
Ⅰ　Introduction

　Cardiac amyloidosis (CA) is a cardiomyopathy due 
to interstitial myocardial infiltration of amyloid, which 

leads to a progressive increase of ventricular wall 
thickness and stiffness1）-5）.
　CA is morphologically characterized by increased 
left ventricular (LV) wall thickness, normal or de­
creased LV cavity size, and congestive heart failure 
(CHF) with normal or near-normal fractional short­
ening6）-10）. Doppler flow parameters, tissue Doppler, 
and speckle tracking echocardiography can detect 
characteristic myocardial abnormalities, and several 
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parameters had been proven as prognosticators in 
patients with CA11）-21）.
　Recent studies using cardiovascular magnetic res­
onance imaging (CMRI) have demonstrated subendo­
cardial deposition of amyloid protein in patients with 
CA22）-24）.
　A multi-layer approach of measuring myocardial 
strain can be performed using a commercially avail­
able echocardiographic machine25）. Thus, we hypoth­
esized that complete subendocardial dysfunction due 
to subendocardial dominant amyloid deposition may 
exist in patients with CA. We therefore performed 
this study to quantify myocardial deformation of the 
inner half and outer half layers of the left ventricular 
wall (LV) using a multi-layer approach of measuring 
myocardial strain by 2-dimensional (2D) speckle 
tracking echocardiography.

Ⅱ　Methods

A　Study population

　This study was approved by the Ethics Committee 
of Shinshu University School of Medicine, and written 
informed consent was obtained from each patient. 
Ninety-eight patients with systemic amyloidosis and 
20 control individuals were enrolled in this study. A 
diagnosis of amyloidosis was made by a biopsy of in­
volved organs, which demonstrated the typical 
Congo-red birefringence when viewed under polar­
ized light. All patients were examined by myocardial 
99mTc pyrophosphate scintigraphy. ATTRm amyloi­
dosis was diagnosed from amyloid deposition in the 
abdominal fat pad (n＝35), endocardium (n＝4), stom­
ach (n＝5), duodenum (n＝5), colon (n＝2), skin (n＝2), 
and sural nerve (n＝7), and from a biopsy of the car­
pal tunnel (n＝1) ; some patients had several biopsy 
specimens. The TTR mutations were as follows : (i) 
V30M (n＝43), (ii) D38A (n＝2), (iii) E54K (n＝2), (iv) 
E42G (n＝1), (v) I107V (n＝1), (vi) S50I (n＝1), (vii) 
S50R (n＝1). AL amyloidosis was confirmed by the 
findings of a monoclonal protein in the serum or 
urine and/or a monoclonal population of plasma cells 
in the bone marrow when evaluated by immunohis­
tochemistry. For ATTRm amyloidosis, TTR gene 
analysis was routinely performed, as previously 

described26）27）. Forty-seven patients had AL amyloi­
dosis, and 51 had ATTRm amyloidosis. Plasma levels 
of the brain natriuretic peptide (BNP) were mea­
sured on the day of echocardiography. Sixty-six pa­
tients met the echocardiographic criteria for cardiac 
involvement, and 32 had no apparent features of CA. 
The latter group was defined as group 1 (noncardiac 
amyloid) as we described previously15）16）. Definite 
cardiac involvement was defined as a mean echocar­
diographic end-diastolic LV wall thickness＞12 mm 
(half the sum of the thicknesses of the ventricular 
septum and posterior wall) in the absence of hyper­
tension, valvular heart disease, diabetes mellitus, or 
criteria for LV hypertrophy on the electrocardio­
gram. Some patients with ATTRm amyloidosis had 
gait impairment due to peripheral nerve neuropathy, 
which limits behavior and masks CHF symptoms. In 
such patients, plasma BNP levels≥100 pg/mL were 
used as the criterion for CHF. Of 66 patients with 
cardiac involvement, 43 had prior or current evi­
dence of CHF or plasma BNP levels≥100 pg/mL. 
These patients were defined as group 3 (CHF[＋]) 
and the remaining 23 patients were defined as group 
2 (CHF[－]).
B　Ultrasound examination and measurements

　Echocardiographic examinations were performed 
using an ultrasound system with an S5-1 transducer 
(IE-33, Philips, Andover, Massachusetts). All imaging 
data for three cardiac cycles were digitized and 
stored on a disk for offline analysis. Parasternal and 
apical projections were obtained according to the 
recommendations of the American Society of Echo­
cardiography28）29）. Standard M-mode measurements 
of the left atrium (LA) and LV wall were made. 
Pulsed Doppler echocardiography was used to obtain 
the transmitral and pulmonary venous flow veloci­
ties. Early diastolic mitral annular velocities of the 
septal and lateral mitral annulus (e’) were obtained 
by pulsed tissue Doppler imaging. Peak velocities of 
early- (E) and late filling (A) waves, the duration of 
A-wave, the E/A ratio, and deceleration time of the 
E-wave were measured from transmitral flow veloc­
ities, and the peak velocities of the systolic (S), dia­
stolic (D), and A waves ; duration of A-wave ; and D/
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S ratio were measured from pulmonary venous flow. 
The E/e’ ratio was also calculated.
C 　Myocardial strain measurements

　Speckle tracking echocardiographic analysis for 
myocardial strain measurements was performed on 
LV short-axis images at the basal and mid-ventricular 
levels and on apical 2- and 4-chamber, and long-
axis chamber views using speckle tracking echocar­
diographic software (QLAB, version 8.1, Philips). Cir­
cumferential, radial, and longitudinal strains of the 
inner half and outer half layers of the LV wall were 
semi-automatically calculated. Following initializa­
tion, the computer automatically formed a region of 
interest (ROI). An 18-segmental LV model was preset 
in the speckle tracking modality with six evenly di­
vided segments in each of the short-axis views at 
the basal and mid-LV levels. Segmental circumfer­
ential, radial, and longitudinal strains were measured 
in all the short-axis views and in all three longitudi­
nal views. In each segment, both the subendocardial 
and subepicardial circumferential, radial, and longitu­
dinal strains were measured. Furthermore, mean 
values of the subendocardial and subepicardial myo­
cardial layers were calculated as global circumferen­
tial, radial, and longitudinal strains.
　The second set of measurements was performed 
two weeks after the first set of measurements for 
both inter- and intraobserver variability. Results are 
expressed as the linear regression between two 
measurements and as the percent error.
D　Statistical analysis

　All data were then expressed as mean±standard 
deviation (SD). Statistical analyses were performed 
using a commercially available software program 
(JMP9.0.2, SAS Institute, Cary, North Carolina and 
Graph Pad Prism 5 for Mac OS X, Graph Pad, San 
Diego, California). Differences among characteristics 
of the three groups were assessed using the chi-
square test for categorical variables, and compari­
sons of continuous variables among three groups 
were made using 1-way analysis of variance with 
Tukey-Kramer’s HSD test for parametric variables, 
and the Kruskal-Wallis test with Dunn’s post-hoc 
test for nonparametric variables. Bland-Altman 

analysis was conducted to assess intra- and interob­
server agreements (expressed as the absolute value 
of mean difference±1.96 SD), and intraclass correla­
tion coefficients were calculated. A difference was 
considered significant when the P value was＜0.05.

Ⅲ　Results

A �　Qualitative myocardial 99mTc pyrophosphate 

scintigraphy

　Fifty of 51 patients with ATTRm showed a posi­
tive shadow on myocardial 99mTc pyrophosphate scin­
tigraphy, and all patients with AL showed negative 
myocardial accumulation.
B�　Patients’ characteristics and 2D echocardiogra-

phy

　Patients’ clinical characteristics are shown in Table 1. 
Patients’ age was greater in group 3 than in group 1. 
The diastolic blood pressure was significantly lower 
in group 3 than in the other two groups. Plasma 
BNP levels were greater in group 3 than in group 1. 
The LA diameter was significantly greater in groups 
2 and 3 than in group 1. The predefined LV wall 
thickness was larger in groups 2 and 3 than in group 
1. The LV ejection fraction was significantly smaller 
in group 3 than in the normal group and group 2. 
C�　Standard doppler flow and tissue doppler mea-

surements

　Indexes of transmitral flow, pulmonary venous flow, 
systolic/diastolic time intervals, and tissue Doppler 
in the mitral annulus are shown in Table 2. Group 3 
had more abnormalities in Doppler flow velocity 
pattern, and E/e’ than in the other 3 groups.
D　Global and segmental LV strain values

　Global circumferential, radial, and longitudinal 
strain values of the inner and outer myocardial lay­
ers are shown in Table 3. There were no significant 
differences in global circumferential strain of the 
inner and outer myocardium layers among three 
groups. Basal global radial strain was smaller in 
groups 2 and 3 than in group 1 for both the inner 
and outer layers. Furthermore, inner global radial 
strain was significantly smaller in group 1 than in 
controls. In the mid-LV wall, global inner radial 
strain was smaller in groups 2 and 3 than in group 1, 
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but there was no difference in outer global radial 
strain among the three groups. Global longitudinal 
strains in all apical 3 views were smaller in groups 2 
and 3 than in group 1 and controls for both the inner 
and outer myocardial layers. No strain echo parame­
ter showed differences between those with AL and 
ATTRm amyloidoses. 
　Segmental strain measurements are shown in Fig. 

1-3. Representative strain analyses are shown in 
Fig. 1 and Fig. 2, Fig. 1 shows the circumferential 
strain, Fig. 2 shows the radial strain in a patient of 
group 1and group 3. Circumferential strain of the 
inner layer was greater than that of the outer layer 
in a patient of group 1 and group 3. (Fig. 1A, B) Fig. 2A 
shows a greater value for the inner radial strain 
compared to that of the outer layer, but radial strain 
of the inner layer was smaller than that of the outer 
layer (Fig. 2B).
　In the base and mid-LV wall, most segmental cir­
cumferential strain was not significantly different 
among three groups in both layers (Fig. 3A). Regard­
ing segmental radial strain, many segments in group 
3 showed a lower radial strain compared to that of 
group 1. Inner radial strains were greater in normal 
individuals than in the other 3 groups in many myo­
cardial segments as shown in Fig. 3B. Basal and mid-
radial radial strain of the outer layer did not differ 
among the 4 groups in most segments. Longitudinal 
segmental strain values are shown in Fig. 3C. Most 
basal and mid-longitudinal strain values were small­
er in groups 2 and 3 than in group 1 for both the 
inner and outer myocardial layers, and those in nor­
mal individuals showed greater values than in the 
other 3 groups.
E　Reproducibility of strain measurements

　Reproducibility of the measurements is summa­
rized in Table 4. The intraobserver and interobserv­
er agreement for the segmental longitudinal, circum­
ferential, and radial strain of the inner and outer 
myocardial layers was excellent ; the coefficients of 
variation for the intraobserver and interobserver 
comparison were＜5 ％.

Ⅳ　Discussion

　To the best of our knowledge, this was the first 
study to demonstrate endomyocardial dysfunction in 
patients with CA using speckle tracking echocardi­
ography. In patients with advanced CA, complete 
endomyocardial radial systolic dysfunction existed 
predominantly in the basal and mid-LV wall ; and 
longitudinal transmural LV systolic dysfunction ex­
isted predominantly in the basal and mid-LV wall 
with apical sparing. However, there were no signifi­
cant differences in circumferential inner/outer strain 
among three groups in the basal and mid-LV wall.
　Previous studies have demonstrated that CMRI 
shows a distinct pattern of late gadolinium enhance­
ment, which is distributed over the entire subendo­
cardial circumference, extending in various degrees 
into the neighboring myocardium. This pattern is 
specific for CA24）30）31）. Our study demonstrated com­
plete subendocardial radial dysfunction in patients 
with cardiac involvement, which is very similar to 
the CMRI pattern of late gadolinium enhancement. 
The mechanism of the specific pattern of LV longi­
tudinal and radial dysfunction (i.e., inner layer domi­
nant myocardial dysfunction) and preserved circum­
ferential strain may be explained by the amyloid 
deposition pattern in CA as follows. In the LV inner 
(endocardial) layer, longitudinally oriented myocardi­
al fibers exist, which contribute to LV longitudinal 
and inner LV layer radial function. The specific pat­
tern of amyloid deposition in the endocardial layer 
may cause longitudinal systolic dysfunction, which 
can lead to worse longitudinal and radial (i.e., inner 
layer dominant) LV strain. However, LV circumfer­
ential myocardial fiber exists in the mid and outer 
layers of the LV myocardium. Consequently, circum­
ferential LV shortening (i.e., strain) may be pre­
served until amyloid infiltration progresses to the 
mid- to outer layers in advanced cardiac amyloidosis.
　We also demonstrated that a multidirectional strain 
pattern is not different between AL and ATTRm 
cardiac amyloidosis. 
　This study clarified that inner radial strain was 
smaller in group 1 than in normal controls. Fifty of 
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Ｂ

Outer

Inner

Fig 1B

Fig. 1
A : �Segmental circumferential strain of a patient in group 1. The absolute value of circumferential strain in the 

inner layer (blue line) is greater than that in the outer layer (orange line).
B : �Segmental circumferential strain of a patient in group 3. The absolute value of circumferential strain in the 

inner layer (blue line) is greater than that in the outer layer (orange line), which is similar to that of the 
patient in group 1.

Outer Inner

Fig 1A

Ａ
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Outer
Inner

Fig 2A

Outer

Inner

Fig 2B

Fig. 2
A : �Segmental radial strain of a patient in group 1. Segmental inner radial strain (blue line) is greater than that 

in the outer layer (orange line)
B : �Segmental radial strain of a patient in group 3. Segmental radial strain of the inner layer (blue line) is smaller 

than that of the outer layer (orange line) in advanced cardiac amyloidosis.

Ａ

Ｂ
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Fig. 3
A : �Segmental circumferential strain of the inner and outer layers in the basal and mid left ventricle. Most of the 

segmental circumferential strain is not significantly different among three groups in both layers, except for 
several segments. AL, antero-lateral ; ANT, anterior ; AS, antero-septum ; IL, infero-lateral ; INF, inferior ; IS, 
infero-septum ; §, P＜0.01 vs. normal ; ||, P＜0.01 vs. group 1 ; ＊＊, P＜0.05 vs. normal ; ††, P＜0.05 vs. group 1.

B : �Segmental radial strain of the inner and outer layers in the basal and mid left ventricle. AL, antero-
lateral ; ANT, anterior ; AS, antero-septum ; IL, infero-lateral ; INF, inferior ; IS, infero-septum ; ＊, P＜0.0001 
vs. normal ; †, P＜0.0001 vs. group 1 ; ‡, P＜0.0001 vs. group 2 ; §, P＜0.01 vs. normal ; ||, P＜0.01 vs. group 1 ; #, 
P＜0.01 vs. group 2 ; ＊＊, P＜0.05 vs. normal ; ††, P＜0.05 vs. group 1 ; ‡‡, P＜0.05 vs. group 2.
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Fig 3C (continued)

ALAX Longitudinal Strain (inner layer) ALAX Longitudinal Strain (outer layer)
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Fig. 3
C : �Segmental longitudinal strain of the inner and outer layers in apical four-, two-, and long axis views. Most 

basal and mid-longitudinal strain values are smaller in groups 2 and 3 compared to those in group 1 in both 
the inner and outer myocardial layers. 
4CH, apical four chamber view ; 2CH, apical two chamber view ; ALAX , apical long axis view ; ApA, apical 
anterior ; APAL, apical antero-lateral ; ApAS, apical antero-septum ; API, apical inferior ; APIL, apical infero-
lateral ; APIS, apical inter-ventricular septum ; BA, basal anterior ; BAL, basal antero-lateral ; BAS, basal 
antero-septum ; BI, basal inferior ; BIL, basal infero-lateral ; BIS, basal inter-ventricular septum ; MA, mid 
anterior ; MAL, mid antero-lateral ; MAS, mid antero-septum ; MI, mid inferior ; MIL, mid infero-lateral ; MIS, 
mid inter-ventricular septum ; ＊, P＜0.0001 vs. normal ; †, P＜0.0001 vs. group 1 ; ‡, P＜0.0001 vs. group 2 ; §, 
P＜0.01 vs. normal ; ||, P＜0.01 vs. normal ; ＊＊, P＜0.05 vs. normal ; ††, P＜0.05 vs. group

Ｃ
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51 patients with ATTRm showed a positive shadow 
on myocardial 99mTc pyrophosphate scintigraphy in 
our study. This finding suggested that myocardial 
amyloid deposition exists even in patients with nor­
mal LV thickness. In AL amyloidosis, it is also re­
ported that impaired LV systolic function by Dop­
pler myocardial imaging exists in patients with AL 
amyloidosis and no evidence of cardiac involvement 
by standard 2-dimensional and Doppler echocardiog­
raphy and this report is consistent with our results32）.
A　Limitations

　CA was defined as a mean value of LV thickness
＞12 mm in patients with CA confirmed by a biopsy 
from any site, thus many patients were diagnosed 
with CA without an endomyocardial biopsy. Howev­
er, based on autopsy studies, an echocardiographic 

finding of LV thickening in the absence of diseases 
associated with LV hypertrophy is generally accept­
ed as highly specific for the finding of CA at biopsy 
or autopsy33）. No other cardiac imaging such as car­
diac magnetic resonance imaging for the quantifica­
tion of myocardial amyloid deposition was included 
in this study. Because some patients with CA al­
ready had renal dysfunction, we could not perform 
gadolinium enhancement. 

Conclusions

　A multi-layer approach of measuring myocardial 
strain demonstrated complete endomyocardial radial 
systolic dysfunction and longitudinal transmural sys­
tolic dysfunction with apical sparing in patients with 
CA.
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