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1. Introduction

In [1], the notion of a statistical manifold was defined by Amari. It has applications in information
geometry, which represents one of the main tools for machine learning and evolutionary biology.
In 2004, K. Takano [2] defined and investigated Kähler-like statistical manifolds and their statistical
submanifolds.

A statistical manifold is an m-dimensional Riemannian manifold (M̃, g̃) endowed with a pairing
of torsion-free affine connections ∇̃ and ∇̃∗ satisfying:

Zg̃ (X, Y) = g̃
(
∇̃ZX, Y

)
+ g̃
(
X, ∇̃∗ZY

)
, (1)

for any X, Y, Z ∈ Γ(TM̃). The connections ∇̃ and ∇̃∗ are called dual connections (see [1,3]), and it is
easily seen that (∇̃∗)∗ = ∇̃. The pairing (∇̃, g̃) is called a statistical structure.

Furthermore, (
∇̃X g̃

)
(Y, Z)−

(
∇̃Y g̃

)
(X, Z) = 0 (2)

holds for X, Y, Z ∈ TM̃ [4]. Formula (2) is also known as the Codazzi equation.
Any torsion-free affine connection ∇̃ always has a dual connection given by:

∇̃+ ∇̃∗ = 2∇̃0, (3)

where ∇̃0 is the Levi–Civita connection on M̃.
Similar definitions can be considered for semi-Riemannian manifolds (see also [5]).
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A statistical structure is said to be of constant curvature ε ∈ R [6] if:

R̃(X, Y)Z = ε[g(Y, Z)X− g(X, Z)Y],

for any vector fields X, Y, Z. The same equation holds for R̃∗(X, Y)Z.
A statistical structure of null constant curvature is called a Hessian structure.
In [2,7], K. Takano considered a (semi-)Riemannian manifold

(
M̃, g̃

)
with an almost complex

structure J̃, endowed with another tensor field J̃∗ of type (1, 1) satisfying:

g̃
(

J̃X, Y
)
+ g̃

(
X, J̃∗Y

)
= 0, (4)

for vector fields X and Y on
(

M̃, g̃
)

. Then,
(

M̃, g̃, J̃
)

is called an almost Hermite-like manifold. It is

easy to see that
(

J̃∗
)∗

= J̃,
(

J̃∗
)2

= −I and g̃
(

J̃X, J̃∗Y
)
= g̃ (X, Y) . If J̃ is parallel with respect to ∇̃,

then
(

M̃, g̃, ∇̃, J̃
)

is called a Kähler-like statistical manifold [7].
One also has:

g̃
((
∇̃X J̃

)
Y, Z

)
+ g̃

(
Y,
(
∇̃∗X J̃∗

)
Z
)
= 0

(see [2,7]).
On the other hand, in 1993, B.-Y. Chen introduced new intrinsic invariants, more precisely

curvature invariants, called Chen invariants (or δ-invariants) (see [8] for details). In [9], the author
proved the Chen first inequality for arbitrary submanifolds in Riemannian space forms.

The Chen first invariant of a Riemannian manifold M̃ is given by δM̃ = τ − inf K, where τ and K
represent the scalar and sectional curvatures of M̃, respectively.

Furthermore, the Chen δ(2, 2) invariant is defined by δ(2, 2)(p) = τ(p)− inf(K(π1) + K(π2)),
where π1 and π2 are mutually orthogonal plane sections at p ∈ M̃. This is a generalization of the Chen
first invariant, but also, a particular case of the δ(n1, n2, ..., nk) invariant, introduced by B.-Y. Chen, as
well (see [8]).

Statistical submanifolds in statistical manifolds were considered by few authors, and the interest
in this subject grew in the recent period. Closely related to our research target, we would like to
mention the following.

In [5], M. E. Aydin, A. Mihai, and I. Mihai studied statistical submanifolds in statistical manifolds
of constant curvature and proved inequalities for the scalar curvature and the Ricci curvature associated
with the dual connections. The same authors obtained in [10] a generalized Wintgen inequality for
statistical submanifolds in statistical manifolds of constant curvature. In their paper, another definition
of the sectional curvature, due to Opozda, given in [11], was used (see also [12]).

Recently, in [13], B.-Y. Chen, A. Mihai, and I. Mihai established the Chen first inequality for
statistical submanifolds in Hessian manifolds of constant Hessian curvature. The study was continued
in [14], where the authors obtained a Chen inequality for the δ(2, 2) invariant. Recall that a Hessian
manifold of constant Hessian curvature c is a statistical manifold of null curvature and also a
Riemannian space form of constant sectional curvature −c/4 (with respect to the sectional curvature
defined by the Levi–Civita connection) [6].

In the present article, motivated by the above studies, we obtain a Chen first inequality and an
inequality for the Chen δ(2, 2) invariant for statistical submanifolds in Kähler-like statistical manifolds.

Furthermore, for our next study, we would like to point out that, by referring to the
papers [15–17], the curvature invariants of statistical submanifolds in Kähler-like statistical manifolds
will be investigated.
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2. Preliminaries

In general, the dual connections are not metric; it follows that one cannot define a sectional
curvature with respect to them by the standard definition from Riemannian geometry. B. Opozda
proposed two different definitions, in [11,12]. We will work in this article with the definition from [12].

Let M̃ be a statistical manifold, and consider π a plane in TM̃, with an orthonormal basis {X, Y};
the sectional K-curvature was defined by [12]:

K̃ (π) =
1
2

[
g̃(R̃ (X, Y)Y, X) + g̃(R̃∗ (X, Y)Y, X)− 2g̃(R̃0 (X, Y)Y, X)

]
, (5)

where R̃0 denotes the curvature tensor field of the Levi–Civita connection ∇̃0 on TM̃.
Denote by R̃ and R̃∗ the curvature tensor fields of ∇̃ and ∇̃∗, respectively. Then, R̃ and R̃∗ satisfy:

g̃
(

R̃ (X, Y) Z, W
)
= −g̃

(
R̃∗ (X, Y)W, Z

)
(6)

(see [4]).
Let

(
M̃, g̃, ∇̃

)
be a statistical manifold and f : M −→ M̃ an immersion. One defines a pair g and

∇ on M by:
g = f ∗ g̃, g (∇XY, Z) = g̃

(
∇̃ f∗X f∗Y, Z

)
,

for any X, Y, Z ∈ TM, where the connection induced from ∇̃ by f on the induced bundle f ∗ : TM̃ −→
TM is denoted by the same symbol ∇̃. Then, the pair (∇, g) is a statistical structure on M, which is
called the induced statistical structure by f from

(
∇̃, g̃

)
[4].

Let (M, g,∇) and
(

M̃, g̃, ∇̃
)

be two statistical manifolds. An immersion f : M −→ M̃ is called a
statistical immersion if (∇, g) coincides with the induced statistical structure.

Let M be an n-dimensional submanifold of M̃. Then, we have the Gauss formulae:

∇̃XY = ∇XY + h(X, Y),

∇̃∗XY = ∇∗XY + h∗(X, Y),

where h and h∗ are symmetric and bilinear, called the imbedding curvature tensors of M in M̃ for
∇̃ and ∇̃∗, respectively. In this case, ∇ and ∇∗ are called the induced connections of ∇̃ and ∇̃∗,
respectively.

Since h and h∗ are bilinear, there exist linear transformations Aξ and A∗ξ on TM defined by:

g(Aξ X, Y) = g(h(X, Y), ξ),

g(A∗ξ X, Y) = g(h∗(X, Y), ξ),

for any ξ ∈ Γ(T⊥M) and X, Y ∈ Γ(TM). Further (see [3]), the corresponding Weingarten formulas are:

∇̃Xξ = −A∗ξ X + DXξ,

∇̃∗Xξ = −Aξ X + D∗Xξ,

for any ξ ∈ Γ(T⊥M) and X ∈ Γ(TM). The connections D and D∗ are Riemannian dual connections
with respect to the induced metric on Γ(T⊥M).

Let R̃ and R be the Riemannian curvature tensors of ∇̃ and ∇, respectively. Then, the Gauss
equation is given by:

g̃
(

R̃ (X, Y) Z, W
)
= g (R (X, Y) Z, W) (7)
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+g̃ (h (X, Z) , h∗ (Y, W))− g̃ (h∗ (X, W) , h (Y, Z)) ,

where X, Y, Z, W ∈ TM (see [3]).

3. An Example of a Submanifold of a Kähler-Like Statistical Manifold

We start this section by recalling an example of a Kähler-like statistical manifold, given by
K. Takano in [2].

Example 1. Let R2n
n be a 2n-dimensional semi-Euclidean space with a local coordinate system

(x1, ..., xn, y1, ..., yn), which admits the following almost complex structure J̃ and the metric g̃:

J̃ =

(
0 δij
−δij 0

)
, g̃ =

(
2δij 0
0 −δij

)
.

Denote the flat affine connection by ∇̃. Then,
(
R2n

n , ∇̃, g̃, J̃
)

is a Kähler-like statistical manifold. The

conjugate connection ∇̃∗ is flat and

J̃∗ =
1
2

(
0 −δij

4δij 0

)
.

Next, we will present another example of a Kähler-like statistical manifold and construct a
submanifold.

Example 2. We consider the half upper space:

M̃n+1
ν = { (x1, . . . , xn, xn+1) | xn+1 > 0 }

admitting components of the metric g̃ as follows:

g̃ij =
εi

x2
n+1

δij, g̃in+1 = g̃n+1i = 0, g̃n+1n+1 =
ω2

x2
n+1

,

where ω is a positive constant and εi is −1 or +1. The signature of g̃ is (ν, n + 1− ν).

We consider the following two connections:

∇̃(1)
∂i

∂j = 0,

∇̃(1)
∂i

∂n+1 = ∇̃(1)
∂n+1

∂i = −
2

xn+1
∂i,

∇̃(1)
∂n+1

∂n+1 = − 3
xn+1

∂n+1

and:

∇̃(−1)
∂i

∂j =
2

ω2xn+1
εiδij ∂n+1,

∇̃(−1)
∂i

∂n+1 = ∇̃(−1)
∂n+1

∂i = 0,

∇̃(−1)
∂n+1

∂n+1 =
1

xn+1
∂n+1,

where ∂i = ∂/∂xi.
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We define the α-connection ∇̃(α) (see [1]) by:

∇̃(α) =
1 + α

2
∇̃(1) +

1− α

2
∇̃(−1).

It follows that:

∇̃(α)
∂i

∂j =
1− α

ω2xn+1
εiδij ∂n+1,

∇̃(α)
∂i

∂n+1 = ∇̃(α)
∂n+1

∂i = −
1 + α

xn+1
∂i,

∇̃(α)
∂n+1

∂n+1 = − 1 + 2α

xn+1
∂n+1.

Then,
(

M̃, g̃, ∇̃(α)
)

is a statistical manifold.

Furthermore, the curvature tensors R̃(α) with respect to the α-connection ∇̃(α) are:

R̃(α)(∂i, ∂j)∂k = −
c(α)

ω2x2
n+1

(
ε jδjk∂i − εiδik∂j

)
(i, j, k 6= n + 1)

R̃(α)(∂i, ∂j)∂n+1 = 0 (i, j 6= n + 1)

R̃(α)(∂i, ∂n+1)∂k =
c(α)

ω2x2
n+1

εiδik∂n+1 (i, k 6= n + 1)

R̃(α)(∂i, ∂n+1)∂n+1 = − c(α)
x2

n+1
∂i (i 6= n + 1),

where c(α) = (1− α)(1 + α).
Therefore,

(
M̃, g̃, ∇̃(α)

)
is of constant curvature − c(α)

ω2 . Especially,
(

M̃, g̃, ∇̃(±1)
)

is flat,
respectively.

We put:

ei = xn+1 ∂i (i = 1, 2, . . . , n), en+1 =
xn+1

ω
∂n+1.

From g(ei, ej) = εiδij and g(en+1, en+1) = 1, it follows that the set {e1, . . . , en, en+1} is an
orthonormal base.

Then, the α-connection can be rewritten as follows:

∇̃(α)
ei ej =

1− α

ω
εiδij en+1 (i, j 6= n + 1)

∇̃(α)
ei en+1 = − 1 + α

ω
ei (i 6= n + 1)

∇̃(α)
en+1 ei = −

α

ω
ei (i 6= n + 1)

∇̃(α)
en+1 en+1 = − 2α

ω
en+1.
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• Almost complex structures:

We will construct almost complex structures J̃(1) and J̃(−1) satisfying ∇̃(α) J̃(α) = 0. We get:

ei J̃
(α) k
j − 1 + α

ω
δ k

i J̃(α) n+1
j − (1− α)εi

ω
δij J̃

(α) k
n+1 = 0,

ei J̃
(α) n+1
j +

(1− α)εi
ω

(
J̃(α) i
j − δij J̃

(α) n+1
n+1

)
= 0,

ei J̃
(α) k
n+1 +

1 + α

ω

(
J̃(α) k
i − δ k

i J̃(α) n+1
n+1

)
= 0,

ei J̃
(α) n+1
n+1 +

1 + α

ω
J̃(α) n+1
i +

(1− α)εi
ω

J̃(α) i
n+1 = 0,

en+1 J̃(α) k
i = 0,

en+1 J̃(α) n+1
i − α

ω
J̃(α) n+1
i = 0,

en+1 J̃(α) k
n+1 +

α

ω
J̃(α) k
n+1 = 0,

en+1 J̃(α) n+1
n+1 = 0.

Because M̃ is of constant curvature, we have that M̃ is flat, n + 1 ≥ 4, that is α = ±1 [18].
When α = 1, we find:

ei J̃
(1) k
j − 2

ω
δ k

i J̃(1) n+1
j = 0,

ei J̃
(1) n+1
j = 0,

ei J̃
(1) k
n+1 +

2
ω

(
J̃(1) k
i − δ k

i J̃(1) n+1
n+1

)
= 0,

ei J̃
(1) n+1
n+1 +

2
ω

J̃(1) n+1
i = 0,

en+1 J̃(1) k
i = 0,

en+1 J̃(1) n+1
i − 1

ω
J̃(1) n+1
i = 0,

en+1 J̃(1) k
n+1 +

1
ω

J̃(1) k
n+1 = 0,

en+1 J̃(1) n+1
n+1 = 0.

Thus, we obtain:

J̃(1) k
j =

2
ω

Cj xk + A k
j ,

J̃(1) n+1
j = Cj xn+1,

J̃(1) k
n+1 = − 2

ω xn+1

{(
2
ω

Csxs + D
)

xk + A k
s xs + Bk

}
,

J̃(1) n+1
n+1 = − 2

ω
Csxs − D,

where we used the Einstein summation convention.
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If we put:

Σ =

(
A j

i Bj

− 2
ω Ci −D

)
,

then ( J̃(1))2 = −id if and only if the constants Aj
i , Bj, Ci and D satisfy Σ2 = −id.

We remark that:

trace J̃(1) = ∑ A s
s − D = trace Σ.

Then,
(

M̃, g̃, ∇̃(1), J̃(1)
)

is a Kähler-like statistical manifold.
Furthermore, we set:

J̃(−1) k
j = −ε jεk

(
2
ω

Ckxj + A j
k

)
,

J̃(−1) n+1
j =

2ε j

ω xn+1

{(
2
ω

Csxs + D
)

xj + A j
s xs + Bj

}
,

J̃(−1) k
n+1 = −εkCk xn+1,

J̃(−1) n+1
n+1 =

2
ω

Csxs + D.

Then, g̃
(

J̃(1)ei, ej

)
+ g

(
ei, J̃(−1)ej

)
= 0 and ∇̃(−1) J̃(−1) = 0 hold.

• A submanifold of M̃n+1
ν :

We consider a submanifold of M̃n+1
ν :

M`
ξ = {(x1, x2, . . . , x`, 0, . . . , 0) | −∞ < xi < ∞ (i = 1, . . . , `)} = R`

ξ ,

where ξ ≤ ν. Let {e1, . . . , e`} and {e`+1, . . . , en+1} be orthonormal bases of Tp M and T⊥p M, respectively.
We set i, j, s ∈ {1, . . . , `} and a, b ∈ {`+ 1, . . . , n}.

We have:

∇̃(α)
ei ej =

1− α

ω
εiδij en+1,

∇̃(α)
ei eb = 0,

∇̃(α)
ei en+1 = − 1 + α

ω
ei,

∇̃(α)
ea ej = 0,

∇̃(α)
ea eb =

1− α

ω
εaδab en+1,

∇̃(α)
ea en+1 = − 1 + α

ω
ea,

∇̃(α)
en+1 ej = −

α

ω
ej,

∇̃(α)
en+1 eb = − α

ω
eb,

∇̃(α)
en+1 en+1 = − 2α

ω
en+1.
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It follows that:

∇(α)
ei ej = 0,

h(α)(ei, ej) =
1− α

ω
εiδij en+1,

A(α)
eb ei = 0,

A(α)
en+1 ei =

1 + α

ω
ei,

D(α)
ei eb = 0,

D(α)
ei en+1 = 0.

Moreover, the mean curvature vector H(α) with respect to ∇̃(α) satisfies:

H(α) =
1− α

ω
en+1,

∇̃(α)
ei H(α) = − c(α)

ω2 ei,

∇̃(α)
ea H(α) = − c(α)

ω2 ea,

∇̃(α)
en+1 H(α) = − 2α

ω
H(α).

Next, we consider
(

M̃, g̃, ∇̃(1), J̃(1)
)

a Kähler-like statistical manifold.
We have:

J̃(1)ei =

(
2
ω

Cixs + A s
i

)
es +

(
2
ω

Cixa + A a
i

)
ea + Cixn+1 en+1,

J̃(1)ea =

(
2
ω

Caxs + A s
a

)
es +

(
2
ω

Caxb + A b
a

)
eb + Caxn+1 en+1,

J̃(1)en+1 = − 2
ω xn+1

{(
2
ω

CSxS + D
)

xs + A s
SxS + Bs

}
es

− 2
ω xn+1

{(
2
ω

CSxS + D
)

xa + A a
S xS + Ba

}
ea

−
(

2
ω

CSxS + D
)

en+1,

where S ∈ {1, . . . , n}.
Let X ∈ Γ(TM) and ξ ∈ Γ(T⊥M). We decompose J̃(1)X = P(1)X + F(1)X and J̃(1)ξ = t(1)ξ +

f (1)ξ, respectively, where P(1)X, t(1)ξ ∈ Γ(TM) and F(1)X, f (1)ξ ∈ Γ(T⊥M).
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Therefore, we find:

P(1)ei =

(
2
ω

Cixs + A s
i

)
es,

F(1)ei =

(
2
ω

Cixa + A a
i

)
ea + Cixn+1 en+1,

t(1)ea =

(
2
ω

Caxs + A s
a

)
es,

f (1)ea =

(
2
ω

Caxb + A b
a

)
eb + Caxn+1 en+1,

t(1)en+1 = − 2
ω xn+1

{(
2
ω

CSxS + D
)

xs + A s
SxS + Bs

}
es,

f (1)en+1 = − 2
ω xn+1

{(
2
ω

CSxS + D
)

xa + A a
S xS + Ba

}
ea

−
(

2
ω

CSxS + D
)

en+1

and (
∇(1)

ei P(1)
)

ej =
2
ω

Cjxn+1 ei,(
∇(1)

ei F(1)
)

ej = 0,(
∇(1)

ei t(1)
)

ea =
2
ω

Ca ei,(
∇(1)

ei t(1)
)

en+1 = − 2
ω xn+1

{(
2
ω

CSxS + D
)

δ s
i +

2
ω

Cixs + A s
i

}
es,(

∇(1)
ei f (1)

)
ea = 0,(

∇(1)
ei f (1)

)
en+1 = − 2

ω xn+1

{(
2
ω

Cixa + A a
i

)
ea + Ci xn+1 en+1

}
=

− 2
ω xn+1

F(1)ei.

4. A Chen First Inequality

On a Kähler-like statistical manifold
(

M̃, g̃, ∇̃, J̃
)

, K. Takano [7] considered the curvature tensor

R̃ of ∇̃ such that:

R̃ (X, Y) Z =
c
4

{
g̃ (Y, Z) X− g̃ (X, Z)Y− g̃

(
Y, J̃Z

)
J̃X + g̃

(
X, J̃Z

)
J̃Y

+
[

g̃
(

X, J̃Y
)
− g̃

(
Y, J̃X

)]
J̃Z
}

. (8)

We point out that a Kähler manifold satisfying (8) is a space of constant holomorphic sectional
curvature (complex space form), which gives sense to this condition.

In the same paper [7], the following Lemma was proven:

Lemma 1. On a Kähler-like statistical manifold whose curvature tensor R̃ is of the form of (8), one has c = 0 or
trace(AB) = trace(AB)2, where A = (g̃αβ) and B = (g̃αβ) (as defined in [7]).
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More precisely, one denotes by g̃αβ = g̃
(

∂
∂zα , ∂

∂zβ

)
, g̃αβ̄ = g̃

(
∂

∂zα , ∂
∂z̄β

)
, etc., and g̃CD the

components of the inverse matrix of g̃, where C, D ∈ {α, ᾱ|α ∈ {1, ..., n}}.
As a consequence, such a manifold is not a trivial one.
Let

(
M̃, g̃, ∇̃, J̃

)
(for simplicity, we will write next g and J instead of g̃, respectively J̃) be a

2m-dimensional Kähler-like statistical manifold whose curvature tensor R̃ is of the form of (8) and
M an n-dimensional statistical submanifold of M̃, p ∈ M and π a plane section at p. We consider an
orthonormal basis {e1, e2} of π and {e1, ..., en} , {en+1, ..., e2m} orthonormal bases of Tp M and T⊥p M,
respectively.

The mean curvature vectors are given by:

H = 1
n

n
∑

i=1
h (ei, ei) =

1
n

2m
∑

α=n+1

(
n
∑

i=1
hα

ii

)
eα, hα

ij = g̃
(
h
(
ei, ej

)
, eα

)
,

and:

H∗ = 1
n

n
∑

i=1
h∗ (ei, ei) =

1
n

2m
∑

α=n+1

(
n
∑

i=1
h∗αii

)
eα, h∗αij = g̃

(
h∗
(
ei, ej

)
, eα

)
.

We denote by K0 the sectional curvature of the Levi–Civita connection ∇0 on M and by h0 the
second fundamental form of M w.r.t. the Levi–Civita connection.

From (5), the sectional K-curvature K (π) of the plane section π is:

K (π) =
1
2

[
g (R (e1, e2) e2, e1) + g (R∗ (e1, e2) e2, e1)− 2g

(
R0 (e1, e2) e2, e1

)]
.

From (6)–(8), we have:

g (R (e1, e2) e2, e1) =
c
4

{
1 + 2g2 (e1, Je2)− g (e2, Je2) g (e1, Je1)

−g (Je1, e2) g (e1, Je2)}+
2m

∑
α=n+1

(h∗α11 hα
22 − h∗α12 hα

12) ,

g (R∗ (e1, e2) e2, e1) = −g (R (e1, e2) e1, e2) =
c
4

{
−1− 2g2 (Je1, e2) + g (e2, Je2) g (e1, Je1)

+g (Je1, e2) g (e1, Je2)}+
2m

∑
α=n+1

(h∗α12 hα
12 − hα

11h∗α22 ) .

Therefore, we obtain

K (π) =
c
4

{
1 + g2 (e1, Pe2) + g2 (Pe1, e2)− g (e2, Pe2) g (e1, Pe1)

−g (Pe1, e2) g (e1, Pe2)} − K0 (π)

+
1
2

2m

∑
α=n+1

[hα
11h∗α22 + h∗α11 hα

22 − 2h∗α12 hα
12] ,

where JX decomposes into its tangent and normal parts, i.e., JX = PX + FX.
By using h + h∗ = 2h0, the last equality can be written as (see [13]):

K (π) =
c
4

{
1 + g2 (e1, Pe2) + g2 (Pe1, e2)− g (e2, Pe2) g (e1, Pe1)

−g (Pe1, e2) g (e1, Pe2)} − K0 (π)

+2
2m

∑
α=n+1

[
h0α

11h0α
22 −

(
h0α

12

)2
]
− 1

2

2m

∑
α=n+1

{[
hα

11hα
22 − (hα

12)
2
]
+
[

h∗α11 h∗α22 − (h∗α12 )
2
]}

.
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By using the Gauss equation with respect to the Levi–Civita connection, we find:

K (π) = K0 (π) +
c
4

{
1 + g2 (e1, Pe2) + g2 (Pe1, e2)− g (e2, Pe2) g (e1, Pe1)

−g (Pe1, e2) g (e1, Pe2)} − 2K̃0 (π)

− 1
2

2m

∑
α=n+1

[
hα

11hα
22 − (hα

12)
2
]
− 1

2

2m

∑
α=n+1

[
h∗α11 h∗α22 − (h∗α12 )

2
]

, (9)

where K̃0 is the sectional curvature of the Levi–Civita connection ∇̃0 on M̃2m.
Next, we will calculate τ, the scalar curvature of M, corresponding to the sectional K-curvature.

Then, using (5) and (6), we get:

τ =
1
2 ∑

1≤i<j≤n

[
g
(

R
(
ei, ej

)
ej, ei

)
+ g

(
R∗
(
ei, ej

)
ej, ei

)
− 2g

(
R0 (ei, ej

)
ej, ei

)]

=
1
2 ∑

1≤i<j≤n

[
g
(

R
(
ei, ej

)
ej, ei

)
− g

(
R
(
ei, ej

)
ei, ej

)]
− τ0, (10)

where τ0 is the scalar curvature of the Levi–Civita connection ∇0 on Mn.
By the use of (7) and (8), we obtain:

∑
1≤i<j≤n

g
(

R
(
ei, ej

)
ej, ei

)
=

c
4 ∑

1≤i<j≤n
[
{

g
(
ej, ej

)
g (ei, ei)− g

(
ei, ej

)
g
(
ei, ej

)
−g
(
ej, Jej

)
g (Jei, ei) + g

(
ei, Jej

)
g
(
ei, Jej

)
+
[
g
(
ei, Jej

)
− g

(
ej, Jei

)]
g
(
ei, Jej

)}
+g
(
h∗ (ei, ei) , h

(
ej, ej

))
− g

(
h
(
ei, ej

)
, h∗

(
ei, ej

))]
.

Then, we have:

∑
1≤i<j≤n

g
(

R
(
ei, ej

)
ej, ei

)
=

c
8

n (n− 1)

+
c
4 ∑

1≤i<j≤n

{
g
(
ei, Pej

)
g
(

Pej, ei
)
− g

(
ej, Pej

)
g (Pei, ei)

+
[
g
(
ei, Pej

)
− g

(
Pei, ej

)]
g
(
ei, Pej

)}
+ ∑

1≤i<j≤n

[
g
(
h∗ (ei, ei) , h

(
ej, ej

))
− g

(
h
(
ei, ej

)
, h∗

(
ei, ej

))]
.

Similar calculations will give:

∑
1≤i<j≤n

g
(

R
(
ei, ej

)
ei, ej

)
= − c

8
n (n− 1)

+
c
4 ∑

1≤i<j≤n

{
g
(
ej, Pej

)
g (Pei, ei)− g

(
Pei, ej

)
g
(
ej, Pei

)
+
[
g
(
ei, Pej

)
− g

(
Pei, ej

)]
g
(

Pei, ej
)}

+ ∑
1≤i<j≤n

[
g
(
h∗
(
ei, ej

)
, h
(
ei, ej

))
− g

(
h (ei, ei) , h∗

(
ej, ej

))]
.
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If we insert the last two equalities in (10), we obtain:

τ =
c
8

n (n− 1) +
c
4 ∑

1≤i<j≤n

{
g
(
ei, Pej

)
g
(

Pej, ei
)
− g

(
ej, Pej

)
g (Pei, ei)

−g
(
ei, Pej

)
g
(

Pei, ej
)
+ g

(
Pei, ej

)
g
(

Pei, ej
)}
− τ0

+
1
2

2m

∑
α=n+1

∑
1≤i<j≤n

[
h∗αii hα

jj + hα
iih
∗α
jj − 2h∗αij hα

ij

]
. (11)

By using the the following standard notations:

‖P‖2 =
n

∑
i,j=1

g2 (Pei, ej
)
=

n

∑
i,j=1

g
(

Pei, ej
)

g
(

Pei, ej
)

,

traceP =
n

∑
i=1

g (Pei, ei) ,

traceP2 =
n

∑
i=1

g
(

P2ei, ei

)
and formula (4), we find:

∑
1≤i<j≤n

{
g
(
ei, Pej

)
g
(

Pej, ei
)
− g

(
ej, Pej

)
g (Pei, ei)− g

(
ei, Pej

)
g
(

Pei, ej
)

+g
(

Pei, ej
)

g
(

Pei, ej
)}

= ‖P‖2 − (traceP)2

2
+

1
2

n

∑
i=1

g (Pei, P∗ei) .

The equality (11) becomes:

τ =
c
8

n (n− 1) +
c
4

{
‖P‖2 − 1

2
(traceP)2 − 1

2
traceP2

}

+
1
2

2m

∑
α=n+1

∑
1≤i<j≤n

[
h∗αii hα

jj + hα
iih
∗α
jj − 2h∗αij hα

ij

]
− τ0.

The above equality can be written as (see also [13]):

τ =
c
8

n (n− 1) +
c
4

{
‖P‖2 − 1

2
(traceP)2 − 1

2
traceP2

}

+2
2m

∑
α=n+1

∑
1≤i<j≤n

[
h0α

ii h0α
jj −

(
h0α

ij

)2
]

−1
2

2m

∑
α=n+1

∑
1≤i<j≤n

[
hα

iih
α
jj −

(
hα

ij

)2
]
− 1

2

2m

∑
α=n+1

∑
1≤i<j≤n

[
h∗αii h∗αjj −

(
h∗αij

)2
]
− τ0.

By using the Gauss equation for the Levi–Civita connection, we have:

τ = τ0 +
c
8

n (n− 1) +
c
4

{
‖P‖2 − 1

2
(traceP)2 − 1

2
traceP2

}
− 2τ̃0

− 1
2

2m

∑
α=n+1

∑
1≤i<j≤n

[
hα

iih
α
jj −

(
hα

ij

)2
]
− 1

2

2m

∑
α=n+1

∑
1≤i<j≤n

[
h∗αii h∗αjj −

(
h∗αij

)2
]

. (12)
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By subtracting (9) from (12), we obtain:

(τ − K (π))− (τ0 − K0 (π)) =
c
8
(n− 2) (n + 1) +

c
4

{
‖P‖2 − 1

2
(traceP)2 − 1

2
traceP2

−g2 (e1, Pe2)− g2 (Pe1, e2) + g (e2, Pe2) g (e1, Pe1) + g (Pe1, e2) g (e1, Pe2)
}

−1
2

2m

∑
α=n+1

∑
1≤i<j≤n

{[
hα

iih
α
jj −

(
hα

ij

)2
]
+

[
h∗αii h∗αjj −

(
h∗αij

)2
]}

+
1
2

2m

∑
α=n+1

{[
hα

11hα
22 − (hα

12)
2
]
+
[

h∗α11 h∗α22 − (h∗α12 )
2
]}

+ 2K̃0 (π)− 2τ̃0.

Furthermore, let H and H∗ denote the mean curvature vectors with respect to the dual connections
∇ and ∇∗, respectively.

We recall the following algebraic lemma from [13], which is essential for the proof of the Chen
first inequality.

Lemma 2. Let n ≥ 3 be an integer and a1, · · · , an n real numbers. Then, we have:

n

∑
1≤i<j≤n

aiaj − a1a2 ≤
n− 2

2 (n− 1)

(
n

∑
i=1

ai

)2

.

Furthermore, the equality case of the above inequality holds if and only if a1 + a2 = a3 = ... = an.

Applying Lemma 2 (see also [13]), we have:

∑
1≤i<j≤n

hα
iih

α
jj − hα

11hα
22 ≤

(n− 2)
2 (n− 1)

(
n

∑
i=1

hα
ii

)2

=
n2 (n− 2)
2 (n− 1)

(Hα)2 ,

∑
1≤i<j≤n

h∗αii h∗αjj − h∗α11 h∗α22 ≤
(n− 2)

2 (n− 1)

(
n

∑
i=1

h∗αii

)2

=
n2 (n− 2)
2 (n− 1)

(H∗α)2 .

Using the above inequalities, we continue our calculations, and we get:

(τ − K (π))− (τ0 − K0 (π)) ≥ c
8
(n− 2) (n + 1) +

c
4

{
‖P‖2 − 1

2
(traceP)2 − 1

2
traceP2

−g2 (e1, Pe2)− g2 (Pe1, e2) + g (e2, Pe2) g (e1, Pe1) + g (Pe1, e2) g (e1, Pe2)
}

−n2 (n− 2)
4 (n− 1)

[
‖H‖2 + ‖H∗‖2

]
− 2

(
τ̃0 − K̃0 (π)

)
,

which represents the Chen first inequality for arbitrary statistical submanifolds in a Kähler-like
statistical manifold whose curvature tensor R̃ is of the form of (8).

Recall that a submanifold M of an almost Hermitian manifold M̃ is called holomorphic (resp.
totally real) if each tangent space of M is mapped into itself (resp. the normal space) by the almost
complex structure J̃ of M̃ (see [19,20]). A totally real submanifold of maximum dimension is a
Lagrangian submanifold.

We can now state the following main theorem of this section:

Theorem 1. Let
(

M̃, g, ∇̃, J
)

be a 2m-dimensional Kähler-like statistical manifold whose curvature tensor R̃

is of the form (8) and M an n-dimensional statistical submanifold of M̃.
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(a) If M is holomorphic, then:

(τ − τ0)− (K (π)− K0 (π)) ≥ c
8

(
n2 + 2n− 2

)
− c

4

{
1
2
(traceJ)2

+g2 (e1, Je2) + g2 (Je1, e2)− g (e2, Je2) g (e1, Je1)− g (Je1, e2) g (e1, Je2)
}

−n2 (n− 2)
4 (n− 1)

[
‖H‖2 + ‖H∗‖2

]
− 2

(
τ̃0 − K̃0 (π)

)
.

(b) If M is totally real, then:

(τ − τ0)− (K(π)− K0(π)) ≥ c
8
(n− 2) (n + 1)

−n2 (n− 2)
4 (n− 1)

[
‖H‖2 + ‖H∗‖2

]
− 2

(
τ̃0 − K̃0 (π)

)
.

Moreover, one of the equalities holds in the all cases if and only if:

hα
11 + hα

22 = hα
33 = · · · = hα

nn
h∗α11 + h∗α22 = h∗α33 = . · · · = h∗αnn

hα
ij = h∗αij = 0, i 6= j, (i, j) 6= (1, 2), (2, 1),

for any α ∈ {n + 1, ..., 2m} .

Remark 1. (a) If ∇̃ is the Levi–Civita connection, K = 0, and consequently, τ = 0. Then, we refind Chen first
inequality for submanifolds in complex space forms.

(b) The difference K (π)− K0 (π) is the sectional curvature of π defined by B. Opozda in [11]. We used
the sectional K-curvature K because it is the most known sectional curvature on statistical manifolds (see, for
instance, [6]). The sectional curvature K− K0 was used only by a few authors.

Corollary 1. Let
(

M̃, g, ∇̃, J
)

be a 2m-dimensional Kähler-like statistical manifold whose curvature tensor

R̃ is of the form (8) and M an n-dimensional totally real statistical submanifold of M̃. If there exists a point
p ∈ M and π ⊂ Tp M a plane such that:

τ − τ0 < K(π)− K0(π) + (n− 2)(n− 1)
c
8
− 2

[
τ̃0 − K̃0(π)

]
,

then M is non-minimal, i.e., H 6= 0 or H∗ 6= 0.

We also obtain the following characterization of a Lagrangian submanifold, which satisfies the
equality case of the inequality in Theorem 1.

Theorem 2. Let
(

M̃, g, ∇̃, J
)

be a 2n-dimensional Kähler-like statistical manifold whose curvature tensor R̃ is

of the form (8) and M an n-dimensional Lagrangian statistical submanifold of M̃. If n ≥ 4 and M satisfies the
equality case of the Chen first inequality, identically, then it is minimal, i.e., H = H∗ = 0.

Proof. We will give two alternative (equivalent) proofs of this theorem.
Proof 1. For X, Y ∈ Γ(TM), we have:

0 = (∇̃X J)Y = ∇̃X JY− J∇̃XY

= −AJYX + DX JY− J∇XY− Jh(X, Y).



Mathematics 2019, 7, 1202 15 of 19

It follows that the tangent component vanishes, i.e.,

−AJYX− Jh(X, Y) = 0,

and then:
AJYX = −Jh(X, Y) = −Jh(Y, X) = AJXY,

which implies hn+k
ij = hn+j

ki = hn+i
jk , for all i, j, k ∈ {1, ..., n}.

Applying this in the relations that characterize the equality case of the Chen first inequality, we
obtain:

(i) For α ∈ {1, 2}, hn+α
33 = hn+3

α3 = 0, which implies hn+α
11 + hn+α

22 = 0, and then:

hn+α
11 + hn+α

22 + · · ·+ hn+α
nn = 0.

(ii) For α ∈ {3, · · · , n} , let i ∈ {3, · · · , n}, i 6= α. Then, hnα
ii = hn+i

iα = 0 and:

hn+α
11 + hn+α

22 + · · ·+ hn+α
nn = 0.

It follows that H = 0 and, in a similar way, H∗ = 0, and then, M is minimal.

Proof 2. M being Lagrangian, we have P = 0, and by similar arguments as in the first proof,
AFXY = AFYX. We consider the basis {Fe1, · · · , Fen} ∈ T⊥M (rankF = n).

For i ≥ 3, h
Fej
ii = g(AFej ei, ei) = g(AFei ej, ei) = 0, for j 6= i.

From the characterization of the equality case of the Chen first inequality, we have:

hα
11 + hα

22 = hα
33 = · · · = hα

nn = 0,

for any α ∈ {n + 1, ..., 2n}.
Moreover, hFei

12 = 0, for i ≥ 3.
Therefore, hα

ij = 0, for α ≥ n + 3 and any i, j ∈ {1, ..., n}.
We obtain:

hFe1
12 = g(AFe1 e2, e1) = g(AFe2 e1, e1) = hn+2

11 = −hn+2
22 ,

hFe2
12 = g(AFe2 e1, e2) = g(AFe1 e2, e2) = hn+1

22 = −hn+1
11

and hα
22 = −hα

11, for α ≥ n + 3.
Similar calculations hold for h∗ and A∗.
Then, M is minimal.
We remark that from the second proof, we also obtain:

hα
ij = h∗αij = 0,

for α ≥ n + 3 and any i, j ∈ {1, ..., n}.

5. A Chen δ(2, 2) Inequality

We will use the same notations as in the previous sections.
The following algebraic lemma from [14] has the key role in the proof of the main result of

this section.



Mathematics 2019, 7, 1202 16 of 19

Lemma 3. Let n ≥ 4 be an integer and {a1, ..., an} n real numbers. Then, we have:

∑
1≤i<j≤n

aiaj − a1a2 − a3a4 ≤
n− 3

2 (n− 2)

(
n

∑
i=1

ai

)2

.

Equality holds if and only if a1 + a2 = a3 + a4 = a5 = · · · = an.

Let p ∈ M, π1, π2 ⊂ Tp M, mutually orthogonal planes spanned respectively by sp{e1, e2} = π1,
sp{e3, e4} = π2. Consider {e1, ..., en} ⊂ Tp M, {en+1, ..., e2m} ⊂ T⊥p M orthonormal bases. Then, by
Formula (9), we have:

K(π1) = K0(π1) +
c
4

{
1 + g2(e1, Pe2) + g2(Pe1, e2)

−g(Pe1, e2)g(e1, Pe2)− g(Pe1, e1)g(Pe2, e2)} − 2K̃0(π1)

− 1
2

2m

∑
α=n+1

[
hα

11hα
22 − (hα

12)
2
]
− 1

2

2m

∑
α=n+1

[
h∗α11 h∗α22 − (h∗α12 )

2
]

(13)

and:
K(π2) = K0(π2) +

c
4

{
1 + g2(e3, Pe4) + g2(Pe3, e4)

−g(Pe3, e4)g(e3, Pe4)− g(Pe3, e3)g(Pe4, e4)} − 2K̃0(π2)

− 1
2

2m

∑
α=n+1

[
hα

33hα
44 − (hα

34)
2
]
− 1

2

2m

∑
α=n+1

[
h∗α33 h∗α44 − (h∗α34 )

2
]

. (14)

From (13), (14), and (12) we have:

(τ − K(π1)− K(π2))− (τ0 − K0(π1)− K0(π2)) ≥(
n2 − n− 4

) c
8
+

c
4

[
‖P‖2 − 1

2
(traceP)2 − 1

2
traceP2

−g2(e1, Pe2)− g2(Pe1, e2) + g(Pe1, e2)g(e1, Pe2) + g(Pe1, e1)g(Pe2, e2)

−g2(e3, Pe4)− g2(Pe3, e4) + g(Pe3, e4)g(e3, Pe4) + g(Pe3, e3)g(Pe4, e4)
]

−1
2

2m

∑
α=n+1

∑
1≤i<j≤n

{[
hα

iih
α
jj − hα

11hα
22 − hα

33hα
44

]
+
[

h∗αii h∗αjj − h∗α11 h∗α22 − h∗α33 h∗α44

]}
+2K̃0(π1) + 2K̃0(π2)− 2τ̃0.

Lemma 3 implies:

∑
1≤i<j≤n

[
hα

iih
α
jj − hα

11hα
22 − hα

33hα
44

]

≤ n− 3
2 (n− 2)

(
n

∑
i=1

hα
ii

)2

=
n2(n− 3)
2 (n− 2)

(Hα)2

and similarly for h∗.
Summing, we get:

2m

∑
α=n+1

∑
1≤i<j≤n

[
hα

iih
α
jj − hα

11hα
22 − hα

33hα
44

]
≤ n2(n− 3)

2 (n− 2)
‖H‖2
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and similarly for H∗.
We obtain the following inequality:

(τ − K(π1)− K(π2))− (τ0 − K0(π1)− K0(π2))

≥
(

n2 − n− 4
) c

8
− n2(n− 3)

4 (n− 2)

[
‖H‖2 + ‖H∗‖2

]
+

c
4

[
‖P‖2 − 1

2
(traceP)2 − 1

2
traceP2

−g2(e1, Pe2)− g2(Pe1, e2) + g(Pe1, e2)g(e1, Pe2) + g(Pe1, e1)g(Pe2, e2)

−g2(e3, Pe4)− g2(Pe3, e4) + g(Pe3, e4)g(e3, Pe4) + g(Pe3, e3)g(Pe4, e4)
]

−2
[
τ̃0 − K̃0(π1)− K̃0(π2)

]
,

which represents the Chen δ(2, 2) inequality for an arbitrary statistical submanifold in a Kähler-like
statistical manifold.

We can state now the following theorem:

Theorem 3. Let
(

M̃, g, ∇̃, J
)

be a 2m-dimensional Kähler-like statistical manifold whose curvature tensor R̃

is of the form (8) and M an n-dimensional statistical submanifold of M̃.
(a) If M is holomorphic, then:

(τ − τ0)− (K(π1)− K0(π1) + K(π2)− K0(π2))

≥
(

n2 + 2n− 4
) c

8
− n2(n− 3)

4 (n− 2)
[‖H‖2 + ‖H∗‖2]

− c
4
[
1
2
(traceJ)2 + g2(e1, Je2) + g2(Je1, e2)

−g(Je1, e2)g(e1, Je2)− g(Je1, e1)g(Je2, e2)

+g2(e3, Je4) + g2(Je3, e4)− g(Je3, e4)g(e3, Je4)− g(Je3, e3)g(Je4, e4)]

−2
[
τ̃0 − K̃0(π1)− K̃0(π2)

]
.

(b) If M is totally real, then:

(τ − τ0)− (K(π1)− K0(π1) + K(π2)− K0(π2))

≥
(

n2 − n− 4
) c

8
− n2(n− 3)

4 (n− 2)

[
‖H‖2 + ‖H∗‖2

]
−2
[
τ̃0 − K̃0(π1)− K̃0(π2)

]
.

Moreover, one of the equalities holds if and only if:

hα
11 + hα

22 = hα
33 + hα

44 = hα
55 = ... = hα

nn,

h∗α11 + h∗α22 = h∗α33 + h∗α44 = h∗α55 = ... = h∗αnn,

hα
ij = h∗αij = 0, i 6= j, (i, j) 6= (1, 2), (2, 1), (3, 4), (4, 3),

where α ∈ {n + 1, ..., 2m} , 1 ≤ i < j ≤ n.
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Corollary 2. Let
(

M̃, g, ∇̃, J
)

be a 2m-dimensional Kähler-like statistical manifold whose curvature tensor

R̃ is of the form (8) and M an n-dimensional totally real statistical submanifold of M̃. If there exists a point
p ∈ M, π1, π2 ⊂ Tp M mutually orthogonal planes such that:

τ − τ0 < K(π1)− K0(π1) + K(π2)− K0(π2)

+
(

n2 − n− 4
) c

8
− 2

[
τ̃0 − K̃0(π1)− K̃0(π2)

]
,

then M is non-minimal, i.e., H 6= 0 or H∗ 6= 0.

The following theorem represents a characterization of a Lagrangian submanifold that satisfies
the equality case of the inequality in Theorem 3.

Theorem 4. Let
(

M̃, g, ∇̃, J
)

be a 2n-dimensional Kähler-like statistical manifold whose curvature tensor R̃ is

of the form (8) and M an n-dimensional Lagrangian statistical submanifold of M̃.
If n ≥ 6 and M satisfies the equality case of the Chen δ(2, 2) inequality, identically, then it is minimal.

The proof follows the same idea as in the proof of Theorem 2.
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