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Abstract
A plant with discrete-valued control is considered in this study. In discrete-valued control systems, the control input
resolution, which is determined by the minimum value of the amplitude of the discrete-valued input and period,
directly affects the control performance. If insufficiently short periods are specified, the control performance
decreases due to the poor resolution of the discrete-valued input. To overcome such decrease, multirate control,
which employs individual periods for output measurement and control input switching, was adopted in this study.
We analyzed a decrease in the discrete-valued control performance caused by the poor control input resolution
in pneumatic isolation table control, and numerical simulations and experiments showed that the use of multirate
control is effective despite a long output period. The multirate control input was determined based on the Model
Predictive Control, and a Kalman filter was employed in the experiments to reduce sensor noise for the pressure
sensors.

Keywords : Discrete actuators, Discrete-valued control, Multirate control, Model Predictive Control, Quantized
signals, Pneumatic isolation table

1. Introduction

Currently, research on discrete-valued control systems, including discrete actuators, has attracted significant interest
owing to their merits, such as low cost of the device configuration and easy manageability, compared with continuous input
systems. Various studies on discrete-valued control systems have been reported, including those on temperature control
(Dostal and Ferkl, 2014), tracking control (Mitsuhashi et al., 2019), and vibration control (Chida et al., 2019; Koike and
Chida, 2012; Koike et al., 2013; Maruyama et al., 2013; Maruyama et al., 2015). Compared with the continuous system,
it is quite difficult to control the systems, which is attributed to the restricted valued input. Consequently, some methods
have been proposed for discrete-valued control systems, which are based on the Lyapunov function (Koike and Chida,
2012; Koike et al., 2013), optimal dynamic quantizer (Azuma and Sugie, 2007; Azuma and Sugie, 2008; Minami et al.,
2007), feedback modulator (Ishikawa et al., 2007), and pulse-width-modulation scheme (Suzuki and Hirata, 2015).

In discrete-valued control systems, the control input resolution directly affects the control performance, and it is
determined by the minimum value of the discrete-valued input amplitude and period. The minimum amplitude of inputs
is restricted by actuators mounted in the plant. In contrast, the input period is sometimes required to be specified as
sufficiently short to realize a sufficient control performance. However, there are some situations where sufficiently short
output periods cannot be specified because of the restriction of the frequency range of sensors. In such cases, the control
performance decreases to coincide with the output period restriction if the input period is long. To overcome such a
decrease, multirate control, which employs individual periods for output measurement and control input switching, is
effective (Berg, 1988; Fujimoto, 2009), and we can obtain sufficient control performance using shorter input periods than
the output. In this study, we analyze the decrease in performance caused by long output periods in a pneumatic isolation
table control and verify that the multirate control for plants whose output period is restricted relatively long is effective.
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Fig. 1 Experimental device for the pneumatic isolation table. The device consists of the table, air springs, four
solenoid on-off valves, buffer tanks, pressure sensors, displacement sensors, a main tank, and transmission
pipes.

Fig. 2 Table model for the vertical motion. Four springs move
in synchronization in vertical direction. Internal pressure
varies depending on the mass flow of the air through the
buffer tanks and the main tank.

Fig. 3 Air spring model. The table is supported by the air
spring, and the internal pressure of the spring is
controlled by the mass flow through the main tank.

Fig. 4 Quantizer. The continuous signal σ is discretized
by ϕ(σ).

Fig. 5 Block diagram of the plant. The plant includes a linear
model G̃ and the quantizer.

Here, the multirate control input was determined based on the MPC-based method proposed in (Chida et al., 2019). Chida
et al. (2019) performed simulation verification for the pneumatic isolation table, but experimental verification has not been
reported. In this study, experimental verification was performed using the method proposed in (Chida et al., 2019), and
the control performance was evaluated for the pneumatic isolation table. In (Chida et al., 2019), the Padé approximation
was used to evaluate the time delay in a system. However, in this study, we derived the control law without assuming
the Padé approximation. In addition, there is a need to reduce noise in the pressure sensors built in the plant, which we
achieved using a Kalman filter.

This paper is structured as follows: the discretized plant and configuration of a pneumatic isolation table are intro-
duced in Section 2; the problem presentation is discussed in Section 3; the outline of the proposed method is presented in
Section 4; the control system design and the numerical results are presented in Section 5; the main experimental results
are discussed in Section 6; Section 7 presents the conclusions.

2. Plant

In this study, an experimental device for a pneumatic isolation table system was employed to analyze the discrete-
valued control and determine the effect of introducing the multirate control. The plant is a pneumatic isolation table
system, as shown in Fig. 1. The table is supported by four air springs, and a sketch of the air springs is shown in
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Fig. 2. Each spring is connected to a buffer tank. We focused on the vertical translational motion, which is controlled by
changing the inner pressure of the air springs. Thus, the model of the spring is indicated as Fig. 3, where it is assumed
that an equivalent spring is used. The internal pressure of the springs is controlled by varying the mass flow rate through
the air pipes. The vertical displacement of the table z is measured using a displacement sensor. The velocity ż is obtained
by online derivation calculation. Additionally, pa and pb, which denote the deviation of the internal pressure of the spring
and buffer tank from the equilibrium p0, respectively, are measured by pressure sensors. Here, we assumed that the inner
pressure of the four air springs corresponds to identical values, pa, and that of the buffer tanks corresponds to a common
value, pb. The system includes a time delay of L = 20 [ms], which includes input delay through air transmission, 10 [ms],
and the calculation time delay for the control input calculation. The parameters of the model are described in (Chida et al.,
2019), and the state space equation is expressed as follows:

ẋ(t) = Acx(t) + Bcu(t − L). (1)

The plant G is obtained by discretizing Eq. (1), assuming that the zero-order hold is used with the input and output period
Ts as follows:

G : x[k + 1] = Ax[k] + Bu[k − d], (2)

where k ∈ {0} ∪ N+, d ∈ N+, x ∈ RN×1, and u ∈ R denote the step number of the discrete system, step number of the time
delay, state variable, and control input, respectively. It is defined as the state variable x[k] = [z[k], ż[k], pa[k], pb[k]]T , and
N = 4 is introduced. To improve the overall outlook of the control system design, the past control input of the time delay
is considered a part of the state variables. Then, G can be extended to G̃ in Eq. (3), where x̃, Ã, and B̃ are denoted as
follows:

G̃ : x̃[k + 1] = Ãx̃[k] + B̃u[k], (3)

x̃[k] = [x[k]T , u[k − d], u[k − d − 1], . . . , u[k − 1]]T , (4)

Ã =


A B 0N×(d−1)

I(d−1)×(d−1)

0d×(N+1) 01×(d−1)

 , B̃ =
 0(N+d−1)×1

1

 .
It is assumed that (Ã, B̃) is controllable and x̃ is measurable. The control input is added to the plant through a quantizer
ϕ: R→ R, which changes the continuous input signal σ[k] to a discretized signal u[k] = ϕ(σ[k]) as follows:

u[k] = ϕ(σ[k]), (5)

where ϕ satisfies ϕ(0) = 0. It is assumed that the input consists of three discrete values, namely, G1+, 0, and G1−, where
G1+ = 2.70 × 10−4[kg/s] and G1− = −2.57 × 10−4[kg/s]. Thereafter, the quantizer ϕ provides the following admissible
three-valued input.

ϕ(σ) =


G1+ , i f σ1+ ≤ σ,
G1− , i f σ ≤ σ1−,

0 , others,
(6)

where σ[k] denotes the input of ϕ, and σ1+ and σ1− denote the design parameters. The parameters are specified as
σ1+ = G1+/2 and σ1− = G1−/2. The quantizer is shown in Fig. 4, and a block diagram is shown in Fig. 5.

3. Issues on the discrete-valued control

In this section, an example of performance deterioration, which is the vibration suppression of the pneumatic isolation
table, is discussed when a long period is set for the input as well as output period. First, the difference in the response is
confirmed when a step-type input is applied to the plant in one input period, Tu. Figures 6 and 7 show the responses of the
displacement with Tu = 5 [ms] and Tu = 20 [ms] as input periods, respectively, when the input G1+ = 2.70 · 10−4 [kg/s] is
set as the step-type control amplitude for one input period. The maximum value of the vibration response and steady-state
in Fig. 7 are approximately four times as high as that in Fig. 6. The values correspond to the input amplitude that the
applied input in Fig. 6 is G1+ ·0.005 = 1.35·10−6, whereas the input in Fig. 7 is 5.4·10−6, which is four times as large as that
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Fig. 6 Step response with Tu = 5 [ms] input period. The
amplitude and the steady-state value depends on Tu.

Fig. 7 Step response with Tu = 20 [ms] input period. The
amplitude and steady-state value depend on Tu.

Fig. 8 Control responses with respect to control with Tu = Ty
= 5[ms] period. Sufficient damping performance is obtained.

Fig. 9 Control responses with respect to control with Tu = Ty
= 20[ms] period. Damping performance is deteriorated
compared to the case of Tu = Ty = 5[ms].

in Fig. 6. This response implies that the feasible magnitude to attenuate a vibration by the control is probably restricted by
the specified input period, Tu. Furthermore, the convergence time in Fig. 6 is shorter than the time in Fig.7. For the above
reason, it is necessary to decide the input and output period appropriately for successive damping control. Following that,
the simulation results with feedback control of vibration suppression under the condition that the input and output periods
are the same are shown in Figs. 8 and 9, and the period are 5 [ms] and 20 [ms], respectively. The figures are obtained
using the conventional method for “Discrete actuator” shown in Section 5.1. The design parameters are shown in Section
5.1 for the case where the period is 20 [ms]. For the case where the period is 5 [ms], some parameters and the feedback
gains are different from that of 20 [ms] period because the dimension of the state vector for the time delay of the plant is
different. The “Continuous actuator” indicates the responses under the same conditions of the “Discrete actuator”, except
that ϕ(σ) = σ. Figures 8 and 9 express the response of the displacement of the table and control input, respectively.
They show that the control performance is decreased when the period is long. This is caused by the minimum resolution
power of the control input, which is determined by Tu and G1+, as shown in Figs. 6 and 7. To overcome the issue, it is
effective to use pulses of short duration for the control input, and the multirate input control is suitable for the purpose.
By the multirate control, it is possible to specify the input period independently with the output period, so that we can use
smaller resolving power of the control input. In that case, the control input determination algorithm and implementation
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of the algorithm for real applications are important. The control algorithm is proposed in Section 4, and the issue of the
implementation is demonstrated in Section 5 and 6.

4. Proposed control method

The algorithm of the control method with the discrete-valued control input is proposed in (Chida et al., 2019) based
on (Maruyama et al., 2013; Maruyama et al., 2015). A block diagram of the multirate control system is shown in Fig. 10.
The output period of x̃[k] is Ty, and the input period is Tu. We assume that Ty > Tu, n = Ty/Tu, and n corresponds to
a positive integer, and k represents the step number for inputs. The relationship between the input and output is shown
in Fig. 11. In Fig. 11, i indicates the step number for the output. The output is measured when k is the multiple of n,
and k′ indicates the input step number synchronized with the output step number, i. Then, it is assumed that n can be
divided evenly into k′, so k′ is described as k′ ∈ {k ∈ I| n|k}, where I := N ∪ {0} and N is the sets of positive integers. For
i ∈ {i ∈ I|i = k′/n}, the control input U[i] is defined as follows:

U[i] := [u[k′], u[k′ + 1], · · · , u[k′ + n − 1]]T . (7)

State variable is defined as x̃m[i] := x̃[k′] which corresponds to the output period. Then, the state space equation for i is
described as follows using Eq. (3),

x̃m[i + 1] = x̃[k′ + n]

= Ãn x̃[k′] + Ãn−1B̃u[k′] + Ãn−2 B̃u[k′ + 1] + · · · + B̃u[k′ + n − 1]

= Am x̃m[i] + BmU[i], (8)

Am := Ãn , Bm := [Ãn−1B̃, Ãn−2B̃, · · · , B̃].

Here, the method for determining the control input U[i] with measurement x̃m[i] is a problem. Thus, the MPC method is
applied. A positive quadratic cost function is expressed as follows:

V[i] = x̃T
m[i]Px̃m[i], (9)

where P > 0 denotes a solution of the Lyapunov equation in discrete time systems as follows:

(Ã − B̃F)T P(Ã − B̃F) − P = −QL. (10)

where F denotes a feedback gain such that Ã − B̃F becomes the Schur stable matrix, and QL represents a specified
arbitrary positive definite matrix. V[i + 1] is obtained by substituting Eq. (8) for Eq. (9) as follows:

V[i + 1] = x̃T
m[i + 1]Px̃m[i + 1]

= (Am x̃m[i] + BmU[i])T P(Am x̃m[i] + BmU[i])

= x̃T
m[i]AT

m PAm x̃m[i] + 2x̃T
m[i]AT

m PBmU[i] + UT [i]BT
m PBmU[i], (11)

where the first term in Eq. (11) is independent of the control input because we focus on the second and third terms. The
cost function is reintroduced as a renewed cost function as follows based on (Maruyama et al., 2013; Maruyama et al.,
2015):

J(U[i]) = 2x̃T
m[i]YU[i] + UT [i]XU[i], (12)

X := BT
m PBm,Y := AT

m PBm.

Fig. 10 Block diagram of the multirate control system
Fig. 11 Relationship between input and output periods

for the multirate control
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If it is assumed that n is not greater than N, Bm is column full rank and X is a positive definite matrix since P > 0. The
cost function is convex for U[i]. The gradient and Hessian of J(U[i]) are expressed as

∂J
∂U
= 2YT x̃T

m[i] + 2XU[i], (13)

∂2J
∂U2 = 2X. (14)

The Hessian of Eq. (14) is a positive definite matrix because of X > 0. Therefore, the cost function is convex. Here,
we adopted a method that employs the gradient of the cost function proposed by (Maruyama et al., 2013; Maruyama et
al., 2015) to solve the MPC control problem. The obtained input sequence Uopt is a candidate for U[i], and the following
additional branch condition is used here. U[i] = Uopt , if J(Uopt) ≤ 0 and ∆V[i] < 0,

U[i] = 0 , otherwise,
(15)

Here, ∆V[i] is defined as

∆V[i] = V[i + 1] − V[i]. (16)

The condition that ∆V[i] < 0 is added to satisfy the boundedness of the state variable x̃m[i] using the result of (Koike
and Chida, 2012; Koike et al., 2013). The algorithm of the MPC method is summarized in Fig. 12, and the outline of the
calculation procedure for each i is explained as follows:
Step 1: Decide the initial searching points U0 in advance. In this study, U0 = 0 is specified.
Step 2: Compute ∂J(U)

∂U for U = Ul and determine Ul+1 for each l by (Maruyama et al., 2013; Maruyama et al., 2015). If
Ul−1 = Ul+1, set Ul and Ul+1 as candidates for Unear.
Step 3: Unear is obtained from Unear = arg min j=l,l+1J(U j).
Step 4: j ∈ {1, · · · , n−1} is specified such that one of u[k′ + j] in Unear is shifted from Unear to the direction where ∇J < 0.
The shifted input is indicated by Unear→∆u j . U′near = arg min j=1,···,n−1J(Unear→∆u j ) is obtained, and the same procedure is
repeated using updated Unear ← U′near until J(Unear) ≤ J(U′near) is satisfied. Uopt is obtained such that Uopt = Unear using
the terminal input Unear.
Step 5: U[i] is obtained such that U[i] = Uopt or U[i] = 0 according to the condition that J(Uopt) ≤ 0 and ∆V[i] < 0 is
satisfied or not.

5. Application to the control of a pneumatic isolation table
5.1. Control system design
5.1.1. Conventional method The switching method proposed by (Koike and Chida, 2012; Koike et al., 2013) and
single-rate control such that Ts = Tu = Ty are considered as conventional methods. Ts is the period for the digital control
in the usual sense and Ts = 20 [ms]. A1 and B1 in Eq. (2) are introduced by discretizing Eq. (1) with Ts = 20 [ms]. d = 1,
is introduced in Eq. (3) since Ts and the time delay are the same (20 ms). Then, Ã1 and B̃1 in Eq. (3) are introduced as
follows:

Ã1 =

 A1 B1

01×5

 , B̃1 =

 04×1

1

 .
The state feedback gain F1 is obtained by solving LQ(Linear Quadratic) optimal control problem by assuming the fol-
lowing weighting matrices: Q = diag(103, 4 × 105, 9.5 × 10−6, 9.5 × 10−6, 107),

R = 1.
(17)

F1 is obtained using MATLAB R⃝ is obtained as follows: F1 = [−5.36×10−1, 6.59×10−3, 1.39×10−8, 2.96×10−7, 8.03×
10−1]. Ã1 − B̃1F1 corresponds to the Schur stable matrix. The positive matrix P1 is obtained by solving the Lyapunov
equation as follows:

(Ã1 − B̃1F1)T P1(Ã1 − B̃1F1) − P1 = −QL, (18)

assuming QL = I5, and the control law Φ1 is described as follows:

Φ1 : u[k] =
 ϕ(−F1 x̃[k]) , if ∆Vc[k] < 0,

0 , otherwise,
(19)
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Fig. 12 Flow chart of calculation procedure to determine the optimal control input.

Additionally, ∆Vc[k] is defined as follows:

∆Vc[k] = V[k + 1] − V[k]

= x̃T [k + 1]P1 x̃[k + 1] − x̃T [k]P1 x̃[k]

= ( Ã1 x̃[k] + B̃1u[k])T P1( Ã1 x̃[k] + B̃1u[k]) − x̃T [k]P1 x̃[k]. (20)

5.1.2. Proposed method We assumed that the output period is Ty = 20 [ms] and that for the input period is Tu = 5
[ms]. A2 and B2 in Eq. (2) are obtained by discretizing Eq. (1) with the period Ts =5 [ms]. n = Ty/Tu = 4 and d = 4 in
Eq. (3) are introduced. Then, Ã2 and B̃2 in Eq. (3) are introduced as follows:

Ã2 =


A2 B2 04×3

I3×3

04×5 01×3

 , B̃2 =

 07×1

1

 .
The feedback gain F2 described in (Chida et al., 2019) is designed by solving the LQ optimal control problem using
MATLAB R⃝, and the weightings are specified as follows: Q = diag(109, 107, 5 × 10−5, 5 × 10−5, 107, 107, 107, 107),

R = 1.
(21)

The obtained feedback gain was F2 = [−1.53, 6.14 × 10−2, 4.79 × 10−8, 7.02 × 10−7, 6.51 × 10−1, 6.32 × 10−1, 6.13 ×
10−1, 5.81×10−1], and Ã2− B̃2F2 corresponds to the Schur stable matrix. The positive matrix P2 was obtained by solving
the Lyapunov equation (10) with QL = I8. It is appropriate to use the same parameters Q and R, for the conventional
and proposed methods. However, it is impossible because the dimensions of the state variables of the conventional and
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proposed plants are different. The first four variables, z, ż, pa, and pb, coincide in the two plants; thus proving that the
first four parameters of Q are the same. Moreover, we could not obtain sufficient control performance using the same
parameters for the conventional and proposed methods. Therefore, Q was retuned by trial-and-error to obtain sufficient
performance using the conventional method.

5.2. Numerical simulations
Numerical simulations were performed on the pneumatic isolation table system model. The impulse disturbance

responses were obtained for the proposed and conventional methods. The impulse disturbance corresponds to the distur-
bance generated by dropping a rubber baseball from a height of 600 [mm] above the isolation table. The disturbance is
applied 1 [s] after starting the simulation. The obtained simulation results are shown in Fig. 13. The left figure shows the
response of the displacement z, and the right figure shows the control inputs. In each figure, the solid blue line represents
the response of the proposed method, and the dashed red line represents that of the conventional method. As shown in
Fig. 13, the performance of the proposed method is superior to that of the conventional method. The key point in the
proposed method is that it makes the resolution of the control input value finer by using a multirate control input. If the
period is specified such that Ts = Ty = Tu = 5 [ms] in the conventional method, it is possible to obtain the responses as
indicated by the solid line in Fig. 8. The response is similar to that of the proposed method, as shown in Fig. 13. This
implies that we can consider a relatively long output period, although it is necessary to specify a relatively short input
period in the case of a plant with a quantized input.

6. Experiments
6.1. Experimental system configuration

The configuration of the experimental device is depicted in Fig. 14. The data obtained from the laser-displacement
and pressure sensors, which are attached to the experimental device, are converted by A/D(Analog/Digital) conver-
sion, and the control input applied to the plant is determined by DSP(Digital Signal Processor) calculations. After
deciding the control input, the voltage command is conveyed to the solenoid valve through digital input-output and
D/A(Digital/Analog) conversions.

6.2. Observer
It is necessary to remove noise from the sensor signal because the signals from the pressure sensor are noisy. Thus,

we designed a Kalman filter and performed experiments with the estimated values of the state x̂, which are expressed as
follows:

x̂[k] = Ax̂[k − 1] + Bu[k − d − 1] + K(y[k] − CAx̂[k − 1] − CBu[k − d − 1]). (22)

Here, A, B and C are the matrices of the state space equation in the discrete time of the plant and they are specified such
that A = A1 and B = B1 for the conventional method and A = A2 and B = B2 for the proposed method. C = I is
employed in each case. A block diagram of Eq. (22) is shown in Fig. 15, where C = I4, y = x, and K are the output
matrix, measured values, and Kalman gain, respectively. The Kalman gain K is introduced to Eq. (23) and positive

Fig. 13 Simulation results for impulse disturbance response. The proposed method provides superior control
performance to the conventional method.
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Fig. 14 Control system in experiment. Multirate and MPC
control calculation is executed by DSP by using
a displacement sensor and pressure sensor signal.

Fig. 15 Block diagram of Kalman filter

Fig. 16 Measured and estimated values using the Kalman filter for an impulse-type disturbance control response.
The disturbance is applied at 1 [s]. Each variable is estimated accurately by reducing noise.

definite symmetric matrix is P introduced to Eq. (24), which is the Riccati equation in discrete time systems.

K = PCT [CPCT + Re]−1. (23)

P = A(P − PCT [CPCT + Re]−1CP)AT + Ru, (24)

Here, Re and Ru are covariance matrices of the observation and system noise, respectively. It is assumed that there is no
correlation between each observation noise and Re has white noise following a normal distribution, and Re is introduced
from the variance of the sensor output without any input. Alternatively, Ru is considered as a tuning parameter because
the system noise cannot be measured. Re and Ru are expressed as follows:

Re = diag(3.86 · 10−11, 1.91 · 10−5, 5.43 · 104, 5.09 · 104), (25)

Ru = diag(10−13, 10−7, 0.5, 1). (26)

The measured values of the sensor and the estimated values with the Kalman filter are shown in Fig. 16. In Fig. 16, the
responses of z, ż, pa, and pb are shown. The solid blue line denotes the measured value, and the dashed line in red denotes
the estimated value. z does not have much noise, and the estimated value is almost the same as the measured one. For ż,
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pa, and pb, there is a delay in the estimated value, but the waveform is mostly the same as the measured one. The true
values of responses from 0.5[s] to 1[s] of pa, and pb are zero, and the estimated value is accurate, despite the noise in
the measured signal. Thus, we confirmed that noise is successively removed. The estimated state variable x̂[k] instead
of x[k] is used as measured signal in the experiments, as discussed in the next section. The experiments were conducted
successively by removing the noise using the Kalman filter.

6.3. Experimental results
The experimental results (impulse disturbance response) were used to verify the effectiveness of the proposed

method. The experimentally obtained impulse disturbance is the same as that in the simulation, and it was applied to
system 1 [s] after starting the experiment. In addition, the noise of the air pressure sensor responds sensitively and adds
unnecessary inputs before adding the impulse disturbance if ∆V[k] < 0. Therefore, we performed experiments after
changing ∆V[k] < 0 to ∆V[k] < −1.5 · 105. The designed parameter was introduced as follows:

Conventional method
 Q = diag(4 × 107, 5 × 106, 10−6, 10−6, 10),

R = 1,
(27)

Proposed method
 Q = diag(4 × 104, 2.6 × 106, 10−5, 10−5, 10, 10, 10, 10),

R = 1.
(28)

It is appropriate to use the same parameters, Q and R, for the conventional and proposed methods. However, it is im-
possible to use the same parameters. This is caused by the same reason described in Section 5.1.2. The experimental
results are shown in Figs. 17, 18, and 19. Figures 17 and 18 show the experimental results for both the proposed and
conventional methods, and each of the best responses are depicted in Fig. 19. Figs. 17 and 18 were obtained by repeating
ten times the same conditions, such as the initial variables, control law, and disturbance. We evaluated the steady-state
results to confirm the effectiveness of the proposed method. The RMSE(Root Mean Square Error) and convergence time
are shown in Table 1 and Table 2, respectively. Here, the time range of 2 to 4 [s] is employed as the evaluated period for
the RMSE, and the convergence time is defined if z converges |z| < 10−4 after the impulse disturbance is applied. On the
other hand, if z does not converge |z| < 10−4, it is expressed as “none”. Considering the steady-state error, Figs. 17, 18 and
Table 1 show that the proposed method provides superior steady-state error to the conventional method. The difference is
attributed to the discrete-valued control as well as the control input resolution. The discrete-valued control law includes
dead-band and steady-state error by the multiplicative effect of the dead-band and the integral property of the plant. Su-
perior performance could be obtained in the steady-state if the control input resolution is fine. Thus, the proposed method
provides steady-state performance superior to that of the conventional method. For the transient responses, from Figs.
17, 18, 19, and Table 2, the proposed method provides shorter convergence time compared to the conventional method.
The input for the conventional method is restricted within 1.5 [s], as shown in Fig. 18, and the trend is the same as that
of the simulation results. In contrast, the input for the proposed method is generated after 1.5 [s], as shown in Fig. 17,
and it does not coincide with the simulation results. The experimental and simulation output response for the proposed
method has almost the same trend, whereas, those for the conventional method show different trends. This means that the
proposed method provides superior robust performance compared to the conventional method. The result is attributed to
finer control input resolution in the proposed method. Thus, the effectiveness of the proposed method was verified through
the experiments.

7. Conclusion

In this study, discrete-valued control systems with discrete actuators are discussed. Specifically, we present examples
where control performance decreases during a longer input period and developed a method that improves the control
performance. We conducted experiments to verify the proposed method as numerical verifications have already been
conducted in (Chida et al., 2019). In addition, a Kalman filter was used to remove noise because the sensor signals were
too noisy to properly conduct the experiments. For the above improvement, control experiments were conducted, and the
effectiveness of the proposed method was verified by numerical simulations and experiments.
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Fig. 17 Experimental results of the proposed method. The
experiments are repeated ten times in the same
conditions.

Fig. 18 Experimental results of the conventional method. The
experiments are repeated ten times in the same
conditions.

Fig. 19 Experimental results for impulse disturbance response (each best result). The proposed method provides
superior performance compared to the conventional method.

Table 1 RMSE of the steady-state error. The proposed
method provides smaller errors compared to
the conventional method.

RMSE[m]
Proposed method Conventional method

case1 9.57 × 10−5 2.29 × 10−4

case2 8.99 × 10−5 1.02 × 10−4

case3 3.97 × 10−5 5.88 × 10−5

case4 3.97 × 10−5 9.89 × 10−5

case5 4.30 × 10−5 8.91 × 10−5

case6 6.65 × 10−5 5.10 × 10−5

case7 2.38 × 10−5 9.03 × 10−5

case8 4.08 × 10−5 2.24 × 10−4

case9 1.67 × 10−5 9.29 × 10−5

case10 2.56 × 10−5 3.16 × 10−5

average 4.81 × 10−5 1.07 × 10−4

Table 2 Convergence time. The proposed method
provides rapid convergence time compared to
the conventional method.

Convergence time[s]
Proposed method Conventional method

case1 none none
case2 none none
case3 0.940 1.28
case4 0.920 none
case5 0.800 2.66
case6 1.10 0.880
case7 0.280 2.00
case8 1.10 none
case9 0.760 none

case10 0.380 0.920
average 0.785 1.55
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