科学研究費助成事業

平成 30年 6月 26日現在

研究成果報告書

機関番号: 13601
研究種目:挑戦的萌芽研究
研究期間: 2015~2017
課題番号: 15K14232
研究課題名(和文)細胞の動的3次元パターニングによるオンチップ臓器へ挑戦
研究課題名(英文)Dynamic three-dimensional cell patterning toward organ-on-a-chip
研究代表者

秋山 佳丈(Akiyama, Yoshitake)
信州大学・学術研究院繊維学系・准教授

研究者番号: 80585878

交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):動物実験を代替する手法として,マイクロ流体デバイスにおける微小組織構築 (Organ-on-a-chip)が注目されている.しかし,そのためには,マイクロ流路内での細胞や微小組織を操作す るための技術が必要である.本研究では,マイクロ流路内での高度な3次元微小組織構築に向けて,研究者の提 案する「ラベルフリー磁気アセンブリ法」の有用性を検証した.特に,磁石アレイを用いた細胞パターニングお よび電磁石デバイスを用いた微小組織の操作を実証した.

研究成果の概要(英文):As an experimental-animal substitution method, micro-tissue construction in microfluidic devices (Organ-on-a-chip) has been attracted much more attention. Achievement of Organ-on-a-chip requires to development a manipulation method for cells and micro-tissues in the microchannel. In this study, the label-free magnetic assembly method that the author proposed was assessed. We demonstrated label-free cell patterning using a magnet array and label-free magnetic manipulation of micro-tissues using an electromagnetic device.

研究分野:ナノマイクロシステム

キーワード: 細胞パターニング マイクロ流体デバイス 組織工学 磁気アルキメデス効果

1.研究開始当初の背景

多細胞生物は,個体-器官系-器官-組織-細胞という階層構造を成している.しかし, 現在,創薬スクリーニングにおいては,最下 層である細胞レベルの評価が中心となって おり,個体レベルの実験動物およびヒトでの 治験結果との隔たりが問題となっている.こ の問題の解決に向けて,微細加工技術により 作製したマイクロ流体デバイスが注目を集 めている、培養環境を微小化することで、単 純に高価な細胞や試薬の使用量が削減でき, システムの集積化が容易になるだけではな く, レイノルズ数の低下により層流条件とな るため細胞周辺環境の精密な制御が可能と なる.このようなマイクロ流体デバイスでの 細胞培養に関する研究は,近年急激な発展を 遂げており, 高度な流体制御技術や複雑な微 小構造を組み合わせることで,細胞から機能 や構造を持つ微小組織を構築するに至って いる.さらに, Shuler 教授により,1つの基 板上に複数の組織や器官を作り上げる Organ on a chip または Human on a chip と呼ばれるコ ンセプトが提案され,現在最も注目される研 究分野の1つとなっている.これまでに機能 や構造を持つ微小組織の構築が報告されて はいるが,閉鎖空間であるマイクロ流路内で の細胞の操作は困難であり,生体同様の複雑 かつ多機能な組織を構築するには至ってい ない.

2.研究の目的

本研究では, Organ-on-chip における最終ゴー ルであるマイクロ流路内での高度な3次元微 小組織構築に向けて,著者の提案する「ラベ ルフリー磁気アセンプリ法」の有用性を検証 する.具体的には,ラベルフリー磁気アセン ブリ法により,磁石アレイを用いた細胞パタ ーニングおよび電磁石デバイスを用いた微 小組織の操作を実証する

3.研究の方法

 (1) ラベルフリー磁気アセンブリ
 溶液中の粒子に作用する磁力 F_m は以下の式

 (1)で表すことができる.

$$F_m = \frac{(\chi_p - \chi_m)V}{2\mu_0} \nabla B^2 \tag{1}$$

ここで, χ_p :粒子の磁化率, χ_m :溶液の磁化 率,V:粒子の体積, μ_0 :真空の透磁率,B: 磁束密度である.溶液中の粒子に磁場を印加 しても磁化率に差がないため,粒子は磁場か らの影響を受けない.また,溶液中に磁性粒 子が含まれる場合, $(\chi_p - \chi_m)$ は正となるため, 粒子に対して引力が働く.一方,正の磁化率 を持つ溶液中に粒子が含まれる場合は, $(\chi_p - \chi_m)$ が負となるため,粒子は相対的に反磁性 体として振る舞い,粒子は磁場から斥力を受 ける.その結果,粒子は磁力の弱い場所に凝 集する.

(2) 細胞パターニング装置概要 実験装置の概要を図1に示す.パターニング に必要な磁場は,横方向に磁化されたネオジ ム磁石(幅1mm,高さ5mm,奥行き30mm) を15個並べ,間にスペーサとしてアルミニ ウム(幅0.1mm,高さ3mm,奥行き25mm) をはさんだ磁石アレイにより作製した.磁石 アレイの上に,ガラスボトムディッシュに枠 を貼り付けることで作製したチャンバを設 置し,その中でパターニング実験を行った. チャンバは,縦10mm,横10mm,高さ5mm とした.

図1 磁石アレイの上に設置したチャンバ.

(3) 蛍光ビーズのパターニング実験

細胞と物理的性質の近い直径 15 μmの蛍光ポ リスチレンビーズを使用して実験を行った. DPBS(-)に常磁性化合物(Gd-DOTA)を40 mM, 蛍光ポリスチレンビーズを4.1×10⁴ 個/mL添 加して蛍光ビーズ懸濁液を作製した.この懸 濁液を560 μLをチャンバに導入し,常温で1 時間半静置した後撮影を行った.チャンバー は,底面の厚み0.14 mmのものを使用して実 験を行った.

(4) 細胞パターニング実験

マウス繊維芽細胞(3T3)を用いて,蛍光ビ ーズと同様の実験を行った.細胞懸濁液は, Gd-DOTA 40 mM を添加した培地 Hank's MEM (10%FBS,1%AB)に,PKH67 Green Fluorescent Cell Linker Kit (Sigma Aldrich)で 染色した 3T3 細胞を 4.1×10⁴ 個/mL になるよ うに懸濁することで作製した.

(5) 細胞上への細胞パターニング実験

チャンバーへ PKH26 で染色した細胞を播種 し,3日間培養した.培地を取り除き,PKH67 で染色した細胞を含む細胞懸濁液を 560 μL 導入し,1時間半静置した.チャンバは底面 の厚みが 0.11 mm のものを使用して実験を行 った.

(6) 電磁石デバイス

本研究で使用する電磁石デバイスの概要図 を図2に示す.本デバイスは,2対のヨーク とコイルで構成されており,各コイルに電流 を印加することで各ヨークの先端から磁場 が発生する.発生した磁場はヨークの先端か らチャンバの中央に向かって磁束密度勾配 を生成する.

図2 電磁石デバイスの概要.

- 4.研究成果
- (1) 蛍光ビーズのパターニング

実験開始から1時間半後の様子を図3aに示す. また,得られた画像を元に画像処理ソフト ImageJにより背景の減算をした後2値化し, Adjustable Watershedで分割した上で水平方向 の座標を算出した.スペーサの中心を0とし たときのビーズの水平方向の距離を横軸,ビ ーズの数を縦軸にプロットしたグラフを図. 3bに示す.約80%のビーズが141μmの幅に 収まっていた.以上から,本手法により,パ ターニングが可能であることが確認できた.

図 3 蛍光ビーズのパターニング.(a)蛍光顕微 鏡像.(b)画像解析によるビーズの分布.

(2) 細胞のパターニング

実験開始から1時間半後の様子を図4に示す. 図中で緑色の点が細胞,赤い部分がスペーサ のアルミニウムを示す.画像解析の結果,パ ターニング幅(約80%の細胞が収まる幅)は, 402 µm と蛍光ビーズの結果の2倍以上となった.原因としては,細胞と蛍光ビーズの磁 化率の違いや細胞は底面までたどり着くと, 接着してしまうことが挙げられる.

図4 パターニングされた細胞の蛍光像.

(3) 細胞上への細胞パターニング

実験開始から1時間半後の様子を図.5 に示す. 写真中で赤色の点が1層目の細胞,緑色の点が2層目の細胞であるパターニング幅は256 µm であった.以上から,細胞もポリスチレ ンビーズと同様にパターニングできることが確認できた.

従来の細胞接着分子のパターニングによる 細胞パターニングでは困難であった細胞上 への細胞パターニングに成功した.また,チ ャンバ底面を厚みを0.14 mmから0.11 mmと 薄くすることでパターニング幅を256 µmと 狭くすることに成功した.今後,より薄いガ ラスや樹脂フィルムを底面とすることでパ ターニング幅をより狭くすることが可能で あると考えられる.

図5細胞上にパターニングされた細胞.

(4) 電磁石デバイスの磁場解析

電磁石デバイスにおいて,各コイルに印加す る電流の大きさを制御することで,ヨークの 中心に設置したマイクロチャンバ内の磁束 密度の分布が変化させることができる.例え ば,各コイルに位相を /2 ずつずらした正弦 波電流を印加すると,図6に示すような磁束 密度が最小である点が回転するような磁場 を生成することができる.その結果,スフェ ロイドはチャンバの中心を回転中心とした 円運動をする.

汎用 FEM 解析ソフトウェア(COMSOL Multipysics 5.1)を用いて印加電流の振幅と角 度を変化させた時の磁束密度分布を解析し た.印加する電流の概要と各条件における磁 束密度分布を図6に示す.

図 6 各ヨークに印加する電流と磁束密度分 布.

(5) マイクロ流路内での微小組織の操作 微小組織(スフェロイド)を予めチャンバに 導入し,チャンバ中央に配置した.3 時間置 くことで,チャンバ底面に細胞を接着させた. 接着後,新たなスフェロイドを流路に導入し た.コイルに電流を印加し,チャンバ中央に 固定したスフェロイドに0度,90度,180度, 270度の方向から,スフェロイドを接着させ た(図7).固定したスフェロイドに対して, 0度,90度,180度,270度の方向からスフ ェロイドを融合させることに成功した.

図7 各方向からのスフェロイド操作.

5.主な発表論文等

【雑誌論文】(計2件) <u>秋山佳丈</u>,逆転の発想で,細胞を磁場 であやつる,生物工学会誌,査読無,2018, 96, p. 143.

<u>秋山佳丈</u>,磁気を使って細胞を任意形状 に配置,ケミカルエンジニヤリング,査 読無,2017,61,pp.35-41.

[学会発表](計10件) 菱田豊,<u>秋山佳丈</u>,"磁気アルキメデス効 果を用いた磁気走査型細胞パターニン グ-3次元磁気走査システムの構築とその評価-,"日本機械学会ロボティク ス・メカトロニクス講演会 2017.

H. Suenaga, J. Sugihara, M. Horie, <u>Y.</u> <u>Akiyama</u>, "Direct Bioactuator Formation on Microstructure by Quasi-diamagnetic Assembly," The 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2017) (国際学会).

<u>Y. Akiyama</u>, A. Watanabe, "Label-free Electromagnetic Spheroid Manipulation Based on the Magneto-Archimedes Effect," 27th 2016 International Symposium on Micro-Nano Mechatronics and Human Science (MHS2016) (国際学会).

<u>Y. Akiyama</u>, J. Sugihara, "Direct muscle tissue formation between micropillars by label-free magnetic cell assembly," The 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2016) (国際学会).

<u>秋山佳丈</u>, "ラベルフリー磁気アセンブ リによるオンチップスフェロイド形成 と融合"化学とマイクロ・ナノシステム 学会 第 34 回研究会.

渡辺彬生,<u>秋山佳丈</u>,"閉鎖空間内にお ける電磁石を利用した微小生体組織の ラベルフリー磁気操作"化学とマイク ロ・ナノシステム学会 第33回研究会。

秋山佳丈,柴田健吾,秋山義勝,大和雅 之,"磁気走査型細胞パターニングデバ イス開発に向けた基礎的検討"第15回 日本再生医療学会総会。

Y. Akiyama, "Assessment of electromagnetic device for label-free magnetic cell assembly," International Conference on Biofabrication 2015(国際学 会.

<u>秋山佳丈</u>, "ラベルフリー磁気細胞アセ ンプリによる微小構造体上への直接的3 次元組織構築,"日本機械学会2015年度 年次大会.

Y. Akiyama, "Three-dimensional Biofabrication toward Biohybrid Microdevices," The 15th International Union of Materials Research Societies,International Conference in Asia (IUMRS-ICA) (国際学会).

〔産業財産権〕

○出願状況(計1件)

名称:三次元造形体及びその製造方法 発明者:<u>秋山佳丈</u>,鈴木大介,湊遙香 権利者:国立大学法人信州大学 種類:特許 番号:特願 2018-059892 出願年月日:平成 30 年 3 月 27 日 国内外の別: 国内

〔その他〕 ホームページ等 http://biohybrid.chips.jp/

6.研究組織

(1)研究代表者
 秋山 佳丈(AKIYAMA, Yoshitake)
 信州大学・学術研究院繊維学系・准教授
 研究者番号:80585878