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Abstract

This study investigates the unitary equivalence classes of translation-
invariant two-dimensional two-state quantum walks. We show that
unitary equivalence classes of such quantum walks are essentially pa-
rameterized by two real parameters.

1 Introduction

Quantum walks are analogous to classical random walks. They have been
studied in various fields, such as quantum information theory and quantum
probability theory. A quantum walk is defined by a pair (U, {H,}vev), in
which V' is a countable set, {H,},cv is a family of separable Hilbert spaces,
and U is a unitary operator on H = @, ., H, [6]. In this paper, we discuss
two-dimensional two-state quantum walks, in which V = Z? and H, = C%.
These have been the subject of some previous studies [1,2,7].

It is important to clarify when two quantum walks are considered equal.
We consider unitary equivalence of quantum walks in the sense of [4,6]. If
two quantum walks are unitarily equivalent, then many properties of their
quantum walks are the same. For example, digraphs, dimensions of Hilbert
spaces, spectrums of unitary operators, probability distributions of quantum
walks, etc. would be the same for each quantum walk. Therefore, we can
think of unitarily equivalent quantum walks as being the same.

The aim of this paper is to determine the unitary equivalence classes of
translation-invariant two-dimensional two-state quantum walks. This will
enable us to better understand the entirety of such quantum walks.

In the previous papers [4, 5], we considered unitary equivalence classes
of one-dimensional quantum walks, and parameterized several types of one-
dimensional quantum walks. Unitary equivalence classes of translation-invariant
one-dimensional quantum walks were also investigated in [3], and they are
parameterized by one real parameter. In this study, we extend these results
to the two-dimensional case.



In Sect. 2, we consider unitary equivalence classes of translation-invariant
two-dimensional quantum walks. We show that such unitary equivalence
classes are essentially parameterized by two real parameters.

2 Unitary equivalence classes of translation-
invariant two-dimensional two-state quan-
tum walks

Before we investigate the unitary equivalence classes of translation-invariant
two-dimensional two-state quantum walks, we must define such quantum
walks.

Definition 1 Let H,,,, = C* for (m,n) € Z*. A unitary operator U on
H = @(m n)ez? Honn 15 called a two-dimensional two-state quantum walk if

UHm,n C Hm+1,n S¥ Hm—l,n S¥ Hm,n+1 SP Hm,n—l (]->

for all m,n € Z. Moreover, U is said to be translation-invariant if, for all
k,l,m,n € Z,

Pm,nUPk,E = Pm+1,nUPk+1,€ = Pm,n+1UPk7€+1
as operators on C2, where P, is the projection onto H,, .

A pure quantum state is represented by a unit vector in a Hilbert space.
For A € R, quantum states ¢ and ¢ in H are identified. Hence, the quantum
walks U and U are also identified.

We recall the definition of unitary equivalence of two-dimensional two-
state quantum walks.

Definition 2 Two-dimensional two-state quantum walks Uy and Uy are uni-
tarily equivalent if there exists a unitary W = G}( Wim on H =
@(mm)ezg Hmn such that

m,n)EZ2
WUW* = U,.

Let U be a translation-invariant two-dimensional two-state quantum walk.
When we consider P,,+1,UP,,, as an operator on C?, we write Upro =
Pri1,UP,, . Note that Uiy does not depend on m and n. Operators
U_10,Up+1 and Uy _; are similarly defined.
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Theorem 1 LetU be a translation-invariant two-dimensional two-state quan-
tum walk. Then, ranUy, o and ranU_, o are orthogonal. Similarly, ranUs 44
and ranlUy _, are also orthogonal.

Proof. Since U is unitary, UH,, ,, and UH,,+2, are orthogonal. In consid-
ering (1), we obtain that P11 ,UHpmyn and Poy1,UHpio, are orthogonal.
This means ranUy; o L ranU_ .

The proof of ranUy 1; L ranlUy _; is similar. O]

First, we concentrate on the rank of Uiyo. Since dim H,q1, = 2, we
have 0 < rankU,;, < 2.

Case 1: rankU, o = 2.
By Lemma 1 and the assumption, U_; ¢ = 0 holds. Then,

UHm,n C Hm—f—l,n ¥ Hm,n+1 b Hm,n—l' (2)

Since UH,,, and UH,,q1,,—1 are orthogonal, we obtain P41, UHp, L
Pri1nUHimt1,0-1 by (2). The assumption rankU, o = 2 implies Pi1 nUHimp =
Humt1n, and hence, Uy 41 = 0. Similarly, we can obtain Uy _; = 0.

Consequently, when rankU,, 9 = 2, UH,,,, = Hmt1n- This means that
U is represented as a direct sum of unitary operators on C2.

Case 2: rankUy; 9 = 0.
In this case,

U,)le’n C Hm—l,n @ Hm,n+1 EB %m,nfl'

Since UH,,, and UH,,1104+1 are orthogonal, we obtain P, , 1UH,, L
P ni1UHpt1041, and hence, ranlUy ; and ranU_; ( are orthogonal. Sim-
ilarly, we can obtain ranU,_; L ranU_;,. Then, by Lemma 1, ranU_,,
ranly 41 and ranUp _; are mutually orthogonal. This implies that one of the
above three ranges is the zero vector space.

When ranU_, o = {0},

UHm,n C Hm,n+1 S%) Hm,n—l-

This means that U can be represented as a direct sum of one-dimensional
quantum walks. When ranlUj 1, = {0},

UHmyn C Hm—l,n EB HTI’L,TL:Fl
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Then, U on H = @kez (@nez 7—[”7;@”) can also be considered as a direct
sum of one-dimensional quantum walks.

Consequently, when rankU, ;9 = 0,2, U is a direct sum of unitary opera-
tors on C? or of one-dimensional quantum walks. Similarly, when rankU_; o =
0,2 or rankUj +1 = 0, 2, we have the same result.

Hence, in the following, we assume that rankU,; o = rankUp 1; = 1. Let
&1,&2,¢ and ¢, be unit vectors in C? with ranlU, ;g = C&;, ranlU_; 3 = C&,
ranlp 1 = C¢; and ranlUy 1 = C{,. By Lemma 1, {£1,&} and {(1, (o} are
orthonormal bases in C2. When we consider the vectors as in H,,, ,,, we write

&M and so on.
Next, we clarify the structure of U. To do this, we prepare three lemmas.

Theorem 2 Let 1) be a vector in C?, and let
U™ = ag"™ " b e 4 dgg

for some a,b,c,d € C. If one of a,b,c and d is zero, then two of them are
zero.

Proof. We need only show the proof for the case when a = 0; the other
cases are proven similarly.

Since Un™", Un™~1"=1 and Up™~ 1"+ are mutually orthogonal, d¢j' "™,
b and )" are mutually orthogonal. Since dim H,,_1, = 2, one of
b,c and d is zero. O

Theorem 3 There exists an orthonormal basis {n{"",ny""} in Hpyn = C?
such that
U™ = agl™™" + B Ut =G e (3)

or
m,n m+1,n m,n—1 m,n m,n+1 m—1n
U™ = ™" + B¢ , Uny™™ =+ 66 (4)

for some «, B,7,6 € C\{0}.

Proof. Since rankU_;, = 1, dimkerU_;y = 1. Let 7, be a unit vector in
ker U_; o, and let 7, be a unit vector in C? which is orthogonal to 7;. Then,

U = agi™ b e (5)
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for some a,b,c € C. By Lemma 2, one of a, b and c¢ is zero.
Assume that a = 0. Let

m—+1,n m,n 1 mn 1 m— 1n
" = pel T gt + &5

By the assumption rankUi;9 = 1, p and s are not zero. Moreover, since
Uni™™, Uny'~ Ll and U an "1 are mutually orthogonal, by AR ’1"’”“
and s&)""*! are mutually orthogonal, and hence b = 0. Similarly, we obtain
c¢ = 0, and therefore n; = 0. This is a contradiction.

Hence assume that a# 0 and ¢ = 0 in (5). If, in addition, b = 0, then
m+1,n
not = ay

2 qun—i-l_{_rCmn 1+S£m 1n

Again, by Lemma 2, one of ¢, r and s is zero, and this contradicts the
assumption that rankUy, g = rankUp 11 = 1. Therefore, b # 0.
Let

Un{n,n:a 11n+1n+bcmn+17 2 _p£m+1n+ Cmn+1+ Cmn 1+ gm 1n

for some a, b, p, q,r, s € C with a,b,r,s # 0. Since Un{"" L Uny"", ap+bq =
0. On the other hand,

Upn™™ — any™™) = (bp — aq)("™ — ary"" ™ — as&y "

By Lemma 2 and the assumption a,r,s # 0, we have bp — aqg = 0. These
equations imply b(|p|* + |¢|*) = 0, and therefore, p = ¢ = 0. Hence, we
conclude

1 gm—ﬁ-ln_i_ﬂcmn—i—l’ Un;n,n ’chn 1_|_55m 1,n

for some «, 5,7, € C\{0}.
Similarly, if we assume a # 0 and b = 0 in (5), we obtain

U?’]in’n:Oé 1ln+1n+ﬂcmn 1’ Un;n,n = mn+1+§£m 1n

for some «, 5,7, € C\{0}. O



Theorem 4 [f U satisfies (3), there exist 61,02 € R such that
(=", G =e"g,

where i = /—1. If U satisfies (4), there exist 01,0, € R such that
(=", G =€

Proof. We need only show the proof for the case when U satisfies (3); the
other case is proven similarly

The condition Un{™™ L Un™" " implies €75 L ¢, Since {&1, &}
and {(1, (>} are orthonormal bases in C2, {; = €'1¢, and (, = €%2¢, for some
Ql, 0> € R. O

As a consequence of these lemmas, we have the following theorem.

Theorem 1 For a translation-invariant two-dimensional two-state quantum
walk U with rankUy, o = rankUy vy = 1, there exist orthonormal bases

{&,&} and {m,m2} in C?, r € (0,1) and a,b,c,d € R such that

U = Z |61aT§m+1n 1b\/7£mn:|:1>< m,n |

(m,n)€Z2

’ IC‘/ T2€mn:':l+€1d7"§m 1n>< ’
and a —c=>b—d+m (mod 27).

Proof. By the lemmas above, we can assume that

U= > o™ + BN " + & + 665"y ™|

(m,n)€Z?

for some «, 3, ”y, d € C\{0}.
Since Un™" and Uny™"*! are orthogonal, a &)™+ 85" and £ "+
ST are orthogonal. Hence, there exist € (0,1) and a,b,¢,d € R such

that
a=¢é%r, pB=eV1-1r2 ~y=€V1-1r2 §=¢%

and a —c=0b—d+ 7 (mod 27). O



In the following, we assume that there exist orthonormal bases {&1,&}
and {n;,ne} in C?, r € (0,1) and a,b, ¢,d € R such that

U = Z |61argm+1n+elb\/7§mn+l>< m,n |

(m,n)€Z?
’ lcmgmn 1—|—61d7"§m 1n>< ’

and a —c =b—d+ 7 (mod 27). We can analyze the other case in the same
way.

Now, we consider unitary equivalence of translation-invariant two-dimensional
two-state quantum walks.

Step 1. Define a unitary W; on H by
Wlé'qln’n = 6717%717 ng;n’n = egn’nv
where {e]"", e5""} is the canonical basis in H,, . Wi can also be represented

as
Wi= @ e+ les) (&™),

(m,n)€Z?

Since U is written as
U = Z |€1ar§m+1n 1b gmn+l>< mn|

(m,n)€Z?

+|€ICS£mn 1 + €ld’l“€m 1, n><n;’n,n|
for some r € (0,1) and a,b,¢,d € R with s = /1 — r2, WiUWY] is calculated
as

WLUOW;
= Z el r Wy §m+1 T sV ) ”+1)(Wln§n’”|

(m,n)€Z?
s 4 @) (W
_ Z ‘6 m+1 n + eibse;n,n+1> <W17771n,n’
(m,n)€Z?
+|€1cse7ln n—1 + €1d7’€;n 1, n><W177;n,n|.
Here, {Win;, Wins} is an orthonormal basis in C2. Therefore, there exist
p € [0,1] and z,y, z,w € R such that

Wim = eixpel + eiyqeg, Winy = eizqel + ei“’peg,



where ¢ = /1 —p? and v — z = y — w + 7 (mod 27). Consequently, we
obtain

. ) ‘ ‘
Wuwy = g |elore™th 4 elbsel ntl yeTpel"" 4+ eYqey "
(m,n)€Z2
1 Loy i -
+esel™" T 4 elrel T Y (e gel ™ + eVpel .

Step 2. Define a unitary W5 on ‘H by

Wom @ ¥l e+ e e ) e

(m,n)eZ?
Then, since ¢ — 2z =y — w + 7 (mod 27),

WoW UW Wi
= Z | Woel T 4 el sTWael " Y (e pWae ™™ + ¥ qWaelh " |
(m,n)ez?
+| e sWoel"" ™ 4 eidTWQeg‘*L”HeiqugeT’n + e pWael " |
= T I s e e
(m,n)€Z?
+ellemD geim o ild=y) el by (oi(zma) gt | pi(w=y) et
= T I s e e

(m,n)€Z?

—Hel(c x— w+y)s + el i(d w)re;n—l,n> <ei(z—x—w+y)q671n,n + pegm,n‘
= Z |eila= “)remﬂ "4 O gl (el 4 el

(m,n)eZ?

+| . ei(c—z)sean,n—l + ei(d—w)fr,e;n—l,n><_qe71n,n + pegn,n|‘
Step 3. Let £ = (b+ ¢ — y — 2)/2. Define a unitary W3 on H by

Wy = @ pl(m(—atz+0)+n(=b+y+0)) Lum,

(m,n)€Z?

where I,,,, is the identity operator on H,,,. Then, for any &, ¢ € C? and
h,k,m,n € Z,

|W3€m’n> <W3Ch’k’ _ |6i((m—h)(—a+x+€)+(n—k¢)(—b+y+é))€m,n><

8



Therefore,

e WsWoW UWF Wi Wi
= ¢t Z D W O el Y (W (pel™™ + gel™)|
(m,n)€Z2
+| — D gWae " 4 0 el VY (W (—gel™™ + pes™)|
=X e s e+ e
(m,n)€Z2
+| . ei(b—l—c—y—z—%)segn,n—l + ei(a+d—x—w—2€)regn—l,n><_q6'{n,n + pegn,n‘

o m—+1,n m,n+1 m,n m,n
= E rey + s€y ) (pei™" + qey
(m,n)€Z?

m,n—1 m—1,n

+| — se] +rey ") (—qel"" + pey™|.
Now, we are ready to prove the next theorem.

Theorem 2 A translation-invariant two-dimensional two-state quantum walk
U with rankUy,; o = rankUy 1 = 1 is unitarily equivalent to

m—+1,n m,nt1 m,n m,n
Urpt = E |rej + sey ) (pei™" + qey
(m,n)€Z?

= el e T e+ pey”|

for some 0 <r <1 and 0 <p <1, where s =+1—7r2 and ¢ = /1 — p?.
Moreover, U, ,. and Uy o are unitarily equivalent if and only if r = 1,

p=p ande=¢".

Proof. We have already proven the first part of this theorem. Hence, we
need only prove that U, ,. and U, ;s . are unitarily equivalent if and only if
r=r,p=p ande=¢

Assume that U, , . and U, are unitarily equivalent. Then, there exist
A € R and a unitary operator W = @, yeze Wi 00 H = D, nyez2 Hmn
such that

WU, p W* = Uy 1.

The equation

Up e (pe™ + qey™) = e*WU,, W* (pe™™ + qey™)



implies ¢ = &'

For all (m,n) € Z2, P16 WU, , . W* Py, n = Pog1nUpt .o P There-
fore, We " and Wey"" are described as Wel"" = elvmne™™ and Wey™" =
evmnel™" for some Uy, Vmy, € R. Since W commutes with B, for all
(m,n) € Z2,

r o= ||Pm+1,nUr,p,€Pm,n|| = ||€i)\WPm+1,nUr,p,€Pm,nW*||
= HPerl,nUr’,p’,s’ m,n” = 7”/.
Furthermore,
0 = ||PuciaUrpeel” || = [le T Pryi nW* Uy o Wel™ ||

= ||Pm+17"UT',p’,g’€T7n|| _ ,,“/p/.
This implies p = p'. ]

This theorem says that unitary equivalence classes of translation-invariant
two-dimensional two-state quantum walks are essentially parameterized by
two real parameters.
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