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Abstract This study investigated the unitary equivalence classes of one-dimensional
quantum walks with and without initial states. We determined the unitary equivalence
classes of one-dimensional quantum walks, two-phase quantum walks with one defect,
complete two-phase quantum walks, one-dimensional quantum walks with one defect
and translation-invariant one-dimensional quantum walks.
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1 Introduction

Quantum walks can be considered as a quantum analog of classical random walks and
have been studied in various fields, such as quantum information theory and quantum
probability theory. A quantum walk is defined by a pair (U, {Hv}v∈V ), in which V is
a countable set, {Hv}v∈V is a family of separable Hilbert spaces, and U is a unitary
operator on H = ⊕

v∈V Hv [20]. In this paper, we discuss one-dimensional (two-
state) quantum walks, in which V = Z and Hv = C

2. These have been the subject of
many previous studies [1–19,21–23].

It is important to clarify when we think of two quantum walks as being the same.
We consider unitary equivalence of quantum walks in the sense of [19,20]. If two
quantum walks are unitarily equivalent, then their digraphs and dimensions of their
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Hilbert spaces are the same. Furthermore, the probability distributions of the quantum
walks are also the same. Consequently, we can think of unitarily equivalent quantum
walks as being the same.

The aim of this paper is to determine the unitary equivalence classes of several types
of one-dimensional quantum walks. This will enable us to grasp the whole image of
such quantum walks. There are many results about explicit models of one-dimensional
quantum walk [2,6–11,15–18,21,23]. The parameterization of unitary equivalence
classes tells us what part of one-dimensional quantum walks were already investigated
and what part should be studied. Moreover, some previous works researched one-
dimensional quantum walks using parameters [3–5]. The results in this paper reduce
the parameters and make it easy to analyze them.

In the previous paper [19], we discussed some general properties of unitarily equiv-
alent quantum walks. In particular, we proved that every one-dimensional quantum
walk is the unitarily equivalent of one of the Ambainis types. We also presented the
necessary and sufficient condition for defining a one-dimensional quantum walk as a
Szegedy walk.

Unitary equivalence classes of simple quantum walks have been shown to be
parameterized by a single parameter [12]. In contrast, there are several types of
one-dimensional quantum walks, including two-phase quantum walks with one
defect [6,7], complete two-phase quantum walks [11] and one-dimensional quan-
tum walks with one defect [4,8–10,17,18,23]. A one-dimensional quantum walk with
one defect is known for exhibiting localization. Two-phase quantum walks are con-
sidered as mathematical models of the topological insulator. In this study, we clarified
the unitary equivalence classes of general one-dimensional quantum walks and of the
above types of one-dimensional quantum walk, but excluding certain special cases.

When we analyze properties of an evolution operator U such as the spectrum,
eigenvalues and eigenvectors, it is not necessary to take into account an initial state.
On the other hand, when studying the probability distribution of a quantum walk, an
initial state must be set. Hence, we consider quantum walks both with and without
initial states.

In Sect. 2, we investigate one-dimensional quantum walks without initial states
and present our results: Two-phase quantum walks with one defect are parameterized
by six parameters complete two-phase quantum walks by four parameters, and one-
dimensional quantum walks with one defect by four parameters. In Sect. 3, we show
unitary equivalence classes of all the above types of one-dimensional quantum walk
with an initial state.

2 Unitary equivalence classes of one-dimensional quantum walks

In this section, we investigate the unitary equivalence classes of several types of one-
dimensional quantum walks without initial states. We first consider the definition of a
one-dimensional quantum walk and the unitary equivalence of such walks (see [19]).

Definition 1 Let Hn = C
2 for n ∈ Z. A unitary operator U on H = ⊕

n∈ZHn is
called a one-dimensional quantum walk if
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rankPnU Pm =
{

1 (m = n ± 1)

0 (m �= n ± 1)

for all m, n ∈ Z, where Pn is the projection onto Hn .

A (pure) quantum state is represented by a unit vector in a Hilbert space. For λ ∈ R,
quantum states ξ and eiλξ in H are identified. Hence, the one-dimensional quantum
walks U and eiλU are also identified.

Definition 2 One-dimensional quantum walks U1 and U2 are unitarily equivalent if
there exists a unitary W = ⊕

n∈Z Wn on H = ⊕
n∈ZHn such that

WU1W
∗ = U2.

Theorem 1 in [19] (see also the first paragraph of Section 5 in [19]) yields the next
theorem.

Theorem 1 A one-dimensional quantum walk U is described as follows:

U =
∑

n∈Z
|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|, (1)

where {ξn,n+1, ξn+1,n}n∈Z and {ζn,n+1, ζn+1,n}n∈Z are orthonormal bases of H =⊕
n∈ZHn with ξn,n+1, ζn+1,n ∈ Hn and ξn+1,n, ζn,n+1 ∈ Hn+1.

The unitary equivalence of a one-dimensional quantum walk can then be analyzed
as follows.
Step 1 Assume that U is described as in (1), and define a unitary operator W1 on H
as

W1 =
⊕

n∈Z
|en1〉〈ξn,n+1| + |en2〉〈ξn,n−1|,

where {en1 , en2} is the standard basis of Hn = C
2. Then,

W1UW ∗
1

=
∑

n∈Z
|W1ξn−1,n〉〈W1ζn−1,n| + |W1ξn+1,n〉〈W1ζn+1,n|

=
∑

n∈Z
|en−1

1 〉〈eianrne
n
1 + eibn sne

n
2 | + |en+1

2 〉〈eicn sne
n
1 + eidnrne

n
2 | (2)

for some 0 ≤ rn ≤ 1 and an, bn, cn, dn ∈ R with sn = √
1 − r2

n and

an − bn = cn − dn + π (mod 2π). (3)

If there is no confusion, (mod 2π) can be omitted hereafter.
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Step 2 Define gn ∈ R by g0 = 0 and

gn−1 − gn = an,

inductively. Similarly, we define hn ∈ R by h0 = g−1 − b0 and

hn+1 − hn = dn,

inductively. Then, by (3),

cn − hn+1 + gn = cn − hn − dn + gn−1 − an
= −(bn − gn−1 + hn) + π (mod 2π). (4)

Let W2 be a unitary operator defined by

W2 =
⊕

n∈Z
eign |en1〉〈en1 | + eihn |en2〉〈en2 |.

By definitions and (4),

W2W1UW ∗
1 W

∗
2

=
∑

n∈Z
|en−1

1 〉〈ei(an−gn−1+gn)rne
n
1 + ei(bn−gn−1+hn)sne

n
2 |

+ |en+1
2 〉〈ei(cn−hn+1+gn)sne

n
1 + ei(dn−hn+1+hn)rne

n
2 |

=
∑

n∈Z
|en−1

1 〉〈rnen1 + eikn sne
n
2 | + |en+1

2 〉〈−e−ikn sne
n
1 + rne

n
2 |,

where kn = bn − gn−1 + hn . Here,

k0 = b0 − g−1 + h0 = 0.

Step 3 Let � = k1/2, pn = nk1/2 and qn = −nk1/2, and let

W3 =
⊕

n∈Z
eipn |en1〉〈en1 | + eiqn |en2〉〈en2 |.
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Then,

ei�W3W2W1UW ∗
1 W

∗
2 W

∗
3

=
∑

n∈Z
|en−1

1 〉〈ei(−pn−1+pn−�)rne
n
1 + ei(kn−pn−1+qn−�)sne

n
2 |

+ |en+1
2 〉〈−ei(−kn−qn+1+pn−�)sne

n
1 + ei(−qn+1+qn−�)rne

n
2 |

=
∑

n∈Z
|en−1

1 〉〈rnen1 + ei(kn−nk1)sne
n
2 | + |en+1

2 〉〈−ei(−kn+nk1)sne
n
1 + rne

n
2 |

=
∑

n∈Z
|en−1

1 〉〈rnen1 + eiθn sne
n
2 | + |en+1

2 〉〈−e−iθn sne
n
1 + rne

n
2 |,

where θn = kn − nk1. Here, θ0 = θ1 = 0.
Now, we are ready to prove the next theorem.

Theorem 2 A one-dimensional quantum walk U is unitarily equivalent to

Ur,θ =
∑

n∈Z
|en−1

1 〉〈rnen1 + eiθn sne
n
2 | + |en+1

2 〉〈−e−iθn sne
n
1 + rne

n
2 |

for some 0 ≤ rn ≤ 1 and θn ∈ R with sn = √
1 − r2

n and θ0 = θ1 = 0. Moreover,
when 0 < rn, r ′

n < 1 and θn, θ
′
n ∈ [0, 2π), Ur,θ and Ur ′,θ ′ are unitarily equivalent if

and only if r = r ′ and θ = θ ′.

Proof We have already proved the first part of this theorem.
We assume that Ur,θ and Ur ′,θ ′ are unitarily equivalent, where 0 < rn, r ′

n < 1 and
θn, θ

′
n ∈ [0, 2π) with θ0 = θ1 = θ ′

0 = θ ′
1 = 0. Then, there exist λ ∈ R and a unitary

operator W = ⊕
n∈Z Wn on H = ⊕

n∈ZHn such that

eiλWUr,θW
∗ = Ur ′,θ ′ .

Then,

eiλWUr,θW
∗

= eiλ
∑

n∈Z
|Wen−1

1 〉〈rnWen1 + eiθn snWen2 | + |Wen+1
2 〉〈−e−iθn snWen1 + rnWen2 |

and

Ur ′,θ ′ =
∑

n∈Z
|en−1

1 〉〈r ′
ne

n
1 + eiθ ′

n s′
ne

n
2 | + |en+1

2 〉〈−e−iθ ′
n s′

ne
n
1 + r ′

ne
n
2 |.
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Since Pn±1eiλWUr,θW ∗Pn = Pn±1Ur ′,θ ′ Pn for all n ∈ Z,Wen1 andWen2 are described
as Wen1 = eiun en1 and Wen2 = eivn en2 for some un, vn ∈ R. Then,

eiλWUr,θW
∗

=
∑

n∈Z
|en−1

1 〉〈ei(−un−1+un−λ)rne
n
1 + ei(θn−un−1+vn−λ)sne

n
2 |

+ |en+1
2 〉〈−ei(−θn−vn+1+un−λ)sne

n
1 + ei(−vn+1+vn−λ)rne

n
2 |. (5)

Comparing the coefficients of |en−1
1 〉〈en1 | and |en+1

2 〉〈en2 | yields

−un−1 + un − λ = 0, −vn+1 + vn − λ = 0.

Here, we can assume that u0 = 0 because WUW ∗ = (eiwW )U (eiwW )∗ for any
w ∈ R. Therefore, un = nλ. Moreover, the coefficients of |e−1

1 〉〈e0
2| imply

0 = θ ′
0 = θ0 − u−1 + v0 − λ,

with the result that v0 = 0. Hence, vn = −nλ. Similarly, the coefficients of |e0
1〉〈e1

2|
imply

0 = θ ′
1 = θ1 − u0 + v1 − λ = −2λ (mod 2π),

with the result that λ = 0, π . When λ = 0, un = vn = 0, and therefore, W = IH
and Ur,θ = Ur ′,θ ′ . When λ = π , un = nπ and vn = −nπ = nπ (mod 2π). In this
case, W = ⊕

n∈Z(−1)n IHn . By (5), we have eiλWUr,θW ∗ = Ur,θ , and therefore,
Ur,θ = Ur ′,θ ′ . It is easy to see that Ur,θ = Ur ′,θ ′ implies that r = r ′ and θ = θ ′.

The converse is obvious. 	

This theorem says that the unitary equivalence classes of general one-dimensional

quantum walks are described by {Ur,θ } with θ0 = θ1 = 0.
The operator Ur,θ is similar to the CMV matrix introduced in [3,5]. However,

our approach and result are different in three ways from those used in [3,5]. First,
our starting point is the general one-dimensional quantum walk. Second, we add the
condition θ0 = θ1 = 0. Third, with the exception of certain special cases, Ur,θ and
Ur ′,θ ′ are not unitarily equivalent if r �= r ′ or θ �= θ ′.

We next consider some special cases of the one-dimensional quantum walk and
introduce four types of one-dimensional quantum walk.

Definition 3 Let U be a one-dimensional quantum walk expressed by

U =
∑

n∈Z
|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|.

(i) U is called a translation-invariant quantum walk if there exist vectors
ξ1, ξ2, ζ1, ζ2 ∈ C

2 such that

ξn,n+1 = ξ1, ξn,n−1 = ξ2, ζn−1,n = ζ1, ζn+1,n = ζ2
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for all n ∈ Z. In other words, the vectors ξn,n+1 are the same, and ξn,n−1, ζn−1,n ,
ζn+1,n also satisfy similar conditions.

(ii) U is called a one-dimensional quantum walk with one defect if there exist
vectors ξ1, ξ2, ζ1, ζ2 ∈ C

2 such that

ξn,n+1 = ξ1, ξn,n−1 = ξ2, ζn−1,n = ζ1, ζn+1,n = ζ2

for all n ∈ Z\{0}. In other words, the vectors ξn,n+1 are the same except n �= 0, and
ξn,n−1, ζn−1,n, ζn+1,n also satisfy similar conditions.

(iii) U is called a complete two-phase quantum walk if there exist vectors
ξ+

1 , ξ−
1 , ξ+

2 , ξ−
2 , ζ+

1 , ζ−
1 , ζ+

2 , ζ−
2 ∈ C

2 such that

ξn,n+1 = ξ+
1 , ξn,n−1 = ξ+

2 , ζn−1,n = ζ+
1 , ζn+1,n = ζ+

2

for all n ≥ 0 and

ξn,n+1 = ξ−
1 , ξn,n−1 = ξ−

2 , ζn−1,n = ζ−
1 , ζn+1,n = ζ−

2

for all n ≤ −1.
(iv) U is called a two-phase quantum walk with one defect if there exist vectors

ξ+
1 , ξ−

1 , ξ+
2 , ξ−

2 , ζ+
1 , ζ−

1 , ζ+
2 , ζ−

2 ∈ C
2 such that

ξn,n+1 = ξ+
1 , ξn,n−1 = ξ+

2 , ζn−1,n = ζ+
1 , ζn+1,n = ζ+

2 (6)

for all n ≥ 1 and

ξn,n+1 = ξ−
1 , ξn,n−1 = ξ−

2 , ζn−1,n = ζ−
1 , ζn+1,n = ζ−

2 (7)

for all n ≤ −1.

By definition, two-phase quantum walks with one defect include quantum walks
of other three types. Hence, we first investigate the unitary equivalence classes of
two-phase quantum walks with one defect.

Theorem 3 A two-phase quantum walk U with one defect is unitarily equivalent to

Ur+,r−,r0,μ1,μ2,μ3 = |e−1
1 〉〈r0e

0
1 + eiμ1s0e

0
2| + |e1

2〉〈−eiμ2s0e
0
1 + ei(μ1+μ2)r0e

0
2|

+
∑

n≥1

|en−1
1 〉〈r+en1 + s+en2 | + |en+1

2 〉〈−eiμ3s+en1 + eiμ3r+en2 |

+
∑

n≤−1

|en−1
1 〉〈r−en1 + s−en2 | + |en+1

2 〉〈−s−en1 + r−en2 |

for some 0 ≤ r+, r−, r0 ≤ 1 and μ1, μ2, μ3 ∈ R with sε = √
1 − r2

ε (ε = +,−, 0).
We write Ur+,r−,r0,μ1,μ2,μ3 = Ur,μ for short. Moreover, when 0 < rε, r ′

ε < 1 (ε =
+,−, 0) and μi , μ

′
i ∈ [0, 2π) (i = 1, 2, 3), Ur,μ and Ur ′,μ′ are unitarily equivalent

if and only if r = r ′, μ = μ′.
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Proof Let

U =
∑

n∈Z
|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|

be a two-phase quantum walk with one defect. Then, by (6) and (7), Eq. (2) can be
written as

W1UW ∗
1

= |e−1
1 〉〈eia0r0e

0
1 + eib0s0e

0
2| + |e1

2〉〈eic0s0e
0
1 + eid0r0e

0
2|

+
∑

n≥1

|en−1
1 〉〈eia+r+en1 + eib+s+en2 | + |en+1

2 〉〈eic+s+en1 + eid+r+en2 |

+
∑

n≤−1

|en−1
1 〉〈eia−r−en1 + eib−s−en2 | + |en+1

2 〉〈eic−s−en1 + eid−r−en2 | (8)

for some 0 ≤ rε ≤ 1 and aε, bε, cε, dε ∈ R with sε = √
1 − r2

ε (ε = +,−, 0).
We can modify Step 2 as follows:

Step 2′ Let � = (b− + c− + π)/2. Define gn, hn ∈ R by

gn =
{
n(� − a+) (n ≥ 0)

n(� − a−) − a− + a0 (n ≤ −1)

and

hn =
{

(n − 1)(� − a+) − b+ + � (n ≥ 1)

(n − 1)(� − a−) + c− + a0 − a− − � + π (n ≤ 0)
,

and a unitary W2 on H by

W2 =
⊕

n∈Z
eign |en1〉〈en1 | + eihn |en2〉〈en2 |.

Then, using aε + dε + π = bε + cε,

ei�W2W1UW ∗
1 W

∗
2

= |e−1
1 〉〈ei(a0−g−1+g0−�)r0e

0
1 + ei(b0−g−1+h0−�)s0e

0
2|

+ |e1
2〉〈ei(c0−h1+g0−�)s0e

0
1 + ei(d0−h1+h0−�)r0e

0
2|

+
∑

n≥1

|en−1
1 〉〈ei(a+−gn−1+gn−�)r+en1 + ei(b+−gn−1+hn−�)s+en2 |

+ |en+1
2 〉〈ei(c+−hn+1+gn−�)s+en1 + ei(d+−hn+1+hn−�)r+en2 |

+
∑

n≤−1

|en−1
1 〉〈ei(a−−gn−1+gn−�)r−en1 + ei(b−−gn−1+hn−�)s−en2 |

+ |en+1
2 〉〈ei(c−−hn+1+gn−�)s−en1 + ei(d−−hn+1+hn−�)r−en2 |
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= |e−1
1 〉〈r0e

0
1 + ei(b0−b−)s0e

0
2|

+ |e1
2〉〈−ei(b+−b−+c0−c−)s0e

0
1 + ei(b0+b+−2b−+c0−c−)r0e

0
2|

+
∑

n≥1

|en−1
1 〉〈r+en1 + s+en2 |

+ |en+1
2 〉〈−ei(b+−b−+c+−c−)s+en1 + ei(b+−b−+c+−c−)r+en2 |

+
∑

n≤−1

|en−1
1 〉〈r−en1 + s−en2 | + |en+1

2 〉〈−s−en1 + r−en2 |

= |e−1
1 〉〈r0e

0
1 + eiμ1s0e

0
2| + |e1

2〉〈−eiμ2s0e
0
1 + ei(μ1+μ2)r0e

0
2|

+
∑

n≥1

|en−1
1 〉〈r+en1 + s+en2 | + |en+1

2 〉〈−eiμ3s+en1 + eiμ3r+en2 |

+
∑

n≤−1

|en−1
1 〉〈r−en1 + s−en2 | + |en+1

2 〉〈−s−en1 + r−en2 |

= Ur,μ,

where μ1 = b0 − b−, μ2 = b+ − b− + c0 − c− and μ3 = b+ − b− + c+ − c−. This
shows the first assertion of this theorem.

Next, we assume thatUr,μ andUr ′,μ′ are unitarily equivalent, where 0 < rε, r ′
ε < 1

and μi , μ
′
i ∈ [0, 2π). Then, there exist λ ∈ R and a unitary operator W = ⊕

n∈Z Wn

on H = ⊕
n∈ZHn such that

eiλWUr,μW
∗ = Ur ′,μ′ .

Here,

eiλWUr,μW
∗

= eiλ|We−1
1 〉〈r0We0

1 + eiμ1s0We0
2| + eiλ|We1

2〉〈−eiμ2s0We0
1 + ei(μ1+μ2)r0We0

2|
+ eiλ

∑

n≥1

|Wen−1
1 〉〈r+Wen1 + s+Wen2 | + |Wen+1

2 〉〈−eiμ3s+Wen1 + eiμ3r+Wen2 |

+ eiλ
∑

n≤−1

|Wen−1
1 〉〈r−Wen1 + s−Wen2 | + |Wen+1

2 〉〈−s−Wen1 + r−Wen2 |

and

Ur ′,μ′ = |e−1
1 〉〈r ′

0e
0
1 + eiμ′

1s′
0e

0
2| + |e1

2〉〈−eiμ′
2s′

0e
0
1 + ei(μ′

1+μ′
2)r ′

0e
0
2|

+
∑

n≥1

|en−1
1 〉〈r ′+en1 + s′+en2 | + |en+1

2 〉〈−eiμ′
3s′+en1 + eiμ′

3r ′+en2 |

+
∑

n≤−1

|en−1
1 〉〈r ′−en1 + s′−en2 | + |en+1

2 〉〈−s′−en1 + r ′−en2 |.
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Considering Pn±1eiλWUr,μW ∗Pn = Pn±1Ur ′,μ′ Pn for any n ∈ Z, we have Wen1 =
eiun en1 and Wen2 = eivn en2 for some un, vn ∈ R. Then,

eiλWUr,μW
∗

= |e−1
1 〉〈ei(−u−1+u0−λ)r0e

0
1 + ei(−u−1+v0−λ+μ1)s0e

0
2|

+ |e1
2〉〈−ei(−v1+u0−λ+μ2)s0e

0
1 + ei(−v1+v0−λ+μ1+μ2)r0e

0
2|

+
∑

n≥1

|en−1
1 〉〈ei(−un−1+un−λ)r+en1 + ei(−un−1+vn−λ)s+en2 |

+ |en+1
2 〉〈−ei(−vn+1+un−λ+μ3)s+en1 + ei(−vn+1+vn−λ+μ3)r+en2 |

+
∑

n≤−1

|en−1
1 〉〈ei(−un−1+un−λ)r−en1 + ei(−un−1+vn−λ)s−en2 |

+ |en+1
2 〉〈−ei(−vn+1+un−λ)s−en1 + ei(−vn+1+vn−λ)r−en2 |. (9)

Since eiλWUr,μW ∗ = Ur ′,μ′ , we obtain r = r ′. Moreover, comparing the coefficients
of |en−1

1 〉〈en1 |, |en−1
1 〉〈en2 | and |en+1

2 〉〈en2 | yields

−un−1+un−λ = 0, −un−1+vn−λ = 0 (n �= 0), −vn+1+vn−λ = 0 (n ≤ −1).

(10)
Here, we can assume that u0 = 0, because WUW ∗ = (eiwW )U (eiwW )∗ for any
w ∈ R. Therefore, un = nλ, and this implies vn = un−1 + λ = nλ (n �= 0). Using
the third equation in (10), we have 2λ = 0, and therefore λ = 0 or π . Moreover, the
coefficients of |e0

2〉〈e−1
1 | imply v0 = u−1 −λ = −2λ = 0. Comparing the coefficients

of |e−1
1 〉〈e0

2|, |e1
2〉〈e0

1| and |en+1
2 〉〈en2 | (n ≥ 1), we obtain μ = μ′. 	


This theorem says that the unitary equivalence classes of two-phase quantum walks
with one defect are described by {Ur,μ} and are parameterized by six parameters.

From the above proof, if eiλWUr,μW ∗ = Ur,μ, then λ = 0 or π . When λ = 0,
vn = un = 0 and W = IH. When λ = π , vn = un = nπ and W = ⊕

n∈Z(−1)n IHn .
Hence, we have the next corollary which we will use in Sect. 3.

Corollary 1 Let 0 < rε < 1 (ε = +,−, 0) andμi ∈ [0, 2π), and let W = ⊕
n∈Z Wn

be a unitary on H = ⊕
n∈ZHn. Then, for λ ∈ [0, 2π),

eiλWUr,μW
∗ = Ur,μ

if and only if λ = 0 and W = IH or λ = π and W = ⊕
n∈Z(−1)n IHn .

As a corollary of Theorem 3, we obtain the following.

Corollary 2 [12] A translation-invariant quantum walk U is unitarily equivalent to

Ur =
∑

n∈Z
|en−1

1 〉〈ren1 + sen2 | + |en+1
2 〉〈sen1 + ren2 |

for some 0 ≤ r ≤ 1 with s = √
1 − r2. Moreover, Ur and Ur ′ are unitarily equivalent

if and only if r = r ′.
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Proof From the definition of a translation-invariant quantum walk, we can assume that,
in (8), r+ = r− = r0, a+ = a− = a0 and so on. This implies that μ1 = b0 − b− = 0,
μ2 = b+ − b− + c0 − c− = 0 and μ3 = b+ − b− + c+ − c− = 0. Setting
r = r0 satisfies the first assertion. The necessary and sufficient condition for unitary
equivalence follows from Theorem 3. 	


Corollary 3 A one-dimensional quantum walk U with one defect is unitarily equiva-
lent to

Ur±,r0,ν1,ν2 = |e−1
1 〉〈r0e

0
1 + eiν1s0e

0
2| + |e1

2〉〈−eiν2s0e
0
1 + ei(ν1+ν2)r0e

0
2|

+
∑

n∈Z\{0}
|en−1

1 〉〈r±en1 + s±en2 | + |en+1
2 〉〈s±en1 + r±en2 |

for some 0 ≤ rε ≤ 1 and ν1, ν2 ∈ R with sε = √
1 − r2

ε (ε = ±, 0). We write
Ur±,r0,ν1,ν2 = Ur,ν for short. Moreover, when 0 < rε, r ′

ε < 1 and νi , ν
′
i ∈ [0, 2π),

Ur,ν and Ur ′,ν′ are unitarily equivalent if and only if r = r ′ and ν = ν′.

Proof From the definition of a one-dimensional quantum walk with one defect, we
can assume that, in (8), r+ = r−, a+ = a− and so on. This implies that μ3 =
b+ − b− + c+ − c− = 0. Setting r± = r+, ν1 = μ1 and ν2 = μ2 satisfies the first
assertion. The necessary and sufficient condition for unitary equivalence follows from
Theorem 3. 	


These corollaries imply that translation-invariant quantum walks are parameter-
ized by one parameter and one-dimensional quantum walks with one defect by four
parameters.

Clearly, Theorem 3 can be applied to complete two-phase quantum walks, though in
this case, Ur,μ is not a complete two-phase quantum walk. Indeed, from the definition
of complete two-phase quantum walks, we can assume that, in (8), r0 = r+, a0 = a+
and so on. Then, μ1 = b0 − b− �= 0 in general, and the coefficients of |e−1

1 〉〈e0
2| and

|en−1
1 〉〈en2 | (n ≥ 1) of Ur,μ are not the same.
Hence, we provide the next theorem.

Theorem 4 A complete two-phase quantum walk U is unitarily equivalent to

Ur+,r−,σ1,σ2 =
∑

n≥0

|en−1
1 〉〈r+en1 + s+en2 | + |en+1

2 〉〈−eiσ1s+en1 + eiσ1r+en2 |

+
∑

n≤−1

|en−1
1 〉〈r−en1 + eiσ2s−en2 | + |en+1

2 〉〈−s−en1 + eiσ2r−en2 |

for some 0 ≤ r+, r− ≤ 1 and σ1, σ2 ∈ R with sε = √
1 − r2

ε (ε = +,−). We write
Ur+,r−,σ1,σ2 = Ur,σ for short. Moreover, when 0 < rε, r ′

ε < 1 and σi , σ
′
i ∈ [0, 2π),

Ur,σ and Ur ′,σ ′ are unitarily equivalent if and only if r = r ′ and σ = σ ′.
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Proof The proof is almost the same as that given for Theorem 3, but we present it here
for completeness. Let

U =
∑

n∈Z
|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|

be a complete two-phase quantum walk. Then, by definition, Eq. (2) can be written as

W1UW ∗
1 =

∑

n≥0

|en−1
1 〉〈eia+r+en1 + eib+s+en2 | + |en+1

2 〉〈eic+s+en1 + eid+r+en2 |

+
∑

n≤−1

|en−1
1 〉〈eia−r−en1 + eib−s−en2 | + |en+1

2 〉〈eic−s−en1 + eid−r−en2 |

for some 0 ≤ rε ≤ 1 and aε, bε, cε, dε ∈ R with sε = √
1 − r2

ε (ε = +,−).
We then modify Step 2 as follows:

Step 2′′ Let � = (b+ + c− + π)/2. Define gn, hn ∈ R by

gn =
{
n(� − a+) (n ≥ 0)

n(� − a−) − a− + a+ (n ≤ −1)

and

hn =
{

(n − 1)(� − a+) − b+ + � (n ≥ 1)

(n − 1)(� − a−) + c− + a+ − a− − � + π (n ≤ 0)
,

and a unitary W2 on H by

W2 =
⊕

n∈Z
eign |en1〉〈en1 | + eihn |en2〉〈en2 |.

Then, using aε + dε + π = bε + cε,

ei�W2W1UW ∗
1 W

∗
2

=
∑

n≥0

|en−1
1 〉〈ei(a+−gn−1+gn−�)r+en1 + ei(b+−gn−1+hn−�)s+en2 |

+ |en+1
2 〉〈ei(c+−hn+1+gn−�)s+en1 + ei(d+−hn+1+hn−�)r+en2 |

+
∑

n≤−1

|en−1
1 〉〈ei(a−−gn−1+gn−�)r−en1 + ei(b−−gn−1+hn−�)s−en2 |

+ |en+1
2 〉〈ei(c−−hn+1+gn−�)s−en1 + ei(d−−hn+1+hn−�)r−en2 |

=
∑

n≥0

|en−1
1 〉〈r+en1 + s+en2 | + |en+1

2 〉〈−ei(c+−c−)s+en1 + ei(c+−c−)r+en2 |

+
∑

n≤−1

|en−1
1 〉〈r−en1 + ei(b−−b+)s−en2 | + |en+1

2 〉〈−s−en1 + ei(b−−b+)r−en2 |
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=
∑

n≥0

|en−1
1 〉〈r+en1 + s+en2 | + |en+1

2 〉〈−eiσ1s+en1 + eiσ1r+en2 |

+
∑

n≤−1

|en−1
1 〉〈r−en1 + eiσ2s−en2 | + |en+1

2 〉〈−s−en1 + eiσ2r−en2 |

= Ur,σ ,

where σ1 = c+ −c− and σ2 = b− −b+. This shows the first assertion of this theorem.
Next, assume that Ur,σ and Ur ′,σ ′ are unitarily equivalent, where 0 < rε, r ′

ε < 1
and σi , σ

′
i ∈ [0, 2π). Then, there exist λ ∈ R and a unitary operator W = ⊕

n∈Z Wn

on H = ⊕
n∈ZHn such that

eiλWUr,σW
∗ = Ur ′,σ ′ .

Here,

eiλWUr,σW
∗

= eiλ
∑

n≥0

|Wen−1
1 〉〈r+Wen1 + s+Wen2 | + |Wen+1

2 〉〈−eiσ1s+Wen1 + eiσ1r+Wen2 |

+
∑

n≤−1

|Wen−1
1 〉〈r−Wen1 + eiσ2s−Wen2 | + |Wen+1

2 〉〈−s−Wen1 + eiσ2r−Wen2 |

and

Ur ′,σ ′ =
∑

n≥0

|en−1
1 〉〈r ′+en1 + s′+en2 | + |en+1

2 〉〈−eiσ ′
1s′+en1 + eiσ ′

1r ′+en2 |

+
∑

n≤−1

|en−1
1 〉〈r ′−en1 + eiσ ′

2s′−en2 | + |en+1
2 〉〈−s′−en1 + eiσ ′

2r ′−en2 |.

Considering Pn±1eiλWUr,σW ∗Pn = Pn±1Ur ′,σ ′ Pn for any n ∈ Z, we have Wen1 =
eiun en1 and Wen2 = eivn en2 for some un, vn ∈ R. Then,

eiλWUr,σW
∗

=
∑

n≥0

|en−1
1 〉〈ei(−un−1+un−λ)r+en1 + ei(−un−1+vn−λ)s+en2 |

+ |en+1
2 〉〈−ei(−vn+1+un−λ+σ1)s+en1 + ei(−vn+1+vn−λ+σ1)r+en2 |

+
∑

n≤−1

|en−1
1 〉〈ei(−un−1+un−λ)r−en1 + ei(−un−1+vn−λ+σ2)s−en2 |

+ |en+1
2 〉〈−ei(−vn+1+un−λ)s−en1 + ei(−vn+1+vn−λ+σ2)r−en2 |.

Since eiλWUr,σW ∗ = Ur ′,σ ′ , we obtain r = r ′. Moreover, comparing the coefficients
of |en−1

1 〉〈en1 |, |en−1
1 〉〈en2 | and |en+1

2 〉〈en1 | yields

−un−1+un−λ = 0, −un−1+vn−λ = 0 (n ≥ 0), −vn+1+un−λ = 0 (n ≤ −1).
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Here, we can assume that u0 = 0, because WUW ∗ = (eiwW )U (eiwW )∗ for any
w ∈ R. Therefore, un = nλ, and this implies vn = un−1 + λ = nλ (n ≥ 0) and
vn+1 = un − λ = (n − 1)λ (n ≤ −1). Hence, v0 = 0 and v0 = −2λ, with the result
that λ = 0 or π . Then, −vn+1 + vn − λ = 0 for all n ∈ Z, and therefore, σ = σ ′,
comparing the coefficients of |en+1

2 〉〈en2 |. This completes the proof. 	

This theorem says that complete two-phase quantum walks are parameterized by

four parameters.
From the above proof, if eiλWUr,σW ∗ = Ur,σ , then λ = 0 or π . When λ = 0,

vn = un = 0 and W = IH. When λ = π , vn = un = nπ and W = ⊕
n∈Z(−1)n IHn .

Hence, we have the next corollary.

Corollary 4 Let 0 < rε < 1 (ε = +,−) and σi ∈ [0, 2π) (i = 1, 2), and let
W = ⊕

n∈Z Wn be a unitary on H = ⊕
n∈ZHn. Then, for λ ∈ [0, 2π),

eiλWUr,σW
∗ = Ur,σ

if and only if λ = 0 and W = IH or λ = π and W = ⊕
n∈Z(−1)n IHn .

3 Unitary equivalence classes of one-dimensional quantum walks with
initial states

In this section, we consider one-dimensional quantum walks with initial states. We
assume that an initial state Φ is in H0.

Definition 4 One-dimensional quantum walks with initial states (U, Φ) and (U ′, Φ ′)
are unitarily equivalent if there exists a unitary W = ⊕

n∈Z Wn on H = ⊕
n∈ZHn

such that

U ′ = WUW ∗ and Φ ′ = WΦ.

Unitary equivalence classes of two-phase quantum walks with one defect with
initial states are described as follows:

Theorem 5 A two-phase quantum walk with one defect with an initial state (U, Φ) is
unitarily equivalent to (Ur,μ,Φα,θ ) for some 0 ≤ rε, α ≤ 1 (ε = +,−, 0), μi , θ ∈ R

(i = 1, 2, 3), where Φα,θ = αe0
1 + eiθ

√
1 − α2e0

2 .
Moreover, (Ur,μ,Φα,θ ) and (Ur ′,μ′ , Φα′,θ ′) with 0 < rε, r ′

ε, α, α′ < 1 and
μi , μ

′
i , θ, θ ′ ∈ [0, 2π) are unitarily equivalent if and only if r = r ′, μ = μ′, α = α′

and θ = θ ′.

Proof It was proved that U is unitarily equivalent to Ur,μ for some r and μ in Theo-
rem 3. Hence, there exists a unitary W = ⊕

n∈Z Wn on H such that WUW ∗ = Ur,μ.
The state WΦ ∈ H0 = C

2 can be written as WΦ = αe0
1 +βe0

2 for some α, β ∈ Cwith
|α|2 +|β|2 = 1. Since WΦ and eiλWΦ are identified, we can assume that 0 ≤ α ≤ 1.
Then, β = eiθ

√
1 − α2 for some θ ∈ R. Therefore, WΦ = Φα,θ holds, and hence,

(U, Φ) is unitarily equivalent to (Ur,μ,Φα,θ ).
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Next, assume that (Ur,μ,Φα,θ ) and (Ur ′,μ′ , Φα′,θ ′) with 0 < rε, r ′
ε, α, α′ < 1 and

μi , μ
′
i , θ, θ ′ ∈ [0, 2π) are unitarily equivalent. Then, by Theorem 3, r = r ′ and

μ = μ′. Moreover, if there exist λ ∈ R and a unitary operator W = ⊕
n∈Z Wn on H

such that

eiλWUr,μW
∗ = Ur,μ,

then, by Corollary 1, λ = 0 and W = I or λ = π and W = ⊕
n∈Z(−1)n IHn .

Therefore, WΦα,θ = Φα′,θ ′ implies α = α′ and θ = θ ′. 	

As corollaries, and from Corollaries 2 and 3, we have the following.

Corollary 5 A translation-invariant quantum walk (U, Φ) is unitarily equivalent to
(Ur , Φα,θ ) for some 0 ≤ r, α ≤ 1 and θ ∈ R.

Moreover, (Ur , Φα,θ ) and (Ur ′ , Φα′,θ ′)with 0 < r, r ′, α, α′ < 1 and θ, θ ′ ∈ [0, 2π)

are unitarily equivalent if and only if r = r ′, α = α′ and θ = θ ′.

Corollary 6 A one-dimensional quantum walk with one defect (U, Φ) is unitarily
equivalent to (Ur,ν , Φα,θ ) for some 0 ≤ rε, α ≤ 1 (ε = ±, 0) and νi , θ ∈ R (i = 1, 2).

Moreover, (Ur,ν , Φα,θ ) and (Ur ′,ν′ , Φα′,θ ′) with 0 < rε, r ′
ε, α, α′ < 1 and

νi , ν
′
i , θ, θ ′ ∈ [0, 2π) are unitarily equivalent if and only if r = r ′, ν = ν′, α = α′

and θ = θ ′.

The proof of the next theorem is almost the same as that given for Theorem 5 and
is omitted.

Theorem 6 A complete two-phase quantum walk (U, Φ) is unitarily equivalent to
(Ur,σ , Φα,θ ) for some 0 ≤ rε, α ≤ 1 (ε = +,−) and σi , θ ∈ R (i = 1, 2).

Moreover, (Ur,σ , Φα,θ ) and (Ur ′,σ ′ , Φα′,θ ′) with 0 < rε, r ′
ε, α, α′ < 1 and

σi , σ
′
i , θ, θ ′ ∈ [0, 2π) are unitarily equivalent if and only if r = r ′, σ = σ ′, α = α′

and θ = θ ′.

4 Conclusion

We discussed the unitary equivalence classes of some types of one-dimensional quan-
tum walks with or without initial states. In the previous paper [19], we showed some
general properties of unitarily equivalent quantum walks. In particular, we proved
that every one-dimensional quantum walk is the unitarily equivalent of one of the
Ambainis types. We also presented the necessary and sufficient condition for defining
a one-dimensional quantum walk as a Szegedy walk. In the present paper, we stud-
ied the unitary equivalence classes of some special types of one-dimensional quantum
walks. As a consequence, we obtained the following results: Two-phase quantum walks
with one defect (without initial states) are parameterized by six parameters, complete
two-phase quantum walks by four parameters and one-dimensional quantum walks
with one defect by four parameters. When we consider quantum walks with initial
states, we need additional two parameters which correspond to the initial state Φα,θ .
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Moreover, we showed that the unitary equivalence classes of general one-dimensional
quantum walks are described by {Ur,θ } with θ0 = θ1 = 0.

The parameterization of unitary equivalence classes tells us what part of one-
dimensional quantum walks were already investigated and what part should be studied.
For example, a complete two-phase quantum walk considered in [11] is defined by

U (s) = 1√
2

∑

n≥0

|en−1
1 〉〈en1 + eiσ+en2 | + |en+1

2 〉〈e−iσ+en1 − en2 |

+ 1√
2

∑

n≤−1

|en−1
1 〉〈en1 + eiσ−en2 | + |en+1

2 〉〈e−iσ−en1 − en2 |

for some σ+, σ− ∈ [0, 2π). From Theorem 4, U (s) is unitarily equivalent to Ur,σ with
r+ = r− = 1/

√
2 and σ1 = σ2 = σ− −σ+. Hence, quantum walks Ur,σ with σ1 �= σ2

are not included in the model of U (s). Furthermore, we can reduce the parameters
defining σ1 = σ2 = σ− −σ+. In the same way, we can apply our results to many other
previous works.
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