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Abstract: In the present paper, we discuss control design for a pneumatic isolation table
including different time delays that are dependent on control input polarity. For such a plant,
the control design problem is essentially that for a switched system. In the present paper, we
first describe a model of the plant. The plant is represented by a linear system in which the
input matrix in the state-space representation changes depending on the input polarity. Next,
we discuss state-feedback control design for the system. A controller is obtained by solving an
optimal problem, which guarantees stability as well as control performance, using linear matrix
inequality (LMI) techniques. Finally, the control performance achieved by the proposed method
is verified through numerical simulations.
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1. INTRODUCTION

Pneumatic isolation tables are used in numerous manufac-
turing fields, and active controls are used to apply appro-
priate damping effects to the tables (T.Kato et al. (2010,
2007)). In the present paper, we discuss control design
for a pneumatic isolation table, including time delays of
different lengths depending on control input polarity. The
control input for the table is generated by driving air inflow
valves from pressure tanks to air springs or by driving air
exhaust valves from the springs to atmospheric air. The
length of the transport route of air and the performances
of the valves produce an input time delay to a plant and
differ between inflow and exhaust devices. Therefore, the
plant includes different time delays depending on input
polarity. For such a plant, the control design problem
is essentially that for a switched system. In the present
paper, we first describe a model of the plant. The model
is represented as a linear system, the input matrix in the
state-space representation of which changes depending on
the input polarity. In contrast, the state variables and the
coefficient matrix of the state are the same if the input
polarity changes. Next, we discuss state feedback control
design for the system. Since the system consists of two
different control input structures depending on the polar-
ity of the input, two state feedback gains are designed for
each control input structure and are switched depending
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on the state variable. The feedback gains are designed
such that they guarantee the stability of the system if
the control is switched. A controller is obtained by solving
an optimal problem, which guarantees the stability of the
switching control. The stability is guaranteed based on
the Lyapunov method by using linear matrix inequalities
(LMIs). Finally, the control performance for a pneumatic
isolation table system provided by the proposed method is
verified through numerical simulations. The effectiveness
of the designed control gains and switching control law
is shown. A number of studies have investigated control
for a pneumatic isolation table (M.Koike et al. (2013);
N.Maruyama et al. (2015); T.Kato et al. (2007); J.Sun and
K.Kim (2013); M. Heertjes (2006); K.Kawashima et al.
(2007)) and time-delay control (Y.H.Shin and K.J.Kim
(2009); P.Chang et al. (2010)). However, to our knowledge,
there has been no investigation of a control problem con-
sidering differences in input time delays depending on the
input polarity. On the other hand, a number of studies
have examined control problems of time-delay systems
using the H∞ loop shaping method or the classical Smith
compensation (A.Kojima and Y.Ichikawa (2008)). More-
over, X.Dongmei et al. (2008) discussed control synthesis
for a switched system with input time delay. However, they
assumed a single time delay in each control input channel,
and their control cannot be applied to a system that
includes different time delays depending on the polarity
of the input. Thus, control design for the switched system
considered herein has not yet been reported.
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Fig. 1. Block diagram of the plant

In the present paper, R and N+ denote the set of real
numbers and the set of positive integers, respectively, and
I and 0n×m represent the unity matrix and a zero matrix
of size n×m, respectively.

2. CONTROLLED SYSTEM

2.1 Plant

The controlled system given by the following equation is
discussed in the present paper:

G : x[k + 1] = Ax[k] + bug[k] (1)

ug[k] = up[k − np] + un[k − nn]

where x[k] ∈ R ng×1 is the state vector and is assumed to
be measurable, ug[k] ∈ R1 is the control input, and A and
b are a constant matrix and a vector, respectively. It is
assumed that (A, b) is controllable. Where, nu and ns are
defined as nu = max(np, nn) and ns = ng+nu. The control
input ug[k] consists of a positive value input, up[k] ∈ R1,
and a negative value input, un[k] ∈ R1. These two inputs
are applied to G with different input time delays. The
time delay for a positive input is np ∈ N+, and that for
a negative input is nn ∈ N+. It is assumed that np > nn

and nu = np for the convenience of the present paper,
but the discussion of the paper can be applied to the case
of np < nn and nu = nn. We assume that the inputs
of the positive input up[k] and the negative input un[k]
cannot be simultaneously added to the system, which is
therefore considered to be a switched system depending
on the polarity of the control inputs. A block diagram of
the system is shown in Fig. 1. The system appears in a
control problem of a pneumatic isolation table, and an
example model is shown in Section 5.

2.2 State-space Model

The controlled system in Fig. 1 can be transformed to
the system shown in Fig. 2 by equivalent transformation.
Two inputs cannot be added to the system simultaneously.
As such, the system cannot be considered to be a two-
input system, but is instead considered to be an input-
switched system depending on the polarity of the input.
Thus, the two systems shown in Fig. 3 and Fig. 4 are
switched depending on the sign of the input, up[k] or un[k].
The state-space representation of the equivalent system is
described as follows:

G̃ :x̃[k + 1] = Ãx̃[k] +α[k] (2)

α[k] = b̃pup[k] or α[k] = b̃nun[k] (3)

Where,

Fig. 2. Equivalent system of the plant

Fig. 3. Block diagram in the case of a positive input

Fig. 4. Block diagram in the case of a negative input

x̃[k] =




x[k]
ug[k]
u1[k]
...

unn−2[k]
unn−1[k]
unn [k]

unn+1[k]
...

unu−2[k]
unu−1[k]




, b̃p =




0
0
0
...
0
0
0
0
...
0
1




, b̃n =




0
0
0
...
0
1
0
0
...
0
0




(4)

Ã =




A b 0 0
1 0 · · · 0
0 1

1

0 0 ...
. . .

...
1

1
1

0 0 0 · · · 1
0 0 0 · · · 0




(5)

The state vector x̃[k] is assumed to be measurable. Note

that b̃p and b̃n differ depending on the length of the input
time delay, and the input is added to the system through
different input vectors. Therefore, the system is considered
to be a switched system. In contrast, the state vector x̃[k]

and the coefficient matrix Ã are invariant for the switched
input. Although (Ã, b̃p) is controllable, (Ã, b̃n) is not
controllable, because it includes nu −nn of uncontrollable
z−1. Moreover, z−1 is stable, so (Ã, b̃n) is stabilizable.
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3. CONTROL LAW

The regulation problem using the state feedback control
is considered in the present paper. Since the inputs differ
according to the polarity of them and cannot be added to
the system simultaneously, up[k] and un[k] are switched
by an appropriate control law. The following control law
is adopted in the present paper. First, two feedback
control gains, Fp and Fn, are appropriately designed in
the proposed procedure such that the absolute values of
all of the eigenvalues of Ã − b̃pFp, Ã − b̃nFn, and Ã −
b̃pFn are less than 1 and the stability of the system by
switching of the input is guaranteed. In order to guarantee
the stability of switching control, feedback gains Fp and
Fn are designed such that the following inequalities are
satisfied:



(Ã− b̃pFp)
TP (Ã− b̃pFp)− P < 0

(Ã− b̃nFn)
TP (Ã− b̃nFn)− P < 0

(Ã− b̃pFn)
TP (Ã− b̃pFn)− P < 0

P > 0

(6)

This requires the existence of a common solution of P > 0
(T.Iida and Y.Chida (2014)). It is assumed the P > 0
exists. As shown in the next section, control design is exe-
cuted using LMIs. In the control design procedure, Fp and
Fn are selected such that they provide sufficient control
performance for up[k] = −Fpx̃[k] and un[k] = −Fnx̃[k],
respectively. Note that the second inequality in (6) guar-

antees the stability even if (Ã, b̃n) is uncontrollable.

Second, the control input is selected according to the
following switching law: Ψ(x̃[k]),

Ψ(x̃[k]) =




(i) : up[k] = −Fpx̃[k], un[k] = 0
if − Fpx̃[k] > 0 ∧ −Fnx̃[k] > 0

(ii) : up[k] = 0, un[k] = −Fnx̃[k]
if − Fpx̃[k] < 0 ∧ −Fnx̃[k] < 0

(iii) : up[k] = 0, un[k] = −Fnx̃[k]
if − Fpx̃[k] > 0 ∧ −Fnx̃[k] < 0

(iv) : up[k] = −Fnx̃[k], un[k] = 0
if − Fpx̃[k] < 0 ∧ −Fnx̃[k] > 0

(v) : up[k] = 0, un[k] = 0
if − Fpx̃[k] = 0 ∧ −Fnx̃[k] = 0

(7)

In case (i), both −Fpx̃[k] and −Fnx̃[k] are positive. In this
case, up[k] = −Fpx̃[k] is selected because Fp is designed
such that up[k] = −Fpx̃[k] provides sufficient control
performance. In case (ii), both −Fpx̃[k] and −Fnx̃[k] are
negative. In this case, un[k] = −Fnx̃[k] is selected because
Fn is designed such that un[k] = −Fnx̃[k] provides suffi-
cient control performance. In contrast, several selectable
combinations exist in cases (iii) and (iv). In the present
paper, for the sake of convenience, Fn is selected for cases
(iii) and (iv). The first reason for this selection is that Fn

is an appropriate gain for b̃n, the time delay of which is
shorter than b̃p. The second reason for this selection is that
it is possible to reduce the conservativeness. That is, the
minimum number of Lyapunov inequalities in (6) for the
switching is considered. A flowchart of the control input
decision procedure is shown in Fig. 5. A block diagram

Fig. 5. Flow chart of the proposed input switching

Fig. 6. Block diagram of the proposed switched system

of the control system using the switching control law is
shown in Fig. 6.

4. DESIGN OF FEEDBACK GAIN

4.1 Problem Statement

In this section, feedback gains Fp and Fn are designed.
First, we assume that reference feedback gains F ∗

p ∈ R1×ns

and F ∗
n ∈ R1×ns are designed in advance such that Ã −

b̃pF
∗
p and Ã − b̃nF

∗
n provide desired performance. Note

that F ∗
p and F ∗

n do not necessarily satisfy (6). The design
method of F ∗

p and F ∗
n is described in the next section. If

F ∗
p and F ∗

n are obtained, feedback gains Fp and Fn, which
provide approximately the same performance for F ∗

p and
F ∗
n , are designed in the next step based on the following

performance index (M.Tanemura and Y.Chida (2016)).

J(F ) = (F − F ∗)M(F − F ∗)T (8)

F ∗ := [F ∗
p F ∗

n ], F := [Fp Fn] (9)

M :=

[
Mp 0
0 Mn

]
(10)

where the reference feedback gains F ∗
p and F ∗

n are repre-
sented as

F ∗
p = [f̃∗

p,1, f̃∗
p,2, · · · , f̃∗

p,ns
], (11)

F ∗
n = [f̃∗

n,1, f̃∗
n,2, · · · , f̃∗

n,ng+nn
,01×(nu−nn)]. (12)

Moreover, Mp and Mn are weighting matrices, which are
defined as

Mp := diag[1/(f̃∗
p,1)

2, 1/(f̃∗
p,2)

2, · · · , 1/(f̃∗
p,ns

)2], (13)

Mn := diag[1/(f̃∗
n,1)

2, 1/(f̃∗
n,2)

2, · · · , 1/(f̃∗
n,ng+nn

)2

, 1 , 1 , · · · , 1, 1]. (14)

Here, Mp and Mn are specified for normalization of the
error between Fp − F ∗

p and Fn − F ∗
n in J(F ).
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by an appropriate control law. The following control law
is adopted in the present paper. First, two feedback
control gains, Fp and Fn, are appropriately designed in
the proposed procedure such that the absolute values of
all of the eigenvalues of Ã − b̃pFp, Ã − b̃nFn, and Ã −
b̃pFn are less than 1 and the stability of the system by
switching of the input is guaranteed. In order to guarantee
the stability of switching control, feedback gains Fp and
Fn are designed such that the following inequalities are
satisfied:



(Ã− b̃pFp)
TP (Ã− b̃pFp)− P < 0

(Ã− b̃nFn)
TP (Ã− b̃nFn)− P < 0

(Ã− b̃pFn)
TP (Ã− b̃pFn)− P < 0

P > 0

(6)

This requires the existence of a common solution of P > 0
(T.Iida and Y.Chida (2014)). It is assumed the P > 0
exists. As shown in the next section, control design is exe-
cuted using LMIs. In the control design procedure, Fp and
Fn are selected such that they provide sufficient control
performance for up[k] = −Fpx̃[k] and un[k] = −Fnx̃[k],
respectively. Note that the second inequality in (6) guar-

antees the stability even if (Ã, b̃n) is uncontrollable.

Second, the control input is selected according to the
following switching law: Ψ(x̃[k]),

Ψ(x̃[k]) =




(i) : up[k] = −Fpx̃[k], un[k] = 0
if − Fpx̃[k] > 0 ∧ −Fnx̃[k] > 0

(ii) : up[k] = 0, un[k] = −Fnx̃[k]
if − Fpx̃[k] < 0 ∧ −Fnx̃[k] < 0

(iii) : up[k] = 0, un[k] = −Fnx̃[k]
if − Fpx̃[k] > 0 ∧ −Fnx̃[k] < 0

(iv) : up[k] = −Fnx̃[k], un[k] = 0
if − Fpx̃[k] < 0 ∧ −Fnx̃[k] > 0

(v) : up[k] = 0, un[k] = 0
if − Fpx̃[k] = 0 ∧ −Fnx̃[k] = 0

(7)

In case (i), both −Fpx̃[k] and −Fnx̃[k] are positive. In this
case, up[k] = −Fpx̃[k] is selected because Fp is designed
such that up[k] = −Fpx̃[k] provides sufficient control
performance. In case (ii), both −Fpx̃[k] and −Fnx̃[k] are
negative. In this case, un[k] = −Fnx̃[k] is selected because
Fn is designed such that un[k] = −Fnx̃[k] provides suffi-
cient control performance. In contrast, several selectable
combinations exist in cases (iii) and (iv). In the present
paper, for the sake of convenience, Fn is selected for cases
(iii) and (iv). The first reason for this selection is that Fn

is an appropriate gain for b̃n, the time delay of which is
shorter than b̃p. The second reason for this selection is that
it is possible to reduce the conservativeness. That is, the
minimum number of Lyapunov inequalities in (6) for the
switching is considered. A flowchart of the control input
decision procedure is shown in Fig. 5. A block diagram

Fig. 5. Flow chart of the proposed input switching

Fig. 6. Block diagram of the proposed switched system

of the control system using the switching control law is
shown in Fig. 6.

4. DESIGN OF FEEDBACK GAIN

4.1 Problem Statement

In this section, feedback gains Fp and Fn are designed.
First, we assume that reference feedback gains F ∗

p ∈ R1×ns

and F ∗
n ∈ R1×ns are designed in advance such that Ã −

b̃pF
∗
p and Ã − b̃nF

∗
n provide desired performance. Note

that F ∗
p and F ∗

n do not necessarily satisfy (6). The design
method of F ∗

p and F ∗
n is described in the next section. If

F ∗
p and F ∗

n are obtained, feedback gains Fp and Fn, which
provide approximately the same performance for F ∗

p and
F ∗
n , are designed in the next step based on the following

performance index (M.Tanemura and Y.Chida (2016)).

J(F ) = (F − F ∗)M(F − F ∗)T (8)

F ∗ := [F ∗
p F ∗

n ], F := [Fp Fn] (9)

M :=

[
Mp 0
0 Mn

]
(10)

where the reference feedback gains F ∗
p and F ∗

n are repre-
sented as

F ∗
p = [f̃∗

p,1, f̃∗
p,2, · · · , f̃∗

p,ns
], (11)

F ∗
n = [f̃∗

n,1, f̃∗
n,2, · · · , f̃∗

n,ng+nn
,01×(nu−nn)]. (12)

Moreover, Mp and Mn are weighting matrices, which are
defined as

Mp := diag[1/(f̃∗
p,1)

2, 1/(f̃∗
p,2)

2, · · · , 1/(f̃∗
p,ns

)2], (13)

Mn := diag[1/(f̃∗
n,1)

2, 1/(f̃∗
n,2)

2, · · · , 1/(f̃∗
n,ng+nn

)2

, 1 , 1 , · · · , 1, 1]. (14)

Here, Mp and Mn are specified for normalization of the
error between Fp − F ∗

p and Fn − F ∗
n in J(F ).
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Moreover, Fp and Fn are designed by minimizing J(F ) in
(8) using F ∗

p and F ∗
n , respectively. At the same time, the

stability conditions in (6) are guaranteed. The problem to
be solved is as follows:

min
F ,P

J(F ) s.t.




(Ã− b̃pFp)
TP (Ã− b̃pFp)− P < 0

(Ã− b̃nFn)
TP (Ã− b̃nFn)− P < 0

(Ã− b̃pFn)
TP (Ã− b̃pFn)− P < 0

P > 0
(15)

4.2 LMI Method for Solving the Optimization Problem

The optimization problem of (15) is solved using the LMI
method. Since the problem is non-convex, it is transformed
to a convex problem that can be solved as an LMI
formulation by using Tanemura’s method (M.Tanemura
and Y.Chida (2016)).

At the beginning, the stability conditions of (6) are repre-
sented as the following LMIs:[

X AppX − b̃py
T
p

XAT
pp − ypb̃

T
p X

]
> 0 (16)

[
X AnnX − b̃ny

T
n

XAT
nn − ynb̃

T
n X

]
> 0 (17)

[
X ApnX − b̃py

T
n

XAT
pn − ynb̃

T
p X

]
> 0 (18)

where App, Ann, and Apn are defined as

App := (Ã− b̃pF
∗
p ), (19)

Ann := (Ã− b̃nF
∗
n ), (20)

Apn := (Ã− b̃pF
∗
n ). (21)

and yp ∈ Rns×1 and yn ∈ Rns×1 are defined as

yp := X∆FT
p , yn := X∆FT

n . (22)

Where,∆Fp and ∆Fn are defined as

∆Fp := Fp − F ∗
p , ∆Fn := Fn − F ∗

n . (23)

Moreover, X ∈ Rns×ns is defined as

X := P−1. (24)

These inequalities are convex for variables of yp, yn, and
X.

In order to transform the performance index of (8) to
the LMI condition, γ is introduced, and the problem is
described as a γ-minimization problem for γ > J . Accord-
ing to Tanemura (M.Tanemura and Y.Chida (2016)), the
problem is described as a γ-minimization problem using
the following LMIs:[

αXm ym

yT
m γ

]
> 0, Xm > αM (25)

where α is a constant satisfying α > 0, and

Xm :=

[
X 0
0 X

]
, ym :=

[
yp

yn

]
. (26)

Equation (25) is a sufficient condition for γ > J hold-
ing. Using the described transformation, the minimization
problem of (15) is changed to the γ minimization problem
described in the following equation:

min
γ,ym,Xm

γ s.t. (16), (17), (18), (25) (27)

Then, the feedback gain F = [Fp, Fn] is obtained as

Fp = F ∗
p + yT

p X
−1, Fn = F ∗

n + yT
nX

−1. (28)

4.3 Design of Reference Feedback Gain

The reference feedback gains F ∗
p and F ∗

n must be obtained
in advance for the proposed procedure, and F ∗

p and F ∗
n

are designed such that Ã − b̃pF
∗
p and Ã − b̃nF

∗
n provide

the desired performances. First, a state feedback gain
Fm ∈ R1×ng is designed by an appropriate method, such
as LQ optimal control using (1), so that A−bFm is stable
and the eigenvalues provide sufficient convergence.

Next, F ∗
p and F̂ ∗

n are obtained by the state predictive
control as

F ∗
p = Fm

[
Anu Anu−1b · · · b

]
, (29)

F̂ ∗
n = Fm

[
Ann Ann−1b · · · b

]
, (30)

where F ∗
p ∈ R1×ns and F̂ ∗

n ∈ R1×(ng+nn) (K.Watanabe

(1993)). The size of the state predictive control gain F̂ ∗
n

for the minimal-order system of Fig. 4 is not equal to that
of x̃[k]. Moreover, the feedback gain F̂ ∗

n must be modified
to be of the same size as the state vector x̃[k]. Here, F ∗

n is
obtained by adding additional zeros to gains:

F ∗
n =

[
F̂ ∗
n 01×(nu−nn)

]
. (31)

Finally, the feedback gains are obtained by the following
procedure:

[Design procedure]

Step 1
A feedback gain Fm is designed for the plant without
the time delay of (1), such that A − bFm is stable and
provides sufficient regulation performance. It is possible
to use an appropriate state feedback control design, such
as the LQ optimal control, for the design of Fm.

Step 2
F ∗
p and F ∗

n are specified by (29) and (31) based on the
state predictive control.

Step 3
Fp and Fn are derived by solving the minimization
problem of (27). The solution satisfies the stability
conditions for the switched system.

5. PNEUMATIC ISOLATION TABLE CONTROL
EXAMPLE

5.1 Pneumatic Isolation Table

The table is supported by four air springs, the pressures
of which are controlled by air inflow into each spring or
air outflow to the atmosphere. Air flow control is executed
using servo valves and the air transmitted through air pipe
arrangements. In such situations, time delays occur due
to the transmission time of the air movement. Since the
length of the pipe arrangement differs between the inflow
and outflow paths, the length of the time delay differs
between the inflow and the outflow. Therefore, the system
includes time delays of different lengths, which depend on
the polarity of the control input.
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Fig. 7. Model of the pneumatic isolation table

5.2 Model

The model of the system is shown in Fig. 7. In the present
paper, vertical parallel motion is considered. The control
output is z, and airflow is used as the control inputs
for the inflow into and the outflow from the air springs.
The parameters are shown in Table 1. The motion of the
table is assumed to be restricted to be parallel to the
vertical motion. By considering the equilibrium condition
of thermodynamics in the air springs, the equation of
motion of the system is obtained as

mz̈ + cż + kz = Spa (32)

ṗa =
κRsT

(za + hz)S
{ug − µ(pa − pb)}−

κ(p0 + pa)

za + hz
żh (33)

ṗb =
κRsT

zbS
µ(pa − pb). (34)

If the approximation of za ≫ hz and p0 ≫ pa in
(33) and (34), respectively, is executed, the state-space
representation of the plant is obtained as follows:

ẋ(t) = Acx(t) + bcug(t) (35)

where

x(t) = [z ż pa pb]
T (36)

Ac =




0 1 0 0
− k

m − c
m

S
m 0

0 − κ
za
p0h − κ

zaS
RsTµ

κ
zaS

RsTµ
0 0 κ

zbS
RsTµ − κ

zbS
RsTµ


 (37)

bc =
[
0 0

κ

zaS
RsT 0

]T
. (38)

The system of (35) is discretized by the sampling period of
Ts =2 [ms], assuming the zero-order hold. The state-space
representation of the discretized model is given as

x[k + 1] = Ax[k] + bug[k] (39)

As shown in Table 1, the input time delays for inflow
and outflow are 20 [ms] and 10 [ms], respectively. In the
discretized model, the input time delays correspond to
np = 10 and nn = 5 for inflow and outflow, respectively,
because the sampling period is Ts =2 [ms].

5.3 Design of Feedback Gains

Feedback control gains are designed by the proposed
procedure.
(Step 1) A reference feedback gain Fm is designed for the
plant of (39) using the LQ optimal feedback control design.
The weighting matrices for the state and the input are Q
and R, respectively, and are specified as

Q = diag[6.5× 108 1.5× 105 1× 10−5 1× 10−5], (40)

R = 1. (41)

Table 1. Plant parameter values

m 13.6 [kg] Mass of table

p0 0.035× 106 [Pa] Primary pressure

za 0.034 [m] Equiv. air spring height

zb 0.294 [m] Equiv. buffer tank height

S 4.08× 10−3 [m2] Contact area of air spring

T 293 [K] Gas temperature

k 8× 103 [N/m] Equiv. spring constant

c 70 [Ns/m] Equiv. damping coefficient

Rs 287 [J/(kgK)] Gas constant

κ 1.4 Ratio of specific heat

µ 3.87× 10−7 [kg/(sPa)] Valve coefficient

h 0.966 Volume conversion coefficient

z - [m] Displacement of isolation table

pa - [Pa] Air spring pressure deviation

pb - [Pa] Buffer tank pressure deviation

ug - [kg/s] Mass flow rate

up - [kg/s] Mass flow rate (Supply)

un - [kg/s] Mass flow rate (Exhaust)

Lp 20× 10−3 [s] Input time delay (Supply)

Ln 10× 10−3 [s] Input time delay (Exhaust)

The obtained feedback gain Fm is

Fm = [4.237, 0.1754, 4.763× 10−7, 4.847× 10−7]. (42)

(Step 2) The feedback gains of F ∗
p and F ∗

n are derived by
(29) and (31), respectively, based on the state prediction
control. The obtained gains of F ∗

p and F ∗
n are

F ∗
p =[1.544, 2.074× 10−1, 3.728× 10−7,

1.764× 10−6, 6.212× 10−1, 5.977× 10−1,

5.741× 10−1, 5.508× 10−1, 5.292× 10−1,

5.116× 10−1, 5.029× 10−1, 5.132× 10−1,

5.632× 10−1, 6.959× 10−1], (43)

F ∗
n =[2.947, 1.985× 10−1, 3.060× 10−7,

1.218× 10−6, 5.116× 10−1, 5.029× 10−1,

5.132× 10−1, 5.632× 10−1, 6.959× 10−1,

0, 0, 0, 0, 0]. (44)

(Step 3) The feedback gains of Fp and Fn are derived by
solving the minimization problem described by the LMIs
of (27). Here, α is specified as α = 1. By solving the
minimization problem, the obtained feedback gains are
shown in the following. The minimum γ is γ = 2.498, J is
J(F ) = 0.2397.

Fp =[1.335, 1.904× 10−1, 3.460× 10−7,

1.651× 10−6, 5.767× 10−1, 5.552× 10−1,

5.333× 10−1, 5.113× 10−1, 4.898× 10−1,

4.702× 10−1, 4.630× 10−1, 4.793× 10−1,

5.390× 10−1, 6.839× 10−1] (45)

Fn =[2.298, 1.773× 10−1, 2.860× 10−7,

1.199× 10−6, 4.783× 10−1, 4.691× 10−1,

4.744× 10−1, 5.101× 10−1, 6.092× 10−1,

− 4.498× 10−3, 6.361× 10−2, 1.124× 10−1,

1.390× 10−1, 1.435× 10−1] (46)

6. SIMULATION RESULTS

Numerical simulations are carried out using the non-
linear plant model of (32) through (34). A square-wave
disturbance having a magnitude of −15 and a width
of 2 [ms] is added into the acceleration term at 1 [s]
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Fig. 7. Model of the pneumatic isolation table

5.2 Model

The model of the system is shown in Fig. 7. In the present
paper, vertical parallel motion is considered. The control
output is z, and airflow is used as the control inputs
for the inflow into and the outflow from the air springs.
The parameters are shown in Table 1. The motion of the
table is assumed to be restricted to be parallel to the
vertical motion. By considering the equilibrium condition
of thermodynamics in the air springs, the equation of
motion of the system is obtained as

mz̈ + cż + kz = Spa (32)

ṗa =
κRsT

(za + hz)S
{ug − µ(pa − pb)}−

κ(p0 + pa)

za + hz
żh (33)

ṗb =
κRsT

zbS
µ(pa − pb). (34)

If the approximation of za ≫ hz and p0 ≫ pa in
(33) and (34), respectively, is executed, the state-space
representation of the plant is obtained as follows:

ẋ(t) = Acx(t) + bcug(t) (35)

where

x(t) = [z ż pa pb]
T (36)

Ac =




0 1 0 0
− k

m − c
m

S
m 0

0 − κ
za
p0h − κ

zaS
RsTµ

κ
zaS

RsTµ
0 0 κ

zbS
RsTµ − κ

zbS
RsTµ


 (37)

bc =
[
0 0

κ

zaS
RsT 0

]T
. (38)

The system of (35) is discretized by the sampling period of
Ts =2 [ms], assuming the zero-order hold. The state-space
representation of the discretized model is given as

x[k + 1] = Ax[k] + bug[k] (39)

As shown in Table 1, the input time delays for inflow
and outflow are 20 [ms] and 10 [ms], respectively. In the
discretized model, the input time delays correspond to
np = 10 and nn = 5 for inflow and outflow, respectively,
because the sampling period is Ts =2 [ms].

5.3 Design of Feedback Gains

Feedback control gains are designed by the proposed
procedure.
(Step 1) A reference feedback gain Fm is designed for the
plant of (39) using the LQ optimal feedback control design.
The weighting matrices for the state and the input are Q
and R, respectively, and are specified as

Q = diag[6.5× 108 1.5× 105 1× 10−5 1× 10−5], (40)

R = 1. (41)

Table 1. Plant parameter values

m 13.6 [kg] Mass of table

p0 0.035× 106 [Pa] Primary pressure

za 0.034 [m] Equiv. air spring height

zb 0.294 [m] Equiv. buffer tank height

S 4.08× 10−3 [m2] Contact area of air spring

T 293 [K] Gas temperature

k 8× 103 [N/m] Equiv. spring constant

c 70 [Ns/m] Equiv. damping coefficient

Rs 287 [J/(kgK)] Gas constant

κ 1.4 Ratio of specific heat

µ 3.87× 10−7 [kg/(sPa)] Valve coefficient

h 0.966 Volume conversion coefficient

z - [m] Displacement of isolation table

pa - [Pa] Air spring pressure deviation

pb - [Pa] Buffer tank pressure deviation

ug - [kg/s] Mass flow rate

up - [kg/s] Mass flow rate (Supply)

un - [kg/s] Mass flow rate (Exhaust)

Lp 20× 10−3 [s] Input time delay (Supply)

Ln 10× 10−3 [s] Input time delay (Exhaust)

The obtained feedback gain Fm is

Fm = [4.237, 0.1754, 4.763× 10−7, 4.847× 10−7]. (42)

(Step 2) The feedback gains of F ∗
p and F ∗

n are derived by
(29) and (31), respectively, based on the state prediction
control. The obtained gains of F ∗

p and F ∗
n are

F ∗
p =[1.544, 2.074× 10−1, 3.728× 10−7,

1.764× 10−6, 6.212× 10−1, 5.977× 10−1,

5.741× 10−1, 5.508× 10−1, 5.292× 10−1,

5.116× 10−1, 5.029× 10−1, 5.132× 10−1,

5.632× 10−1, 6.959× 10−1], (43)

F ∗
n =[2.947, 1.985× 10−1, 3.060× 10−7,

1.218× 10−6, 5.116× 10−1, 5.029× 10−1,

5.132× 10−1, 5.632× 10−1, 6.959× 10−1,

0, 0, 0, 0, 0]. (44)

(Step 3) The feedback gains of Fp and Fn are derived by
solving the minimization problem described by the LMIs
of (27). Here, α is specified as α = 1. By solving the
minimization problem, the obtained feedback gains are
shown in the following. The minimum γ is γ = 2.498, J is
J(F ) = 0.2397.

Fp =[1.335, 1.904× 10−1, 3.460× 10−7,

1.651× 10−6, 5.767× 10−1, 5.552× 10−1,

5.333× 10−1, 5.113× 10−1, 4.898× 10−1,

4.702× 10−1, 4.630× 10−1, 4.793× 10−1,

5.390× 10−1, 6.839× 10−1] (45)

Fn =[2.298, 1.773× 10−1, 2.860× 10−7,

1.199× 10−6, 4.783× 10−1, 4.691× 10−1,

4.744× 10−1, 5.101× 10−1, 6.092× 10−1,

− 4.498× 10−3, 6.361× 10−2, 1.124× 10−1,

1.390× 10−1, 1.435× 10−1] (46)

6. SIMULATION RESULTS

Numerical simulations are carried out using the non-
linear plant model of (32) through (34). A square-wave
disturbance having a magnitude of −15 and a width
of 2 [ms] is added into the acceleration term at 1 [s]
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Fig. 8. Output response for a disturbance (simulation)

Fig. 9. Input response for a disturbance (simulation)

Fig. 10. States of Ψ(x̃[k]) selected by the proposed proce-
dure

after the simulation starts. The regulation performance
for a disturbance by the proposed switching control is
evaluated. The simulation results are shown in Fig. 8
and Fig. 9, where Fig. 8 shows the control output, which
is the position of the table, z. The solid line indicates
the response by the proposed switching control, and the
dashed line indicates the response without control. The
proposed switching control provides sufficient regulation
performance. Fig. 9 shows the control input response.
The control inputs for the inflow and the outflow are
switched by the proposed procedure. The state of Ψ is
shown in Fig. 10. As shown in the figure, the state of
Ψ is appropriately selected by the proposed procedure.
Almost always the states of Ψ are (i) and (ii), but (iii)
and (iv) are selected in several situations. The simulation
results indicate that the proposed control procedure is
effective. Moreover, robustness for perturbations of time
delays has been verified through numerical simulations. As
a result, even if np and nn vary within ±60% individually,
the proposed controller maintains the control performance.
Details are omitted in this paper.

7. CONCLUSIONS

We herein examined a control problem for a plant with an
input time delay that varies depending on the input polar-
ity. A state feedback control design method was proposed

by solving a minimization problem, which guarantees sta-
bility for control input switching. Numerical simulations
were carried out for a pneumatic isolation table model,
and the results confirmed the effectiveness of the proposed
method.
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