- 1 Sedimentary environment and paleosols of
- 2 middle Miocene fluvial and lacustrine
- 3 sediments in central Japan: Implications for
- 4 paleoclimate interpretations
- 5 Nozomi Hatano¹, and Kohki Yoshida²
- 6 ¹Graduate School of Science and Technology, Shinshu University,
- 7 hatano.n6@gmail.com
- 8 ²Department of Geology, Faculty of Science, Shinshu University
- 9 ABSTRACT

10 Sedimentary facies analysis and description of paleosols 11 were carried out for the middle Miocene Tokiguchi Porcelain Clay 12 Formation (PCF) in central Japan in order to interpret the soil-13 forming environments during a long hiatus in the Japanese Islands. 14 The sedimentary facies suggests that deposition occurred mainly in 15 a lacustrine environment, with minor channel-fill and debris-flow 16 deposits associated with alluvial fan environments. The coarse-17 grained sediments, which are inferred to have been deposited in 18 channel-bar and debris-flow deposits, are present only in the 19 marginal area of the sedimentary basin. Mature paleosols are 20 identified in the Tokiguchi PCF, characterized by illuviated clay, 21 identifiable soil horizons including Bt horizons and many in situ

22	plant fossils, and are then similar to Ultisols. Most tree trunk fossils,
23	however, were preserved by burial beneath debris-flow deposits.
24	Most of paleosols formed on lacustrine deposits and were covered
25	by lacustrine clay and silt deposits, without intervening coarse-
26	grained deposits, such as flood-flow deposits. This change of
27	sedimentary facies indicates a dramatic change of hydrologic
28	environment, from stagnant water to entirely desiccated conditions,
29	promoting weathering and soil formation. The relationship between
30	sedimentary facies and Pedotypes, consequently, implies the
31	repetition of specific events, i.e., submergence and emergence of
32	lake bottom, most likely due to formation and drainage of a
33	dammed lake. These isolated events and development of mature
34	paleosols might suggest specific characteristics of middle Miocene
35	weathering conditions, such as seasonally heavy rainfall and/or
36	warm climatic conditions in the Japanese Islands.
37	

38 KEYWORD

fluvial and lacustrine sediments; Miocene; paleosols; weatheringcondition; sedimentary facies analysis

41

42 **INTRODUCTION**

- 43 Miocene to Pliocene duration is a critical period for
- 44 considering the history of weathering and climatic conditions in

45	east Asian region because it is considerably recognized as a period
46	that has appeared and greatly changed the East Asian monsoon
47	(Quade et al., 1989, An et al., 2001 and Guo et al., 2002), and that
48	has occurred that some water marine climatic events due to the
49	invasion of the tropical sea water currents as a result of closure of
50	Indonesian Seaway and warm surface water pileup over the far
51	western Pacific (Kennet et al., 1985; Ali et al., 1994; Nishimura
52	and Suparka, 1997; Li et al., 2006). In the Japanese Islands, which
53	are distributed in far eastern Asia, the middle Miocene to the early
54	Pliocene period (5 - 15 Ma) was a time of long hiatus associated
55	with global regression and regional orogenic movement
56	(Makinouchi, 1985 and Yoshida, 1992: Fig. 1-C). Therefore, there
57	are sparse depositional records and little is known about the
58	weathering, climate and environment during this time interval. The
59	middle Miocene Porcelain Clay Formation (PCF), which is
60	interpreted as a fluvial deposit (Akamine, 1954, Fujii, 1967 and
61	Fujii, 1978), is one of the rare geological records preserved during
62	the middle Miocene time interval in the Japanese Islands (Fig. 1-C).
63	The PCF produces high-quality ceramic material, which is
64	characterized by very high concentrations of aluminium (Fujii,
65	1967). These isolated sediments are inferred to have formed under
66	warm, wet terrestrial weathering conditions (Fujii, 1967 and Fujii,
67	1978). The PCF is interpreted as having been deposited in a small

68	sedimentary basin with a radius of several kilometers, in Gifu and
69	Aichi Prefectures, central Japan (Nakayama, 1985 and Todo
70	Collaborative Research Group: TCRG, 1985). In particular, the
71	PCF that is distributed in Gifu Prefecture is called the Tokiguchi
72	Porcelain Clay Formation (Akamine, 1954), and that distributed in
73	Aichi Prefecture is called the Seto Porcelain Clay Formation
74	(Matsuzawa, 1960). Depositional processes of the PCF were
75	interpreted based on sedimentary facies analysis. Nakayama (1991,
76	1999) carried out sedimentological studies related to the Seto PCF
77	in the southern part of Nagoya in Aichi Prefecture, and proposed a
78	reconstruction during the middle Miocene that consisted of a fine-
79	grained alluvial system with fan, fan delta and lake and/or pond
80	environments. Saneyoshi et al. (2000) and Nakajima et al. (2004)
81	showed that the sedimentary environment of the Tokiguchi PCF,
82	distributed in Toki - Tajimi Cities in Gifu Prefecture, was that of a
83	youthful sandy, braided fluvial system with extensive swamp and
84	stagnant water areas, which were developed proximal to the
85	mountain and/or hilly area.
86	In the case of fluvial deposits such as the PCF, a
87	sedimentological approach can be interpreted depositional
88	processes, environments and products of sedimentation. However,
89	such an approach can only provide limited information, which is
90	incomplete for successions formed in fluvial environments, because

91	these deposits essentially comprise multiple short hiatuses
92	developed due to sub-aerial erosion and soil formation within the
93	deposits. During the hiatuses, the surface of deposits is influenced
94	by soil formation, characterized by physical, chemical and
95	biological weathering (Retallack, 2001). Indeed, the PCF has
96	yielded many indigenous plant fossils with good preservation, for
97	example, of pine fossils (Pinus trifolia: Miki, 1939 and Miki, 1941).
98	Meanwhile, paleopedological reconstruction of paleosols can
99	support interpretations of the history of depositional processes,
100	weathering, climate and other geologic events that influenced the
101	sedimentary basin during the hiatus developed in the middle
102	Miocene to the early Pliocene in the Japanese Islands.
103	In this study, the results of sedimentary facies analysis and
104	description of the paleosols in the Tokiguchi PCF are reported in
105	order to reconstruct the paleoenvironmental change of the
106	sedimentary basins during the middle Miocene during a long hiatus
107	in southwest Japan. In addition, the relationships of the
108	sedimentary facies and paleosols are important in interpreting
109	conditions within the sedimentary basins, because the depositional
110	processes involved variable depositional rates, flow patterns and
111	accordingly produce micro-relief in the sedimentary basins, which
112	influenced the degree of pedogenic development (Kraus, 1999 and
113	Retallack, 2001).

115 GEOLOGICAL SETTING AND METHODS

116	Lower Miocene to Pleistocene sediments are widely
117	distributed in southwest Japan. These sediments have been
118	geographically grouped by area of distribution into the following
119	groups, the Osaka Group (Osaka Group Research Group, 1951)
120	around Osaka, the Kobiwako Group (Nakayama, 1929) around
121	Lake Biwa and the Tokai Group (Ishida and Yokoyama, 1969)
122	around Ise Bay and inland area of Aichi and Gifu Prefectures (Figs.
123	1-B and 1-C). The Porcelain Clay Formation (PCF), which is
124	assigned to the lower part of the Tokai Group (Akamine, 1954), is a
125	rare geological record preserved during the middle Miocene time
126	interval in southwest Japan (Fig. 1-C). The PCF has been studied in
127	several isolated, small sedimentary basins (Nakayama, 1985 and
128	TCRG, 1985). The clayey sediments in the PCF are mined as a
129	high quality resource of ceramic clay that is widely known for use
130	as raw materials of Mino and Seto Pottery. The Tokiguchi PCF,
131	distributed in four clay mines (Hishiya, Nakayama and Yamakyu
132	Mines) around Toki - Tajimi Cities in Gifu Prefecture, were
133	examined in this study (Fig. 1-D). The Tokiguchi PCF is 10 - 30 m
134	thick and shows near horizontal bedding in those mines. A fission-
135	track age from ash-flow tuff (Oroshi Tephra in the upper part of the

- 136 Tokiguchi PCF) is dated at 13.1 \pm 0.8 Ma and a U Pb age is
- 137 placed at 10.6 \pm 0.2 Ma (Hoshi et al., 2015).

138	The Tokiguchi PCF is overlain by the middle Miocene to
139	the late Pliocene Toki Sand and Gravel Formation, which is
140	composed of sand and gravel rich fluvial sediments (Akamine,
141	1954: Figs. 1-C and 1-D). The Tokai Group unconformably
142	overlies the Jurassic to Cretaceous accretionary complex (Mino
143	Sedimentary Complex), late Cretaceous to early Paleogene granites
144	(Ryoke Granite) and early - middle Miocene sedimentary rocks
145	(Mizunami Group) in the study area (Kiyono and Ishii, 1927). The
146	lower part of the Tokiguchi PCF, where in contact with the
147	basement rocks, is composed of granule, sand and pebbly sand
148	layers in Toki - Tajimi Cities (Fujii, 1967).

150 SEDIMENTARY FACIES

- 151 Stratigraphic columnar sections (1:100) were described in
- 152 the three mines in order to classify the lithofacies. Two columnar
- 153 sections were described only in the Hishiya Mine (Fig. 2).
- 154 Eventually, the sediments were classified into 10 representative
- sedimentary facies based on grain size, sedimentary structures,
- 156 overall lithofacies characteristics and stratum boundary (Table. 1).
- 157 The sedimentary facies in this paper were then compared with
- 158 those defined by Miall (1977, 1996).

159 Facies A

160	This facies, composed of sandy and pebble sized gravel, has
161	common trough cross-beds and rare, faint cross-beds. Sand grain-
162	sizes range from very coarse- to fine sand-size. These gravels are
163	distinctly sub-rounded gravels, as classified using Pettijohn (1957).
164	Foreset dips of these beds are commonly high-angles ($25^{\circ} - 30^{\circ}$).
165	The sets of cross-strata range from 5 - 10 cm thick and commonly
166	show normal size-grading, and have erosional bases. Facies A
167	rarely contains sand lenses with carbonaceous materials. This facies
168	laterally grades into Facies B, C and F, and has sharp vertical
169	contacts with Facies B, C, E, F, H and J.
170	The abundances of sub-rounded gravel and trough cross-
171	beds suggest that deposition by traction transport under upper to
172	lower flow-regimes, likely in shallow, gravelly and sandy channel
173	bars. In general terms, Facies A is equivalent to Facies Gt in Miall
174	(1977, 1996), but is different from their Facies Gt in terms of
175	having intercalations of sand lenses with carbonaceous materials.
176	Facies B
177	This facies consists of fine- to very fine-grained sand and
178	occasionally coarse-grained sand, has ripple laminae with 5 cm of
179	amplitude, and rare small-scale planar-tabular cross-beds that have
180	erosional bases and normal size-grading. This facies grades

181 laterally into Facies A, C, F and G, and has sharp vertical contacts182 with Facies A, C, D, F, G, H and J.

183 The sedimentary structures of this facies, showing ripple 184 laminae and small-scale planar-tabular cross-beds, indicate that 185 deposition was by traction transport under lower flow-regimes. In a 186 broader senses, Facies B is similar to Facies Sr in Miall (1977, 187 1996). 188 **Facies C** 189 This facies consists of alternating and/or lenticular beds of 190 well-sorted, very coarse- to medium-grained sand and sandy silt 191 including small amounts of carbonaceous materials. Each lamina is 192 generally several centimeters thick. Sand layers have erosional 193 bases, with ripple and foreset laminae (Fig. 3A). This facies 194 commonly has convolute laminae and inverse size-grading. Facies 195 C has sharp vertical contacts with Facies A, B, E and F, and 196 laterally grades into Facies A, B and F. This facies in some

197 instances grades laterally into Facies F.

198 In general, inverse size-grading is associated with flooding

- 199 on floodplain, back-swamp and natural levee environments
- 200 (Masuda and Iseya, 1985). Coarse grain-size and contacts with

201 coarse-grained channel deposits such as Facies A and B,

additionally, imply that these formed under high sedimentation rate,

such as in the proximal areas of floodplains or on alluvial ridges.

204 Facies D

205	This facies consists of poorly-sorted, muddy sand with
206	pebble- to granule- and gravel-sized material. Grain size is
207	generally medium-sand to silt, with an admixture of gravels, which
208	consist of angular to sub-angular grains up to 1 cm in diameter (Fig.
209	3B). The gravels are dispersed in massive sandy silt with
210	disordered internal arrangement. Concentrations of pebbles to
211	coarse-sand are unevenly distributed in the layers. Facies D
212	laterally grades into Facies H and J, and in a few instances has
213	sharp vertical contacts with Facies B, F and H.
214	The massive structure and distribution of pebbles with
215	disordered internal arrangement are interpreted as "rigid plug"
216	structures produced by high-viscosity mass flows. In general,
217	matrix-supported massive gravel deposits are formed by mass
218	flows under the conditions of balanced viscosity and shear strength
219	of the fluid (Miall, 1977 and Soh and Taila, 1989). For these
220	reasons, Facies D is interpreted as debris-flow deposits formed by
221	sediment gravity flows with high-strength and high-viscosity, and
222	corresponds to Facies Gmm in Miall (1996).
223	Facies E
224	This facies consists of massive beds of gravel, poorly-sorted
225	sandy silt, and concentrations of allochthonous plant fossils (Fig.

226 3C). The facies also includes angular to sub-angular gravels and

227 rarely rounded gravels. Both clast-supported and matrix-supported 228 lithologies are unevenly distributed in this facies, and the former is 229 often dominant. The allochthonous plant fossils are preserved on 230 bedding planes in the clast supported gravel layers. Facies E grades 231 laterally into Facies H, I and J, and has sharp vertical contacts with 232 Facies A, C, F, H, I and J. 233 The characteristics of this facies are the dominance of clast-234 supported gravels. In addition, scattered abundant alloghthonous 235 plant fossils in the gravel suggest poor sorting effects by low-236 energy water flows. These characteristics are equivalent to those of 237 Facies Gci (Miall, 1996). Facies E, therefore, is interpreted as high-238 density debris-flow deposits formed under conditions of low water-239 content and/or low-velocity. 240 **Facies F**

241 This facies consists of alternating beds of well-sorted, 242 medium- to very fine-grained sand and silt to clay, including some 243 sparse carbonaceous materials, however, sand layers are more 244 common than muddy layers (Fig. 3D), and each layer is several 245 centimeters thick. Sand layers have erosional bases, internal foreset 246 laminae, current ripple tops and sharp contacts with clay layers. 247 Convolute bases, flame structures, and bioturbation are common in 248 this facies. Layers of carbonaceous material, up to several 249 millimeters thick, are present within fine-grained layers, but are

250	less common than in Facies G. This facies laterally grades into
251	Facies C, H and J, and has sharp vertical contacts with Facies A, B,
252	C, D, E, G, H and J, however Facies F commonly intertongues with
253	Facies I.
254	Alternating beds of sand layers, which have foreset laminae,
255	and muddy layers, suggest the repetition of transportation of
256	sediments by traction transport processes followed by weakening of
257	flows and deposition by suspension currents. Sharp layer
258	boundaries between sand and fine-grained layers suggest rapid
259	changes of depositional processes, possibly due to flooding in
260	overbank areab. This facies is equivalent to Facies Fl in Miall
261	(1977, 1996).
262	Facies G
263	This facies is consists of alternating beds of thick silt - clay

with lignite beds, and lenticular coarse- to fine-grained sand (upper
part of Fig. 3E). Sand layers show climbing-ripple and erosional
scoured bases. Finer layers commonly contain allochthonous plant
fossils, for example, horizontal tree trunks, cones, leaves and

branches. Facies G grades laterally into Facies B, C, H, I and J, and

269 has sharp vertical contacts with Facies B, C, D, F, G, H and J, in

270 some instances this facies intertongues with Facies J when traced

271 laterally.

272	The characteristics of Facies G partially correspond to
273	Facies Fl (Miall, 1977 and Miall, 1996), except for the occurrences
274	of abundant allochthonous plant fossils. Facies G suggests
275	sedimentation on a floodplain in which plants experienced transport
276	and concentration, such as a back-swamp environment.
277	Facies H
278	This facies consists of well-sorted silt - clay (Fig. 3E).
279	Facies H grades laterally into Facies A, B, D, E, F and J, and has
280	sharp vertical contacts with these facies. In rare instances, Facies H
281	grades laterally, and is overlain by Facies G and I.
282	The characteristics of Facies H, composed of silt to clay
283	with parallel laminae, suggest that deposition occurred by
284	suspension flow into a lake center environment. This facies is
285	equivalent to Facies Fsm (Miall, 1977 and Miall, 1996).
286	Facies I
287	Facies I consists of dark brown silt to clay, with abundant
288	allochthonous plant fossils and some peat layers. This facies has
289	sharp vertical contacts with Facies E, F and H. However this facies
290	commonly shows both lateral and vertical gradations into Facies G,
291	H and J.
292	Abundant allochthonous plant fossils and composition of
293	dark brown silt to clay suggest during deposition under suspension
294	flow it was easy to concentrate plant fragments. Facies I, therefore,

295 is interpreted as a marsh deposit and is equivalent to Facies C

296 (Miall, 1996).

297 Facies J

298	This facies is composed of muddy lignite with minor silt to
299	clay matrix components (Fig. 3F). Allochthonous plant fossils are
300	very abundant. This facies grades laterally into Facies D, E, F, G, H
301	and I, and has sharp vertical contacts with Facies A, B, E, F, G, H
302	and I. However this facies commonly shows both lateral and
303	vertical gradations into Facies G and I.
304	Lignite layers and minor silt to clay matrix suggest that
305	deposition was under lower-energy conditions in which was easy to
306	concentrate plant fragments. Facies J, therefore, indicates
307	deposition in swamps with stagnant water, and is equivalent to
308	Facies C (Miall, 1996).
308 309	Facies C (Miall, 1996).
308 309 310	Facies C (Miall, 1996). Distribution of sedimentary facies
308309310311	Facies C (Miall, 1996). Distribution of sedimentary facies In the Tokiguchi Porcelain Clay Formation (PCF),
 308 309 310 311 312 	 Facies C (Miall, 1996). Distribution of sedimentary facies In the Tokiguchi Porcelain Clay Formation (PCF), lacustrine fine-grained deposits (Facies H, I and J) are most
 308 309 310 311 312 313 	Facies C (Miall, 1996). Distribution of sedimentary facies In the Tokiguchi Porcelain Clay Formation (PCF), lacustrine fine-grained deposits (Facies H, I and J) are most abundant, and coarser-grained channel and bar deposits (Facies A,
 308 309 310 311 312 313 314 	Facies C (Miall, 1996). Distribution of sedimentary facies In the Tokiguchi Porcelain Clay Formation (PCF), lacustrine fine-grained deposits (Facies H, I and J) are most abundant, and coarser-grained channel and bar deposits (Facies A, B and C) and/or high-density debris-flow deposits (Facies E) are
 308 309 310 311 312 313 314 315 	Facies C (Miall, 1996). Distribution of sedimentary facies In the Tokiguchi Porcelain Clay Formation (PCF), lacustrine fine-grained deposits (Facies H, I and J) are most abundant, and coarser-grained channel and bar deposits (Facies A, B and C) and/or high-density debris-flow deposits (Facies E) are relatively rare in the lower part of the PCF, from the bottom to
 308 309 310 311 312 313 314 315 316 	Facies C (Miall, 1996). Distribution of sedimentary facies In the Tokiguchi Porcelain Clay Formation (PCF), lacustrine fine-grained deposits (Facies H, I and J) are most abundant, and coarser-grained channel and bar deposits (Facies A, B and C) and/or high-density debris-flow deposits (Facies E) are relatively rare in the lower part of the PCF, from the bottom to about 27 m up-section, and in the Nakayama Mine. In contrast,

318	contacts with lake and back-swamp deposits (Facies H, I and J).
319	These lacustrine deposits show wide lateral extent, to more than
320	150 m in width (Fig. 3G). Channel and bar deposits are recognized
321	in the upper part of the PCF, from the bottom to about 27m to the
322	top of the section. In addition, channel and bar deposits commonly
323	overlie the high-density debris-flow deposits in the three
324	stratigraphic sections. In summary, the lithologic changes within
325	the PCF are highly irregular.

DESCRIPTION OF PALEOSOLS

328	The lack of physical sedimentary structures, which is
329	related to presence of bioturbation, plant fossils and soil horizons,
330	is evidence for pedogenic alteration (Retallack, 2001). On the basis
331	of these indicators of paleosols were identified within the PCF. The
332	tops of paleosol profiles were identified by the surface from which
333	root fossils and/or tree trunk fossils emanated. Field features of the
334	paleosols were described, following the paleosol descriptive
335	approaches presented by Retallack (2001). Oriented hand samples
336	were collected in order to describe soil micro-structures in thin
337	sections, which were described following the terminology of
338	Brewer (1976).

339	Some paleosol horizons were recognized in the Tokiguchi
340	PCF, with as many as 20 to 24 horizons identified in each mine
341	(Fig. 2).

342	Many <i>in situ</i> plant fossils were identified in the outcrops,
343	which consist of fine rootlets, roots and tree trunk fossils (Fig. 4).
344	Root fossils, which characteristically taper and branch downward
345	(Retallack, 2001: Figs. 4A and 4B), are present in most all
346	paleosols. They are up to 150 centimeters long (Fig. 4B). Tree
347	trunk fossils, which can be recognized by branch-ing upward, have
348	diameters of up to 50 centimeters (Fig. 4C) and were observed in
349	six stratigraphic sections (Fig. 2). Furthermore, the in situ plant
350	fossils generally showed high plant density in all mines. Most all
351	paleosols have distinctive soil horizons, which can be assigned to A,
352	B and C horizons (Fig. 4D). Some paleosols have a Bt horizon,
353	which is reddish to brownish color, for example, $10YR4/2 - 4/3$
354	and/or 7.5YR4/3 in Munsell rock colors, and shows evidence for
355	clay accumulation, such as illuviated clay pore-fillings and clay
356	skins.
357	On the microscale, sepic-plasmic microfabrics (Brewer,
358	1976) were dominant in the paleosols. Clinobimasepic plasmic (i.e.,
359	a network of highly birefringent clay arranged two directions and at
360	a low angles: Fig. 5A) and masepic plasmic (i.e., clay arranged as
361	an extensive cross-crossing network: Fig. 5B) were the most

362	common microfabrics in the paleosols. Omnisepic plasmic (i.e., all
363	highly birefringent and oriented clay: Fig. 5C) were microfabrics
364	present mainly in the surface soil horizons, such as A horizon.
365	Many paleosols contain distinctive illuviated clay pore-fillings and
366	clay skins (Figs. 5D, 5E and 5F). These soil microstructures
367	correspond to cutans composed of clay minerals (argillan in
368	Brewer, 1976). These illuviated clay also show laminated structure
369	formed from successive additions of material washed into soil
370	pores (Fig. 5F). These clayey sediments also commonly contained
371	pedogenic slickenside surfaces, characterized by smooth, polished
372	and striated shear planes.
373	
374	Relationships between sedimentary facies and paleosols
375	Relationships between sedimentary facies and paleosols
375 376	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were
375 376 377	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were interpreted within the context of a generally aggradational history
 375 376 377 378 	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were interpreted within the context of a generally aggradational history of fluvial environments. Typical vertical relationships among
 375 376 377 378 379 	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were interpreted within the context of a generally aggradational history of fluvial environments. Typical vertical relationships among sedimentary facies and paleosol horizons, and vertical distributions
 375 376 377 378 379 380 	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were interpreted within the context of a generally aggradational history of fluvial environments. Typical vertical relationships among sedimentary facies and paleosol horizons, and vertical distributions of the above relationships, are shown in Figs. 6 and 7.
 375 376 377 378 379 380 381 	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were interpreted within the context of a generally aggradational history of fluvial environments. Typical vertical relationships among sedimentary facies and paleosol horizons, and vertical distributions of the above relationships, are shown in Figs. 6 and 7.
 375 376 377 378 379 380 381 382 	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were interpreted within the context of a generally aggradational history of fluvial environments. Typical vertical relationships among sedimentary facies and paleosol horizons, and vertical distributions of the above relationships, are shown in Figs. 6 and 7. <i>Pedotype 1a:</i> The top of these paleosols is recognized as the
 375 376 377 378 379 380 381 382 383 	Relationships between sedimentary facies and paleosols were divided into 6 "Pedotypes" described below and were interpreted within the context of a generally aggradational history of fluvial environments. Typical vertical relationships among sedimentary facies and paleosol horizons, and vertical distributions of the above relationships, are shown in Figs. 6 and 7. Pedotype Ia: The top of these paleosols is recognized as the surface of the swamp (marsh) deposits (Facies I or J). Soil horizons

408	indicates considerable hydrologic change, i.e., the onset of dry
409	conditions, which was evidenced by subaerial exposure and soil
410	formation, followed by a return to waterlogged conditions, which is
411	characterized by deposition of finer-grained sediments.
412	<i>Pedotype 2:</i> The top of these paleosols is defined by the base of the
413	overlying low-density debris-flow deposits (Facies D). Tree trunk
414	fossils are nearly always buried by the debris-flow and lake
415	deposits (Fig. 4C). In addition, the paleosols formed in the
416	lacustrine deposits, which consist of silt and clay layers, covered by
417	the low-density debris-flow deposits with buried trunks.
418	Thicknesses of these paleosols range from several centimeters to 70
419	centimeters. Three paleosols are assigned to Pedotype 2.
420	The paleosols of Pedotypes 2 are characterized by
421	identifiable soil horizons, which are thin O horizons (a few
422	centimeters thick) and A, Bt, Bw and C horizons, long root fossils
423	and abundant illuviated clay (Fig. 6). Pedotype 2 is similar to
424	Ultisols of Soil Survey Staff (1999) in that this paleosols include Bt
425	horizons. Pedotype 2 paleosols indicate subaerial exposure of
426	lacustrine deposits followed by soil formation. Furthermore, soil
427	formation was abruptly terminated by deposition of debris-flows.
428	<i>Pedotype 3:</i> The top of these paleosols is placed at the top of low-
429	density debris-flow deposits. The debris-flow deposits were
430	covered with swamp (marsh) deposits. Lacustrine deposits

generally occur beneath the debris-flow deposits. These paleosols
thus formed on debris-flow. The thicknesses of the range from
several centimeters to 40 centimeters. Six paleosols are assigned to
Pedotype 3.

The paleosols of Pedotype 3 have Bt horizons and are penetrated by long root fossils. These characteristics suggest that the Pedotype is equivalent to Ultisols of Soil Survey Staff (1999). Pedoype 3 is evidence for soil formation occurring after the deposition of low-density debris-flows, followed by burial by silt and clay in stagnant water, without intervening of coarser-grained deposits.

442 *Pedotype 4:* The top of these paleosols is placed at the top of the

443 back-swamp or floodplain deposits (Facies G and F). Silt to clay

444 layers interpreted as lacustrine deposits overlap and bury the

445 paleosols formed on the back-swamp or floodplain deposits. The

446 thicknesses of the paleosols are thinner than those of other

447 pedotypes and ranges from a few centimeters to 20 centimeters.

448 Ten paleosols are assigned to Pedotype 4. The upper boundary of

the paleosols is sometimes difficult to identify. Pedotype 4 is

450 occasionally intercalated with Pedotype 5 (from the bottom to

451 about 7.5 m up-section in the Yamakyu Mine and about 17.0 m up-

452 section in the Hishiya Mine).

453	The paleosols of Pedotype 4 have thin soil horizons, which
454	are A and C horizons with common color from gray to olive gray,
455	and fine rootlet fossils without long root fossils. Sedimentary
456	structures, such as current ripple and convolute laminae, are
457	commonly remained. Eluviation of clay from the surface horizons
458	was scarce in thin sections. This Pedotype is then similar to
459	Entisols of Soil Survey Staff (1999). Pedotype 4 is evidence for soil
460	formation after the deposition of coarser-grained sediments on
461	floodplains or channel-bar.
462	Pedotype 5: The top of these paleosols is an unconformity related
463	to erosion by covering strata. Paleosols were formed in the top
464	layer of lake deposits (Facies H), but there was no preservation of
465	the upper part of the paleosols, such as the O and A horizons. The
466	thicknesses of the paleosols are several centimeters. Eight paleosols
467	assigned to Pedotype 5.
468	The lack of the preservation of the upper part of paleosols
469	is attributed to erosion of the upper part of the developing soils, and
470	is indicative of a dramatic change of sedimentary environments,
471	from lake to inside of river channels. The paleosols of Pedotype 5
472	are commonly penetrated by long root fossils and have Bw horizon.
473	However it couldn't be interpreted detailed soil environments due
474	to lacking of the surface horizons.
475	

476 **DISCUSSION**

477 Sedimentary mechanisms and environments

478	In terms of the general distribution of the sedimentary facies,
479	coarser-grained deposits, which consist of channel, bar and high-
480	density debris-flow deposits are rare in the Nakayama Mine. On the
481	other hand, in the Hishiya and Yamakyu Mines, these coarser-
482	grained deposits are more common. This suggests that the
483	sedimentary basin for the deposits, which is presently exposed in
484	the Nakayama Mine, was located in the more distal areas of the
485	alluvial system, whereas those deposited in the areas of the Hishiya
486	and Yamakyu Mines were in more proximal areas. The existence of
487	two sedimentary basins was previously postulated based on the
488	distribution of the measured elevation above sea level of the base of
489	the Tokiguchi PCF (TCRG, 1999).
490	The dominant sedimentary facies of the Tokiguchi PCF
491	are Facies H, I and J, which suggests the dominance of deposition
492	in lacustrine environments. These deposits show wider lateral
493	extents, to than 150 m in width (Fig. 3G), thereby indicating the
494	lake was at least 150 m in width.
495	The debris-flow deposits nearly always show gradational
496	contacts with lacustrine deposits, which suggests that the debris-
497	flows had entered directly into the lacustrine areas. According to
498	some previous researchers, the sedimentary basins of the PCF were

499	small depressions, ranging from several to tens of square
500	kilometers in area (Nakayama, 1991, Nakayama, 1999, Saneyoshi
501	et al., 2001 and TCRG, 1999). These reports indicate that the
502	topography was hilly in the vicinity of the lacustrine area.
503	The channel deposits are spatially restricted and
504	distributed in the Hishiya and Yamakyu Mines, which were located
505	in the more proximal areas of the basins. These channel deposits
506	overlie high-density debris-flow deposits in three stratigraphic
507	sections, which are located 27 - 30 m from the bottom in the
508	stratigraphic columns (Fig. 2), suggesting appearances of small
509	streams or minor alluvial fans. In addition, there are rare, thinner
510	levee deposits, which suggest there was a small-scale channel
511	system. The main stream channel, however, was not recognized
512	within these mines.
513	
514	Paleohydrologic environments inferred from paleosols
515	To date, there are only a few paleobotanical studies
516	conducted in the PCF (Miki, 1941, Miki, 1963, Momohara and
517	Saito, 2001 and Tsukagoshi and TCRG, 1998). However, none of
518	the preceding reported the existence of the paleosols.
519	The paleosols recognized in this study are characterized by
520	abundant in situ plant fossils, such as fine rootlets, roots and tree
521	trunk fossils, and distinctive soil horizons. Some of the paleosols

522	are deeply penetrated by root fossils. In general, the development
523	of deep root fossils indicates that well-drained soil conditions
524	existed (Retallack, 2001). On the microscale, sepic-plasmic
525	microfabrics, illuviated clay pore-fillings and reworked clay
526	coatings are common in the paleosols. It is known that the degree
527	of development of sepic-plasmic microfabrics requires time
528	available for soil formation and the intensity of pedogenesis due to
529	stresses imposed by repeated wetting and drying cycles, with filling
530	and closing of cracks, and other alterations (Brewer and Sleeman,
531	1969). Illuviated clay suggests that the dominant soil formation
532	process was leaching and illuviation, which are soil formation
533	processes of characterized by flushing of clay particles from
534	surface horizons into pores and cracks of sub-surface horizons
535	(Matsui, 1988 and McCarthy et al., 1998). Palosols of Pedotypes 1a,
536	1b, 2 and 3, moreover, have Bt horizons, which are characterized
537	by reddish to brownish colors and prominent illuviated clay, and
538	are, then, similar to Ultisols of Soil Survey Staff (1999). Ultisols
539	are, typically, formed in humid and warm climates (Retallack,
540	2001). The above descriptions related to the characteristics of
541	paleosols, which are especially assigned to Pedotypes 1a, 1b, 2 and
542	3, attest to mature and well-drained soil environments and/or humid
543	and warm climates developed during the deposition of the
544	Tokiguchi PCF. These paleosols are distributed within all the mines.

545	The succession of fluvial environments can be interpreted
546	based upon the pedotypes, showing the relationships between
547	sedimentary facies and paleosols (Fig. 6). Firstly, Pedotype 5,
548	which is dominantly in the Hihshiya and Yamakyu Mines, indicates
549	deposition in marginal areas of the basin where coarser-grained
550	sediments were easily derived from surrounding mountain slopes.
551	Also, it is evident that Pedotype 4 is intercalated with Pedotype 5 in
552	the Yamakyu and Hishiya Mines. This relationship possibly
553	indicates lowering of the lake surface water and ground water
554	levels, followed by coarsening of grain-size of sediments, reflecting
555	high sedimentation rates by overbank flows near the channel.
556	Pedotype 4, which are characterized by thin soil horizons and little
557	altered parent materials with relict bedding, are similar to Entisols
558	of Soil Survey Staff (1999). In general, Entisols are formed in a
559	short subaerial exposure time or unfavorable soil conditions, such
560	as infertile or poorly drained soil conditions (Retallack, 2001). In
561	that case of Pedotype 4 in the Tokiguchi PCF, the immature
562	paleosols are considered to reflect the high sedimentation rate near
563	the active channel within fluvial systems because the parent
564	materials of this Pedotype are coarser-grained sediments, such as
565	channel-bar and flood-flow deposits. The soils, then, have become
566	buried by the coarser-grained sediments due to rapid sedimentation.

567	Secondly, the most common pedotypes of paleosols,
568	which are recognized in all the mines, are Pedotypes 1a and 1b.
569	The paleosols of these pedotypes are developed in the silt to clay
570	deposits interpreted as lacustrine deposits. These paleosols were
571	afterwards by the lacustrine deposits. This specific vertical
572	succession suggests a considerable change of the hydrologic
573	environment, i.e., the lacustrine environment changed to the
574	entirely subaerially exposed environment, in which weathering and
575	soil formation occurred, followed by lake was submergence, ending
576	soil formation. The lacustrine deposits and the paleosols of
577	Pedotypes 1a and 1b show a considerable lateral extent, implying a
578	wide extent for the lakes.
579	Thirdly, Pedotype 3 paleosols show the effects of
580	pedogenesis was terminated by debris-flows. In addition, after the
581	occurrence of the debris-flows, these deposits were then
582	pedogenically modified further.
583	Finally, Pedotype 2 paleosols indicate subaerial exposure,
584	which are covered with the debris-flow deposits, and then
585	afterwards by silt and clay deposition in the stagnant water that
586	immediately covered the debris-flow deposits, without any
587	intervening coarser-grained deposits, such as flood-flow deposits.
588	It is inferred that the pedogenesis was generally active
589	within the floodplain and marsh environments, as exemplified by

590	Pedotypes1b and 4, reflecting intermittent sediment supply and
591	episodic changes of lake water level. Conversely, based on
592	Pedotypes 1a, 1b and 2, repeated changes of the paleohydrologic
593	conditions are recognized. These changes are characterized by
594	obvious change of lake water level starting from the bottom of lake,
595	followed by subaerial exposure and soil formation, and then
596	returning to the lake bottom environment.
597	These drastic changes of depositional environments can be
598	attributed to rapid formation of so called "oxbow lakes" in
599	floodplain areas accompanied with abandonment and local avulsion
600	of channels due to migration of an ephemeral and large-scale
601	channel system (Reineck and Singh, 1973). The rapid and drastic
602	migration of a large channel possibly led a large perturbations of
603	surface water levels in laterally adjacent lakes. However, it is
604	unlikely that such a large channel with rapid migration influenced
605	wide areas of the depositional basin of the Tokiguchi PCF, because
606	thick, coarse-grained channel sediments are not recognized in the
607	study area. As another possibility, it is possible that the changes of
608	the lake water level were caused by formation of a natural dam.
609	The areas of the sedimentary basins around Toki and Tajimi Cities
610	were limited and less than several square kilometers (TCRG, 1999).
611	Therefore, it was such a narrow topographic setting that debris-
612	frows derived from the adjacent mountain slope could have easily

613	blocked the river stream and formed several dammed lakes. Fig. 8
614	shows the paleoenvironmental reconstruction of the paleolandscape
615	of the middle Miocene Tokiguchi PCF in the study area. It is worth
616	noting here that not all lacustrine sediments might be attributable to
617	the dammed lakes, because there are no direct records showing
618	formation of natural dams from the study area. However, the
619	significant changes of sedimentary and hydrologic conditions
620	recorded in these stratigraphic sections implies major hydrological
621	events, which could be associated with formation of dammed lakes.
622	Today, it is well-known that most landslide dams are small and
623	short-lived (Hsu and Hus, 2009), which suggests that geological
624	examples are probably very scarce. However, several examples
625	from different geological ages were reported from the late
626	Pleistocene sediments in New Mexico State, USA (Reneau and
627	Dethier, 1996). Their report interpreted that the paleosols covered
628	with the debris-flow deposits were evidence of the existence of a
629	dammed lake. In the Japanese Islands, Kojima et al. (2014)
630	described the deposits of dammed lakes stemming from landslides
631	in the Miocene period in Toyama Prefecture, and they reported an
632	in situ tree trunk fossil that was buried in the lake sediments that
633	were dammed by the landslide. These descriptions showing the
634	dammed-lake deposits are very similar to those hypothesized for
635	the Tokiguchi PCF in this study.

636	If these damming events were repeated, then this would
637	imply that slope failure and debris-flow were frequent occurrences
638	during the deposition of the Tokiguchi PCF, at about 10 m.y.
639	before present. The trigger event for these occurrences might have
640	been the frequent occurrences of earthquakes around active faults,
641	rapid subsidence of the sedimentary basins, and effects of high-
642	precipitation events such as typhoons. It is also possible that the
643	intense weathering of bedrocks and/or specific climatic conditions
644	may have been potential triggers of damming event. This
645	implication is supported by the common paleosols which are
646	similar to Ultisols showing mature and well-drained soil
647	environments and/or humid and warm climates. In the previous
648	studies, the sediments derived from the weathered granite rocks
649	were fine-grained clayey detritus (Nagasawa and Kunieda, 1970).
650	The granite was decomposed and had a thick weathering crust,
651	which was interpreted to have formed before the deposition of the
652	PCF (Kimiya, 1981). The paleoclimate was inferred to have been
653	strongly maritime, which had high-precipitation and thus was
654	humid, with a relatively cool summers and warm winters (Miki,
655	1963). The fossil flora of the formation indicates overall warm
656	temperatures with seasonal and/or frequent precipitation such as
657	associated with a maritime climate (Miki, 1963, Nasu, 1972, Ozaki,
658	1991 and Momohara and Saito, 2001) during the middle Miocene.

659	The thick weathered crust and frequent high-precipitation events
660	might also have caused occurrences of debris-flow and construction
661	of dammed-lakes. Consequently, the isolated hydrologic
662	environments and the development of the mature paleosols imply
663	the wet and humid climatic condition during the long hiatus in the
664	Japanese Islands.
665	The middle Miocene period is significantly recognized as
666	a period that has appeared and greatly changed the East Asian
667	monsoon (Quade et al., 1989, An et al., 2001; Guo et al., 2002).
668	Clift et al. (2008) and Hoang et al. (2010) suggested that the wetter
669	climate and faster erosion caused by strong East Asian summer
670	monsoon between 10 and 15 Ma on the basis of the mineralogical
671	weathering records and a seismic stratigraphic records of sediments
672	in the South China Sea. Moreover, indication of aridification in the
673	Asian inland after 12 Ma has been suggested on the northeastern
674	Tibetan Plateau based on eolian sediment mass accumulation rates,
675	pollen records and stable isotopic records (Fan et al., 2006; Hui et
676	al., 2011; Zhanfang et al., 2014). In addition, during the late -
677	middle Miocene period, the north equatorial currents and the
678	western boundary water current (Kuroshio Current) have been
679	strengthened as a result of closure of Indonesian Seaway and warm
680	surface water pileup over the far western Pacific (Kennet et al.,
681	1985; Ali et al., 1994; Nishimura and Suparka, 1997; Li et al.,

682	2006). The invasion of the warm water into offshore of Japan is
683	recorded as a longitudinal distribution of shallow - marine tropical
684	to subtropical molluscan faunas (Chinzei, 1978, Tsuchi and Shuto,
685	1984; Ozawa et al., 1995). Duration of deposition of the Tokiguchi
686	PCF is contemporaneous to short warm period in 10 -11 Ma,
687	suggested by relict tropical Kukinaga Fauna (Inoue, 1992; Ozawa
688	et al., 1995). Accordingly, the synchronization of the development
689	of the warm water current and strengthening of the East Asian
690	summer monsoon may have contributed to the development of the
691	mature paleosols and the geologic events, such as damming events,
692	in the middle Miocene period in the Japanese Islands.

693 CONCLUSION

694 The sedimentary environments of the Tokiguchi Porcelain 695 Clay Formation (PCF) were mainly lacustrine environments, which 696 were at least 150 m in lateral extent. The coarse-grained deposits, 697 which formed in channel and alluvial fan environments, are 698 confined to the marginal areas of the basins. The debris-flow 699 apparently reached the lacustrine areas directly within the narrow 700 sedimentary basins. 701 The paleosols, which are distributed in all mines, are 702 characterized by abundant in situ plant fossils such as fine rootlets, 703 roots and tree trunk fossils, as well as well-defined paleosol profiles, 704 indicating the development of mature and well-drained soil

705	environments and/or humid and warm climates. The usual
706	relationship between sedimentary facies and paleosols, was such
707	that the pedogenesis was terminated by floodplain deposition.
708	However, large changes of the paleohydrologic conditions,
709	recorded by saturated conditions in the lacustrine and the pedogenic
710	environments, are attributed to the occurrences of debris-flows,
711	which caused natural damming, and considerable changes of the
712	paleohydrologic conditions. If these damming events occurred
713	repeatedly then this implies debris-flow processes were frequent
714	occurrences during the middle Miocene.

716 ACKNOWLEDGMENTS

717	We thank Dr. E. Sasao (Japan Atomic Energy Agency) for
718	offering advice about the Tokai Group for critical review of the
719	manuscript, and Prof. K. Hoyanagi (Shinshu University, Japan) for
720	critical comments about sedimentary facies analysis. We would
721	also like to acknowledge Dr. K. Takahashi (Shinshu University) for
722	polite advice about methods for making thin-sections of
723	unconsolidated sediments, Ms. S. Irie (INPEX Co., Ltd.) for
724	meticulous comments and Dr. H. Nagata (Fu-Sui-Do Co., Ltd.) and
725	Mr. K. Ota (Shinshu University) for insightful comments about
726	damming events. We are grateful to the Tokiguchi-Zaisan
727	Department in Toki municipal office, Hishiya-Kenzai Co., Ltd. and

- 728 Okumuraceram Co., Ltd. for approval of entry into the Nakayama,
- 729 Hishiya and Yamakyu Mines.
- 730

731 **REFERENCES CITED**

- 732 Akamine, H., 1954. Geology of the Environments of Seto, with
- 733 Special Reference to the Sedimentary Condition of the
- Formation Containing Ceramic Clays and Lignite.
- 735 Miscellaneous reports of Research Institute for Natural
- Resources 34, 25–39 (in Japanese, with English Abstr.).
- 737 Ali, J.R., Roberts, S.J., Hall, R., 1994. The closure of the Indo-
- 738 Pacific Ocean gateway: a new plate tectonic perspective. In:
- Hehuwat, F. et al. (Eds.), Proceedings of the international
- 740 workshop on Neogene evolution of Pacific Ocean gateways,
- 741 Nishimura, Kyoto 10-20.
- An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of
- Asian monsoons and phased uplift of the Himalaya-Tibetan
- 744 plateau since Late Miocene times. Nature 411, 62-66.
- 745 Brewer, R., 1976. Fabric and Mineral Analysis of Soils [2nd
- 746 edition]. Huntington, New York, Robert, E. Krieger
- 747 Publishing Co. (482 pp.).
- 748 Brewer, R., Sleeman, J.R., 1969. The arrangement of constituents
- in Quaternary soils. Soils Science 107, 435–441.

750	Chinzei, K.,	1978. Neogene	molluscan	faunas	in the Japanese	
-----	--------------	---------------	-----------	--------	-----------------	--

- Islands: An ecologic and zoogeographic synthesis. Veliger 21,155-170.
- 753 Clift, P.D., Hodges, K.V., Heslop, D., Hannigan, R., Van Long, H.,
- 754 Calves, G., 2008. Correlation of Himalayan exhumation rates
- and Asian monsoon intensity. Nature Geoscience 1, 875-880.
- 756 Fan, M.J., Song, C.H., Dettman, D.L., Fang, X.M., Xu, X.H., 2006.
- 757 Intensification of the Asian winter monsoon after 7.4 Ma:
- 758 grain-size evidence from the Linxia Basin, northeastern
- Tibetan Plateau, 13.1 to 4.3 Ma. Earth and Planetary ScienceLetters 248, 186–197.
- Fujii, N., 1967. Study on the Fireclay Deposits in Tajimi and Toki
- 762Districts, Gifu Prefecture. Bulletin of the Geological Survey
- of Japan 18, 649–667 (in Japanese, with English Abstr.).
- Fujii, N., 1978. Kaolin Clay Deposits in Japan. Journal of the Clay
- 765 Science Society of Japan 18, 90–105 (in Japanese, with
- 766 English Abstr.).
- 767 Guo, Z., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu,
- 768 R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., Liu, T.S., 2002. Onset
- 769 of Asian desertification by 22 Myr ago inferred from loess
- 770 deposits in China. Nature 416, 159-163.
- 771 Hoang, L.V., Clift, P.D., Schwab, A.M., Huuse, M., Nguyen, D.A.,
- 772 Zhen, S., 2010. Large-scale erosional response of SE Asia to

773	monsoon evolution reconstructed from sedimentary records of
774	the Song Hong-Yiggehai and Qiongdongnan basins, South
775	China Sea. Geological Society, London, Special Publications
776	342, 219-244.
777	Hoshi, H., Tamura, I., Komatsu, T., 2015. Radiometric ages and
778	petrographic properties of the Oroshi volcanic ash in the lower
779	Tokai Group. The 122 nd Annual Meeting of the Geological
780	Society of Japan, Geological Society of Japan, Tokyo, p. 234
781	(in Japanese, with English Abstr.).
782	Hsu, Yin-Sung, Hus, Yu-Hsiung, 2009. Impact of earthquake-
783	introduced dammed lakes on channel evolution and bed
784	mobility: Case study of the Tsaoling landslide dammed lake.
785	Journal of Hydrology 374, 43-55.
786	Hui, Z.C., Li, J.J., Xu, Q.H., Song, C.H., Zhang, J., Wu, F.L., Zhao,
787	Z.J., 2011. Miocene vegetation and climatic changes
788	reconstructed from a sporopollen record of the Tianshui Basin,
789	NE Tibetan Plateau. Palaeogeography, Palaeoclclimatology,
790	Palaeoecology 308, 373–382.
791	Inoue, K., 1992. Stratigraphy and geologic age of the Miocene
792	Kukinaga Group in Tanegashima Island, Kagoshima
793	Prefecture, Japan. Bulletin of the Mizunami Fossil Museum 19,
794	347-362 (in Japanese).

- 795 Ishida, S., Yokoyama, T., 1969. Tephrochronology,
- paleogeography and tectonic development of Plio-Pleistocene
- 797 in Kinki and Tokai districts, Japan The research of younger
- 798 Cenozoic strata in Kinki province, part 10-. Quaternary
- Research 8, 31-43 (in Japanese, with English Abstr.).
- 800 Kennett, J.P, Keller, G., Srinivasan, M.S., 1985. Miocene
- 801 planktonic foraminiferal biogeography and
- 802 Paleoceanographic development of the Indo-Pacific region.
- 803 In: Kennett, J.P. (Ed.), The Miocene Ocean:
- 804 Paleoceanography and biography. Geological Society of
- 805 America Memories 163, 197–236.
- 806 Kimiya, K., 1981. Distribution of weathering crusts and their
- 807 formative period in the Mikawa Highland, Central Japan.
- 308 Journal of the Geological Society of Japan 87, 91–102
- 809 Distribution of weathering crusts and their formative period in
- 810 the Mikawa Highland, Central Japan (in Japanese, with
- 811 English Abstr.).
- 812 Kiyono, N., Ishii, K., 1927. Geological Map of Japan, Tajimi with
- 813 Explanatory Text. Geological Survey of Japan, scale 1:75,000814 (in Japanese).
- 815 Kojima, S., Nozaki, T., Nagata, H., Tanahashi, R., Kondo, R.,
- 816 Okamura, N., Suzuki, K., Ikeda, A., Nakamura, T., Ohtani, T.,
- 817 2014. Large-scale landslides in Toyama Prefecture, central

818	Japan, and their probable relationship with earthquakes.
819	Environment Earth Science 71, 2753–2763.
820	Kraus, M.J., 1999. Paleosols in clastic sedimentary rocks: their
821	geologic applications. Earth-Science Reviews 47, 41–70.
822	Li, Q., Li, B., Zhong, G., McGowran, B., Zhou, Z., Wang, J., Wang,
823	P., 2006. Late Miocene development of the western Pacific
824	warm pool: Planktonic foraminifer and oxygen isotopic
825	evidence. Palaeogeography, Palaeoclclimatology,
826	Palaeoecology 237, 465-482.
827	Makinouchi, T., 1985. Some Problems in the generation stage of
828	the "Second Setouchi Sedimentary Province", with special
829	reference to the sedimentary basin of Lake Tokai. Association
830	for the Geological Collaboration in Japan 29, 53-64 (in
831	Japanese, with English Abstr.).
832	Makiyama, J., 1950. Regional Geology of Japan 4: Chubu District.
833	Asakura-shoten (233 pp., in Japanese).
834	Masuda, F., Iseya, F., 1985. "Inverse grading": A Facies structure
835	of flood deposits in meandering rivers. Jounal of the
836	Sedimentological Society of Japan 22 and 23, 108–116 (in
837	Japanese, with English Abstr.).
838	Matsui, K., 1988. An introduction of soil geography. Tsukiji-
839	shokan (316 pp., in Japanese).

840	Matsuzawa, I., Kato, R., Kuwahara, T., Kimura, T., Uemura, T.,
841	Tsuzuki, Y., 1960. Geology of the southwestern part of Mt.
842	Sanage -With emphasis on geology of the clay as pottery raw
843	material Aichi-ken Chita Koyo-atogun Supplementary
844	edition, 1-35 (in Japanese).
845	McCarthy, P.J., Martini, I.P. and Leckie, D.A., 1998. Use of
846	micromorphology for paleoenvironmental interpretation of
847	complex alluvial paleosols: an examples from the Mill Creek
848	Formation (Albian) of southwestern Alberta, Canada.
849	Palaeogeography, Palaeoclimatology, Palaeoecology 143, 87-
850	110.
851	Miall, A.D., 1977. A review of the braided-river depositional
852	environment. Earth-Science Review 13, 1-62.
853	Miall, A.D., 1996. The Geology of fluvial deposits: Sedimentary
854	Facies, Basin analysis, and Petroleum geology. Springer-
855	Verlag, Berlin (582 pp.).
856	Miki, S., 1939. On the remains of Pinus trifolia n. sp. in the
857	Tertiary from Central Honshu in Japan. The Botanical
858	Magazine 53, 239–246.
859	Miki, S., 1941. On the change of flora in Eastern Asia since
860	Tertiary Period (I). The clay or lignite beds flora in Japan
861	with special reference to the Pinus trifolia beds in Central
862	Hondo. Japanese Journal of Botany 11, 237-303.

863	Miki, S., 1963. Further study of Plant remains in <i>Pinus trifolia</i> beds,
864	central Hondo, Japan. Journal of the Society of Earthscientists
865	and Amateurs of Japan, the 31th Anniversary Special Issue,
866	79–93 (in Japanese).
867	Momohara, A., Saito, T., 2001. Change of paleovegetation caused
868	by topographic change in and around a sedimentary basin of
869	the Upper Miocene Tokiguchi Porcelain Clay Formation,
870	central Japan. Geoscience Report Shimane University 20, 49-
871	58 (in Japanese, with English Abstr.).
872	Nagasawa, K., Kunieda, K., 1970. Geology and Mineralogy of
873	Clay Deposits in the Naegi District, Gifu Prefecture. Mining
874	Geology 20, 361–377 (in Japanese, with English Abstr.).
875	Nakajima, M., Nakayama, K., Momohara, A., Tsukagoshi, M.,
876	2004. Depositional processes of the Miocene Tokiguchi
877	Porcelain Clay Formation and hydraulic behavior of plant
878	macrofossils in the formation: an example from Ohbora,
879	Tajimi, central Japan. Journal of the Geological Society of
880	Japan 110, 204–221 (in Japanese, with English Abstr.).
881	Nakamura, S., 1929. Subdivision of Diluvium in Japan. Annual
882	Report of Gakujutsu Association 5, 115-117 (in Japanese).
883	Nakayama, K., 1985. Sedimentary basins of the Tokai Group in the
884	southern part of Toki City, Gifu Prefecture, Central Japan.

885	Association for the Geological Collaboration in Japan 29,
886	119–129 (in Japanese, with English Abstr.).
887	Nakayama, K., 1991. Depositional process of the Neogene Seto
888	Porcelain Clay Formation in the northern part of Seto City,
889	central Japan. Journal of the Geological Society of Japan 97,
890	945–958 (in Japanese, with English Abstr.).
891	Nakayama, K., 1999. Sand- and Mud-dominated alluvial-fan
892	deposits of the Miocene Seto Porcelain Clay Formation, Japan.
893	Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI
894	(Special Publication 28 of the International Association of
895	Sedimentologists Series). Wiley-Blackwell, 393-407.
896	Nasu, T., 1972. Floral and faunal change during the Quaternary in
897	Japan. Biological Science [Seibutsu Kagaku] 24, 1–10 (in
898	Japanese).
899	Nishimura, S., Suparka, S., 1997. Tectonic approach to the
900	Neogene evolution of Pacific-Indian Ocean seaways.
901	Tectonophysics 281, 1-16.
902	Osaka Group Research Group, 1951. Osaka Group and the related
903	Cenozoic Formations. Earth Science [Chikyu Kagaku] 6, 49-
904	60 (in Japanese).
905	Ozaki, K., 1991. Late Miocene and Pliocene floras in central
906	Honshu, Japan. Natural Science Special Issue, Bulletin of

- 907 Kanagawa Prefectural Museum, Yokohama (244 pp., in
- 908 Japanese, with English Abstr.).
- 909 Ozawa, T., Inoue, K., Tomida, S., Tanaka, T., Nobuhara, T., 1995.
- 910 An outline of the Neogene warm-water molluscan faunas in
- 911 Japan. Fossils 58, 20-27 (in Japanese, with English Abstr.).
- 912 Pettijohn, F.J., 1957. Sedimentary Rocks [2nd edition]. Harper and
- 913 Brothers, New York (718 pp.).
- 914 Quade, J., Ceiling, T.E., Bowman, J.E., 1989. Development of
- 915 Asian monsoon revealed by marked ecological shift in the
- 916 latest Miocene of northern Pakistan. Nature 342, 163-166.
- 917 Reineck, H.E., Singh, I.B., 1973. Depositional sedimentary
- 918 environments: With Reference to Terrigenous Clastics.
- 919 Springer-Verlag, Berlin (551 pp.).
- 920 Reneau, S.L., Dethier, D.P., 1996. Late Pleistocene landslide-
- 921 dammed lakes along the Rio Grande, White Rock Canyon,
- 922 New Mexico. Geological Society of America 108, 1492–1507.
- 923 Retallack, G.J., 2001. Soils of the past: An introduction to
- 924 paleopedology. Blackwell Science, Oxford (404 pp.).
- 925 Saneyoshi, K., Nakayama, K., Tsukagoshi, M., 2000. Depositional
- 926 processes of plant material assemblages in fluvial sediments:
- 927 examples from plant megafossils in Miocene Tokiguchi
- 928 Porcelain Clay Formation at Onada mine in Tajimi, central

- 929 Japan. Earth Science [Chikyu Kagaku] 54, 127–143 (in
- 930 Japanese, with English Abstr.).
- 931 Soh, W., Taira, A., 1989. Review of Flow Mechanism of
- 932 Subaqueous Flow as Powder–grain-water Mixtures. Journal of
- 933 Geography 98, 754–760 (in Japanese).
- 934 Soil Survey Staff, 1999. Keys to Soil Taxonomy. Pocahontas Press,
- 935 Blacksburg, Virginia (600 pp.).
- 936 Todo Collaborative Research Group, 1985. A collapse basin in the
- 937 eastern margin of the Lake Tokai Tokai Group around
- 938 Nakatsugawa City, Gifu Prefecture. Monograph, Association
- for the Geological Collaboration in Japan 29, 101–117 (in
- 940 Japanese, with English Abstr.).
- 941 Todo Collaborative Research Group, 1999. Fault bounded inland
- basin of multiple blocks: an example from the sedimentary
- 943 basin of the Tokai Group around Tajimi City in Gifu
- 944 Prefecture, central Japan. Earth Science [Chikyu Kagaku] 53,
- 945 291–306 (in Japanese, with English Abstr.).
- 946 Tsuchi, R., Shuto, T., 1984. Western Pacific molluscan bio-events
- 947 and their relation to Neogene planktonic datum planes. In:
- 948 Ikebe, N., Tsuchi, R. (Eds.), Pacific Neogene Datum Planes
- 949 Contributions to Biostratigraphy and Chronology. Tokyo Univ.
- 950 Press, Tokyo, Japan, pp. 75-81.

951	Tsukagoshi, M., Todo Collaborative Research Group, 1998. Pinus
952	trifolia Miki from the Toki Sand and Gravel Formation in
953	Gifu Prefecture, central Japan. Journal of the Geological
954	Society of Japan 104, 495–498 (in Japanese).
955	Yoshida, F., 1992. Geologic development of the Setouchi Geologic
956	Province since Early Miocene with special reference to the
957	First and Second Setouchi Inland Sea times. Bulletin of the
958	Geological Survey of Japan 43, 43–67 (in Japanese, with
959	English Abstr.).
960	Yoshida, F., Nakayama, K., Danhara, T., 1997. Fission-track ages
961	from the lower part of Tokai Group, Aichi and Gifu
962	Prefectures, central Japan. Japan Geoscience Union Meeting,
963	Abstracts p. 584 (in Japanese).
964	Zhanfang, H., Jijun, L., Chunhui, S., Jun, Z., Zhengchuang, H.,
965	Shiyue, C., Feng, X., 2014. Understanding Miocene climate
966	evolution in northeastern Tibet: Stable carbon and oxygen
967	isotope records from the Western Tianshui Basin, China.
968	Journal of Earth Science 25, 357-365.
969	TABLE
970	Table 1: Sedimentary facies and their interpretations of
971	sedimentary environments in the Tokiguchi Porcelain Clay
972	Formation (PCF).

973 FIGURE CAPTIONS

- 974 Fig. 1: Geological map, stratigraphic nomenclature and
- 975 correlations of the Tokai Group in the study area of the Toki -
- 976 Tajimi Cities (modified after TCRG, 1999). Q., Quaternary, Plio.,
- 977 Pliocene, Cret., Cretaceous, Jura., Jurassic, Toki S & G Fm, Toki
- 978 Sand and Gravel Formation, Tokiguchi PCF., Tokiguchi Porcelain979 Clay Formation.
- 980
- 981 Fig. 2: Detailed stratigraphic columns of the Tokiguchi Porcelain982 Clay Formation (PCF) in three mines.
- 983

984	Fig. 3: Field photographs showing sedimentary Facies. A) Facies
985	C; proximal floodplain or alluvial ridge deposit; alternating beds of
986	inversely size-graded sand and sandy silt with carbonaceous
987	material layer (taken in north of the Hishiya Mine). B) Facies D;
988	low-density debris-flow deposit; poorly-sorted sandy mud with
989	pebbles and granules. The black arrow indicates concentrations of
990	pebbles to coarse-grained sand (taken in the Yamakyu Mine). C)
991	Facies E; high-density debris-flow deposit; the poorly-sorted
992	gravelly sand-silt with allochthonous plant fossils (taken in the
993	Yamakyu Mine). D) Facies F; floodplain deposit; alternating beds
994	of inversely size-graded sand and silt - clay with carbonaceous
995	material layer (taken in the north of the Hishiya Mine). E) The
996	boundary between Facies G and H. Facies G (upper part of this

997	picture) shows the back-swamp deposit. Facies H (lower part of
998	this picture) indicates the lake deposit (taken in the north of the
999	Hishiya Mine. F) Facies J; swamp deposit; lignite with a small
1000	amount of mud matrix (taken in the Nakayama Mine). G)
1001	Exposure in the Nakayama Mine. The black layer is lignite layer
1002	(Facies J). The white arrow indicates the boundary between lake
1003	(Facies H) and swamp deposits (Facies J). These lake and swamp
1004	deposits show a wide lateral extent, for more than 150 m in width.
1005	
1006	Fig. 4: Field photographs of pedogenic structures. For stratigraphic
1007	sections see Figure 2. A) The black arrows indicate fine rootlet
1008	fossils (at the 10.0 m up-section in south of the Hishiya Mine). B)
1009	The black arrow indicates a root fossil. This paleosol is assigned to
1010	Pedotype 1a (at the 4.0 m up-section in the Yamakyu Mine). C)
1011	Tree trunk fossil buried in low-density debris-flow deposits. This
1012	paleosol is assigned to Pedotype 2 (at the 3.5 m up-section in the
1013	Yamakyu Mine). D) The soil horizons in a paleosol in a paleosol
1014	(at the 10.0 m up-section in the north of the Hishiya Mine. A; A
1015	horizon, B; Bw horizon, C; C horizon).
1016	
1017	Fig. 5: Thin-section photomicrographs of pedogenic materials.
1018	PPL= plane-polarized light, XPL= cross-polarized light. For
1019	stratigraphic sections see Figures 2 and 7. A) Clinobimasepic

1020	microfabric (XPL); Network of highly birefringent streaks in two
1021	preferred directions and at a low angle (Bt horizon within Pedotype
1022	1a at the 5.0 m section in north of the Hishiya Mine). B) Masepic
1023	microfabric (XPL); Highly birefringent streaks forming an
1024	extensive crossing network (Bw horizon within Pedotype 1a at the
1025	21 m section in north of the Hishiya Mine). C) Omnisepic
1026	microfabric (XPL); All highly birefringent, oriented plasma (Bw
1027	horizon in Pedotype 2 at the 1.5 m section in the Nakayama Mine).
1028	D) The arrows indicate grain cutans (XPL. C horizon within
1029	Pedotype 4 at the 3.0 m section in north of the Hishiya Mine). E)
1030	Burrow filled by clay (PPL. Bt horizon of Pedotype 1a at the 5.0 m
1031	section in north of the Hishiya Mine). F) Biopore filled by clay
1032	showing laminated structure (PPL. Bt horizon within Pedotype 2 at
1033	the 4.5 m section in the Yamakyu Mine).
1034	
1035	Fig. 6: Pedotypes and the relationships between sedimentary facies
1036	and paleosols. For stratigraphic sections see Figures 2 and 7.
1037	Pedotype 1a; at the 5.0 m section in north of the Hishiya Mine.

- 1038 Pedotype 1b; at the 14.0 m section in the Nakayama Mine.
- 1039 Pedotype 2; at the 3.5 m section in the Yamakyu Mine. Pedotype
- 1040 3; at the 1.0 m section in the Yamakyu Mine. Pedotype 4; at the
- 1041 12.0 m section in north of the Hishiya Mine. Pedotype 5; at the 5.0
- 1042 m section in the Yamakyu Mine.

1044	Fig. 7: T	he stratigran	hic distri	butions of	the Pedot	vpes shown i	n
1011	115. / . 1	no suaugiap	me aisui	outions of			
						21	

- 1045 Figure 6.
- 1046
- 1047 Fig. 8: Paleoenvironmental and paleolandscape reconstruction of
- 1048 the middle Miocene Tokiguhi PCF in the Hishiya and Nakayama
- 1049 Mines.

se			Sadimonton	Adjacent facies			Interpretation		Aiall, 96)
Facie	column	Lithofacies	structures	Vartical	Lateral	Thickness (cm)	Mechanism	Sedimentary environment	Facies (N 1977; 19
А		trough cross-beds of sandy and pebble sized gravel, sand graine-sizes range from very coarse- to fine-grained	trough cross-beds, faint cross-beds, normal size- grading, erosional bases	B, C, E, F, H, J	B, C, F	40~110	traction (upper to lower flow -regime)	gravelly and sandy channel bar	Gt
В		ripple laminated fine- to very fine-grained sand and occasionally coarse- grained sand	ripple, small planar cross- beds, normal size-grading, erosional bases	A, C, D, F, G, H, J	A, C, F, G	30~50	traction (lower flow -regime)	sandy channel bar	Sr
С		alternating and/or lenticular beds of well-sorted, very coarse- to medium-grained sand and sandy silt with small amounts of carbonaceous materials	ripple, foreset laminae and convolute laminae, normal and reverse size-gradings, erosional bases	A, B, E, F	A, B, F	20~40	traction, suspension	proximal floodplain or alluvial ridge	_
D	0. 488748 0. 488748 9897498	massive beds of poorly- sorted muddy sand with pebble- to granule- and gravel-sized materials	matrix supported, gravels are dispersed in massive sandy silt with disordered internal arrangement	B, F, H	H, J	20~60	low-density debris-flow	lake or swamp	Gmm
Е		massive beds of gravel, poorly-soted sandy silt, and concentrations of allochthonous plant fossils	clast supported gravel layer with abundant allochthonous plant fossils	A, C, F, H, I, J	H, I, J	30~90	high-density debris-flow	lake or swamp	Gci
F	3893899 408000000-	alternating beds of well-sorted medium- to very fine-grained sand and silt to clay with some sparse carbonaceous materials	faint parallel laminae, foreset laminae, convolute bases, flame structure, bioturbation	A, B, C, D, E, G, H, J	C, H, I, J	20~130	traction, suspension	floodplain	FI
G	00+000 à 100000 0 100 5 0000	alternating beds of thick silt to clay with lignite beds, and lenticular coarse- to fine- grained sand layer and gravelly sand layer	climbing-ripple and erosional scoured bases by coarse grained layers	B, C, D, F, G, H, J	B, C, H, I, J	40~150	traction, suspension	back-swamp with crevasse splay	(FI)
н	ν ~»	well-sorted silt to clay	faint parallel laminae, tubular burrows	A, B, D, E, F, G, I, J	A, B, D, E, F, G, I, J	30~280	suspension	lake center	Fsm
I		carbonaceous silt to clay with allochthonous plant fossils and some peat layer	abundant allochthonous plant fossils are preserved on bedding planes	E, F, G, H, J	G, H, J	30~120	suspension	marsh	
J		lignite with minor silt to clay matrix	abundant allochthonous plant fossils are preserved on bedding planes	A, B, E, F, G, H, I	D, E, F, G, H, I	30~120	suspension	swamp	

Fig. 2

Fig. 3

Fig. 5

Fig. 6

Fig. 8