to wear the sensor presented in Figure 2.3 

in both ears. The subjects also wore a small PC on their body to record the voltages 

from the sensor and the times of these voltages. 

Full explanations of the content and purpose of these experiments were 

provided to the subjects, who then provided their written informed consent to 

participate. The personal information of the subjects obtained from these experiments 
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was strictly managed and was not used for any purpose other than that to which the 

subjects consented. 

 

2.3 Results 

Table 2.1. Experimental results of meal time measurements. The results 
of the questionnaire and meal time estimation algorithm for subjects A to 
G are presented in Table 2.1. Table 2.1 also shows the ratio of overlap 
between meal times from the results of the questionnaire and the meal 
time estimation algorithm. The ratio of overlap is defined as “the ratio of 
the logical product of both intervals (interval from the questionnaire and 
interval from the estimation algorithm) to the logical sum of both 
intervals.” 

Subject 
Questionnaire 

results [h:m] 

Estimated 

results [h:m] 
%Overlap 

A 12:14–12:30 12:20–12:30 5/8 

B 12:12–12:21 12:15–12:25 6/13 

C 12:10–12:18 12:15–12:20 3/10 

D 12:06–12:20 12:10–12:20 5/7 

E 12:20–12:37 12:25–12:40 3/5 

F 12:35–12:52 12:40–12:55 3/5 

G 12:24–12:29 12:25–12:30 2/3 

 

The results of the questionnaire and meal time estimation algorithm for 

subjects A to G are presented in Table 2.1. Table 2.1 also shows the ratio of overlap 

between meal times from the results of the questionnaire and from the meal time 

estimation algorithm. The ratio of overlap is defined as “the ratio of the logical 

product of both intervals (interval from the questionnaire and interval from the 

estimation algorithm) to the logical sum of both intervals.” For example, in the case 

of subject B, the interval obtained from the questionnaire was from 12:12 to 12:21, 

whereas the interval obtained from the meal time estimation algorithm was from 
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12:15 to 12:25. In this case, the logical product of both intervals is an interval from 

12:15 to 12:21, and the logical sum between both intervals is an interval from 12:12 

to 12:25. The ratio of overlap is therefore 6/13 (= [12:15–12:21]/[12:12–12:25]). 

In addition, the MQF of subject A calculated using the meal time estimation 

algorithm is presented in Figure 2.8. The vertical axis in Figure 2.8 shows the MQF 

in volts (V), while the horizontal axis shows the time (11 AM to 1 PM) in hours and 

minutes (h:m). The time during which the MQF is above the threshold is TIME1, 

while the time during which the MQF is below the threshold is TIME2. TIME1 is the 

estimated meal time. The mean value for the MQF in TIME1 is Mean1, and the mean 

value for the MQF in TIME2 is Mean2. From Figure 2.8, TIME1 of subject A was 

from 12:20 to 12:30 and Mean1 and Mean2 were 1.06 × 10−1 V and 1.49 × 102 V, 

respectively. TIME1, Mean1, and Mean2 of all subjects were determined by the same 

method as determined in subject A and are presented in Table 2.2. When the actual 

meal times of all subjects obtained by the questionnaire were compared with the 

estimated meal times (TIME1) obtained by the algorithm, the differences for each 

subject fell within a range of five minutes. From Table 2.2, it is evident that the largest 

Mean1 was in subject A, at 1.06 × 10−1 V, while the smallest Mean1 was in subject 

B, at 1.31 × 10−2 V, revealing individual differences in Mean1 values. These results 

indicate that despite individual differences among subjects, the variability between 

the questionnaire results and estimated results fell within the pre-set range of 

accuracy (within five minutes) for all subjects, and the meal time estimation 

algorithm was capable of correctly estimating meal times within the scope of the 

experiment. 
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Table 2.2. Experimental results. The mean value for the MQF in TIME1 
is Mean1, and the mean value for the MQF in TIME2 is Mean2. 

Subject Mean1 [V] Mean2 [V] 
A   
B   
C   
D   
E   
F   
G   

 

I next determined Pearson’s product–moment correlation coefficient 

(hereafter referred to as “correlation coefficient”) from the measured shape changes 

to the left and right ear canals during running and chewing gum in subjects H to K, 

which are presented in Table 2.3. In addition, Figures 2.9 and 2.10 show the measured 

shape changes to the left and right ear canals during running and chewing for subject 

H. The vertical axes in Figures 2.9 and 2.10 show the output voltage from the sensor 

in volts (V), while the horizontal axes show the time in seconds. In Table 2.3, data 

for subjects H to K are listed, and the largest correlation coefficient r was 0.941 for 

subject J and the smallest coefficient r was 0.741 for subject I during running. In 

contrast, during gum chewing, the largest correlation coefficient r was 0.384 in 

subject J and the smallest coefficient r was 0.175 in subject K. Figures 2.9 and 2.10 

also show that the left and right measured values are almost synchronized during 

running, whereas they are not synchronized during chewing. Therefore, Table 2.3 and 

Figures 2.9 and 2.10 reveal a strong correlation in the measured results for the left 

and right ear canals during running but not during chewing. A clear difference was 

observed in the correlation coefficients of the measured results for the left and right 

ear canals during running and chewing within the scope of this experiment. 
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Table 2.3. Correlation coefficients of shape changes to the left and right 
ear canals (similarity of shape changes to the left and right ear canals) 

Subject Running Chewing 
H 0.796 0.221 
I 0.741 0.359 

J 0.941 0.384 

K 0.757 0.175 

 

 

 

 

Figure 2.8. Meal quality feature of subject A. The MQF of subject A 
calculated using the meal time estimation algorithm is presented in the 
figure. The vertical axis in the figure shows the MQF in volts (V), while 
the horizontal axis shows the time (11 a.m. to 1 p.m.) in hours and 
minutes (h:m). The time during which the MQF is above the threshold is 
TIME1, while the time during which the MQF is below the threshold is 
TIME2. TIME1 is the estimated meal time. 
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Figure 2.9. Right and left ear canal movement during running (subject H) 

 

 

Figure 2.10. Right and left ear canal movement during chewing (subject H) 
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2.4 Discussion 

 

Based on the experimental results, I first discuss whether the proposed 

method can estimate meal times (food intake) and differentiate eating (chewing) from 

running. 

I can conclude that this sensor and algorithm can be used to estimate meal 

times within the scope of my experimental results. This is because the difference 

between the actual and estimated meal times (TIME1) fell within five minutes for all 

subjects in my experimental results and Mean2 was less than 50% of Mean1. This 

demonstrates that meal times can be estimated regardless of individual differences in 

the shape changes to the subjects’ ear canals using this sensor and algorithm. An error 

of up to five minutes nevertheless exists between the actual meal times and those 

estimated using this algorithm. This error is valid because MQF is defined as five 

minutes in the algorithm used in this study. If it was necessary to estimate the meal 

times to a higher degree of accuracy less than five minutes, a solution could be found 

by changing the time to calculate the MQF in accordance with the required accuracy. 

However, it is not theoretically possible to reduce the error to zero because this 

algorithm uses statistical processing. 

Next, I discuss the impact of individual differences in shape changes to the 

ear canal on the meal time estimation results. All subjects had large MQF values for 

the actual meal times; however, these values differed for each subject. When the 

experimental results for Mean1 were compared between the seven subjects, I 

observed the largest Mean1 in subject A, at 1.06 × 10−1 V, and the smallest Mean1 in 

subject B, at 1.31 × 10−2 V. This difference in these values can be indicative of the 

effect of individual differences in shape changes to the ear canal. The MQF is 

calculated from the sum of the mean and standard deviation of the amount of change 
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based on the output voltage of the sensor. When the MQF is high, the mean and 

standard deviation for the amount of change are also large, which in turn indicate a 

substantial change in the distance between the sensor and eardrum. Thus, the MQF 

is large when the subject’s ear canal movement is large. In case of this experiment, 

subject A exhibited the largest shape change to the ear canal, while subject B 

exhibited the smallest. Shape changes to the ear canal differ according to each 

individual, and these individual differences directly influence the MQF. However, 

the MQF of TIME1 was more than two-times larger than that of TIME2 for all 

subjects, indicating a clear difference between TIME1 and TIME2. These results 

suggest that meal times can be estimated within the range of error by setting a 

threshold based on the maximum and minimum MQF values of each subject. This is 

also performed in this algorithm, without being influenced by individual differences 

in shape changes to the ear canal. In the future, I aim to improve the accuracy of this 

algorithm by continuing to study meal time windows (e.g., meal times ranging from 

5 min to 1 min). 

I next discuss if chewing (eating) can be differentiated from running. I found 

that this sensor can be used to differentiate eating from running within the scope of 

my experimental results. This is because the measured results for the left and right 

ear canals during running strongly correlated with each other, whereas the results 

during chewing did not. If these activities are categorized based on correlation 

coefficients, they can be distinguished from each other. In particular, the measured 

waveforms of the left and right ear canals during running are similar, as shown in 

Figure 2.6, whereas measurements during chewing are not similar between the left 

and right ear canals. Table 2.3 shows that the correlation coefficient r during running 

was 0.941 at its highest and 0.741 at its lowest. Meanwhile, the correlation coefficient 

r during chewing was 0.384 at its highest and 0.175 at its lowest. Therefore, these 
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findings suggest that this is a viable method for using a single (fixed) threshold to 

differentiate eating from running, in marked contrast with the mealtime estimation 

algorithm, which adaptively varies the threshold every time a user wears the sensor. 

For example, running is identified when the correlation coefficient r calculated from 

the measured results of shape changes to the left and right ear canals exhibits a strong 

correlation equal to or greater than 0.7. In contrast, eating is identified when the 

correlation coefficient r exhibits no correlation or a weak correlation equal to or lower 

than 0.4 and when the meal time estimation algorithm identifies eating. 

I now further discuss running and chewing based on the data presented in 

Figures 2.6 and 2.7. The running waveform in Figure 2.6 shows that the left and right 

ear canal waveforms are similar during running. On the other hand, the chewing 

waveform in Figure 2.7 reveals that the left and right ear canal waveforms differ 

during chewing. This indicates that during running, the same waveform resulting 

from running is superimposed onto the measured results for the left and right ear 

canals. The reason for this superimposition of the waveform onto the measured 

results is due to vibrations generated by the foot. The vibrations that occur when the 

foot makes contact with the ground are transmitted to the ear via the body and are 

consequently measured by the sensor. Running involves one foot at a time making 

contact with the ground; however, the same running waveform is superimposed onto 

the measured results for shape changes to the left and right ear canals. This is because 

the transmission pathways of the vibrations generated by the feet are the same. The 

pathways by which the vibrations that occur when the feet make contact with the 

ground are transmitted to the ears differ between the left and right feet from the soles 

of the feet up to the hips. However, from the hips to the lower back, chest, neck and 

head, vibrations arrive via the same pathway, regardless of the foot from which they 

originated. This is why transmitted vibrations are not biased toward any side and why 
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running leads to the same results being superimposed onto the measured results for 

shape changes to the left and right ear canals. Therefore, the measured results for 

shape changes to the left and right ear canals associated with running are similar. In 

contrast, the measured results for shape changes to the left and right ear canals 

associated with chewing are not the same, as evident in Figure 2.7. Chewing causes 

the temporal muscles to stretch and contract, which results in movement of the ear 

canal. If shape changes to the left and right ear canals associated with chewing were 

the same, the temporal muscles would expand and contract at the same time and in 

the same manner. Furthermore, if the left and right temporal muscles were to expand 

and contract at the same time and in the same way as a result of chewing, the jaw 

would move precisely up and down. However, the actual jaw movement during 

chewing is biased toward either the left or right. Because the left and right temporal 

muscles do not expand and contract at the same time or in the same way, shape 

changes to the ear canal associated with chewing differ between the left and right 

sides. Based on the above findings, I intend to estimate the amount of movement by 

analyzing the waveforms during running. In addition to estimating the amount of 

movement, I am currently conducting pulse measurements within the ear canal by 

using my proposed method and the same type of optical sensor. If I can estimate the 

amount of movement and improve the accuracy of pulse measurements, I can create 

a device capable of supporting a healthy lifestyle among users regarding exercise and 

diet by simply obtaining measurements from one the optical sensor inserted into the 

left and right ear canals. 
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2.5 Conclusion 

 

In this chapter, I described a method for estimating meal times based on 

temporal changes in the amount of light received by a small optical sensor composed 

of an LED and a phototransistor inserted in the right ear canal. The device shines 

light toward the inner ear canal and receives light reflected back by the ear canal. An 

experiment performed using seven subjects was successful in estimating meal times 

in all subjects within a set range of error. Furthermore, an analysis of the measured 

values during running and chewing obtained from the same sensor inserted into the 

left and right ear canals of four subjects revealed that measurements from the left and 

right ear canals were strongly correlated during running, but not correlated during 

chewing. These findings allow running and chewing to be differentiated based on 

correlation coefficients. 

In the future, I intend to develop a method for estimating the amount of 

movement of the body by analyzing waveforms during running. In addition to 

improving my meal time estimation algorithm and continuing to investigate methods 

for differentiating running and chewing, I aim to conduct further experiments using 

larger subject samples. I also hope to establish a method for measuring the pulse 

within the ear canal using my proposed method and the same type of optical sensor. 

Among the research on detecting chewing sounds via the ear, there is a study that 

used a microphone worn in the ear to sense chewing sounds transmitted through the 

bone [39]. More accurate meal time measurements might be achieved by combining 

the results of my study with those from the study that used a microphone. By 

combining all these research results, I aim to develop a device capable of supporting 

a healthy lifestyle of users regarding both exercise and diet. 
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Chapter 3:  

A basic study for estimation of occlusal force 

using an earphone type sensor 
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3.1 Introduction 

 

The number of the elderly is growing steadily, which spurs demand for 

monitoring technologies regarding dental occlusion and chewing. Chewing ability of 

the elderly is reported to greatly contribute to longer health expectancy [13, 15]; 

moreover, epidemiological studies say that chewing ability in the elderly is closely 

related not only to the body, but also to mental activities and even vital functions [16]. 

I have been engaged in development of wearable devices that can easily measure 

chewing ability at home or in hospital, and in research on health management using 

thus measured results. In Chapter 2, I aimed mainly at health care and monitoring 

and focused on distinctive variation patterns that appear only in eating (chewing); I 

implemented mealtime measurements using an ear wearable sensor [40]. In that 

research, I evaluated accuracy of meal duration by means of average overlap ratio. 

Assumed, for example, that actual meal lasted from 12:12 through 12:21, while the 

time measured by the wearable sensor was from 12:15 through 12:25; then the logical 

product is 12:15 through 12:21, while the logical sum is 12:12 through 12:25. Thus, 

overlap ratio is 6/13 (= [12:15 – 12:21]/[12:12 – 12:25]). In that research, average 

overlap ratio in seven subjects was 0.567. As a next step in chewing evaluation, I 

continue research in occlusal force measurement. 

Conventional methods of occlusal force measurement include those using 

an intramouth sensor [41–43] and those estimating occlusal force from muscle 

potential acquired by electrodes attached to the jaw and cheeks [44]; the former 

measure occlusal force when only a sensor is put in the mouth, while the latter 

measure chewing muscle activity during daily activities including eating as well as 

nocturnal sleep, and appropriate measuring devices are used in both cases.  
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Figure 3.1. Anatomical positional relationship between the ear canal, 

temporal muscle (temporalis). 

 

As distinct from the previous research, I and co-researcher aim at developing 

a device that makes possible simple monitoring of occlusion and chewing during 

meals by common users who have no specialized knowledge. Such monitoring 

device would be useful, for example, to improve nutrition procedures in 

postoperative gastric cancer patients [18, 45]. Patients who underwent gastrectomy 

for cancer are at high risk of malnutrition because of decline in gastric 

accommodation and emptying [17]. In order to avoid malnutrition, doctors need a 

device to monitor occlusion and chewing so as to instruct patients towards better 

nutrition procedures. Occlusal force is produced by the temporalis and the 

temporomandibular joint. The anatomical relation between the temporalis and the 

temporomandibular joint is illustrated in Figure 3.1; occlusion results in a change of 

shape of the ear canal adjacent to the temporalis and the temporomandibular joint. I 

am working on occlusal force measurement through estimating meal duration and 

chewing count using an ear wearable sensor, based on the knowledge of the ear canal 

deformation due to occlusion.  

This study is intended to measure occlusal force using a simple device (an 

ear wearable sensor combined with a small microcontroller) that is free of intramouth 
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sensors (which makes possible measurement during eating), and does not impede 

movement of chewing muscles (cheek joint, temporalis, etc).  

As the first report on my R&D in occlusal force measuring device, this 

chapter presents discussion and experimental results about whether occlusal force 

can be estimated from correlation between occlusion force and movement of the ear 

canal. 

 

3.2 Methods 

 

3.2.1 Overview of experiments 

 

The experiments were intended to examine correlation between occlusal 

force and ear canal movement, and to confirm whether occlusal force can be 

estimated from ear canal movement. For this purpose, I developed a system that can 

simultaneously measure occlusal force and ear canal movement (see Section 3.2.2, 

Figure 3.2). When developing the experimental system, I first fabricated a prototype 

of occlusal force sensor. Then I experimentally determined characteristics of the 

sensor (see Sections 3.2.4.1 and 3.3.1). As regards measurement of ear canal 

movement, I used an ear wearable sensor that I have worked on Chapter 2. 

 

3.2.2 Experimental system 

 

The experimental system fabricated for this study is shown in Figure 3.2. In 

this system, analog signals measured by an occlusal force sensor (“a” in Figure 3.2) 

and earphone-type sensor (“b” in Figure 3.2) are converted in digital signals by AD 
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converter at sampling frequency of 10 Hz and resolution of 12 bit; the digital signals 

are recorded to a storage device together with timestamps.  

 

The occlusal force sensor was fabricated using a pressure sensor (FlexiForce 

A201-100 by NITTA Corp., max. force: 440 N). This pressure sensor features output 

linearity within ±5% against applied pressure. A polyurethane resin hemisphere with 

diameter of 9.5 mm and height of 3.8 mm was bonded at the pressure sensing area (a 

circle of 9.5 mm in diameter near the tip of arrow “a” in Figure 3.2). Besides, a 0.63-

mm thick polypropylene sheet was bonded to the backside of the sensing area. The 

sensor measures occlusal force when the second molar teeth occlude, the 

polyurethane resin hemisphere and the polypropylene sheet being placed at the upper 

and lower jaw, respectively. The hemispheric piece is to evenly transmit the force 

(point load) applied from the upper jaw across the sensing area; the sheet is to protect 

the sensing area from the teeth. A signal cable is connected to the opposite end of the 

sensing area (bottom of the photograph on the right of Figure 3.2).  

The ear wearable sensor has the shape of an inner earphone with a built-in 

optical sensor (QRE1113 by Fairchild Semiconductor). The optical sensor houses an 

infrared LED and a phototransistor; the LED illuminates the ear canal, and reflected 

light is received by the phototransistor to measure movement of the ear canal when 

 
Figure 3.2. Electronic circuit around the sensor.  
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the teeth are clenched (see Figure 3.3). In this optical sensor, output grows with the 

amount of light reflected from an object, and vice versa. Output offset voltage of the 

optical sensor can be adjusted via the variable resistor VR1. The tip of the ear 

wearable sensor inserted into the ear canal is made with reference to a commercial 

M-size earphone.  

 
Figure 3.3. Measurement principle for changes in the shape of the ear 

canal. 

 

The LED is provided with a pulse wave generator to control light emission. 

This pulse wave generator is synchronized with the AD converter connected to the 

ear wearable sensor. Thus, the light is only emitted during AD conversion to enhance 

LED emission. As a result, the influence of ambient infrared light transmitted via the 

skin near the outer ear can be suppressed, and one can expect for higher S/N ratio. 

The AD converter and pulse wave generator were implemented using a single 

microcontroller (mbed LPC1768 by NXP Semiconductors) and proprietary software. 

Used as the storage device was a notebook PC (CF-B11QD3BP by Panasonic, 

Windows 10 Pro Ver. 1703). The microcontroller and PC were connected via USB; 

communication was implemented by RS-232 specification using a freeware 

(CoolTermWin Ver. 1.4.7). 
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3.2.3 Subjects 

 

The subjects were six young healthy persons (males aged 21 to 27, average 

age: 23.3) denoted by A, B, C, D, E, and F. The subjects were able to clamp the 

occlusal force sensor with their second molar teeth without any trouble (no symptoms 

of pain or fatigue in the teeth and the jaw). Those wearing dental braces, etc and those 

who felt uncomfortable with the ear wearable sensor were excluded.  

Besides, this study was approved by the Shinshu University Human 

Research Ethics Committee; after being explained about the contents of experiments, 

the subjects signed a written consent. 

 

3.2.4 Experimental methods 

 

3.2.4.1 Measurement of characteristics of occlusal force sensor 

 

The occlusal force sensor is paced, the hemispheric piece up and the sheet 

down, on a horizontal table that can withstand a load of 200 N per square centimeter; 

then the sensor output (AD converted value) is measured while a downward force 

from 0 through 60 N is applied normally at the center of the hemispheric piece. The 

load was applied to the occlusal force sensor using a digital force gage (ZP-200N by 

Imada Inc.). 
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3.2.4.2 Correlation between outputs of occlusal force sensor and ear 

sensor 

 

This experiment examined correlation between chewing and movement of 

the ear canal. As the occlusal force sensor was clamped by the second molar teeth, 

results of both ear wearable sensor and occlusal force sensor were measured and 

recorded. In this experiment, each of six subjects performed five runs. A subject was 

seated in a chair with the wearable sensor attached to his right ear, and clamped the 

occlusal force sensor by the second molar teeth, the hemispheric piece up and the 

sheet down. The occlusal force sensor was inserted in the mouth from the end where 

the hemisphere and the sheet are installed, so that the end with the cable projects 

from the mouth. In this experiment, a subject gradually increases pressure on the 

occlusal force sensor for about 2 seconds to fix the sensor in the mouth, and then 

relax the pressure to return to the initial condition. For hygiene considerations, the 

sensor was wrapped with a thin (about 0.04 mm) polyethylene film during the 

measurement; after each measurement, the sensor was washed and disinfected by 

ethanol, and the polyethylene film was replaced. The ear wearable sensor was also 

washed and disinfected by ethanol after each measurement. 

 

3.2.4.3 Estimation of occlusal force from ear canal movement 

 

Among five runs if each subject in the experimental method of Section 

3.2.4.2, the outputs of both sensors in the first through fourth runs were used as 

learning data, and the output of the ear wearable sensor in the fifth run was used as 

test data for estimation. Thus, estimated data were compared to the actual results of 

the fifth run. Besides, in order to eliminate offset components in the output of ear 
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wearable sensor in all runs, output variation with respect to the minimum value was 

determined for each subject in every run and then used in earning and estimation.  

Two methods—least squares and weighted average—were used in the 

estimation. In estimation of the ear wearable sensor output by least squares, measured 

values of both sensor outputs in the first through fourth runs were linearly 

approximated by least squares.  

On the other hand, the following expression was used for estimation by 

weighted average. 

 (3.1) 

Here oi is measured value (occlusal force sensor output) in the first through 

fourth runs, wi is weight applied to each measured value, and n is the total number of 

learning data. The weights wi were obtained using the most typical Gaussian function 

shown below. 

 (3.2) 

Here the weight is maximum for xi =0; a=1 and b= 0 is set so that the weight 

is 1. The value of xi was determined by Equation (3.3); the parameter c was set to the 

standard deviation of output variation of the ear wearable sensor in the fifth run. 

 (3.3) 

Here A is output variation of the ear wearable ear sensor used to estimate 

output of the occlusal force sensor, and Bi (B1 through Bn) is data set of output 

variation of the ear wearable ear sensor from the first through fourth runs. 
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3.3 Results 

 

3.3.1 Results of measurement of occlusal force sensor characteristics 

 

Figure 3.4 presents measured output (AD converted value) of the occlusal 

force sensor while the applied load is changed from 0 to 60 N in increments of 20 N. 

The approximation line and approximation expression shown in the diagram were 

derived by least squares. As can be seen from the graph, output of the occlusal force 

sensor varied in proportion to the applied load, thus showing one-to-one 

correspondence. 

 
Figure 3.4. Measurement result of occlusal force sensor. 

 

3.3.2 Results for correlation between outputs of occlusal force sensor 

and ear sensor 

 

Average, maximum, minimum values and standard deviation of correlation 

coefficients between outputs of the occlusal force sensor and the ear wearable sensor 

obtained in five runs for subjects A through F are given in Table 3.1. When estimating 
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occlusal force with the ear wearable sensor, the average absolute value of correlation 

coefficient should be close to 1, and the standard deviation should be close to 0. 

As can be seen from Table 3.1, average correlation coefficient for all subjects 

was above 0.89 in absolute value, and standard deviation was 0.030 or less. The 

correlation coefficient was positive for subjects A through D, and negative for 

subjects E and F. Subject B showed the greatest absolute value of correlation 

coefficient (minimum: 0.944, maximum: 0.961, average: 0.950, SD:0.028), while 

subject D showed the smallest value (minimum: 0.848, maximum: 0.921, average: 

0.893, SD: 0.030). 

 
Table 3.1. Correlation between output value of occlusal force sensor and 
output value of ear wearable sensor 

Subject Average Maximum Minimum 
Standard 
deviation 

A 0.918 0.953 0.896 0.02 

B 0.950 0.961 0.944 0.03 

C 0.906 0.930 0.861 0.03 

D 0.893 0.921 0.848 0.03 

E –0.935 −0.915 −0.960 0.01 

F –0.931 −0.907 −0.966 0.02 

 

The graph in Figure 3.5(a) shows measured results in which the correlation 

coefficient between outputs of the occlusal force sensor and the ear wearable sensor 

was the highest in five runs of subject A with positive correlation. Besides, similar 

graph for subject E with negative correlation is shown in Figure 3.5(b). Here the 

horizontal axis plots time, the left vertical axis plots occlusal force sensor output (AD 

converted value) and the right vertical axis plots ear wearable sensor output (AD 

converted value). These values measured every 0.1 second provide a quick overview 

of correlation between both outputs as well as outliers in the measured data. 
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As indicated by Figure 3.5 and Table 3.1, correlation between outputs of the 

occlusal force sensor and the ear wearable sensor can be positive or negative 

depending on the subject. Besides, correlation was either only positive or only 

negative in all five runs. 

As shown in Figure 3.5, output spread of the occlusal force sensor in this 

experiment was about 0.2 (from 1.0 toward about 0.8). According to Figure 3.4, the 

output's change from 1.0 to 0.8 means that a force about 40 N was applied to the 

sensor. In this experiment, the subjects did not occlude their teeth strongly. Two 

reasons were given in their interviews. The first reason was that the hemispheric piece 

slipped, or felt like slip, when bitten, thus preventing the subjects from strong 

clenching. The second reason was that the hemispheric piece split (broke), or felt like 

about to break, when bitten, thus preventing the subject strong clenching.  

 

 
(a) subject A 
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(b) subject E 

Figure 3.5. Measurement results of occlusal force and ear canal 
movement. 

 

 

 
Figure 3.6. Five experiment results for subject B 

 

Figure 3.6 shows superimposed results of five runs for subject B that showed 

the highest correlation. Here the horizontal axis plots occlusal force sensor output 
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(AD converted value), and the vertical axis plots ear wearable sensor output (AD 

converted value). The plot is indicative of repeatable correlation. A data spread along 

the vertical axis means low repeatability. All data in Figure 3.6 show positive 

proportional relation, that is, positive correlation. 

 

3.3.3 Results for estimation of occlusal force from ear canal movement 

 

Table 3.2 shows differences (average, standard deviation, standard error) 

between measured results and estimated results (least squares and weighted average) 

for subjects A through F. Here standard error is defined as standard deviation divided 

by the square root of each data. The measured results pertain to the fifth run; the data 

measured in the first through fourth runs were used for learning in estimation. The 

smaller are the average, standard deviation, and standard error, the higher is 

estimation accuracy. The smallest difference (the smallest values of average, standard 

deviation, standard error) was obtained in least squares estimation for subject E. On 

the other hand, the greatest difference was obtained in weighted average estimation 

for subject B. Comparing the estimation methods (weighted average and east 

squares), average difference was smaller with least squares estimation for all subjects. 

However, the difference was strongly affected by the measured results (values 

measured in the fifth run).  
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Table 3.2. Average value, standard deviation value, and standard error 
value of difference between measurement result and estimation result for 
each subject 

Subject Method Average 
Standard 

deviation 
Standard error 

A 
Least square 0.028 0.02 0.005 

Weighted average 0.031 0.02 0.005 

B 
Least square 0.060 0.03 0.007 

Weighted average 0.081 0.04 0.009 

C 
Least square 0.030 0.02 0.004 

Weighted average 0.032 0.02 0.005 

D 
Least square 0.026 0.03 0.006 

Weighted average 0.033 0.03 0.006 

E 
Least square 0.018 0.02 0.003 

Weighted average 0.028 0.02 0.003 

F 
Least square 0.026 0.03 0.005 

Weighted average 0.053 0.02 0.003 

 

Measured and estimated results for subjects A and E are presented in Figure 

3.7. The horizontal axis plots variation of the ear variable sensor output normalized 

against the minimum value; the left vertical axis plots occlusal force output (AD 

converted value) corresponding to variation of the ear variable sensor output; the 

right vertical axis plots occlusal force corresponding to the sensor output derived 

from Figure 3.4 (see Section 3.3.1). Here subject A with positive correlation shows 

positive proportional relation, while subject E with negative correlation shows 

negative proportional relation.  
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(a) subject A 

 
(b) subject E 

Figure 3.7. Results of estimating occlusal force from ear canal 
movement. 

 

In Figure 3.7, one can directly compare estimation by weighted average and 

by least squares. In Figure 3.7(a), both estimation methods produce almost same 

results, but results in Figure 3.7(b) are obviously different. 

 

3.4 Discussion 
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The results of Figure 3.4 are indicative of one-to-one correspondence 

relationship between force and output of the occlusal force sensor, which means that 

the fabricated prototype sensor can be used in force measurement. 

Occlusion conditions of subjects in the experiments can be understood from 

the results of Figure 3.4 and the output values in Figure 3.5. For example, subject A 

(Figure 3.5(a)) does not clench his teeth from 0 through 0.5 seconds, then performs 

clenching rapidly at 0.5 through 0.8 seconds, and after that, maintains the occlusal 

force on a certain level. Subject E (Figure 3.5(b)) rapidly clenches his teeth at 0 

through 0.5 seconds, and then maintains the occlusal force on a certain level until 1.8 

seconds.  

The existence of both positive and negative correlation coefficients as 

indicated by Figure 3.5 and Table 3.1 can be attributed to interindividual difference 

in shape of the ear canal. Diameter, length, and bending of the ear channel vary. The 

ear wearable sensor emits light toward the ear channel, and intensity of reflected light 

is converted into output voltage; intensity of reflected light is directly affected by 

bending and other shape parameters of the ear canal. Occlusal force (force applied to 

back teeth during eating) of adult men is estimated at 100 to 200 N [46].  

Occlusal force considered in this study lies in the different range of 0 to 40 

N. However, this does not discredit the measurement method described in this chapter 

because the measurement range can be expanded up to 200 N by modifying the 

occlusal force sensor. 

As can be seen from Figure 3.6, output of the ear wearable sensor with 

respect to that of the occlusal force sensor varies at every measurement (low 

repeatability); however, correlation always remains positive. This can be explained 

by changes in relative positions of the sensor and ear canal, while movement of the 

ear is unchanged. That is, fixity of the ear wearable sensor should be improved. 
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Estimates obtained by weighted average and by least squares are closer to 

each other in Figure 3.7(a) than in Figure 3.7(b). This means that learning data 

(outputs of the ear wearable sensor and occlusal force sensor measured in the first 

through fourth runs) of subject A were more linear. The measured results of fifth run 

shown in Figure 3.7(a) are not linear, and therefore, are difficult to estimate from the 

learning data.  

Results of estimating output of the occlusal force sensor from ear canal 

movement (Table 3.2 and Figure 3.7) suggest that with the proposed method, occlusal 

force can be estimated, at least in case that correlation coefficients between outputs 

of both sensors are predetermined for each subject. Requirement specifications for 

estimation of occlusal force have not been yet sufficiently explored. In future, we will 

conduct clinical tests to define adequate specifications including admissible errors, 

required resolution, etc. 

The strong correlation between outputs of the occlusal force sensor and the 

ear wearable sensor can be utilized in a monitoring system for changes on occlusal 

force (magnitude of occlusal force in same measurement) estimated from values 

measured by the ear wearable sensor. 

 

3.5 Conclusion 

 

I am engaged in R&D on estimation of occlusal force from movement of the 

ear canal during occlusion using an ear wearable sensor (infrared LED and 

phototransistor). In this first report, I attached a wearable sensor to the right ear, and 

measured its output simultaneously to that of an occlusal force sensor clamped by 

the second molar teeth so as to examine relationship between occlusal force and 

movement of the ear canal. Thus, I obtained two findings. The first is the existence 
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of strong correlation between occlusal force and movement of the ear canal. However, 

output of the ear wearable sensor with respect to that of the occlusal force sensor 

varied in every measurement, though the correlation remained. The second is that 

with the proposed method, occlusal force can be estimated, at least in case that 

correlation coefficients between outputs of both sensors are predetermined for each 

subject. 

In future, fixity of the ear wearable sensor should be improved to stabilize 

outputs of both sensors. In addition, an occlusal force sensor with measuring range 

up to 200 N must be developed. Further development is also needed regarding robust 

and accurate methods of data processing and estimation for the ear wearable sensor. 
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Chapter 4:  

Simultaneous Measurement of Ear Canal 

Movement, Electromyography of  

the Masseter Muscle and Occlusal Force 
 

  



57 

 

4.1 Introduction 

 

A patient who undergoes a gastrectomy operation for gastric cancer is at 

increased risk of nutritional disorders because of their reduced gastric function [17]. 

Recently, a study was conducted in Japan that used the number of chews during 

eating for adiposity risk evaluation. We have previously performed research and 

development of a reliable earphone-type chewing-count measuring device called the 

“earable RCC” [18]. The “earable” is a coined word connoting “wearable” and “ear”; 

“RCC” is an abbreviation of “reliable chewing-count measurement device”. The 

earable RCC is a device that measures the number of chews of the user wearing an 

earphone-type sensor (ear sensor) [5] performs; the total chewing count is displayed 

on a tablet terminal in real time. It can also record the number of chews and the 

measured waveform of chewing on the tablet. The earable RCC is used for 

experimental analysis of the dietary behavior of adipose patients and aids in 

providing meal instructions for post-gastrectomy patients in a medical institution in 

Japan. 

In addition, we have studied occlusal force measurements as another 

application of the ear sensor, which has been used successfully in measuring 

mealtimes [40, 48, 49], respiratory rates [8], disturbances in breathing and posture 

during zazen [9], movements of the tongue [7], and the eyes and intentional blinking 

[6]. The next step is therefore to conduct studies regarding an estimation device of 

occlusal force based on the ear sensor. Previous occlusal force measurement systems 

required insertion of a pressure sensor into the patient’s mouth [50–61] or placement 

of electrodes on the patient’s jaw or cheek to measure the electromyography (EMG) 

for an occlusal force estimation [62–67]. 
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In this research, the objective is to develop an occlusal force measurement 

device using the ear sensor from the earable RCC to measure the chewing count. 

Such a device would preclude using an intra-oral sensor or device during eating. And 

it does not require electrode pads, which can impede movement of the masticatory 

muscle and the jaw joint. 

In Chapter 3, I conducted a study concerning the correlation between the 

occlusal force with light chewing on the second molar (occlusal force from 

approximately 0 to 40 N) and the movement of the ear canal measured using the ear 

sensor [47, 68]. With these results, the strong correlation between the occlusal force 

and ear canal movement was then investigated.  

However, the maximum occlusal force measured on the second molar was 

approximately 500 N to 600 N for a healthy male subject and approximately 400 N 

for a male subject with dentures [69]. Therefore, I performed a similar experiment 

with the heavier chewing to confirm the correlation coefficient between the ear 

sensor output and the occlusal force over an appropriate force range. 

This article presents results of the simultaneous measurement of the ear 

canal movement, the EMG of the masseter muscle, and the occlusal force (exceeding 

the maximum of 400 N), along with a discussion of each correlation based on the 

investigation of the Pearson product-moment correlation coefficient and the partial 

correlation coefficient. Section 4.2 describes the experimental system, the details of 

five subjects, the experimental method, the estimation method of the occlusal force, 

and the evaluation method for the estimation method. Sections 4.3–4.5 present the 

results, discussion, and conclusions, respectively. 
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4.2 Materials and Methods 

 

4.2.1 Experimental System 

 

In the experimental system (Figure 4.1), analog signals ranging from 0 V to 

3.3 V are measured using the earphone-type sensor that we developed to measure ear 

canal movements (ear sensor). The signals of the GM-10 occlusal force meter 

(Nagano Keiki Co., Nagano, Japan) and the BR-1000 electromyograph (Nishizawa 

Electric Meters Manufacturing Co., Ltd., Nagano, Japan) are converted into digital 

signals using an analog-to-digital (AD) converter at a sampling frequency of 100 Hz 

with 12-bit resolution. These digital signals are then recorded with time-stamps on a 

storage device. 

Figure 4.2 illustrates the measurement principle of the ear canal movement 

using the ear sensor. Occlusion is performed by the temporalis and masticatory 

muscles, including the masseter muscle and the temporomandibular joint. Occlusion 

causes a change in the shape of the ear canal near the masticatory muscles and the 

temporomandibular joint. During occlusion, the ear sensor measures the amount of 

the change in the ear canal shape optically and noninvasively. 

A small photosensor (QRE1113, Fairchild Semiconductor International Inc., 

CA) is attached to the ear sensor. The photosensor houses a light-emitting diode 

(LED) with an emission wavelength of 940 nm and a phototransistor (Figure 4.1). 

The ear sensor irradiates the skin of the ear canal with infrared light; its reflected 

light is then received by the phototransistor to measure the change in the ear canal 

shape. In the ear sensor, the output increases as the amount of light reflected from the 

ear canal increases. Similarly, the output decreases as the amount of reflected light 

diminishes. The output offset voltage of the ear sensor is adjusted using the variable 
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resistor VR1. The LED is provided along with a pulse wave generator to control light 

emissions. This pulse wave generator is synchronized with the AD convertor that is 

connected to the ear sensor. Because of the mechanisms involved, light is only 

emitted during AD conversion, and it is thus possible to enhance the LED emission 

(i.e., to increase the LED’s forward current) in contrast to the always-emitting case. 

As a result of the large quantity of light produced, the effects of any ambient infrared 

light transmitted via the skin near the outer ear is suppressed and an improvement in 

the signal-to-noise (SN) ratio is expected. A processed medium-size commercial 

earplug, (EP3-BK-MPR, SureFire LLC., CA), is used as housing for the ear sensor. 

 

Figure 4.1. Experimental system. Analog signals ranging from 0 V to 

3.3 V measured using the occlusal force meter, electromyography, and 

the ear sensor to measure the movement of the ear canal, are converted 

into digital signals by the analog-to-digital converter at a sampling 

frequency of 100 Hz with 12-bit resolution; the digital signals are then 

recorded together with time-stamps in a storage device. 
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Figure 4.2. Measurement principle of ear canal movements using the ear 
sensor. Occlusion is performed by the temporalis and masticatory 
muscles, including the masseter muscle and the temporomandibular joint. 
Occlusion causes a change in the ear canal shape near the masticatory 
muscles and the temporomandibular joint. The ear sensor measures this 
change of shape during occlusion optically and noninvasively. A small 
photosensor is attached to the ear sensor. This photosensor houses a light-
emitting diode (LED) with an emission wavelength of 940 nm and a 
phototransistor (Figure 4.1). The ear sensor irradiates the skin of the ear 
canal with infrared light, and the reflected light is then received by the 
phototransistor to measure the change in ear canal shape. 

 

 

Figure 4.3. Photograph of the GM-10 occlusal force meter, which is 
constructed continuously of an intraoral insertion part and a gripping 
part; the intraoral insertion part (left side in figure) is 88 mm in length; 
the remaining 101 mm is the gripping part (right side). During 
measurements, the disposable resin-made cover is placed in advance on 
the intraoral insert. The subject then holds the gripping part in one hand 
and the sensor measures the occlusal force when the subject chews the 
tip (i.e., the sensing area) of the intraoral insertion part. 
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The GM-10 occlusal force meter is a small and lightweight occlusal force 

meter, with width, height, depth (i.e., total length) and mass of 29 mm, 18 mm, 

189 mm, and 70 g, respectively (Figure 4.3). It is constructed continuously from an 

oral cavity insert of 88 mm (left side in Figure 4.3) and a gripping part (right side in 

Figure 4.3). During measurements, a disposable resin-made cover is placed on the 

intraoral insertion part in advance. The sensor measures the occlusal force that acts 

during chewing of the tip of the intraoral insertion part when the gripping part is held 

in one hand. The sensing area is located on the tip of the intraoral insertion part; 

propylene glycol liquid is sealed within its interior. The interior liquid pressure 

changes when the sensing area is chewed. The occlusal force meter then calculates 

the occlusal force from the liquid pressure, which is measured using a pressure sensor. 

The liquid pressure measurement and the occlusal force calculation are conducted 

using a signal processing circuit that is built into the gripping part. The calculated 

occlusal force is then displayed on a liquid crystal display device (back of the device 

in Figure 4.3) that is built into the gripping part. The signal processing circuit consists 

of a microprocessor, a memory circuit, a timer circuit, and a counter. This occlusal 

force meter was specially remodeled by its designers (coauthors Sakaguchi and 

Momose) for this research. Specifically, the remodeled force meter outputs a liquid 

pressure as an analog voltage νout V, which ranges from 0 V to 3 V. In the 

experimental system (Figure 4.1), νout is inputted by the AD convertor. The AD 

converted value is converted into an occlusal force F (in Newtons) using the equation, 

F = 1985.6νout – 75.07. (4.1) 

The BR-1000 electromyograph measures the surface EMG of the masseter 

muscle via the bipolar derivation method (Figure 4.4). This electromyograph consists 

of two detection electrodes, a ground electrode to determine the standard for the 

electric potential of the electromyograph, and a myogenic potential detection circuit. 
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Surface electrodes (bioload 45352V, GE Healthcare, Illinois, USA) was used. The 

EMG signal is bipolar and is led by the detection electrodes for input into the 

myogenic potential detection circuit consisting of a differential amplifier, a band-

pass filter (BPF) with a passband of 100 Hz–1 kHz, an absolute value circuit, a low-

pass filter with a cut-off frequency of 100 Hz, and a full-wave rectifier connected in 

cascade. This detection circuit outputs the envelope curve of a full-wave rectified 

signal in which the measured myogenic potential has been filtered and amplified. The 

electromyograph was also specially remodeled by its designers (coauthors Sakaguchi 

and Momose) for this research. Specifically, it outputs the envelope curve as an 

analog voltage νout V with a range from 0 V to 3 V. In the experimental system 

(Figure 4.1), the analog value is inputted as an EMG value by the AD convertor. 

 

Figure 4.4. Photograph of the BR-1000 measures the surface EMG of 
the masseter muscle via the bipolar derivation method; the front (left side 
in figure) and the back (right side). The BR-1000 consists of two 
detection electrodes, a ground electrode to determine the standard for the 
electric potential of the electromyograph, and a myogenic potential 
detection circuit. 

 

The AD convertor and the pulse wave generator (Figure 4.1) were 

implemented using a microprocessor (mbed LPC1768, Switch Science Inc., Tokyo, 
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Japan) and proprietary software (written in C++). The AD convertor inputs from 0 V 

to 3.3 V are converted into values ranging from 0.0000 to 1.0000, respectively. 

A personal computer (PC; CF-SV78SJQP, Panasonic Corp., Japan; 

Windows 10 Pro Ver. 1803) was used as storage device. The microprocessor and the 

PC communicate via a CRS-232 specification interface running the communication 

software CoolTermWin Ver. 1.4.7 (freeware). The acquired data in the PC were 

processed using spreadsheet software (Microsoft Excel for Office 365, MOS 32-bit, 

Microsoft Corp., Washington, USA). 

 

4.2.2 Subjects 

 

The subjects were five young healthy people (males and females, aged 21 to 

26, the average age being 23.2 years). They were assigned the labels A, B, C, D, and 

E. The subjects were able to chew the sensing area of the occlusal force meter 

thoroughly with their second molar teeth without difficulty and suffered no 

symptoms of pain or fatigue in the teeth and/or the jaw. People who were undergoing 

orthodontic treatment or being treated for a tooth or temporomandibular joint 

problem were excluded from the tests. In addition, subjects for whom the size of the 

ear sensor was a close fit to the size of their ear canal were selected. These people 

were free from symptoms of pain or fatigue in their ears. People undergoing treatment 

for ear problems were also excluded. In addition, any person who felt discomfort 

such as itching or for whom the seal-type electrode pad for the EMG measurements 

caused inflammation was excluded. The study was conducted in accordance with the 

Declaration of Helsinki, and received the approval of the “Ethics Review Procedures 

concerning research with human subjects at Shinshu University (Project 
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Identification Code: 227)”; after the context of the experiments was explained, each 

of the subjects signed a written consent. 

 

4.2.3 Simultaneous Measurement of Ear Canal Movement, Masseter 

Muscle Electric Potential and Occlusal Force 

 

Each of the five subjects performed six runs of the following experiment. 

The subject was seated in a chair with an ear sensor placed on their right ear to 

measure the movement of their ear canal; two surface electrodes for detection were 

placed on their right cheek (where the masseter muscle is located) to measure the 

EMG; a ground electrode was placed on their right clavicle. After placing the ear 

sensor and electrodes, the subject chewed the sensing area of the force meter 

thoroughly with their second molars. The subject begins with light chewing on the 

force sensor and gradually increases the pressure for approximately 2 s to a maximum 

pressure to hold the device in the mouth. Then, the pressure is relaxed to return to the 

initial conditions. The subject kept the head still during the experiment to prevent 

motion artifacts originating from the motion of the head during the measurements of 

the ear canal. 

 For hygiene reasons, the ear sensor was cleansed using a clean brush and 

disinfected using ethanol before and after each experiment. The subjects also cleaned 

their ear canal using a cotton swab before and after each experiment. The disposable 

cover of the occlusal force meter was replaced after each use and the body of the 

force meter was disinfected using ethanol after each use. In addition, the subjects 

gargled before and after each experiment. The disposable surface electrode of the 

EMG device was replaced for every subject. Before the electrodes were attached, the 

skin of the subject was wiped with ethanol as a skin preprocessing step. 
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4.2.4 Method of Occlusal Force Estimation from Ear Canal Movement 

Measured by Ear Sensor and Associated Evaluation Method 

 

Among the six runs for each subject (Section 4.2.3), the output from both 

sensors in the five runs were used as a training set, and the remaining run was then 

used as a test set. The estimation accuracy was evaluated by K-fold cross-validation. 

For this study, the value of K is then six as six measurements were obtained. The 

precision of the k th run was calculated and used as a test set, whereas the other five 

runs were used as training sets. This was performed for k=1, 2, …, K. 

In our previous research [47,70], a strong correlation was found with regard 

to the Pearson product-moment correlation coefficient between the ear sensor outputs 

and the occlusal force for weak occlusal forces of approximately 40 N; we then 

successfully obtained a regression line using the least squares method. Therefore, we 

also used single regression analysis to perform estimations. Specifically, the occlusal 

force estimated by single regression analysis was calculated by following procedures 

I to IV [corresponding to Equations (4.2) to (4.4) below]. The estimation accuracy 

was examined using the estimation evaluation index given in Equation (4.5). 

Additionally, an experiment with a strong occlusal force of more than 400 N was 

performed. We then discuss in Section 4.4 how enhancement of the occlusal force 

affects a specific correlation based on the experimental results. 

I. Training set Tk= {Tk1, Tk2, Tk3, Tk4, Tk5} is composed of the measured results 

from the five runs, with the exception of the k th measured result (test set). 

This was performed for k = 1, 2, …, 6. The i th element of the training set was 

composed of the occlusal force meter output fij (AD converted value) and the 

ear sensor output eij (AD converted value) measured within 2 s at a sampling 

frequency of 100 Hz, and was used as Tki = { eij, fij|j = 1, 2, 3,…,200}. j was 

the sequential number added to each data sample. 
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II. Second item SLOPE is a function used to obtain the single regression 

coefficient aki to estimate occlusal force from the ear sensor value, as shown 

in Equation (4.2). aki was determined for every element of the training set Tki: 

 

k = 1, 2, 3, 4, 5, 6 

i = 1, 2, 3, 4, 5 

(4.2) 

III. The average  of the single regression coefficient aki obtained for every 

element of the training set Tki was determined using Equation (4.3): 

 

k = 1, 2, 3, 4, 5, 6 

(4.3) 

IV. Let fk0 be the initial value of the occlusal force in the k th test, and ek0 be the 

initial value from the ear sensor in the k th test. The estimated value kj was 

determined by substitution of the measured value from the ear sensor ekj into 

Equation (4.4): 

 

k = 1, 2, 3, 4, 5, 6 

j = 1, 2, 3,…, 200 

(4.4) 

The precision evaluation index  given in Equation (4.5) was used 

to evaluate the accuracy of the estimated value : 

 

k = 1, 2, 3, 4, 5, 6 

(4.5) 
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The root-mean-square error RMSEk was determined using Equation (4.6), 

where   and   respectively indicate the maximum and minimum 

estimated values in , , ,..., : 

 

k = 1, 2, 3, 4, 5, 6 

(4.6) 

 

4.3 Results 

 

4.3.1 Simultaneous Measurement Results for Ear Canal Movement, 

Masseter Muscle and Occlusal Force for Earphone-Type Occlusal Force 

Sensor 

 

Listed in Table 4.1 are the average and square-root values of the unbiased 

variance from the Pearson product-moment correlation coefficient between the ear 

sensor value and the occlusal force, the ear sensor value and the EMG value, and the 

EMG value and the occlusal force obtained in the six runs for all six subjects. The 

square root of the unbiased variance was used to show the dispersion of the average 

in the correlation coefficients. When the variation of the average in such a coefficient 

decreases, the value of the square root of the unbiased variance also decreases. Based 

on the results (Table 4.1), Table 4.2 lists the average and square-root values of the 

unbiased variance of the partial correlation coefficient in the six runs when 

eliminating the effect of the EMG value from the correlation coefficient between the 

ear sensor value and the occlusal force. A similar listing (Table 4.2) is given for the 

effect of the ear sensor value from the correlation coefficient between the EMG value 
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and the occlusal force. When estimating the occlusal force with the ear sensor value 

(Section 4.2.4), the absolute value of the average of the correlation coefficient and 

the partial correlation coefficient should be close to 1, whereas the square root of the 

unbiased variance should be close to 0. 

 

Table 4.1. Results for the coefficients of correlation. Average and square-

root values are given of the unbiased variance from the coefficients of 

correlations between ear sensor value and occlusal force, ear sensor value 

and electromyography (EMG) value, and the EMG value and occlusal force, 

obtained over six runs for subjects A through E using the experimental 

method of Section 4.2.4. 

Subject 

Ear Sensor—Occlusal 
Force Ear Sensor—EMG EMG—Occlusal 

Force 

Average 

Square 
Root of 

Unbiased 
Variance 

Average 

Square 
Root of 

Unbiased 
Variance 

Average 

Square 
Root of 

Unbiased 
Variance 

A −0.994 0.004 −0.980 0.005 0.983 0.006 

B −0.951 0.026 −0.925 0.032 0.983 0.006 

C 0.990 0.004 0.979 0.012 0.979 0.013 

D −0.960 0.025 −0.908 0.036 0.955 0.020 

E 0.981 0.007 0.958 0.026 0.963 0.038 

 

From Table 4.1, the correlation coefficient between the ear sensor value and 

the occlusal force and the correlation coefficient between the ear sensor value and 

the EMG value were negative for subjects A, B and D, but were positive for subjects 

C and E. The correlation coefficient between the EMG value and the occlusal force 

was positive for all subjects. The correlation coefficient can be a positive correlation 

or a negative correlation depending on the specific subject. In addition, the subjects 

who showed positive (negative) correlations only showed positive (negative) 

correlations in all six runs. The absolute average of the correlation coefficient 
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between the ear sensor and the occlusal force for all subjects was more than 0.951 

and the square root of the unbiased variance was 0.026 or less. The absolute average 

of the correlation coefficient between the ear sensor value and the EMG value for all 

subjects was more than 0.908, whereas the square root of the unbiased variance was 

0.036 or less. In addition, the absolute average of the correlation coefficient between 

the EMG value and the occlusal force for all subjects was more than 0.955, whereas 

the square root of the unbiased variance was 0.038 or less.  

Subject B showed the highest absolute average for the correlation coefficient 

between the EMG value and the occlusal force; the average was 0.983, the square 

root of the unbiased variance was 0.006. The minimum absolute correlation 

coefficient in the six runs was 0.974 and the maximum was 0.990. Subject D showed 

the lowest absolute average for the correlation coefficient between the ear sensor 

value and the occlusal force; the average was 0.955, the square root of the unbiased 

variance was 0.020. The minimum absolute correlation coefficient in the six runs was 

0.929 and the maximum was 0.979. 

 

From Table 4.2, the partial correlation coefficient between the ear sensor 

value and the occlusal force and the partial correlation coefficient between the ear 

sensor value and the EMG value were negative for subjects A, B and D, but were 

positive for subjects C and E. The partial correlation coefficient between the EMG 

value and the occlusal force was positive for all subjects. The relationships for the 

dependence on negative or positive values of the partial correlation coefficient for 

the specific subjects were the same as those for the correlation coefficient. The partial 

correlation coefficients between the ear sensor value and the occlusal force were 

higher than the partial correlation coefficients between the EMG value and the 

occlusal force for all subjects. 
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Table 4.2. Results for partial correlation coefficients. Based on the results 
given in Table 4.1, the average and square root values of the unbiased 
variance of the partial correlation coefficient over six runs while eliminating 
the effect of the EMG value from the correlation coefficient between the ear 
sensor value and the occlusal force are given; the average and square root 
of the unbiased variance of the partial correlation coefficient over six runs 
while eliminating the effect of the ear sensor value from the correlation 
coefficient between the EMG value and the occlusal force are also given. 

Subject 
Ear Sensor—Occlusal Force EMG—Occlusal Force 

Average Square Root of  
Unbiased Variance Average Square Root of  

Unbiased Variance 

A −0.829 0.153 0.350 0.286 

B −0.616 0.186 0.855 0.103 

C 0.728 0.132 0.367 0.277 

D −0.7578 0.169 0.639 0.302 

E 0.628 0.329 0.482 0.485 

 

 

Figure 4.5. Measured results for subject A. The graph shows the measured 
results for which the correlation coefficient between the ear sensor value 
and the occlusal force was the highest among the six runs of subject A. 

The measured results for subject A (Figure 4.5) show the correlation 

coefficient between the ear sensor value and the occlusal force was the highest in the 

six runs. This measured value also showed the highest correlation between the ear 
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sensor value and the EMG value. Here, the horizontal axis represents time, the left 

vertical axis represents the ear sensor value (i.e., the AD converted value), and the 

right vertical axis represents the EMG value (the AD converted value) and the 

occlusal force (the AD converted value). From Tables 4.1 and 4.2, subject A had the 

highest absolute average for the correlation coefficient between the ear sensor value 

and the occlusal force among all subjects; the highest absolute average for the 

correlation coefficient between the ear sensor value and the EMG value among all 

subjects; the second highest average for the correlation coefficient after subject B; 

the highest absolute average for the partial correlation coefficient between the ear 

sensor value and the occlusal force in all subjects; and the lowest average for the 

correlation coefficient between the EMG and the occlusal force among all subjects. 

Figure 4.5 also provides an overview of these characteristics. 

 

4.3.2 Results for Estimation of Occlusal Force from Ear Canal 

Movement (Ear Sensor Value) 

 

The average   from   (k = 1, 2, …, 6) as determined using Equation 

(4.3) and the square root of the unbiased variance for each subject are listed in Table 

4.3. Subject A shows the lowest square root of the unbiased variance for all subjects, 

with a value of 1.749. The measurement results for the ear sensor and the occlusal 

force in runs 1–6 for subject A are plotted in Figure 4.6. Here, the horizontal axis 

represents the ear sensor-measured value, while the vertical axis represents the 

measured occlusal force value. The trends in the six runs are all similar inclinations 

with small differences in the offset values of the ear sensor values. Figure 4.6 shows 

that the square root of the unbiased variance for subject A may be small, as indicated 

in Table 4.3. Subject B shows the highest square root of the unbiased variance among 
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all subjects, with a value of 11.018. The dispersion of  for subject B was greater 

than that for the other subjects. 

Table 4.4 shows the results of cross-validation with regard to the estimated 

occlusal force from the ear sensor value Equation (4.4) using the method described 

in Section 4.2.4. Specifically, the RMSEk values for subjects A through E determined 

using Equation (4.6), the maximum estimated value , the minimum estimated 

value   the difference between   and   (estimated width) and the 

average of the cross-validation results over six runs for the calculated results for the 

precision evaluation index , Equation (4.5), are shown. Higher values for 

the estimated width in Table 4.4 represent wider estimation ranges. A lower RMSEk 

represents higher estimation accuracy for the same estimated width. Because the 

estimated width differed depending on the specific subject, a precision evaluation 

index  in which the effect of the estimated width was eliminated was used 

for the evaluation. A lower   value corresponds to higher evaluation 

accuracy. Subject A showed the highest accuracy (i.e., the lowest value of ), 

with  of 0.034, an estimated width ( ) of 0.539, and an  

value of 0.066. The estimated values for subject A were translated into occlusal forces 

using Equation (4.1) and gave values for  of 1117 N and  of 47 N. Subject 

B showed the highest value for , with  of 0.097, an estimated width 

of 0.396, and an  value of 0.287. The estimated values for subject B were 

translated into occlusal forces using Equation (4.1) and gave values for  of 801 

N and  of 14 N. 

Subject A showed the largest estimated width and subject C showed the 

smallest estimated width, where the latter is 0.204. 
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Table 4.3. Average estimation results for the single regression coefficient 

and the square-root of the unbiased variance. The average  from  

(k = 1, 2,…, 6) determined using Equation (4.3) and the square-root of 

the unbiased variance of  for each subject are given. 

Subject  Square Root of Unbiased Variance 
A −16.106 1.749  

B −22.856 11.018  

C 12.003 5.024  

D −8.963 3.772  

E 18.754 5.262  

 

 

Figure 4.6. Measurement results for ear sensor and occlusal force over 

the first through sixth runs for subject A. Here, the horizontal axis 

represents the ear sensor-measured value, while the vertical axis 

represents the measured occlusal force value. 
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Table 4.4. Average precision error and maximum and minimum for each 

subject. Here, the precision errors RMSEk of subjects A through E 

determined using Equation (4.6) are shown, along with the maximum 

estimated value  , the minimum estimated value  , the 

difference between   and   (i.e., the estimated width), and 

the average of the cross-validation results over six runs for the calculated 

results for the precision evaluation index  defined in Equation 

(4.5). 

Subject      

A 0.034 0.600 0.061 0.539 0.066 

B 0.097 0.441 0.045 0.396 0.287 

C 0.049 0.258 0.054 0.204 0.267 

D 0.048 0.270 0.054 0.216 0.238 

E 0.092 0.447 0.018 0.429 0.208 

 

4.4 Discussion 

 

In related studies concerning the estimation of the occlusal force, one active 

area of investigation involves using EMG. In research on the correlation between the 

EMG and the occlusal force relevant to this study, a value for the correlation 

coefficient of 0.75 was given in [64] and 0.626 in [66]. The measurement device that 

I used for EMG gave 0.955 or more for the correlation coefficient between the EMG 

and the occlusal force. These values of the correlation coefficient from these devices 

are not comparable because they have differences in structure and data processing 

techniques. Nevertheless, a correlation between the EMG and the occlusal force has 

been performed with the three devices and therefore I believe comparing my EMG 

measurement results as well as the measurement results of the ear sensor offers a 

means to contrast related research indirectly. 
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In Chapter 3, a strong correlation between the ear sensor outputs and the 

occlusal force for weak occlusal forces of approximately 40 N had been investigated. 

In this chapter, I performed experiments with strong occlusal forces exceeding 400 

N. Therefore, as shown in Table 4.1, each absolute average of the correlation 

coefficient between the ear sensor value and the occlusal force, the correlation 

coefficient between the ear sensor value and the EMG value, and the correlation 

coefficient between the EMG value and the occlusal force showed high correlation 

for all subjects. Additionally, the dispersion of the correlation coefficient was low, as 

indicated by the fact that the square root of the unbiased variance was low. Although 

the number of subjects was small, these considerations are roughly possible because 

the five subjects, whose ages and sex were different, performed the measurement 

results in a consistent manner. However, in order to obtain statistically significant 

results, it is essential to increase the number of subjects, and in the future, I will 

increase the number of subjects of various types. 

The reason for the existence of both positive and negative correlation 

coefficients (Table 4.1) can be attributed to inter-individual differences in ear canal 

shape. The diameter, length and bending of the ear canal can all vary. Because the 

ear sensor emits light toward the ear canal and outputs a voltage converted from the 

intensity of the reflected light, inter-individual differences such as bending of the ear 

canal affect the intensity of the reflected light directly. The partial correlation 

coefficient exceeded 0.616 for all subjects, indicating that there is a correlation (Table 

4.2). In Table 4.1, the correlation coefficient between the ear sensor and the occlusal 

force was as high as the correlation coefficient between the EMG and the occlusal 

force. Moreover, the results for the correlation coefficient between the ear sensor and 

the occlusal force (Table 4.2) was established independently of EMG. Using the 

correlation coefficient and the partial correlation coefficient, the correlation between 
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the ear sensor value and the occlusal force can be investigated; this represents an 

adequate method to acquire the estimated occlusal force from the value measured by 

the ear sensor via single regression analysis. Additionally, the low RMSE and NRMSE 

values from the experimental results also supported the appropriateness of the 

method. To improve the estimation accuracy, both collecting the measurement values 

of the ear canal movement from a subject of various characteristics by increasing the 

number of subjects and increasing the amount of learning data (i.e., for the training 

set) for the estimation process are valid approaches. However, the additive average 

value of  is used for the  value at present. To achieve improved estimation 

accuracy, I must consider other methods such as acquisition of a median and a mode 

from a histogram formed with increased quantities of learning data. Additionally, I 

will improve the estimation method and develop a data processing technique for the 

ear sensor with fewer errors and high robustness. 

In this experiment, the value of the ear sensor changed proportionally with 

increasing occlusal force and had not attained a state of saturation for all subjects 

(Figure 4.6). However, I speculate that the ear sensor value attains a state of saturation 

for an occlusal force outside the range applied in the experiment. In such instances, 

ear canal movements may be hindered by an anatomical factor of the muscle and the 

internal skeleton. 

This study was conducted with the supposition that the ear sensor does not 

misread a measurement. From the square root of the unbiased variance (Table 4.3) 

and the value of  in Equation (4.4), this supposition appears to hold in the 

range of the measurement results, because there was no measurement error troubling 

the estimation method indicated in Equation (4.4). However, there is concern that, 

with the movement of the head, a motion artifact may prompt mistakes in 

measurement. Because commercial earplugs were used to house the ear sensor. The 
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earplugs do not fit perfectly for each subject. Therefore, the sensor may shake from 

movement of the subject’s head, and the shaking may affect measurement values. 

Mitigation of these concerns is an open problem for the future, as is perfect earplug 

fitting for each subject, which may help to eliminate motion artifact from 

measurement results. 

Finally, I describe a future scenario for developing an occlusal force 

estimation system (referred to as “earable Ω”) with the estimation method in Section 

4.2.4 (estimation method using the measured value from ear sensor). The “OMEGA” 

of the name “earable Ω” is an abbreviation of “Occlusal Measurement and its 

Estimation system, General Availability version”. The earable Ω comprising a 

measurement start button, a calibration button, and a small liquid crystal display 

device, is an ear phone shaped device including ear sensor. The earable Ω is put on 

the ear on the same side of the teeth used for measurement. The measured values 

from the ear sensor are recorded in memory with the digital signals converted by the 

AD converter at a sampling frequency of 100 Hz and resolution of 12 bit. Not only 

are measured results recorded but also , both of which are needed in advanced to 

estimate the occlusal force using the estimation method in Section 4.2.4. Only the 

maximum occlusal force on the loading small liquid crystal needs to be displayed by 

the earable Ω device. A display of its time-series variation can be had by sending the 

data to an external device such as a smart phone, from which the data can be further 

processes. 

To obtain a training set to establish , gummy candy, which has a known 

hardness (adjusted hardness) is to be used instead of the occlusal force meter as in 

this study. Once the calibration button is activated, then the gummy candy is chewed 

with the teeth used for the measurement. The measured result of the first “single bite” 
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is used for the training set. Repeated chewing of several gummy candies increases 

the data needed for  and improves the estimation accuracy. 

When performing occlusal force estimations, the user places the earable Ω 

on the ear and brings the top back tooth and the bottom back tooth into contact 

without chewing (the occlusal force is then 0 N). The user next activates the start 

button of the earable Ω and chews. For the two-second duration from activation, 

measurements are recorded in memory. The occlusal force is then estimated using 

Equation (4.4) based on these measurements. The measured value from the ear sensor 

on activation is used as the initial value for  with  set to 0. 

As a next step, I shall verify the idea by making a prototype of the earable 

Ω. The required specification necessary to estimate the occlusal force is still being 

studied along with other research organizations. In future, clinical experiments need 

to be undertaken to help determine suitable specifications regarding resolution and 

tolerance of the device. 

 

4.5 Conclusion 

 
I am engaged in research and development of a method for occlusal force 

estimation based on the movement of the ear canal and a device that uses the 

proposed method. The occlusal force can be measured during eating if it is possible 

to estimate the occlusal force from the movement of the ear canal. The method does 

not use electrode pads, which impede the movement of the masticatory muscle and 

the jaw joint. An earphone that I originally researched and developed was used to 

measure the ear canal movement. The ear sensor has the same shape as an internal-

type earphone and contains an infrared LED and a phototransistor. The LED 

irradiates the inside of ear canal with light and the reflected light is received by the 
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phototransistor to measure the change in the ear canal shape. In the ear sensor, the 

output increases in tandem with the amount of light reflected from the ear canal. 

Similarly, the output decreases in tandem with the amount of light reflected from the 

ear canal. The output offset voltage of the ear sensor can be adjusted using the 

variable resistor VR1. In this work, I simultaneously measured the movement of the 

ear canal, the surface electromyography (EMG) of the masseter muscle and the 

occlusal force six times each for five subjects as a basic study for the development 

of an occlusal force meter. I used these results to investigate the Pearson product-

moment correlation coefficient between the ear sensor value and the occlusal force, 

and the partial correlation coefficient between the ear sensor values and the occlusal 

force when eliminating an effect of the EMG. Additionally, I investigated the average 

of the partial correlation coefficient over the six runs and the absolute value of the 

average for each subject. The results for the absolute value were indicative of strong 

correlation, with the correlation coefficients exceeding 0.951 for all subjects. The 

lowest partial correlation coefficient shown by any subject was 0.616, while the 

highest partial correlation coefficient shown by any subject was 0.829. These values 

were also indicative of correlation. I then estimated the occlusal force via single 

regression analysis using the data from the six runs for each of the subjects. There is 

a correlation between the ear sensor value and the occlusal force that can be 

investigated that provides an adequate method to estimate the occlusal force from the 

ear sensor value via single regression analysis. The results of evaluation of the 

proposed method using the cross-validation method indicated that the root-mean-

square error (RMSEk) obtained from comparison of the actual value with the 

estimates for the five subjects ranged from 0.034 to 0.097. 

In future work, I intend to realize an occlusal force estimation device 

through improvement of the estimation accuracy by increasing the numbers of 
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learning data, development of a data processing technique with fewer errors and high 

robustness that is suitable for use with the ear sensor, and improvement of the 

estimation method. 
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Chapter 5:  

Conclusions 
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In chapter 2, I described a method for estimating meal times based on 

temporal changes in the amount of light received by a small optical sensor composed 

of an LED and a phototransistor inserted in the right ear canal. The device shines 

light toward the inner ear canal and receives light reflected back by the ear canal. An 

experiment performed using seven subjects was successful in estimating meal times 

in all subjects within a set range of error. Furthermore, an analysis of the measured 

values during running and chewing obtained from the same sensor inserted into the 

left and right ear canals of four subjects revealed that measurements from the left and 

right ear canals were strongly correlated during running, but not correlated during 

chewing. These findings allow running and chewing to be differentiated based on 

correlation coefficients. 

Through Chapters 3 to 4, I am engaged in research and development of a 

method for occlusal force estimation based on the movement of the ear canal and a 

device that uses the proposed method. The occlusal force can be measured during 

eating if it is possible to estimate the occlusal force from the movement of the ear 

canal. The method does not use electrode pads, which impede the movement of the 

masticatory muscle and the jaw joint. The ear sensor that I originally researched and 

developed in Chapter 2 was also used to measure the ear canal movement.  

In Chapter 3, I conducted an experiment involving six subjects about the 

correlation between the occlusal force with light chewing on second molar (occlusal 

force from approximately 0 to 40 N) and the movement of the ear canal measured 

using the ear sensor. Using the results, the strong correlation between the occlusal 

force and the movement of the ear canal was then investigated. However, the 

maximum occlusal force measured on the second molar was approximately 500 N to 

600 N for healthy male subjects and approximately 400 N for a male subject with 

dentures. Therefore, I performed a similar experiment with heavy chewing to confirm 
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the correlation coefficient between the occlusal force and the ear sensor output over 

an appropriate occlusal force range. 

In Chapter 4, I simultaneously measured the movement of the ear canal, the 

surface electromyography (EMG) of the masseter muscle and the occlusal force six 

times each for five subjects as a basic study for the development of an occlusal force 

meter. I used these results to investigate the Pearson product-moment correlation 

coefficient between the ear sensor value and the occlusal force, and the partial 

correlation coefficient between the ear sensor values and the occlusal force when 

eliminating an effect of the EMG. Additionally, I investigated the average of the 

partial correlation coefficient over the six runs and the absolute value of the average 

for each subject. The results for the absolute value were indicative of strong 

correlation, with the correlation coefficients exceeding 0.951 for all subjects. The 

lowest partial correlation coefficient shown by any subject was 0.616, while the 

highest partial correlation coefficient shown by any subject was 0.829. These values 

were also indicative of correlation. I then estimated the occlusal force via single 

regression analysis using the data from the six runs for each of the subjects. There is 

a correlation between the ear sensor value and the occlusal force that can be 

investigated that provides an adequate method to estimate the occlusal force from the 

ear sensor value via single regression analysis. The results of evaluation of the 

proposed method using the cross-validation method indicated that the root-mean-

square error (RMSEk) obtained from comparison of the actual value with the 

estimates for the five subjects ranged from 0.034 to 0.097. 

In future, the proposed mealtime estimation technique can be updated by 

developing a method for estimating the amount of movement of the body by 

analyzing waveforms during running. In addition to improving my meal time 

estimation algorithm and continuing to investigate methods for differentiating 
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running and chewing, I aim to conduct further experiments using larger subject 

samples. In addition, I intend to realize an occlusal force estimation device through 

improvement of the estimation accuracy by increasing the numbers of learning data, 

development of a data processing technique with fewer errors and high robustness 

that is suitable for use with the ear sensor, and improvement of the estimation method. 

The devices and measurement techniques proposed in this thesis can 

contribute to the improvement of people life quality. By objectively using numerical 

value, they review the user's status such as their domestic dietary habits, exercise 

quantity and body weight and purpose them for self-health maintenance. 

 



86 

 

 

 

 

 

 

 

 

Chapter 6:  

References 
 
 

  



87 

 

1. Pantelopoulos, A.; Bourbakis, NG.; A Survey on Wearable Sensor-Based 
Systems for Health Monitoring and Prognosis, IEEE Transactions on Systems 
Man and Cybernetics Part C (Applications and Reviews), 40 (1), February 2010. 

2. Piwek, L.; Ellis, DA.; Andrews, S.; Joinson, A. The Rise of Consumer Health 
Wearables: Promises and Barriers, PLoS Med. 2016, 13 (2), 9 pages. 
DOI:10.1371/journal.pmed.1001953. 

3. Lukowixs, P.; Lyons, K.; ISWC 09: 13th International Symposium on Wearable 
Computers, IEEE Pervasive Computing 2010, 9 (2), pp. 6-7. 

4. NTT. “hitoe”. http://www.docomo.biz/html/product/hitoe/ 

5. Taniguchi, K.; Nishikawa, A.; Miyazaki, F.; Kokubo, A. Input Device, Wearable 
Computer, and Input Method. U.S. Patent No. US8994647, 31 March 2015. 

6. Taniguchi, K.; Horise, Y.; Nishikawa, A.; Iwaki, S. A novel wearable input 
device using movement of ear-canals. In Proceedings of the Textile 
Bioengineering and Informatics Symposium 2012 (TBIS2012), Ueda, Japan, 9–
11 August 2012. 

7. Taniguchi, K.; Kondo, H.; Kurosawa, M.; Nishikawa, A. Earable TEMPO: A 
novel, hands-free input device that uses the movement of the tongue measured 
with a wearable ear sensor. Sensors 2018, 18, 733. 

8. Taniguchi, K.; Nishikawa, A. Earable POCER: Development of a point of care 
ear sensor for respiratory rate measurement. Sensors 2018, 18, 2273–2291. 

9. Taniguchi, K.; Nishikawa, A. Earable ZEN: Development of an earphone-type 
zazen support wearable system. J. Healthc. Eng. 2018, 2018, 1838563. 

10. Mochizuki Y, Shirakawa K, Abe K, Tokinobu H, Masumi M. The relationship 
about risk factors of Arteriosclerosis and the habit of diet. J. Ningen Dock 1998, 
13, pp.13-17 (in Japanese) 

11. Nakamori T, Obata K, Kakuta Y, Tsushima M. Effects of fast eating habits on 
the body. J. Japan Mibyou System Association 2015, 11 (1), pp.73-76. (in 
Japanese) 

12. Iimura T, Arai Y, Fukumoto M, Takayama M, Abe Y, Asakura K, Nishiwaki Y, 
Takebayashi T, Iwase T, Komiyama K, Gionhaku N, Hirose N. Maximum 
Occlusal Force and Physical Performance in the Oldest Old: The Tokyo Oldest 
Old Survey on Total Health. J Am Geriatr Soc. 2012, 60 (1), pp. 68-76. 

13. Yatani H, Akagawa Y. Do Occlusion and Masticatory Function Contribute to 
General Health and Longevity?. Ann Jpn Prosthodont Soc 2012, 4, pp. 372-374. 
(in Japanese) 

14. Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; 
Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.J.; et al. Time-Restricted 
Feeding without Reducing Caloric Intake Prevents Metabolic Diseases in Mice 
Fed a High-Fat Diet. Cell Metab. 2012, 15, 848–860. 



88 

 

15. Nasu I, Saito Y. Active life expectancy for elderly Japanese by chewing ability. 
Jpn J Public Health. 2005;53:411–423. (in Japanese) 

16. Lotte Rhythmi-Kamu Webpage: https://kamukoto.jp/rhythmi-kamu/. (in 
Japanese). Accessed September 11, 2017. 

17. Eagon JC, Miedema BW, Kelly KA. Postgastrectomy syndromes. Surg Clin 
North Am. 1992;72:445–465. 

18. Taniguchi K, Kondo H, Tanaka T, Nishikawa A. Earable RCC: development of 
an earphone-type reliable chewing-count measurement device. J Healthc Eng. 
2018;2018:8. Article ID 6161525 

19. Winokur, E.S.; He, D.D.; Sodini, C.G. A wearable vital signs monitor at the ear 
for continuous heart rate and Pulse Transit Time measurements. In Proceedings 
of the 2012 Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 
September 2012; pp. 2724–2727. 

20. Shen, C.L.; Kao, T.; Huang, C.T.; Lee, J.H. Wearable band using a fabric–based 
sensor for exercise ECG monitoring. In Proceedings of the 2006 10th IEEE 
International Symposium on Wearable Computers, Montreux, Switzerland, 11–
14 October 2006; pp. 143–144. 

21. Hung, K.; Zhang, Y.T.; Tai, B. Wearable Medical Devices for Tele-Home 
Healthcare. In Proceedings of the 26th Annual International Conference of the 
IEEE on Engineering in Medicine and Biology Society, San Francisco, CA, USA, 
1–4 September 2004; pp. 5384–5387. 

22. Wei, J. How Wearables Intersect with the Cloud and the Internet of Things 
Considerations for the Developers of Wearables. IEEE Consum. Electron. Mag. 
2014, 3, 53–56. 

23. Constant, N.; Prawl, O.D.; Johnson, S.; Mankodiya, K. Pulse-glasses: An 
unobtrusive, wearable HR monitor with Internet-of-Things functionality. In 
Proceedings of the 2015 IEEE 12th International Conference on Wearable and 
Implantable Body Sensor Networks (BSN), Cambridge, MA, USA, 9–12 June 
2015; pp. 1–5. 

24. Salehizadeh, S.M.A.; Noh, Y.; Chon, K.H. Heart rate monitoring during intense 
physical activities using a motion artifact corrupted signal reconstruction 
algorithm in wearable electrocardiogram sensor. In Proceedings of the IEEE 1st 
International Conference on Connected Health: Applications, Systems and 
Engineering Technologies (CHASE), Washington, DC, USA, 27–29 June 2016; 
pp.157–162. 

25. Thomas, S.S.; Nathan, V.; Zong, C.; Soundarapandian, K.; Shi, X.; Jafari, R. 
BioWatch: A Noninvasive Wrist-Based Blood Pressure Monitor That 
Incorporates Training Techniques for Posture and Subject Variability. IEEE J. 
Biomed. Health Inform. 2016, 20, 1291–1300. 



89 

 

26. Zhang, H.; Sun, Y.; Lu, Y.; Lan, J.; Ji, Y. A novel motion and Noise Artifacts 
Reduction Mechanism (MNARM) for wearable PPG-based heart rate extraction. 
In Proceedings of the 2015 IET International Conference on Biomedical Image 
and Signal Processing (ICBISP 2015), Beijing, China, 19 November 2015; pp. 
1–4. 

27. Preejith, S.P.; Alex, A.; Joseph, J.; Sivaprakasam, M. Design, development and 
clinical validation of a wrist-based optical heart rate monitor. In Proceedings of 
the 2016 IEEE International Symposium on Medical Measurements and 
Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. 

28. Ye, X.; Chen, G.; Cao, Y. Automatic eating detection using head-mount and 
wrist-worn accelerometers. In Proceedings of the 17th International Conference 
on e-Health Networking, Application & Services (HealthCom), Boston, MA, 
USA, 14–17 October 2015; pp. 578–581. 

29. Long, X.; Yin, B.; Aarts, R. Single-accelerometer-based daily physical activity 
classification. In Proceedings of the Annual International Conference of the 
IEEE on Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 
2–6 September 2009; pp. 6107–6110. 

30. Motoi, K.; Tanaka, S.; Kuwae, Y.; Yuji, T.; Higashi, Y.; Fujimoto, T.; 
Yamakoshi, K. Evaluation of a Wearable Sensor System Monitoring Posture 
Changes and Activities for Use in Rehabilitation. J. Robot. Mechatron. 2007, 19, 
656–666. 

31. Mannini, A.; Sabatini, A. On-line classification of human activity and estimation 
of walk-run speed from acceleration data using support vector machines. In 
Proceedings of the 2011 IEEE Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 
September 2011; pp. 3302–3305. 

32. James, D.A.; Davey, N.; Rice, T. An accelerometer based sensor platform for in 
situ elite athlete performance analysis. In Proceedings of the IEEE Sensors, 
Vienna, Austria, 24–27 October 2004; pp. 1373–1376. 

33. Bächlin, M.; Förster, K.; Tröster. G. SwimMaster: A wearable assistant for 
swimmer. In Proceedings of the 11th International Conference on Ubiquitous 
Computing, Orlando, FL, USA, 30 September–3 October 2009; pp. 215–224. 

34. Atallah, L.; Aziz, O.; Lo, B.; Yang, G.Z. Detecting walking gait impairment with 
an ear-worn sensor. In Proceedings of the 6th International Workshop on 
Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 
June 2009, pp. 177–182. 

35. Farooq, M.; Sazonov, E. A Novel Wearable Device for Food Intake and Physical 
Activity Recognition. Sensors 2016, 16, 1067. 

36. Fontana, J.M.; Farooq, M.; Sazonov, E. Automatic Ingestion Monitor: A Novel 
Wearable Device for Monitoring of Ingestive Behavior. IEEE Trans. Biomed. 
Eng. 2014, 61, 1772–1779. 



90 

 

37. Taniguchi, K.; Nishikawa, A.; Kawanishi, S.; Miyazaki, F. KOMEKAMI 
Switch: A Novel Wearable Input Device Using Movement of Temple. Int. J. 
Robot. Mechatron. 2008, 20, 260–272. 

38. Amano, N.; Andoh, S.; Matsuoka, H.; Hashimoto, M.; Yamauchi, M.; Kubo, M.; 
Kawano, J. Changes in Chewing Rhythm During Repetitive Series of 
Mastication in Normal Adults as a Function of Time Elapsed and the Four Basic 
Taste Stimuli. Nihon Hotetsu Shika Gakkai Zasshi 1989, 33, 270–282. (In 
Japanese) 

39.  Liu, J.D.; Johns, E.; Atallah, L.; Pettitt, C.; Lo, B.; Frost, G.; Yang, G.Z. An 
Intelligent Food-Intake Monitoring System Using Wearable Sensors. In 
Proceedings of the 2012 9th International Conference on Wearable and 
Implantable Body Sensor Networks, London, UK, 9–12 May 2012; pp. 154–160. 

40. Taniguchi K, Chiaki H, Kurosawa M, Nishikawa A. A novel earphone type 
sensor for measuring mealtime: consideration of the method to distinguish 
between running and meals. Sensors. 2017;17:252–266. 

41. Inatomi S, Murata S, Hara H, Ihara T, Kamohara Y, Toyoda Y. Relationship 
between biting force and activities of daily living in the frail elderly. Jpn J Health 
Prom. 2013;15:37–41. (in Japanese) 

42. Bite pressure measurement system T-scan III: 
http://www.nitta.co.jp/product/sensor/t-scaniii/ (in Japanese). Accessed 
September 11, 2017. 

43. Occlusal force measuring system: http://www.gcdental.co.jp/ 
product/pdf/occluzer.pdf (in Japanese). Accessed September 11, 2017. 

44. Watanabe K, Yamaguchi T, Gotouda A, Okada K, Mikami S, Hishikawa R. 
Analyses of unconstrained masseteric activity during the entire day by using an 
ultraminiature wearable electromyogram system. J Jpn Soc Stomatog Fun. 
2014;19:125–136. (in Japanese) 

45. Tanaka S, Uchikawa K, Maeda S, et al. An attempt to clear postoperative 
disorders through mastication visualization using wearable terminal. 72nd 
General Meeting of the Japanese Society of Gastroenterological Surgery, WS12-
12; 2017 (in Japanese) 

46. The occlusal force of an adult male during eating: https://www. 
jda.or.jp/park/relation/sport_06.html (in Japanese). Accessed September 11, 
2017. 

47. Kurosawa, M.; Taniguchi, K.; Nishikawa, A. A basic study of occlusal force 
measured using a wearable ear sensor. In Proceedings of the 14th International 
Conference on Ubiquitous Healthcare (uHealthcare 2017), Seoul, Korea, 5–7 
December 2017. 

48. Kurosawa, M.; Taniguchi, K.; Nishikawa, A. Earable: A novel earphone-type 
wearable sensor and its applications. In Proceedings of the 5th Annual 



91 

 

Conference of AnalytiX-2017, Session 7-4: Nanomaterial Applications in 
Chemical Sensors and Biosensors, Fukuoka, Japan, 22–24 March 2017; p. 400. 

49. Taniguchi, K.; Kurosawa, M.; Nishikawa, A. Earable: Wearable ear computer. 
In Proceedings of the 2017 International Conference for Top and Emerging 
Computer Scientists (IC-TECS 2017), Taipei, China, 21–24 December 2017. 

50. Nascimento, P.F.; Franco, A.P.G.O.; Fiorin, R.; Gomes, L.B.; Oliveira, V.; Abe, 
I.; Kalinowski, H.J. Characterization of the occlusal splints using optical fiber 
sensors. In Proceedings of the 2017 SBMO/IEEE MTT-S International 
Microwave and Optoelectronics Conference (IMOC), Águas de Lindóia, Brazil, 
27–30 August 2017. 

51. Jian, C.; Yi, Y.; Deng, L.; Luo, J. A device for multi-teeth bite force 
measurement. In Proceedings of the 2016 International Conference on Advanced 
Robotics and Mechatronics (ICARM), Macau, China, 18–20 August 2016. 

52. Lin, K.R.; Liu, T.H.; Lin, S.W.; Chang, C.H.; Lin, C.H. Occlusive bite force 
measurement utilizing flexible force sensor array fabricated with low-cost 
multilayer ceramic capacitors (MLCC). In Proceedings of Transducers 2009–
2009 International Solid-State Sensors, Actuators and Microsystems Conference, 
Denver, CO, USA, 21–25 June 2009. 

53. Gonzalez, C.; Lantada, A. A wearable passive force sensor powered by an active 
interrogator intended for intra-splint use for the detection and recording of 
bruxism. In Proceedings of the 2009 3rd International Conference on Pervasive 
Computing Technologies for Healthcare, London, UK, 1–3 April 2009. 

54. Kannan, A.; John, B.K.; Babu, D.S.; Kumar, M. Human biting force calculating 
instrument. In Proceedings of the 2017 International Conference on Circuit, 
Power and Computing Technologies (ICCPCT), Sasthancotta, India, 20–21 
April 2017. 

55. Tayel, M.; Elaskary, S.A.; Nassef, T.M. A bio-sensory system for increase 
implant longevity for occlusal analysis. In Proceedings of the 2012 2nd 
International Conference on Advances in Computational Tools for Engineering 
Applications (ACTEA), Beirut, Lebanon, 12–15 December 2012. 

56. Kim, J.H.; McAuliffe, P.; O’Connel, B.; Diamond, D.; Lau, K.T. Development 
of bite guard for wireless monitoring of bruxism using pressure-sensitive 
polymer. In Proceedings of the 2010 International Conference on Body Sensor 
Networks, Singapore, 7–9 June 2010. 

57. Nassef, T.M.; Tayel, M.B.; Elaskary, S.A. A proposed sensory setup to increase 
computational analysis accuracy for dental applications. In Proceedings of the 
2013 International Conference on Computer Medical Applications (ICCMA), 
Sousse, Tunisia, 20–22 January 2013. 

58. Waltimo, A.; Kononen, M. A novel bite force recorder and maximal isometric 
bite force values for healthy young adults. Eur. J. Oral Sci. 1993, 101, 171–175. 



92 

 

59. Fernandes, C.P.; Glantz, P.J.; Svensson, S.A.; Bergmark, A. A novel sensor for 
bite force determinations. Dent. Mater. 2003, 19, 118–126. 

60. Braun, S.; Bantleon, H.S.; Hnat, W.P.; Freudenthaler, J.W.; Marcotte, M.R.; 
Johnson, B.E. A study of bite force, part 1: Relationship to various physical 
characteristics. Angle Orthod. 1995, 65, 367–372. 

61. Braun, S.; Bantleon, H.P.; Hnat, W.P.; Freudenthaler, J.W.; Marcotte, M.R.; 
Johnson, B.E. A study of bite force, part 2: Relationship to various cephalometric 
measurements. Angle Orthod. 1995, 65, 373–377. 

62. Palumbo, A.; Farella, M.; Avecone, S.; Pace, C.; Cocorullo, G. A system for 
simultaneous signals acquisition of EMG activity, bite force, and muscle pain, 
reveals the rotation of synergistic activity in the human jaw elevator muscles. In 
Proceedings of the 2007 IEEE Instrumentation & Measurement Technology 
Conference (IMTC 2007), Warsaw, Poland, 1–3 May 2007. 

63. Goharian, N.; Moghimi, S.; Kalani, H. Estimation biting force based using EMG 
signals and Laguerre estimation technique. In Proceedings of the 2015 23rd 
Iranian Conference on Electrical Engineering, Tehran, Iran, 10–14 May 2015. 

64. Poomsombut, S.; Limsakul, C.; Phukpattaranont, P. Appropriate features to 
determine correlation in EMG signals and biting force in occlusion system. In 
Proceedings of the 2018 International Conference on Embedded Systems and 
Intelligent Technology & International Conference on Information and 
Communication Technology for Embedded Systems (ICESIT-ICICTES), Khon 
Kaen, Thailand, 7–9 May 2018. 

65. Yu, H.; Sun, Y.; Bai, F.; Ren, H. A preliminary study of force estimation based 
on surface EMG: Towards neuromechanically guided soft oral rehabilitation 
robot. In Proceedings of the 2015 IEEE International Conference on 
Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015. 

66. Ferrario, V.F.; Sforza, C.; Zanotti, G.; Tartagilia, G.M. Maximal bite force in 
healthy young adults as predicted by surface electromyography. J. Dent. 2004, 
32, 451–457. 

67. Van Der Bilt, A.; Tekamp, F.A.; Van Der Glas, H.W.; Abbink, J.H. Bite force 
and electromyography during maximum unilateral and bilateral clenching. Eur. 
J. Oral Sci. 2008, 116, 217–222. 

68. Taniguchi, K.; Kurosawa, M.; Kimura, Y.; Nishikawa, A. A basic study for 
estimation of occlusal force using an ear wearable sensor. Electron. Commun. 
Jpn. 2018, 101, 20–27. 

69. Fastier-Wooller, J.; Phan, H.P.; Dinh, T.; Nguyen, T.K.; Cameron, A.; Öchsner, 
A.; Dao, D.V. Novel low-cost sensor for human bite force measurement. Sensors 
2016, 16, 1244   



93 

 

 

 

 

 

 

 

 

Chapter 7:  

Accomplishments 
 
 

  



94 

 

7.1 Publications in Journal  

 

1. Taniguchi K, Chiaki H, Kurosawa M, Nishikawa A. A novel earphone type 

sensor for measuring mealtime: Consideration of the method to distinguish 

between running and meals. Sensors 2017, 17 (2), p. 252 (14 pages). 

2. Taniguchi K, Kondo H, Kurosawa M, Nishikawa A. Earable TEMPO: A novel, 

hands-free input device that uses the movement of the tongue measured with a 

wearable ear sensor. Sensors 2018, 18 (3), p. 733 (11 pages). 

3. Taniguchi K, Kurosawa M, Kimura Y, Nishikawa A, A basic study for estimation 

of occlusal force using an ear wearable sensor. IEEJ Transactions on Electronics, 

Information and Systems 2018, 138 (6), pp. 648-654 (in Japanese). 

English Translation: Electronics and Communications in Japan 2018, 101 (11), 

pp. 20-27. 

4. Kurosawa M, Taniguchi K, Momose H, Sakaguchi M, Kamijo M. Nishikawa A. 

Simultaneous Measurement of Ear Canal Movement, Electromyography of the 

Masseter Muscle and Occlusal Force for Earphone-Type Occlusal Force 

Estimation Device Development. Sensors 2019, 19 (15), p. 3441 (16 pages). 

 

6.2 Conferences 

[International] 

 

1. ●Kurosawa M, Nishikawa A. The Control of Human Fingers by Using 

Functional Electrical Stimulation. The 7th International Symposyum on High-

Tech Fiber Engineering for Young Researcher, Suzhou, China, November 2015. 

<Oral and Poster> 

2. ●Kurosawa M, Nishikawa A. Analyzing Surface Electromyogram from Flexor 

Digitorum Superficialis and Extensor Digitorum Communis. The 38th Annual 

International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC’16), Florida, USA, August 2016. <Poster> [Peer-reviewed] 



95 

 

3. ●Kurosawa M, Taniguchi K, Nishikawa A. Earable: A novel earphone-type 

wearable sensor and its applications. The 5th Annual Conference of AnalytiX-

2017, Fukuoka, Japan, March 2017. <Oral> [Invited] 

4. Takemura K, Kurosawa M, ●Atsuumi K, Matsui K, Miyazaki F, Nishikawa A. 

Frequency Domain System Identification of Human Finger Dynamics Using 

Functional Electrical Stimulation based on an Agonist-Antagonist Concept. 

REHABWEEK 2017/ 2017 Annual Conference of the International Functional 

Electrical Stimulation Society (IFESS 2017), London, UK, July 2017. <Poster> 

[Peer-reviewed] 

5. ●Kurosawa M, Taniguchi K, Nishikawa A. A basic study of occlusal force 

measured using a wearable ear sensor. The 14th International Conference on 

Ubiquitous Healthcare (uHealthcare 2017), Seoul, Korea, December 2017. 

<Poster> [Peer-reviewed] 

6. Taniguchi K, ●Kurosawa M, Nishikawa A. Earable: Wearable ear computer. In 

Proceedings of the 2017 International Conference for Top and Emerging 

Computer Scientists (IC-TECS 2017), Taipei, China, December 2017. <Oral> 

[Invited] 

7. ●Kurosawa M, Taniguchi K, Nishikawa A. Earable: A novel earphone-type 

wearable sensor and its applications. Textile Summit 2018, Nagano, Japan 2018. 

<Poster> 

 

[Domestic (in Japanese)] 

 

1. , . . 4

. 2014 11  

2. , . FES  

. 5

. 2015 11  

3. , , . “earable”



96 

 

. 

2017. 2017 9  

4. , , . earable

, . 2018 3

 

5. . 

. 58 . 2019

6



97 

 

 

 

 

 

 

 

 

Chapter 8:  

Acknowledgement 
 
 

  



98 

 

This work was supported by a Grant-in-Aid for the Shinshu University 

Advanced Leading Graduate Program by the Ministry of Education, Culture, Sports, 

Science and Technology (MEXT), Japan. This study was partly supported by the 

Regional ICT-Promoting Research and Development Program (132308004) of the 

Strategic Information and Communications R&D Promotion Programme (SCOPE) 

by the Japanese Ministry of Internal Affairs and Communications, and Innovation 

Program, Wearable Earring Computer by the Ministry of Internal Affairs and 

Communications, and JSPS KAKENHI Grant Number JP19K12828.  

I would like to express my deepest gratitude to all the subjects who were 

involved in these experiments. 

 

Firstly, I would like to express my sincere gratitude to my supervisor Prof. 

Atsushi Nishikawa in Osaka University for the continuous support of my study since 

the days of an undergraduate student in Shinshu University, for his patience, 

motivation, and immense knowledge. His long-term guidance helped me in all the 

time of research at the both environment of Shinshu University and Osaka University. 

Without his encouragement, this thesis would not have been possible. I could not 

have imagined having a better advisor and mentor for my study. 

My deepest appreciation goes to Prof. Masayoshi Kamijo, Prof. Hiroaki 

Yoshida, Prof. Hiroaki Ishizawa and Prof. Michihiko Koseki in Shinshu University, 

and Dr. Takeshi Fujita in Kobe University for their significant contribution and 

extensive discussion as a member of the Board of Examiners for my thesis. 

I also would like to express my gratitude to Dr. Kazuhiro Taniguchi in 

Hiroshima City University, for the great collaborative research about earable. I could 

have studied these theme thanks of his support and advice. Prof. Emerit. Masao 

Sakaguchi in National Institute of Technology Nagano College and Mr. Hideya 



99 

 

Momose in SKINOS NAGANO Co., Ltd. have made enormous contribution to 

preparing necessary equipment for my research. Mr. Keita Atsuumi in Hiroshima 

City University, Dr. Kazuhiro Matsui in Osaka University and all team meeting 

member have given me constructive comments and warm encouragements.  

Then I appreciate Prof. Hiroaki Yoshida and Prof. Satoshi Hosoya for 

warmly accepting my laboratory rotation for a month, and keeping support me with 

their helpful advice to study biometric measurement. Prof. Masayoshi Kamijo also 

have accepted my request to keep my name on his laboratory, and supported me with 

insightful comments. They also have willingly approved me to use equipment in their 

laboratory in Shinshu University. 

About a period I had studied in Sweden, I would like to express deep 

appreciation to Dr. Joel Peterson in University of Borås for giving me many 

opportunities to study wearable technologies and to experience in Sweden. His 

tremendous support has given me many inspirations not only about research but also 

about my future plans, with my host mother and friends in Sweden. 

Prof. Emerit. Mikihiko Miura, Prof. Shigeru Inui, Prof. Emerit. Hajime 

Konishi, Prof. Tsutomu Ishiwatari have gave moral support and encouragement to 

me as a mentor in Shinshu University. Without them, I could have never continued 

trying in the both Leading Program and general university life. All the Leading 

Program staff’s support were also invaluable. 

Other thanks go to all of my lab mates through seven years in Shinshu 

University and Osaka University for the stimulating discussion, giving inspirations 

and helping to take a balance between work and rest. 

Lastly, I would like to express the deepest appreciation to my family and my 

partner for supporting me mentally, financially and motivationally thorough out my 

long student time and my life in general.  


