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A B S T R A C T

Gait recognition has been an active research topic in recent years. It
has attracted increasing attention as it is an unobtrusive biometric
that can be captured from distance and without the need of interac-
tion with the subject. As a result, gait has become one of the latest
promising biometric. However, the practical deployment in real-time
surveillance and security access control applications are still consid-
ered a challenging task because of the presence of covariate factors
such as different clothing types, carrying conditions, walking sur-
faces, camera viewpoint and walking speed with respect to the sub-
ject. This is mainly because of the variations will alter an individual’s
appearance and increase the difficulty of gait recognition.

The goal of this thesis is addressing the problem of covariate fac-
tors that affect gait recognition performance. In particular, we aim
to extract the gait characteristics of the human for recognition under
variable covariate conditions. For this purpose, an efficient covariate
factor mitigation framework is proposed. First, we propose a feature
extraction method for robust gait recognition against different covari-
ate factors. We then adapt feature selection methods to select a subset
of the most relevant gait features which further reduces the effect of
covariate factors of gait recognition, and hence improves the overall
performance. Furthermore, we are also interested in exploring the use
of deep learning techniques to extract gait signatures for recognition.
Therefore, the contributions of this thesis are divided in three parts.

In the first part, we focus on modelling gait dynamics and elim-
inating the effect of the covariates by designing a simple yet effi-
cient model-based gait recognition system. The proposed approach
can handle occluded silhouette either from self-occluded or those by
objects which usually present significant challenges for other conven-
tional approaches. Hence, it shows robust performance against vari-
ous covariate factors in SOTON covariate database and also outper-
forms other state-of-the-art algorithms.

However, the recognition task can become complicated due to the
existence of challenging covariate factors. For instance, clothing type
has been demonstrated to be the most challenging one. This is be-
cause it can occlude a significant amount of gait features and com-
bined with the location of occlusion, which may differ for different co-
variate factors, relevant gait features may become irrelevant when the
covariate factor changes, and exploiting them can hinder the recogni-
tion performance. Therefore, feature selection has become an impor-
tant step to make gait analysis more manageable and to extract use-
ful information for the classification task. In the second part of the
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thesis, we present an empirical approach to evaluate the degree of
consistency among the performance of different selection algorithms
in the context of gait identification under the effect of various covari-
ate factors. In addition, we systematically compare the feature sub-
sets selected by six popular selection methods and the computational
cost of different selection approaches. We present a performance mea-
sure method via statistical and mixed-model analysis to examine the
feature selection across different classifiers and covariates. Then, we
investigate the effectiveness of feature selection approaches through
extensive experiments on two well-known benchmark databases: the
SOTON covariate database and the CASIA-B dataset. Our experimen-
tal results show that feature selection approaches significantly im-
prove the overall performance of gait recognition, also obtains results
that are comparable to other state-of-the-art recognition approaches.

In recent years, deep learning has gained significant attention from
the computer vision community. This is because deep learning mod-
els are capable of learning multiple layers of feature hierarchies by
constructing high-level features from low-level features. Hence, they
are more generic since the feature construction is fully automated.
Specifically, many recent studies have shown promising results for
applying deep learning approaches to a variety of applications (e.g.
image classification, text classification, natural language processing,
scene labeling, etc.). Therefore, in the last part of the thesis, we pro-
pose the use of convolutional neural network (CNN) for gait recog-
nition task. Inspired by the great success of CNNs in image classi-
fication tasks, we feed in the most widely used gait representation,
that is, the gait energy image (GEI), as the input to the CNN. More
specifically, the network structure contains six layers, with three con-
volutional layers, two fully connected layers and followed by a soft-
max layer. We conduct our experiments on the CASIA-B dataset and
OU-ISIR Treadmill B dataset which includes the largest variations of
view angles and clothing of combinations types. The experiment re-
sults show that our method can achieve far better performance com-
pared to hand-crafted features in conventional methods with mini-
mal knowledge of the problem required. For clothing variation, we
also employ a stacked progressive auto-encoders model to extract
clothing-invariant gait feature for recognition. The proposed method
is evaluated on the same clothing dataset, the results show that the
proposed method can yield good recognition accuracy even when the
combination of clothing types get more complicated.

The thesis concludes with a summary of our contributions. Last
but not least, we also suggest promising directions for future work
related to gait recognition system.
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Part I

I N T R O D U C T I O N T O G A I T R E C O G N I T I O N

In this part, we present a brief introduction to gait recogni-
tion. Then, it describes the background, challenges, objec-
tives and contributions of this research. Finally, it outlines
the content of this work.





1
I N T R O D U C T I O N

1.1 biometrics

Biometrics is the study of recognizing humans based on their phys-
iological or behavioural traits. Physiological traits are biological pat-
terns found on and in the human body, for example: face, iris, fin-
gerprint, DNA, palm print, hand geometry, etc. On the other hand,
behavioral traits patterns develop over time and become a consis-
tent characteristic, for example: gait, typing rhythm, signature, etc.
In Figure 1, fingerprint, iris, face, ear, hand geometry, palm print, fin-
ger vein geometry, gait, voice, signature, keyboard stroke pattern are
common biometrics used in various systems.

A biometric trait needs to satisfy the following properties [58]:

• Universality: each individual should have the trait.

• Distinctiveness: individuals can be well separated by the trait.

• Permanence: the trait should be sufficiently invariant over a pe-
riod of time.

• Collectability: the trait can be measured quantitatively.

A biometric system based on a certain trait may have either a
verification or and identification mode, depending on the applica-
tion context [58]. In the verification mode, the system validates the
claimed identity (of a subject) by comparing the query biometric trait
with his/her own reference trait stored in the system’s database. The
system conducts a one-to-one comparison to determine whether the
claim is true or not. Biometric verification has widely been used in
commercial applications such as access control. In the identification
mode, the system recognises a subject by searching all the biomet-
ric templates of all subjects in the database for a match. The system
conducts a one-to-many comparison for a subject’s identity. Biomet-
ric identification is used more frequently in the applications of law
enforcement, e.g., latent fingerprint identification, human gait iden-
tification. The flowcharts of both modes are shown in Figure 2, and
this thesis falls into the category of gait biometric identification.

1.2 human identification using gait

Human identity recognition is fundamental to human life, and the
technology of human identification and tracking from a distance may
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Figure 1: Examples of biometrics.

Figure 2: Biometric systems.

play important role in crime prevention, law enforcement, search for
missing people (e.g. missing children or people with dementia), etc.
Nowadays, CCTV cameras are widely installed in public places such
as airports, government buildings, streets and shopping malls for the
afore-mentioned purposes. In 2013, the British security industry au-
thority (BSIA) estimated there are up to 5.9 million CCTV cameras
nationwide, and that is around 1 every 11 people [6]. Because of the
need for sufficient manpower to supervise such a large number of
CCTVs, the need for automatic human identification systems is acute.

Recently, a number of reports (e.g., [70, 18]) suggested that be-
havioural biometrics, gait recognition, can be used for human identi-
fication from CCTV footage. In [70], based on a checklist for forensic
gait analysis, Larsen et al. managed to identify a bank robber in Den-
mark by matching surveillance footage, as illustrated in Figure 3a.
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Figure 3b shows a gait recognition scenario in UK where a burglar
was identified through gait analysis from a podiatrist [18]. These
pieces of gait-based evidences proved their usefulness by providing
incriminating evidence, leading to convictions in a court of law.

However, automated recognition of humans by their gait is a very
challenging research problem. Although solutions to many challenges
have been proposed, some key issues remain. In addition, only a
small number of approaches have been validated in real world en-
vironments. An operational automated gait recognition system does
not yet exist. The work presented in this thesis bring gait recognition
closer to real-world deployment. This is achieved by examining the
factors (also known as covariates) that are known to affect recogni-
tion in a more principled manner and propose solutions to some of
the fundamental problems.

(a)

(b)

Figure 3: CCTV images for the robbery case in Denmark [70], top: the per-
petrator, right: the suspect; (b) CCTV images for the burglary case
in UK [18], bottom: the perpetrator, right: the suspect.

1.3 challenges in gait recognition

Gait recognition is one of the most active research topics in the inter-
disciplinary areas of biometrics, pattern recognition, computer vision
and machine learning. However, in real-world scenarios, gait recogni-
tion became a difficult problem of computer vision because it often
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(a) Missing body parts (b) Noise and shadows

Figure 4: Pre-processed silhouettes with missing body parts, noise and shad-
ows.

suffers from obstacles caused by image noise and changing lighting
conditions. Specifically, extracting features from a gait video sequence
involves segmentation of the moving person from the background.
Image noise and changing lighting conditions directly affect the abil-
ity of algorithms to segment correctly the moving person from the
background thus causing missing body parts and the inclusion of
background (e.g. shadows) as shown in Figure 4. To reduce the ef-
fect of image noise and changing lighting conditions a pre-processing
stage is normally required in a gait recognition framework.

The complexity of the problem is further compounded with occlu-
sions as shown in Figure 5. There are two different types of occlusions
that normally occur in the scene, such as self occlusion and occlusions
from other objects. Self occlusion is caused by the cross over of the
legs and the swing of the hands as the person moves. Self occlusion is
unavoidable because a subject’s legs are self-occluded during motion.
However, it will incur minor losses of information in gait feature ex-
traction. On the other hand, occlusions from other objects, obscures a
significant amount of gait features and make human recognition dif-
ficult. Since the location of occlusion may differ for different objects,
relevant gait features may become irrelevant when the object changes,
and exploiting occluded gait features can hinder the recognition per-
formance.

In addition to image noise, lighting condition changes and occlu-
sions, gait is affected by variable covariate conditions. The presence
of variable covariate conditions in gait changes the available features
which eventually affects the way gait is represented. Example gait
sequences for the same person represented using state-of-the-art Gait
Energy Images proposed by Han and Bhanu [81] are shown in Figure 6
to highlight this aspect.

In gait recognition, the gallery set consists of people walking under
normal (see Figure 6a) covariate conditions (i.e. people walking un-
der similar and common, known conditions) and if the probe set also
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(a) Self-occluded silhouettes (b) Occluded with handbag

Figure 5: Samples images of occluded gait silhouette frames taken from SO-
TON covariate database [97]: (a) Self-occluded silhouettes (b) Oc-
cluded with the object .

(a) Normal (b) Carrying a bag (c) Wearing a Coat

Figure 6: Gait Energy Images of a subject under variable covariate condi-
tions.

consists of gait sequences under conditions similar to the gallery set
this brings out good results. However, when the covariate conditions
in the probe set are variable (see Figure 6b, Figure 6c) this incurs sig-
nificant drop in recognition performance. This is because the same
person’s appearance can be very different due to these covariate con-
dition differences between them.

Amongst the covariate conditions affecting gait, clothing poses one
of the most challenging issues in this area [53], as illustrated in Figure 7.
This is because variations in clothing alter an individual’s appearance,
making the problem of gait identification much more difficult [84]. It
will drastically alter the individual’s appearance with the variation of
different clothing types, such as baggy pants, skirt, down jacket, and
coats. In addition, variation in viewing angles will drastically affect
the performance of gait recognition [126], as illustrated in Figure 8.
The aforementioned issues has recently gained considerable attention
from all the gait researchers.
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Figure 7: A samples images of clothes variation from OU-ISIR Treadmill B
dataset [53]

Figure 8: GEI examples from CASIA-B dataset [126] of a subject from view
0◦to 18◦, with an interval of 18◦

1.4 objectives

The overall objective of this work is to reduce the effect of covariate
factors in gait recognition.

1. Robust gait representation against various covariate factors

Changes in covariate conditions adversely affect the performance
of gait recognition methods. One of the major goals of this work
is to improve the performance of existing gait recognition meth-
ods in the presence of variable covariate conditions in the probe
set. In particular, this work aims to investigate and improve the
performance of gait recognition under variable covariate condi-
tions.

2. Reduction of the effect of gait covariate factors using feature

selection

Most of the existing approaches in this area have been evalu-
ated without explicitly considering the most relevant gait fea-
tures, which might have compromised the gait recognition per-
formance. An objective of this work is to select the most relevant
and optimal gait features that are invariant to changes in gait
covariate conditions, on improving the performance of a gait
recognition system.

3. Improvements to gait recognition using deep learning tech-

niques

Many efforts have been made in recent years to develop recog-
nition algorithms for gait. However, previous approaches are
mostly used hand-crafted methods for representing human gait.
This research aims to investigate ways to incorporate the deep
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learning algorithms to solve the problem of gait recognition un-
der the presence of challenging covariate factors.

1.5 main contributions

The main contributions of this thesis are listed as below:

1. Automatic human silhouette body joint identification

We propose a simple model-based gait recognition focusing on
modeling gait dynamics and eliminating the effect of the covari-
ates on gait recognition. In particular, our method shows advan-
tages when handling the occluded silhouette either from self-
occlusion or those occluded by apparels, which are normally
disastrous for other gait feature approaches. The experimental
results demonstrate our method outperform other approaches
on SOTON covariate database under various covariate factors.

2. Feature selection for gait recognition

We present and compare feature selection techniques, designed
to maximise the final gait classification accuracy. The overall ap-
proach constitutes a general framework for different machine
learning algorithms, which we applied to the problem of feature
selection under the effect of various covariate factors in a model-
based approach. The implemented method addresses the prob-
lem of feature selection for gait recognition on two well-known
benchmark databases: the SOTON covariate database and the
CASIA-B dataset, respectively. The investigated approach is able
to select the discriminative input gait features and achieve an
improved classification accuracy on par with other state-of-the-
art methods.

3. Deep learning for gait recognition

We explore the use of deep learning approaches and show how
to adapt it for gait recognition under challenging covariate con-
ditions such as view and clothing. The proposed method is eval-
uated on the challenging view and clothing dataset and the re-
sults from our experiments demonstrate that our methods yield
better recognition accuracy in the case of large intra-class varia-
tion such as the view and clothing variations.

1.6 outline of thesis

The remaining chapters of this thesis are structured as follows:

• Chapter 2 - Literature Review

This chapter provides the relevant literature on gait recognition
framework with emphasis on feature representation, databases
and various algorithms against different covariate factors. We
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also make emphasis on some fundamental knowledge on fea-
ture templates, feature selection, and the concept of deep learn-
ing for gait recognition problem.

• Chapter 3 - Gait Recognition Framework

This chapter describes the implementation of the gait recogni-
tion framework used in this thesis. A simple yet efficient gait
representation based on model-based approach is propose to ad-
dress the problem of variable covariate conditions in gait recog-
nition.

• Chapter 4 - Feature Selection for Gait Recognition

This chapter investigates the problem of selecting a subset of the
most relevant gait features for improving gait recognition. This
is achieved by using a proper selection technique to find the
relevant features and discard redundant and irrelevant gait fea-
tures. We present an empirical approach to evaluate the degree
of consistency among the performance of different selection al-
gorithms in the context of gait identification under the effect of
various covariate factors.

• Chapter 5 - Deep Learning for Gait Recognition

This chapter proposes a method of gait recognition using a con-
volutional neural network (CNN) for learning and extracting
higher-level view-invariant and clothing-invariant gait features
that suitable for representing the human gait. However, rec-
ognizing subjects with variations caused by different types of
clothes is one of the most challenging tasks in gait recognition,
since the differences in appearances due to clothing variations
may be even larger than the difference due to personal identity.
Thus, we also propose to learn clothing-invariant gait features
for gait recognition in a progressive way by stacking multi-layer
of auto-encoders.

• Chapter 6 - Conclusions and Future Work

This chapter summarises the achievements of this thesis and
suggests directions for future research.



2
L I T E R AT U R E R E V I E W

2.1 general framework of a gait recognition system

There are three main components in a general gait recognition system,
as illustrated in Figure 9. Initially, segmentation processes are applied
to extract the human silhouettes from the video sequences. A number
of post-processing tasks including normalization of the silhouettes
are applied to the extracted silhouettes to register them on a common
platform. Then gait features are extracted and modelled to encode
the individual-specific gait information. Finally, classification is per-
formed to compute the similarity distance that will be used to claim
individual’s identity. Within all of these processes in the framework,
the most important step is extracting appropriate gait feature that
can uniquely distinguish subjects. Existing feature extraction meth-
ods can generally be classified as appearance-based methods and
model-based methods. Both appearance-based or model-based meth-
ods can be applied to 2D or 3D data sources. This section discusses
the research pertaining to the major components in the gait recogni-
tion framework: silhouette segmentation, feature extraction, feature
modeling and classification.

2.2 related works

2.2.1 Gait Recognition Review

In the specialized literature, a wide variety of gait recognition systems
have been proposed (cf. [73] for a recent review). Gait recognition
approaches can be classified into two main categories: model-based
and model-free methods [79]. There exists a considerable amount of
work in the context of both approaches for gait recognition. In this
section, we present conventional methods from each category with
emphasis on feature extraction only.

Model-based methods analyze the human body structures under-
lying the gait data, and extract measurable parameters, such as the
static and dynamic body parameters. Normally, these methods per-
form model fitting for matching in each frame of a walking sequence
so that the extracted kinematic parameters, such as joint trajectories,
can be measured. These approaches are normally robust to viewpoint
change and scale [110]. Bobick et al. [16] used two sets of activity-
specific static body parameters by considering the distances between
different human body parts. Yoo et al. [124] constructed a two-dimensional

11
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Figure 9: Major components of gait recognition algorithms. At first, silhou-
ettes are extracted and pre-processed using background subtrac-
tion algorithms. Then, gait features are computed from the seg-
mented silhouettes and these gait features are modelled to encode
better distinguishable elements. Finally, these modelled-features of
the test subject are compared on the pre-enrolled database to claim
the identity.

(2-D) stick figure from the extraction of nine body points derived
from skeleton data of each body segment based on human anatom-
ical knowledge. Tanawongsuwan et al. [102] reconstructed the hu-
man structure by focusing on trajectories of lower body joint an-
gles derived from motion capture data. Wang et al. [108] presented a
method based on positioning body joints according to the geometri-
cal characteristics shown during walking. Cunado et al. [32] proposed
a moving feature extraction analysis that automatically extracts and
describes human gait for recognition. The algorithm extracted the
moving model from a sequence of images by using Fourier series to
describe the motion of the thigh and apply temporal evidence gather-
ing techniques.

Model-free methods generally employ either shape of binary sil-
houettes or the whole motion pattern of the human body. Conversely,
these approaches are insensitive to the quality of silhouettes and noise
and have the advantage of low computation costs compared to model-
based approaches [113]. Collins et al. [28] established a method based
on template matching of body silhouettes in key frames. In [72], Lee
et al. described a moment-based representation of gait appearance by
using the features extracted from orthogonal view video silhouettes
of human walking motion. Sarkar et al. [94] proposed a baseline al-
gorithm for human identification using spatio-temporal correlation
of silhouette images. Wang et al. [109] developed a Chrono-Gait Im-
age (CGI) where the contour in each of gait frame was first extracted
and then encoded those in the same gait sequence to a multichannel
image, and showed its robustness to a complex surrounding environ-
ment in their experimental results. Han et al. [81] proposed a spatio-
temporal gait representation called Gait Energy Image (GEI) to distin-
guish human gait patterns for individual recognition. However, the
main drawback of model-free gait recognition is dealing with vari-
ous intra-class variations caused by the presence of covariate factors
such as clothing variations, shadows and carrying conditions [93].
To overcome the limitations of GEI as the gait representation, sev-
eral approaches have been proposed. Bashir et al. [8] proposed a fea-
ture selection method named Gait Entropy Image (GEnI). It measures
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Shannon entropy at each pixel to distinguish static and dynamic pix-
els of GEI. The GEnI represents a measure of the relevance of the
gait features extracted from the Gait Energy Image (GEI). Besides,
Bashir et al. [9] proposed a gait representation based on optical flow
fields computed from normalized and centred person images over a
complete gait cycle for gait recognition. Recently, Rida et al. [93, 91]
deployed a supervised feature extraction which uses the Modified
Phase-Only Correlation matching method to improve gait recognition
performance.

Our proposed method belongs to the class of model-based approaches
instead. In the model-based approach, static and dynamic features are
extracted from the silhouettes. In general, these features represent the
position and pose of various human body parts with respect to each
other as a person walks in the scene. The main advantage of forming
a gait signature in this manner is that it is view as well as scale in-
variant. However, whether model-based or model-free, the extracted
features could be affected by variations in different types of covariate
factors, which will complicate the human recognition process.

2.2.2 Human Gait Recognition Using Feature Selection

The selection of an optimal subset of features is an important step in
pattern recognition; often a large number of features are extracted to
better represent the target concept. Given a set of d features, the prob-
lem is to select a subset of size m that maximizes a scoring function.
This is essentially an optimization problem that involves searching
the space of possible feature subsets to find one that is optimal with
respect to a certain criterion [101].

Three main kind of approaches to features subset selection have
been commonly adopted [61, 64]: wrapper approaches, filter approaches
and embedded approaches. A wrapper approach uses machine learn-
ing algorithms in the search process, that is, it gauges the relevance
of a potential feature subset by directly evaluating the accuracy of a
model that has been trained on the selected features. In contrast, a fil-
ter approach filters undesirable data features before the classification
process. Filter approaches are then more efficient, in terms of com-
putational complexity, because they use statistical testing or heuris-
tics based on general characteristics of the data, instead of training
and evaluating a learning model on the data set as wrapper methods
do. Finally, in an embedded approach [45], the search for an optimal
subset of features is built into the learning stage. These methods are
thus learning-algorithm specific, which could be a benefit in that they
are tailored to the classification model, while at the same time being
far less computationally intensive and less prone to over-fitting than
wrapper methods. However, they are limited in terms of generality.
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Recent research in automated human gait recognition has mainly
focused on developing robust features representations and match-
ing algorithms. To the best of our knowledge, feature selection has
been mainly used as a method to pre-select discriminative human
body parts in most of the conventional approaches [93, 37]. Rida et
al. [93] proposed a method to explore the most discriminative hu-
man body part based on group Lasso of motion to reduce the intra-
class variations so as to improve the gait recognition performance.
In [37], Dupuis et al. proposed a feature selection method based on
Random Forest algorithm to rank features importance. But then the
respective gait analysis have mostly been evaluated without explic-
itly considering the most relevant gait features, which might have
compromised the classification performance. Besides, some of these
approaches [124, 81] have considered conventional dimensionality re-
duction or statistical tools, such as: Principal Component Analysis
(PCA) and Analysis of Variance (ANOVA). In [44], Guo and Nixon
used Mutual Information (MI) to measure the utility of selected fea-
tures for recognition. Bashir et al. [7] developed a supervised ap-
proach based on cross-validation to explore features subsets from
the Gait Energy Image (GEI) in order to optimise recognition perfor-
mance. That required prior knowledge about the GEI feature charac-
teristics to overcome the problems associated with searching exhaus-
tively through a high-dimensional gait feature space. Moreover, the
information contained in GEI can be erroneous when in the presence
of various covariate factors. To reduce the effect of covariate factors
in gait recognition, Guan et al. [43] employed a classifier ensemble
method based on Random Subspace Method (RSM) and Majority Vot-
ing (MV) as feature selection and classification method to address
this problem. Recently, Semwal et al. [96] introduced an optimized
feature selection method based on incremental feature selection strat-
egy for biometric gait data classification. Since gait features extracted
from segmented video sequences are frequently interspersed with
background noise or covariate factors, the classification could be mis-
guided. Hence, without employing a simple yet effective gait feature
selection, gait features being extracted could be redundant or irrele-
vant to the gait recognition task. Also, feature selection could provide
valuable clues in terms of understanding the underlying distinctness
among human gait patterns.

The idea of using an evolutionary computational approach for fea-
ture selection in gait recognition was firstly explored in our previ-
ous work [123, 120]. In [123, 120], we proposed wrapper approaches
based on evolutionary algorithms, namely Genetic Algorithm (GA)
and Geometric Particle Swarm Optimization (GPSO) assisted by Sup-
port Vector Machine (SVM). These methods have been been used to
reduce the effect of the covariates: the results showed a slight im-
provement in gait recognition performances on the SOTON covari-
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ate database [97]. In addition, previous methods involved data pre-
processing steps such as feature outlier removal. In [2], Altilio et al.
introduced a feature selection method based on genetic algorithm for
stereophotogrammetric analysis to extract useful information from
medical data. Moreover, these methods have a high computational
cost (i.e. computational time) and therefore are not applicable for real-
time gait recognition systems. In our work, we extend our methodol-
ogy on deploying optimal feature selection approaches for selecting
the relevant set of gait features to mitigate the effect of changes in
different covariate factors while reducing the computational cost. To
the best our knowledge, a comprehensive comparative analysis on
feature selection is seldom addressed in gait classification literature,
which mostly focuses on presenting novel approaches. Therefore, we
aim to evaluate the degree of consistency among the performance
of different selection algorithms in the context of gait identification
under the effect of various covariate factors.

2.2.3 A Review on Deep Learning Techniques

The convolutional neural network (CNN) model is an important type
of feed-forward neural with special success on applications where the
target information can be represented by hierarchy of local features
(see ref. [41]). A CNN is defined as the composition of several convo-
lutional layers and several fully connected layers. Each convolutional
layer is, in general, the composition of a non-linear layer and a pool-
ing or sub-sampling layer to get some spatial invariance. For images,
the non-lineal layer of the CNN takes advantage, through local con-
nections and weight sharing, of the 2D structure present in the data.
These two conditions impose a very strong regularization on the total
number of weights in the model, which allows a successful training
of the model by using back-propagation. In our approach, although
we do not feed the model directly with the RGB image pixels, the
CNN approach remains relevant since the Gait Energy Image (GEI)
information also shares the local dependency property as the pixels
do.

In the last years, CNN models are achieving state-of-the-art results
on many different complex applications (e.g. object detection, text
classification, natural language processing, scene labeling, etc.) [29,
66, 39, 128]. However, to the extent of our knowledge, CNN has not
been applied to the problem of gait recognition yet. The great success
of the CNN model is in part due to its use on data where the target
can be represented through a feature hierarchy of increasing semantic
complexity. When a CNN is successfully trained, the output of the
last hidden layer can be seen as the coordinates of the target in a
high level representation space. The fully connected layers, on top of
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the convolutional ones, allow us to reduce the dimensionality of such
representation and, therefore, to improve the classification accuracy.

Traditionally, deep learning approaches based in Convolutional Neu-
ral Networks (CNN) have been used in image-based tasks with great
success [66, 99, 127]. In the last years, deep architectures for video
have appeared, specially focused on action recognition, where the
inputs of the CNN are subsequences of stacked frames. In [98], Si-
monyan and Zisserman proposed to use as input to a CNN a volume
obtained as the concatenation of frames with two channels that con-
tain the optical flow in the x-axis and y-axis respectively. To normalize
the size of the inputs, they split the original sequence in subsequences
of 10 frames, considering each subsample independently. Donahue et
al. [36] propose another point of view in deep learning using a novel
architecture called "Long-term Recurrent Convolutional Networks".
This new architecture combines CNN (specialized in spatial learning)
with Recurrent Neural Networks (specialized in temporal learning) to
obtain a new model able to deal with visual and temporal features at
the same time. Recently, Wang et al. [112] combined dense trajectories
with deep learning. The idea is to obtain a powerful model that com-
bines the deep-learnt features with the temporal information of the
trajectories. They train a traditional CNN and use dense trajectories to
extract the deep features to build a final descriptor that combines the
deep information over time. On the other hand, Perronnin et al. [88]
propose a more traditional approach using Fisher Vectors as input to
a Deep Neural Network instead of using other classifiers like SVM.

Although several papers can be found for the task of human action
recognition using deep learning techniques, it is hard to find such
type of approaches applied to the problem of gait recognition. How-
ever, there are a few gait recognition studies that use a deep learning
framework because deep learning requires a large number of train-
ing samples and it is difficult to collect a large number of training
gait samples. To the best of our knowledge, deep learning-based gait
recognition has been performed only by Hossain et al. [52] and Wu
et al. [116]. Hossain et al. propose the use of Restricted Boltzmann
Machines to extract gait features from binary silhouettes, but a very
small probe set (i.e. only ten different subjects) were used for vali-
dating their approach. is completely insufficient for a deep learning
framework. On the other hand, Wu et al. employed CNN for gait
recognition, and reported better recognition accuracy than those of
benchmarks. One concern of their work is that they represented gait
by randomly selected silhouette image set, and used it as an input
to the CNN. This representation is not appropriate for gait recogni-
tion, because useful dynamic information for gait feature cannot be
considered in the representation. Therefore, we propose a method
of gait recognition using deep learning approaches with appropri-
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Figure 10: Gait images with different covariates from the SOTON covariate
dataset

ate gait representation and also demonstrate its effectiveness in gait
recognition tasks using the available gait database.

2.3 existing gait databases

There are several gait databases that have been produced by the mem-
bers of the computer vision and biometrics community. This section
will introduce various gait databases.

2.3.1 Soton database

In [97], it contains two types datasets: a large dataset with more than
100 subjects and a small dataset with only 10 subjects. The large
dataset has two viewpoints (frontal and oblique) and contains sub-
jects in both outdoor and indoor environments and on a treadmill.
The small dataset is extensive with respect to conditions such as
the type of footwear, clothes and surface. Hence, it is also used for
exploratory factor analysis of gait recognition [20], as illustrated in
Figure 10.

2.3.2 CASIA dataset

The database [126] contains the largest azimuth view variations and
hence, it is useful for the analysis and modeling of the impact of view
on gait recognition. It is available in three datasets. CASIA-A con-
sists of 20 subjects. Each subject has 12 image sequences (length of
37 to 127 frames), four sequences for each of three directions (paral-
lel, 45◦and 90◦to the image plane). CASIA-B (large multi view gait
database) has 124 subjects for 11 view angles (from 0◦to 180◦stepped
by 18◦) and for each view angles with four sets of normal condition
and two sets of subjects with bag and subjects wearing coat, as illus-
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Figure 11: Gait images from CASIA-B dataset of a subject from view 0◦to
180◦, with an interval of 18◦

Figure 12: Gait images from CASIA-C dataset of a subject collected at night
environment using infrared cameras two different walking condi-
tions: normal walking and carrying condition, from left to right

trated in Figure 11. CASIA-C was collected by an infra-red (thermal)
camera and contains 153 subjects and four walking conditions: nor-
mal walking, slow walking, fast walking, and normal walking with a
bag, as illustrated in Figure 12.

2.3.3 OU-ISIR Treadmill database

It is available in four datasets [78]. The dataset focuses on variations in
walking conditions and includes 34 subjects with 9 speed variations
from 2 km/h to 10 km/h with a 1 km/h interval (OU-ISIR-A), as illus-
trated in Figure 13. The OU-ISIR-B dataset was constructed by Hos-
sain et al. [53] for studying the effect of clothing on gait recognition. It
includes 68 subjects walking on a treadmill with up to 32 clothes vari-
ations, as illustrated in Figure 14. The OU-ISIR-C database contains
images of 200 subjects from 25 views. The OU-ISIR-D database con-
sists of gait silhouette sequences of 185 subjects from side view with
various gait fluctuations among periods. Gait fluctuations are mea-



2.4 summary 19

Figure 13: Gait images with different speeds from the OU-ISIR-A dataset

Figure 14: Gait images with several different clothes types from the OU-ISIR-
B dataset

sured by Normalized AutoCorrelation (NAC) for temporal axis of
size-normalized gait silhouette images. DBhigh comprising 100 sub-
jects with the highest NAC, and DBlow comprising 100 subjects with
lowest NAC.

2.3.4 USF dataset

The USF dataset [94] is a large outdoor gait database consisting of 122
subjects. A number of covariate factors are considered: camera view-
points, shoes, surface types, carrying conditions, elapsed time, and
clothing. Several gait images from this dataset are shown in Figure 15.

2.3.5 TUM-GAID dataset

The TUM-GAID dataset [50] simultaneously contains RGB images,
depth images, and audio of 305 subjects in total. In [50], Hofmann et
al. designed an experimental protocol (based on 155 subjects) to eval-
uate the robustness of algorithms against covariate factors like shoe,
carrying condition (5kg backpack), elapsed time (January/April) which
also potentially includes changes in clothing, lighting condition, etc.
Several gait images from this dataset are shown in Figure 16.

2.4 summary

In this chapter, we first introduced an overview of a typical gait recog-
nition system. We then discussed the related works of gait recognition
and further introduced the problems caused by the covariate factors
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Figure 15: Gait images in the outdoor environment from the USF dataset

Figure 16: Gait images from TUM-GAID dataset of a subject with six differ-
ent walking variations: normal walking (in Jan.), with a backpack
(in Jan.), with a different pair of coating shoes (in Jan.), normal
walking (in April), with a backpack (in April), with a different
pair of coating shoes (in April), from left to right

which is the main theme of this thesis. We have introduced the ap-
proaches for gait recognition and summarised the current challenges.
Finally, we introduced the popular databases used for the research in
gait recognition. We will present our proposed methods for the gait
recognition in the following chapters.



Part II

S I L H O U E T T E A N A LY S I S - B A S E D G A I T
R E C O G N I T I O N F O R H U M A N I D E N T I F I C AT I O N

In this part, a simple but efficient gait recognition algo-
rithm focusing on modelling gait dynamics and eliminat-
ing the effect of the covariates on recognition is proposed.





3
B A S E L I N E G A I T R E C O G N I T I O N A L G O R I T H M

3.1 overview

Robust human identification based on gait is challenging because of
the presence of various types of covariate factors such as clothing,
load carrying condition, footwear and walking speed. Variations in
covariate factors have a strong impact on the recognition of gait. To
address this problem, we presents a gait-based human identification
method with automatic human silhouette body joint identification
that is robust against various covariate factors at the same time. The
proposed approach consists of three parts: (i) extraction of human
gait features from enhanced human silhouette images, (ii) feature
post-process on extracted human gait features to determine the signif-
icant gait features, and (iii) classification by Support Vector Machine
(SVM) technique. This combination approach is designed to adapt
the variations in covariate factors across and within a gait walking
sequence. Hence, the proposed approach shows robust performance
against various covariate factors in SOTON covariate database and
also outperforms other state-of-the-art algorithms.

3.2 existing works

Human gait recognition has attracted increasing attention as it is un-
obtrusive biometrics that can be captured from a distance and with-
out requiring any cooperation from the user [73]. As a result, gait has
become one of the latest promising biometrics. However, the practi-
cal deployment in a real application is still considered a challenging
task [17]. The performance of gait as biometric can be affected by vari-
ation in covariate factors such as clothing, load carrying condition,
footwear and walking speed with respect to the subject [115, 43, 114].
This is mainly because of the variations will alter an individual’s ap-
pearance and increasing the difficulty of gait recognition.

In recent years, various techniques for human gait recognition have
been proposed in the literature [86]. Gait recognition methods can be
mainly classified into 2 categories: model-based method and model-
free method. A model-based method generally models the human
body structure as blobs or rectangles and extracts the features to
match them to the modeled components. It incorporates knowledge
of the human shape and dynamics of human gait into an extraction
process. For instance, Bobick et al. [16] used activity-specific static
body parameters for gait recognition without directly analyzing gait

23
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dynamics. Cunado et al. [32] used thigh joint trajectories as the gait
features. The advantages of these methods are the ability to derive the
gait signatures directly from model parameters rather than correlat-
ing with other measures (such as motions of other unrelated objects).
Thus, the noise effects from the surrounding environment can be re-
moved easily. However, it creates many parameters which require
high computational cost due to complex matching and searching pro-
cess.

On the contrary, a model-free method differentiates the whole mo-
tion pattern of the human body through a concise representation
which does not consider the underlying structure. For example, Ben-
Abdelkader et al. [12] proposed an eigengait method using image
self-similarity plots. Collins et al. [28] established the method based
on template matching of body silhouettes in key frames during a hu-
man’s walking cycle. Pratheepan et al. [90] proposed individual iden-
tification using dynamic static silhouette template. Philips et al. [89]
characterized the spatial-temporal distribution generated by gait mo-
tion in its continuum. Compared to the model-based method, this
method is simple and thus incurs low computational requirements.
However, the performance of this method is intensely affected by the
background noise or covariate factors such as changes of the sub-
ject’s apparel and load carrying condition. With regard to background
noise, a couple of approaches to silhouette refinements for gait recog-
nition [51, 74, 111] have been proposed. In method [51], they exploit
alpha-matting process for better representation for foreground back-
ground matte. The methods [74, 111] exploits the gait information as
shape prior for foreground segmentation in the form of eigen stance
and standard gait model, respectively. With regards to covariate fac-
tors, several recent methods demonstrate to mitigate the effects of
covariate factors. For example, the method [53] adaptively controls
the part weights depending on the degree of affection by clothing
changes, while the method [104, 33] explores the robust expression
against carrying status. In recent work [82], they pursuit an approach
to robust gait recognition against a certain type of covariate factors us-
ing rank SVM. Although these works improved gait recognition per-
formance against a certain covariate type, they can still suffer from
the effect of various covariate factor such as the presence of shad-
ows, clothing variations and carrying conditions (backpack, briefcase,
handbag, etc.). This motivated us to extend our previous work [119]
to achieve a robust gait recognition performance under various co-
variate factors.

Therefore, in this work, we propose a simple model-based gait
recognition system focusing on modelling gait dynamics and elim-
inating the effect of the covariates on recognition. In our approach,
we extract the human gait features from original silhouette images.
After that, the human silhouette is divided into eight segments, from
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which the body joints are automatically identified and the joint trajec-
tories are computed. This work extends our previous work [119] by
employing well-structured combination of feature post-process tech-
niques to achieve a better computationally efficient solution to alle-
viate the effect of variations in covariate factors for gait recognition.
In addition, this work does not attempt to detect the legs separately.
Therefore, it can handle occluded silhouette either from self-occluded
or those by apparels such as subject apparel (long blouses or baggy
trousers) or load carriage (hand bag held in hand or barrel bag slung
over shoulder at hip height) which are usually present significant
challenges for other conventional approaches. Moreover, the compu-
tation of joint trajectories is more straightforward than the Hough
transform-based technique presented by Ng et al. [85]. Due to its
simplicity, the proposed approach also executes more efficiently than
model-based methods such as the linear regression approach by Yoo
et al. [125] and temporal accumulation approach by Wagg et al. [107]
and elliptic Fourier descriptors by Bouchrika et al. [19, 20].

3.3 methodology

In this section, we describe the details of the proposed method. At
first, we describe a method of feature extraction from gait images, and
we introduce the human identification method that achieves higher
performance compared with the previous method [119] and is robust
to variation in covariate factors.

In this work, we propose a model-based approach by extracting
the gait features from original human silhouette images with auto-
matic human silhouette body joint identification. Then, effective fea-
ture post-processing techniques to apply on extracted gait features.
To assess the performance of the proposed approach, SVM classifica-
tion technique is used to classify subjects from the database.

3.3.1 Extracting the Gait Features

For the gait feature extraction, morphological opening is first applied
to reduce background noise on the extracted human silhouette im-
ages. Each of the human silhouettes is then measured for its width
and height. Next, each of the enhanced human silhouettes is seg-
mented into eight body segments based on anatomical knowledge.
The lower body joints that define the pivot points in human gait are
then automatically identified and the joint trajectories are computed.
After that, step-size and crotch height are measured.
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3.3.1.1 Silhouette Image Enhancement

The original human silhouette images are obtained from the SOTON
covariate database [97]. This database was used to evaluate the recog-
nition rate of the walking subjects with different covariate factors.
Figure 17a shows gait sample video images of an individual. In most
of the human silhouette images, shadow is chronically found near the
feet. It is usually merged to the subject body in the human silhouette
image as shown in Figure 17b. This will hinder the gait feature extrac-
tion as it interferes with the body joint identification. The problem
can be reduced by applying morphological opening and closing oper-
ations to smooth the objects boundaries and fills in small holes. Both
morphological operations are using 7x7 structuring element. The en-
hanced human silhouette image is shown in Figure 17c.

(a) (b) (c)

Figure 17: The original, extracted and enhanced image after morphological
opening.(a) Original video image. (b) Extracted human silhouette
image. (c) Enhanced human silhouette image.

3.3.1.2 Width and Height Measurement

Next, the width and height are measured from enhanced human sil-
houette. These two features will be used later for gait analysis in the
later stage. Figure 18a shows the width and height of the silhouette.

3.3.1.3 Human Silhouette Segmentation

The enhanced human silhouette is then segmented into eight body
segments based on a study of human body proportion by Dempster
et al. [34]. Figure 18b shows the eight segments of the body, where
a represents head and neck, b represents torso, c represents right
upper thigh and hip, d represents right middle thigh, e represents
right lower thigh and foot, f represents left upper thigh and hip, g
represents left middle thigh and h represents left lower thigh and
foot.
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Figure 18: The static gait features which extracted from sequences of images
of walking subjects.(a) The width and height of a human silhou-
ette. (b) The eight body segments.

3.3.1.4 Automatic Silhouette Body Joint Identification

To extract the body joints that define the human gait, the vertical
position of hip, knees and ankles with respect to the body height
is estimated by referring to a priori information of the human body
proportion.

hip position With the height of the hip determined, the next step
is to find its horizontal position. When a dashed horizontal line is
drawn across the hip, there should be only two edges in a normal
silhouette as highlighted in orange dots in Figure 19a. The horizontal
hip position can then be determined by calculating the width between
both edges using the following equation:

Cpos = Crise +
Cfall −Crise

2
,

where Crise and Cfall are the horizontal positions of the rising edge
and falling edge respectively and Cpos is the horizontal position of
the hip.

However, it happens that there are more than two edges. For ex-
ample, there are four edges on the same dashed horizontal line as
highlighted in orange dots in Figure 19b when one hand swing is de-
tected at the hip height. The horizontal hip position can be determine
by finding the width between each edges with respect to the horizon-
tal position of the hip. Also, the width of the hip is always larger than
the width of the hand in all cases. Therefore, the horizontal hip po-
sition can be determine by calculating the hip width only regardless
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that whether one hand or both hands swings are detected at the hip
height using the following equations:

Cwidth[i] = Cfall[i] −Crise[i], for i = 1, 2 (,3)

j = argmaxCwidth[i] ,

Cpos = Crise[j] +
Cfall[j] −Crise[j]

2
.

where Crise[i] and Cfall[i] are the no. of horizontal positions of the
rising edge and falling edge on the hip respectively; Cwidth[i] is the
width of between the Crise[i] and Cfall[i] respectively; j is set of
points of the given argument for which the given function attains
its maximum value; Crise[j] and Cfall[j] are the chosen for the width
of the hip computation; Cpos is the horizontal position of the hip.
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Figure 19: Two edges on the horizontal line (dashed black line) that passes
through the hip. (a) Two edges are found across the hip height.
(b) Four edges are found across the hip height.

knee position By referring to a priori information of the human
body proportion, the height of the knees can be found. To find the
horizontal position of both knees, a horizontal line is drawn at knee
height across human silhouette. For a normal silhouette with no self
occlusion, there should be four edges on the image profile along the
dashed horizontal line as shown in green dots in Figure 20a. The hor-
izontal knee positions can then be determined by finding the width
between two adjacent edges on each leg using the following the equa-
tions:

KleftPos = KleftRise +
KleftFall −KleftRise

2
,

KrightPos = KrightRise +
KrightFall −KrightRise

2
,
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where KleftPos and KrightPos are the horizontal positions of the left
and right knees respectively; KleftRise and KrightRise are the hori-
zontal positions of the rising edge on the left and right knees respec-
tively; KleftFall and KrightFall are the horizontal positions of the
falling edge on the left and right knee respectively.

For a silhouette with self-occlusion, there will be only two edges
on the same dashed horizontal line as highlighted in green dots in
Figure 20b. The horizontal knee positions can be determined by com-
puting the width between each edge with respect to the horizontal
position of the hip.

KleftPos = Krise +
Cpos −Krise

2
,

KrightPos = Cpos +
Kfall −Cpos

2
,

where KleftPos and KrightPos are the horizontal positions of the left
and right knees respectively; Cpos is the horizontal position of the
hip; Krise and Kfall are the horizontal positions of the rising edge
and falling edge respectively.
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Figure 20: Image profile along the dashed black horizontal line. (a) Four
edges are found across the knees in a normal silhouette. (b) Two
edges are found across the knees in a self-occluded silhouette.

ankle position To determine the horizontal position of the an-
kles, the similar technique is employed. If a horizontal line is drawn
at ankle height on a normal human silhouette with no self-occlusion,
there should be four edges on the image profile along the dashed
horizontal line as highlighted in yellow dots in Figure 21a. The hori-
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zontal ankle positions can then be determined by using the following
equations:

AleftPos = AleftRise +
AleftFall −AleftRise

2
,

ArightPos = ArightRise +
ArightFall −ArightRise

2
,

where AleftPos and ArightPos are the horizontal positions of the left
and right ankles respectively; AleftRise and ArightRise are the hori-
zontal positions of the rising edge on the left and right ankles respec-
tively; AleftFall and ArightFall are the horizontal positions of the
falling edge on the image profile respectively.

For human silhouette with self-occlusion, there will be only two
edges on the dashed horizontal line as highlighted in yellow dots
Figure 21b. The horizontal ankle positions can then be determined by
finding the width between both edges using the following equations:

AleftPos = Arise + 0.25(Afall −Arise) ,

ArightPos = Arise + 0.75(Afall −Arise) ,

where AleftPos and ArightPos are the horizontal positions of the left
and right ankles respectively; Arise and Afall are the horizontal po-
sitions of the rising edge and falling edge on the image profile respec-
tively.
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Figure 21: Image profile along the dashed black horizontal line. (a) Four
edges are found across the ankles in a normal silhouette. (b) Two
edges are found across the ankles in a self-occluded silhouette.
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3.3.1.5 Joint Angular Trajectory Calculation

Figure 22a shows how the joint trajectory is determined. All the joint
trajectories are computed by using the following equation:

φ1 = tan−1

(
p2x − p1x

p2y − p1y

)
,

φ2 = tan−1

(
p3x − p1x

p3y − p1y

)
,

θ = φ1 +φ2 ,

where p1x, p2x, p3x and p1y, p2y, p3y are the x-coordinates and y-
coordinates of joint p1, p2 and p3 respectively.

3.3.1.6 Step-size and Crotch Height Measurement

The Euclidean distance between both ankles is determined to obtain
subject’s step-size (S). Crotch height (CH) is the Euclidean distance be-
tween subject’s crotch and the floor is measured. If the crotch height
is lower than the knee height, it is reduced to zero as the crotch is
considered occluded. Figure 22b shows nine gait features extracted
from a human silhouette.

In total, five joint angular trajectories have been extracted. For in-
stance, these angular trajectories for walking sequence from right to
left are hip angular trajectory (θ1), left knee angular trajectory (θ2),
right knee angular trajectory (θ3), left ankle angular trajectory (θ4)
and right ankle angular trajectory (θ5).
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Figure 22: (a) Joint trajectory computation. (b) All the extracted gait features.

3.3.2 Feature Post-process

In this stage, we present an effective combination of post-processing
techniques to process all the extracted gait features to improve the
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robustness of gait recognition systems. All the extracted gait features
from each walking sequences are first constructed into feature vec-
tor before going into feature normalization process. Performance of
gait recognition system could be degraded by challenging covariate
factors such as subject’s apparels and load carrying condition. There-
fore, we employ computationally efficient feature selection technique
to the problem of extracted gait features selected before channeled
into the classification process.

3.3.2.1 Feature Vector Construction

The gait features are constructed simultaneously using maximum an-
gular trajectory components and average components are determined
during the whole walking sequence. The gait features at each frame
in one walking sequence is denoted as with f

j=1,2,...,n
i=1,2,...,m, where m is

the number of gait features, and n is the number of frames per walk-
ing sequences. All the features F = {F1, F2, . . . , F18} for each walking
sequence are computed by using the following equation:

k = arg max
j∈1,...,n

θ
j
1 ,

F = {θk1 , θk2 , θk3 , θk4 , θk5 ,Wk,Hk,Sk,CHk,Aθ1 ,

Aθ2 ,Aθ3 ,Aθ4 ,Aθ5 ,AW ,AH,AS,ACH} ,
(1)

where k represents the frame index where the hip trajectory attains
its maximum value. When θk1 is identified, the corresponding left
knee angular trajectory (θk2), right knee angular trajectory (θk3), left
ankle trajectory (θk4), right ankle trajectory (θk5), step-size (Sk), width
(Wk), height (Hk) and crotch height (CHk) were also determined. In
order to improve the the recognition rate, nine additional features
are used. These features are the average of hip trajectory (Aθ1), left
knee angular trajectory (Aθ2), right knee angular trajectory (Aθ3), left
ankle angular trajectory (Aθ4), right ankle angular trajectory (Aθ5),
step-size (AS), width (AW), height (AH) and crotch-height (ACH). It
can be computed by the following equation:

Afi =

∑j=n
j=1 f

j
i

n
, (2)

where Afi represents average value of i-th gait feature and n repre-
sents the total number of frames in the walking sequence.

3.3.2.2 Feature Normalization

Scaling data is very important in order to avoid attributes in greater
numeric ranges dominating those in smaller numeric ranges. Before
sending the feature vectors into classifiers for training and testing,
it is required to normalize them in order to approximately equalize
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Figure 23: Cumulative recognition rates as the gait features are progres-
sively selected. Average value obtained by ten-fold cross valida-
tion is shown. We have omitted the confidential intervals from
the figure since they are sufficiently small less than 0.01 %

ranges of the features and make them have approximately the same
effect in the computation of similarity. Therefore, in this work, we
apply a very common normalization technique via linear scaling [1].
We normalize the training and test data with the same model. For
the test data set, we perform the data scaling using the same scaling
parameters. It is applied to normalize each feature component to the
range between 0 and 1 by using the following equation:

Fi =
Fi − Fmin

i

Fmax
i − Fmin

i

. (3)

where Fi represents the normalized value for extracted gait features
data, Fi represents the value of i-th component of the feature vector F
to be normalized, Fmin

i and Fmax
i represent the minimum and maxi-

mum values among the extracted gait features, respectively.

3.3.2.3 Feature Selection Analysis

In our work, feature selection analysis is to choose the most infor-
mative and relevant extracted gait features and achieve the possible
highest Correct Classfication Rate (CCR) on the reduced feature set.
In the feature selection analysis, Ranker [47] is used to rank the fea-
tures by their individual evaluations which helps to identify those
extracted gait features that contribute positively in the recognition
process. We use SVM classifer for feature ranking in this stage. Based
on the average rank scores obtained in Table 1, it ranks attributes by
their individual evaluations. The experiment was thus designed to
assess the change of CCR as features are progressively selected is
shown in Figure 23. The selection of seventeen or eighteen features
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have exhibited the same positive contribution. Thus, only seventeen
features are used in the this work as shown below:

F = {θk1 , θk2 , θk3 , θk4 ,Wk,Hk,Sk,CHk,Aθ1 ,

Aθ2 ,Aθ3 ,Aθ4 ,Aθ5 ,AW ,AH,AS,ACH}
(4)

3.3.3 Classification Process

After the feature post-process, multiclass SVM classification technique
is employed for gait recognition. For the SVM technique used in this
work, we refer to the description by C.J.C. Burges [24] and implement
the SVM experiments by LIBSVM package [25], which implements
the one-against-one approach [63] for multi-class classification.

For this work, experiments were carried out to examine the effects
on kernel functions - Linear (Ln), Polynomial (Poly) and Radial Basis
Function (RBF). The kernel’s parameters such as c (the cost of param-
eter), γ (gamma in kernel function), coef0 (coefficient in kernel func-
tion), d (degree of kernel function) were trained and set for the SVM
different kernel types performance evaluation experiments as shown
in Table 2. These parameters were chosen based on several test eval-
uations of our proposed approach and should not be considered the
optimal configurations.

3.4 experiments

Five experiments were carried out in this study. In the first experi-
ment, we present an evaluation of gait recognition performance us-
ing SVM with different kernels. Here, we also examine classification
performance of different kernels. In the second experiment, we eval-
uate the inter-subject variation on gait recognition performance. In
the third experiment, we evaluate the impact of different covariates
for gait analysis. In the fourth experiment, we examine the effect of
occlusions on the performance of gait recognition. To verify the effec-
tiveness of the proposed approach, we evaluate the performance of
our proposed approach with respect to the conventional benchmark
approaches in the fifth experiment.

3.4.1 Datasets

The experiment was carried out for eleven subjects walking in parallel
towards a static camera with fifteen covariate factors provided by the
SOTON covariate database [97]. Each subject was captured wearing
a variety of clothes (rain coat, trench coat and normal), footwear (flip
flops, bare feet, socks, boots, trainers and own shoes) and carrying
various bags (barrel bag slung over the shoulder or carried by hand
on shoulder, hand bag held in hand, and rucksack). They were also
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Table 1: Feature selection analysis

No. of Features Feature Average

Selected Attribute Rank

1 CH 1+-0

2 Aθ3 2+-0

3 θ3 3+-0

4 ACH 4+-0

5 Aθ2 5+-0

6 θ2 6+-0

7 AS 7.2+-0.4

8 S 7.8+-0.4

9 Aθ1 9+-0

10 Aθ4 10.1+-0.3

11 θmax
1 11.3+-0.64

12 θ4 11.6+-0.49

13 W 13+-0

14 Aθ5 14.2+-0.4

15 AH 14.9+-0.54

16 AW 16.1+-0.54

17 H 16.8+-0.4

18 θ5 18+-0

recorded walking at different speed (slow, fast, and normal speed).
For each subject, there are approximately twenty sets of walking se-
quences from right to left and vice-versa way on a normal track. The
dataset consists of 3178 walking sequences from 11 subjects spanning
15 covariates. In total, there are 3,178 walking sequences that are used
for training and testing process.

3.4.2 Experimental Setup

The experiment was carried out on SVM classification technique with
various optimization parameters that obtained during the training.
Experiments are also conducted using leave-one-out strategy taking
all 11 subjects. In this case, ten training subjects and one test subject
for each division, which results in 11-fold cross validation. The results
were averaged over all the training and cross-validation data. The
performance evaluation was in terms of Correct Classification Rate
(CCR).
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Table 2: SVM Kernel’s Parameter Setup

Kernel Type SVM Kernel’s Parameters

c γ coef0 d

Ln 48 - - -

Poly 32 1.5 1 3

RBF 45 2 - -

Table 3: Performance evaluation of SVM classifier

SVM Kernel Type

Ln Poly RBF

CCR (%) 91.1 95.7 96.5

Considering in real-world gait recognition scenarios, the covariate
type in a query gait sequence is unknown, and it is unrealistic to
train a model with all possible covariate types in real world. We used
normal walking sequences for training and other covariate factors
walking sequences for testing. Individuals are unique in the gallery
and each probe set, and there are no common sequence among the
gallery set and all probe sets. To observe its effectiveness, some exam-
ples of subjects with different apparels and the identified body joints
are shown in Figure 24.

3.5 results and discussions

We describe in this section the details of our experiments and analyze
the results.

3.5.1 Performance Evaluation of SVM Classifier

From the experimental results shown in Table 4, we noticed that the
non-linear SVM (RBF or Poly kernel) outperforms linear SVM (Ln
kernel). By using a kernel function the non-linear separable vector
is mapped into a high-dimensional feature space and thereby makes
it becomes linearly separable [95]. Since SVM with RBF kernel gave
the best recognition rate during the experiment on different SVM ker-
nel types, the experiments for covariate and person-independent gait
analysis were carried out using only SVM with RBF kernel.
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Table 4: Performance evaluation of SVM classifier

SVM Kernel Type

Ln Poly RBF

CCR (%) 91.1 95.7 96.5

Table 5: Confusion matrix of 11-person gait recognition using SVM (RBF)

P.1 (%) P.2 (%) P.3 (%) P.4 (%) P.5 (%) P.6 (%) P.7 (%) P.8 (%) P.9 (%) P.10 (%) P.11 (%)

P.1 98.5 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 1.1

P.2 0.0 91.8 3.5 0.4 1.1 0.4 0.0 2.8 0.0 0.0 0.0

P.3 0.0 2.8 92.9 0.0 0.0 1.5 0.0 2.8 0.0 0.0 0.0

P.4 0.0 0.8 0.0 97.4 0.0 0.8 0.0 0.8 0.2 0.0 0.0

P.5 0.0 0.0 0.4 0.0 97.2 0.7 0.0 1.4 0.0 0.3 0.0

P.6 0.0 0.0 1.1 1.8 0.7 91.1 0.0 4.6 0.7 0.0 0.0

P.7 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0

P.8 0.0 0.0 2.0 0.3 0.3 1.4 0.0 96.0 0.0 0.0 0.0

P.9 0.0 0.0 0.0 0.4 0.4 0.7 0.0 0.0 98.5 0.0 0.0

P.10 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 99.0 0.0

P.11 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.6

3.5.2 Gait Recognition Confusion Matrix

In this experiment, the feature vectors generated from individual sub-
ject’s gait was divided into disjoint training and test sets for ten-fold
cross validation. The confusion matrices of the average recognition
rate are presented in Table 5. From this table, it can be observed that
our proposed approach was able to achieve above 91.1% CCR for all
subjects from person 1 until person 11 i.e., P.1, P.2, . . . , P.11. The CCR
reached 100% for person 7(P. 7) which indicated that person correctly
identified from the testing walking sequence with various covariate
factors.

3.5.3 The Effect of Covariate Factors

To further study the effects of different clothing types, we divided
the probe experiment set into 4 groups, i.e., footwear, clothing, car-
rying condition and walking speed. Table 6 lists the covariates used
in the dataset. We used normal walking sequences for training and
other covariate factors walking sequences for testing. Individuals are
unique in the gallery and each probe set, and there are no common
sequence among the gallery set and all probe sets is listed in Table 7.
The classification performance is assessed by matching the probe set
against the gallery set.

The performance of our approach can be seen in Figure 25. For the
proposed method, we have the following observations:
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Table 6: List of covariate factors used in SOTON database

Covariates Descriptions

ID

000 subject walking in flip flops

001 subject walking with bare feet

002 subject walking in socks

003 subject walking in boots

004 subject walking in trainers

005 subject walking in own shoes

006 subject wearing rain coat

007 subject wearing trenchcoat

008 subject carrying hand bag

(held in hand)

009 subject carrying barrel bag

(slung over shoulder, bag at hip height)

010 subject carrying barrel bag

(carried by hand on shoulder)

011 subject carrying rucksack

012 subject walking slowly

013 subject walking quickly

014 subject walking at normal speed

Table 7: The SOTON database

Dataset Number of samples Variations

Gallery 241 Normal condition

Probe A 448 Clothes

Probe B 886 Carrying conditions

Probe C 680 Walking speeds

Probe D 923 Footwear

For Group I which only involves the footwear covariates like flip-
flops, bare feet, socks, boots, own shoes and trainers, the group aver-
age recognition rate is around 97.5%. Out of these footwear covariate
type, the human gait is observed no impact on gait recognition when
subject walk with bare feet as the recognition rate achieves 100.0%.

Variations in clothing alter an individual’s appearance, making the
problem of human gait identification much more difficult. In Group II
which only involves the clothing covariates (e.g., rain coat and trench-
coat), the recognition task becomes more difficult. However, based
on the proposed method, the performance is still moderate, with an
average recognition rate more than 86.0%.
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(a) Handbag (b) Rucksack (c) Raincoat

(d) Trainers (e) Socks (f) Flip-flops

(g) Shalwar kameez and
rucksack

(h) Boots, long blouse
and barrel bag

(i) Barrel bag

Figure 24: Examples of body joint identification on human silhouettes with
different apparels in the SOTON dataset. Cases (a) (b) and (c)
present varying carrying conditions; cases (f) and (g) varying
clothing conditions; cases (d) and (e) a combination of the for-
mer; cases (h) and (i) varying footwear. Notice the output of our
model-based gait extraction on the side.

In Group III, four different covariate factors related to carrying con-
ditions (e.g., subject carrying handbag, barrel bag slung over shoul-
der or carried by hand, and rucksack) are used in the experiment
evaluation. For our proposed approach, gait features were extracted
only from the lower body part. The achieved correct classification rate
for the subject carrying barrel bag slung over shoulder or carried by
hand and rucksack are almost the same with reported rates of 94.7%,
97.5% and 95.7% respectively. However, for the case of subject carry-
ing handbag which is occluding the lower part of human body, the
recognition rate drops slightly to 84.8%.
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Figure 25: Covariate analysis experiment

Table 8: The effect of occlusions in gait recognition.

Experiment Covariate No. Walking Occlusion CCR (%)

(Exp.) Factors Sequences Ratio (%) w/o self-occlusion w/ self occlusion

1 Clothes 689 39.9 96.4 94.3

2 Carrying conditions 1127 30.9 95.1 93.7

3 Walking speeds 921 17.2 96.6 97.2

4 Footwear 1164 17.0 97.1 97.5

5 All 3178 26.9 95.7 96.5

For Group IV, we investigated the impact of walking speed vari-
ations (e.g., slowly, normal and quickly) on gait recognition. The
achieved average recognition rate for this group was 97.2%. This high
accuracy is because in SOTON covariate database, the range of walk-
ing speed variations are significantly small and limited. We should
evaluate our method for the performance of gait recognition under
larger walking speed variation dataset.

Out of the covariate factors like footwear, clothing types, carrying
condition and walking speed, it has been demonstrated that clothing
is the most challenging covariate factor for our proposed approach.
However, our proposed approach was still able to achieve at least
93.7% average CCR for all the experiments conducted. This shows
the effectiveness of our proposed approach.

3.5.4 The Effect of Occlusions

Human gait recognition became more complicated when the exis-
tence of self-occlusion in the human body. This issue would seem
to imply a critical importance of gait analysis in self-occlusion gait
recognition. Therefore, we carried out the experiments to examine
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Table 9: Correct classification rate (%) of different methods in the SOTON
database [97].

Dataset Method Covariate conditions #People #Sequences Classifier CCR (%)

[20]
Method in Ref. [20]

11 10 440 KNN
73.4

Our approach 78.0

[90]
Method in Ref. [90]

4 10 180 SVM-Ln
86.0

Our approach 94.4

[85]
Method in Ref. [85]

13 11 2722 SVM-Ln
84.0

Our approach 95.0

Full Our approach 15 11 3178 SVM-RBF 96.5

the effect of occlusions in gait recognition as shown in Table 8. This
experiment used to measure the overall performance of gait recog-
nition by our proposed approach for knee and ankle positions un-
der self-occlusion and without self-occlusion condition. In the case of
clothes and carrying conditions, the knee and ankle positions are fre-
quently occluded. Under this condition, identification of lower body
joint points maybe complicated in the presence of the heavy occlusion
region under lower body parts due to the subject apparels. Thus, this
may seriously affect the performance of the trained classifier. Specif-
ically, the results in Section 3.5.3 showed that clothes and carrying
condition changes seem to affect gait more than walking speed and
footwear changes. Hence, if we removed out the occluded frames in
the walking sequences from the respective subject, we can see an im-
provement of gait recognition performance. In contrary, in the case
of walking speed and footwear, the knee and ankle positions are not
heavily occluded. Thus, it does not seriously degrade classification
performance. However, if we removed out the occluded frames for
these conditions, we can see a slight decrease of performance of gait
recognition due to less number of training samples. In the case of eval-
uation using all covariate factors at the same time by removing the
self-occluded frames from the walking sequences, it does not improve
the overall performance of the gait recognition. This might be because
our proposed approach could identify the lower trajectories of body
points even under occluded silhouette either from self-occluded or
occluded by apparels. It may remove out the important feature that
can classify the respective subject in this database before going to the
classification process.

3.5.5 Evaluation on Benchmark Methods

To evaluate this database, we apply recent three benchmark methods
by Bouchrika et al. [20], Pratheepan et al. [90], and Ng et al. [85]. In
comparison with them, we evaluate our approach under the same
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experimental settings and data subset. The details can be found in
the reference papers.

Table 20 summarizes the comparison with other conventional ap-
proaches that use SOTON covariate database, our approach outper-
forms the results obtained by Bouchrika et al. [20], Pratheepan et
al. [90] and Ng et al. [85] after comparing the number of subjects, the
number of covariate factors and the number of walking sequences
that were used for training and testing. The inferior result by Bouchrika
et al. is due to the requirement to manually label model template to
describe the joints’ motion. On contrary, our results are performed
better than Pratheepan et al. as we do not incorporate the selection
or estimation of the gait cycle. It is also obvious from the results that
our approach result outperforms Ng et al. as their approach have dif-
ficulty in extracting gait feature of the silhouette and the erroneous
extraction of the gait feature due to self-occluding silhouette model.

3.6 summary

We have presented a robust approach for extracting the human gait
features from human silhouette images. The gait features are extracted
from the human silhouette by determining the body joints from the
body segments based on a priori knowledge of human body propor-
tion. Once the body joints have been identified, the joint trajectories
can be computed using a straightforward approach. This approach
has shown to be more effective as it is capable to identify the body
joints from self-occluded human silhouettes. Our main goal for pro-
posed feature post-process approach is to mitigate the effect of vari-
ation in covariate factors which complicate the person’s gait recog-
nition process. Our experimental results demonstrate that the pro-
posed approach significantly outperforms the existing conventional
techniques. In addition, the higher recognition rate also showed that
the proposed approach is robust and can perform well under differ-
ent covariate factors.



Part III

I M P R O V I N G H U M A N G A I T R E C O G N I T I O N
U S I N G F E AT U R E S E L E C T I O N

In this part, the problem of selecting a subset of the most
relevant gait features for improving gait recognition per-
formance is investigated. This is achieved by using proper
feature selection technique to find the relevant features
and discard redundant and irrelevant gait features. A com-
parative study on feature selection methods in the context
of gait identification under the effect of various covariate
factors is presented.





4
F E AT U R E S E L E C T I O N F O R G A I T R E C O G N I T I O N

4.1 overview

Robust and reliable human identification for surveillance and access
control has become highly sought these days. Recently, human gait
identification (i.e., identifying individuals by the way they walk), has
gained considerable attention due to its potential applicability in promis-
ing applications such as forensics, security, immigration, surveillance [17].
A person’s gait can be measured unobtrusively at a distance and with-
out the need for any subject cooperation or contact for data acquisi-
tion [73]. However, the presence of covariate factors such as different
clothing types, carrying conditions, walking surfaces, etc., can seri-
ously complicate the task. Clothing, for instance, can occlude a signif-
icant amount of gait features and make human recognition difficult.
Since the location of occlusion may differ for different covariate fac-
tors, relevant gait features may become irrelevant when the covariate
factor changes, and exploiting occluded gait features can hinder the
recognition performance. Therefore, feature selection has become an
important step to make the analysis more manageable and to extract
useful information for the gait classification task. Nevertheless, al-
though feature selection is often used in order to identify the relevant
body parts, to the best of our knowledge, a comparative analysis of
feature selection techniques in gait recognition is seldom addressed.
In this work, we present an empirical approach to evaluate the de-
gree of consistency among the performance of different selection algo-
rithms in the context of gait identification under the effect of various
covariate factors. First, a model-based framework for extracting in-
formative gait features is introduced, then, an extensive comparative
analysis of feature selection approaches in gait recognition is carried
out. We perform a statistical study via ANOVA and mixed-effects
models to examine the effect of six popular selection feature methods
across classifiers and covariates. In addition, we systematically com-
pare the selected feature subsets and the computational cost of the dif-
ferent selection approaches. The implemented method addresses the
problem of feature selection for gait recognition on two well-known
benchmark databases: the SOTON covariate database and the CASIA-
B dataset, respectively. The investigated approach is able to select the
discriminative input gait features and achieve an improved classifica-
tion accuracy on par with other state-of-the-art methods.

45
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Figure 26: A simple scheme of how gait features are selected from the evalu-
ation databases. Candidate subsets proposed by the metaheuristic
are evaluated by means of a classifier and cross validation to ob-
tain the corresponding average Correct Classification Rate (CCR).

4.2 methodology

In this section, we present an empirical approach to evaluate the de-
gree of consistency among the performance of different selection algo-
rithms in the context of gait identification, which are designed to find
the best gait feature subset in order to maximise the final accuracy of
the classification process under the effect of various covariate factors.
Fig. 26 shows the general operational idea; we can observe a simple
framework of how gait features are extracted from the SOTON covari-
ate and CASIA-B database and how the feature subsets are evaluated.
In the following, we detail the processing steps, feature selection and
classification methods that we considered for this comparative study.
Specifically, our experimental work investigates the following points:

1. whether filter and embedded methods with their low compu-
tational cost advantages as compared to wrapper methods can
effectively improve the performance in feature selection tasks;

2. whether search-based methods perform better than statistical
approaches for feature selection, and the trade-offs in terms of
computational cost;

3. to what extent the alleged improvement in classification accu-
racy that feature selection brings generalises to the use of differ-
ent classifiers and on different datasets.
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4.2.1 Gait Pattern Extraction and Representation

The original human silhouette images are obtained from the SOTON
covariate database [97]. This database was used to evaluate the recog-
nition rate of the walking subjects with different covariate factors. In
most of human silhouette images, shadow is chronically found near
the feet. This will hinder the gait feature extraction as it interferes
with the body joint identification. Morphological opening is initially
applied in order to reduce the background noise on the extracted hu-
man silhouette images. The result of the morphological operations
is an enhanced silhouette that is then measured for its width and
height. Next, each of the enhanced human silhouettes is segmented
into eight body segments based on anatomical knowledge. The lower
body joints that define the pivot points in human gait are automati-
cally identified and the joint trajectories are computed. After that, step
size and crotch height are measured. In total, five joint angular trajec-
tories are extracted. There are various properties of gait that might
serve as recognition features. For instance, the angular trajectories for
a walking sequence from right to left are hip angular trajectory (θ1),
left knee angular trajectory (θ2), right knee angular trajectory (θ3), left
ankle angular trajectory (θ4) and right ankle angular trajectory (θ5).
To construct the feature vector, maximum hip trajectory (θmax

1 ) is de-
termined during a walking sequence from right to left. When θmax

1

is identified, the corresponding left knee angular trajectory (θ2), right
knee angular trajectory (θ3), left ankle trajectory (θ4), right ankle tra-
jectory (θ5), step size (S), width (W), height (H) and crotch height
(CH) are also determined. To obtain optimal performance, nine addi-
tional features are used. These features are the average of the local
maxima detected for hip trajectory (Aθ1), left knee angular trajectory
(Aθ2), right knee angular trajectory (Aθ3), left ankle angular trajec-
tory (Aθ4), right ankle angular trajectory (Aθ5), step-size (AS), width
(AW), height (AH) and crotch-height (ACH). Thus, eighteen gait fea-
tures are used to construct the feature vector as it is shown below:

�X = {θmax
1 , θ2, θ3, θ4, θ5,W,H,S,CH,Aθ1 ,

Aθ2 ,Aθ3 ,Aθ4 ,Aθ5 ,AW ,AH,AS,ACH}.
(5)

These specific features have been chosen based on a preliminary study;
they all pertain to the lower body area that is expected to be more rel-
evant to the gait pattern and more robust to covariate factors. More-
over, their extraction is not computationally expensive; for more de-
tails about the computation of these gait features, the interested reader
may refer to our previous work [119, 122].
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4.2.2 Statistical Methods for Gait Feature Selection

Feature selection aims to select a relevant subset of features, fulfilling
certain objectives. In pattern recognition, a natural metric would be
the classification accuracy or inversely the Bayes classification error.
Since the Bayes error can not be minimised analytically, several alter-
native statistics that are easier to evaluate have been proposed [44].
These statistics are gauged in a preprocessing step, and, based on
their value, it is possible to score and rank the features accordingly,
in order to discard those that do not seem to carry relevant informa-
tion for the classification task. Here we focus on typical approaches to
gait feature selection using Analysis of variance (ANOVA) and Mutual
Information (MI), which are introduced as follows.

4.2.2.1 Analysis of Variance (ANOVA-Fclass)

The one-way ANOVA test is based on F statistic. The greater the F

ratio is, the stronger the discriminative capability of the gait feature
is. As a preliminary step, feature measurements are grouped by the
target label; that is, individuals in the training set are treated as levels
of a grouping factor, and by performing ANOVA we want to test if
the average feature value differs across targets. The F ratio is then
calculated for each of the gait feature x in this study as follows:

F =
MSbetween targets

MSwithin targets
=

∑
i ni(x̄i − x̄G)2/(k− 1)∑
ij(xij − x̄i)2/(N− k)

(6)

where N is the total number of samples, k is the number of targets or
subjects, x̄i is the average score of the considered gait feature for the
ith subject, x̄G is the grand mean of feature x considering all subjects
and all measurements, xij is the jth measurement of feature x on the
ith subject, and ni is the number of measurements for the ith subject.

4.2.2.2 Mutual Information (MI)

Related work [44] has already considered feature selection for gait
recognition from the point of view of information theory. In informa-
tion theory, mutual information measures the statistical dependence
between two variables [77]. Mutual information reveals the amount
of information carried by one random variable, X, about another ran-
dom variable, Y. It can be computed for each of the extracted gait
features according to the following formula:

MI(X, Y) =
∑

x∈X

∑

y∈Y

p(x,y)log
(

p(x,y)
p(x),p(y)

)
(7)

where X represents the values of a gait feature, Y represents the sub-
jects’ labels, p(x) and p(y) are probability mass functions for the vari-
ables X and Y respectively, and p(x,y) is the joint probability mass
function.
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In practice, probability densities, entropies and mutual informa-
tion scores are estimated using non-parametric methods based on
k-nearest neighbors distances [65].

4.2.3 Search-Based Methods for Gait Feature Selection

All aforementioned methods allows one to rank the features accord-
ing to their relative importance or information content; it only re-
mains to be decided how many of the top k features to retain in order
to maximise the gait classification accuracy. In our implementation,
instead of setting a pre-defined threshold, we select the best value of
k by cross-validation. However, the subset selection problem can also
be cast as a black-box optimisation problem and tackled by means of
search-based heuristics. Since our focus is on feature selection rather
than algorithm design, before devising yet another fancy metaheuris-
tic [100] we prefer to experiment with the prototypical ones. In this
section, we focus on a local search approach to gait feature selection
using a simple Hill-climber.

4.2.3.1 Hill-climbing Strategies (HC)

A hill-climbing algorithm (or climber) is a basic local search strategy
that guides through the search space by allowing only non-deteriorating
moves [10]. Given an initial configuration called starting point, a tra-
ditional climber iteratively moves to better neighbors, until it reaches
a local optimum. This search mechanism also known as the iterative
improvement, encompasses several variants, depending on how the
neighbourhood is explored and when a candidate neighbour is ac-
cepted to replace the current solution. Two strategies, first and best
improvement, constitute the most widely used pivoting rules that are
briefly discussed hereafter. These rules define how to select a better
neighbor from a non-locally-optimal configuration [118]. More pre-
cisely, the best-improvement strategy (or greedy hill climbing) consists in
selecting, at each iteration, the neighbor that achieves the highest fit-
ness. This requires to generate and evaluate the whole neighborhood
at each step of the search, which can imply high computational cost
if an incremental evaluation of all neighbors cannot be performed.
Conversely, the first-improvement strategy accepts the first evaluated
neighbor that satisfies the moving condition. This avoids the system-
atic enumeration of the entire neighborhood and, possibly, it also al-
lows for more robust results. In fact, given a fixed solution of depar-
ture, as long as the neighbourhood is visited in a randomised order,
a first-improvement hill-climber is a stochastic local search algorithm.
In contrast, a best-improvement hill-climber is a deterministic proce-
dure that is guaranteed to remain in the basin of attraction of the
local optimum to which the initial solution belongs.
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For our tests we implement a randomised first-improvement (HC-
First), outlined in Algorithm 1. Feature subsets are binary-encoded:
each bit indicates whether or not the corresponding feature has been
selected. The performance of each candidate subset is evaluated in
terms of average classification accuracy from cross-validation. The
climber departs from the full set of gait features as an initial solu-
tion, and it explores the neighborhood induced by the single bit-flip
mutation; in other words, it tries to improve the current subset by it-
eratively adding or removing one feature at a time. The search stops
when no further improvement is possible or, in the worst case, after
100 iterations of the pivot rule. We refer to [10] for a comparison of
climbers search strategies.

Algorithm 1: First-Improvement Hill-Climber (HC-First)
Input: xo = {1}n vector of initial gait features (1=selected,

0=removed)
tmax max number of selections or removals (bitflips)
f() : {0, 1}n �→ R cross-validated CCR with selected
features

Output: x = {0, 1}n vector of selected gait features

1 x← x0 // init current selection

2 t← 0

3 repeat

4 x ′ ← flip a bit of x at random w/o replacement // mutate

5 t← t+ 1

6 if f(x ′) � f(x) then

7 x← x ′ // accept if not worse

8 end

9 until f(x) > f(x ′) ∀x ′ or t = tmax

4.2.4 Embedded Methods for Gait Feature Selection

Embedded methods differ from other feature selection methods in
the way feature selection and learning interact. In contrast to filter
and wrapper approaches, in embedded methods the learning part
and the feature selection part can not be separated - the structure of
the class of functions under consideration plays a important role. In
this section, we consider the use of variable importance from totally
randomized trees (TRT) and recursive feature elimination from a lin-
ear support vector machine (RFECV) as embedded approaches to gait
feature selection. We have also experimented with sparsity inducing
techniques such as L1 regularisation, but with inconclusive results
due to the non-sparse nature of our data.
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4.2.4.1 Variable Importance from Totally Randomized Trees (TRT)

Decision trees recursively partition their input data by performing bi-
nary splits on the input features. Splits are chosen so that the resulting
partitions become increasingly homogeneous, according to an impu-
rity measure such as Entropy or Gini coefficient. Therefore, the Mean
Decrease in Impurity (MDI) obtained when splitting on a given fea-
ture Xj can be used to measure its importance Imp(Xj), as originally
proposed by Breiman [21]. This generalises to a forest of M random
trees by summing up the impurity decreases for all the splits in a tree
and for all the trees in the forest, according to the formula [22, 23]:

Imp(Xj) =
1

M

M∑

m=1

∑

t∈ϕm

�(jt = j)
[
p(t)Δi(st, t)

]
(8)

where the importance of feature Xj in predicting Y is calculated by
adding up, for all splits t where Xj is used �(jt = j), the impurity de-
creases Δi(st, t) weighted by the proportion of samples p(t) in node t;
the importances are then averaged over all the ϕm trees in the forest,
m ∈ {1, . . . ,M}.

Louppe et al. [76, 75] have shown how, in the asymptotic conditions
of an infinitely large training sample and infinitely large ensemble
of fully-developed trees, the MDI feature importances expressed by
equation 8 can be interpreted in terms of mutual information between
the target labels Y and the set of predicting features Xj, j ∈ {1, . . . ,p}.
In practice, to mitigate errors due to empirically estimating impurity
on a finite training set, we bound the depth of the trees. Moreover, to
mitigate the masking effect among correlated predictors, we employ
totally randomised trees, i.e. trees in which each node t is partitioned
using a feature j selected uniformly at random in {1, . . . ,p}.

4.2.4.2 Recursive Feature Elimination (RFECV)

The objective of recursive feature elimination (RFE) is to explore fea-
tures by recursively considering smaller and smaller sets of features.
To this end, we employ a SVM classifier with a linear kernel, where
we take the absolute value of the linear coefficients as an indication
of feature importance. Notice that input features undergo a standard-
isation procedure so that they all display zero mean and unitary stan-
dard deviation. Each time the classifier is trained on the input set of
features, weights (that is, coefficients) are assigned. Then, the feature
with the absolute smallest weight is pruned from the current set of
features and the process is iteratively repeated on the pruned set until
an optimal number of features to select is eventually achieved. This
optimal number is chosen via cross-validation. We refer to [46] for
details.
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4.2.5 Joint Mutual Information Maximisation (JMIM)

Several state-of-the-art methods for feature selection make use of mu-
tual information between the selected features and the target class
labels as a surrogate for classification accuracy; based on mutual in-
formation estimation and selection heuristics, such methods can rank
or pick the relevant features without the computational burden of
training a classifier. For our comparison, we implement the recent
Joint Mutual Information Maximisation (JMIM) proposed in [15]. The
idea behind this method is to iteratively build a good feature subset
by selecting features that are maximally informative w.r.t. the target
class and complementary w.r.t. the features already selected. Such an
iterative greedy procedure is sketched in Algorithm 2. As a stopping
criterion, we observe that the joint mutual information of the subse-
quently added features monotonically decreases to zero, therefore we
decide to stop when it becomes ill-defined. Again, mutual informa-
tion is estimated using k-nearest neighbours.

Algorithm 2: Forward greedy search
Input: initial set of n features F, target class vector C
Output: subset with the selected features S

1 S← ∅
2 foreach fi ∈ F do // computation of MI with target class

3 compute I(C; fi)
4 end

5 f0 ← argmax fi ∈ FI(C; fi) // first feature: max MI

6 F← F\{f0}

7 S← {f0}

8 repeat // subsequent features

9 f∗ = argmax fi ∈ F\Sminfs∈S I(fi, fs;C) // max min joint

MI

10 F← F\{f∗}
11 S← S∪ {f∗}
12 until |S| = n or maxfi∈F\S minfs∈S I(fi, fs;C) � 0

4.3 experiments

In this section, we carry out several experiments to evaluate the effec-
tiveness of the investigated approaches. We first give a brief descrip-
tion of datasets and experimental settings. Then, in the following sec-
tion, we empirically compare the considered methods among them-
selves and with other state-of-the-art feature selection algorithms.
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4.3.1 Design of experiments

The considered feature selection algorithms are paired with three
well-known classifiers (KNN [31], SVM [30] and ExtraTrees [40]) and
applied to two well-known datasets. The final classification perfor-
mance after feature selection is evaluated in terms of Correct Classifi-
cation Rate (CCR). All our experiments, including classifiers training,
feature selection, and parameters tuning, are conducted using scikit-
learn1 [87]. Hereby, the SVM implementation is based on the LIBSVM
package [25]. Regarding the classifiers parameters, for KNN we per-
form cross-validation on each dataset to select the number of neigh-
bors, with K ∈ [1, 3, 5]. We train the SVM with a radial-basis-function
kernel that we tune via cross-validation and grid search separately
on each dataset; we pick the penalty constraint C ∈ [50, 100, 150] and
the kernel exponent γ ∈ [0.2, 0.5, 1, 2]. As for ExtraTrees, in our experi-
ments we use forests of 1000 ExtraTrees in the final classification mod-
els and 300 trees in the evaluation step of the search-based feature
selection methods. We only tune two tree hyper-parameters, namely
the ratio of the random subset of features that are considered at each
split in [0.4, 0.5, 0.6, 0.7, 0.8, 0.9], and the minimal number of observa-
tions required in a leaf node in [1, 3]. The best configuration for each
experiment is obtained by grid search with cross-validation.

4.3.2 Database Description

Towards robust gait recognition, the experimental analysis depends
largely on a sufficient number of training and testing samples. Hence,
large-scale gait databases are essential for our experiments. For this
purpose, the gait database should contain a large number of sub-
jects as well as a variety of covariate factors. There are some pub-
licly available well-know gait databases, such as the SOTON covariate
database [97], CASIA B database [126, 129] and USF gait database [94].
In order to evaluate the effectiveness of the considered feature selec-
tion approaches on overall gait recognition performance under dif-
ferent scenarios, we carried out all our experiments on these two
benchmark databases, namely SOTON covariate and CASIA-B gait
datasets. Moreover, from the research perspective, there are different
advantages from these two databases: (1) the SOTON covariate gait
database includes a various covariate factors; and (2) the CASIA-B
gait database a large number of subjects. These scenarios should be
fully investigated to design robust and reliable feature selection algo-
rithms for model-based gait recognition.

• The SOTON covariate dataset originates from eleven subjects
walking parallel to a static camera, with fifteen covariate fac-

1 http://scikit-learn.org/stable/
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tors. Each subject was captured wearing a variety of clothes
(rain coat, trench coat and normal), footwear (flip flops, bare
feet, socks, boots, trainers and own shoes) and carrying vari-
ous bags (barrel bag slung over the shoulder or carried by hand
on shoulder, hand bag held in hand, and rucksack). They were
also recorded walking at different speed (slow, fast, and normal
speed). For each subject, there are approximately twenty sets
of walking sequences from right to left and vice-versa. Overall,
the dataset consists of 3178 walking sequences from 11 subjects
spanning 15 covariates. These 3178 walking sequences are the
data samples used for training and testing purposes. In order
to estimate the classification accuracy on this dataset, we per-
formed random sub-sampling stratified cross-validation, also
known as Monte Carlo cross-validation, with a training/test ra-
tio of 80/20.

• The CASIA-B is a large multiview gait dataset with 124 differ-
ent subjects under the variations in viewing angle and walking
status (normal, in a coat, or with a bag) [126]. Besides, there
are 6 sequences from each normal walking subject under one of
the 11 viewing angles. This is one of the most widely used gait
database since it contains large view variations ranging from
frontal view (0◦) to back view (180◦) at an 18◦interval. The spa-
tial resolution and frame rate of video files is 320× 240 pixels
and 25 frames per second, respectively. In our experiment, we
only consider the use of videos with a lateral view angle (view
angle of 90◦). This database are recorded with ten sequences
for each subject: six normal sequences (SetA: NM-01 to NM-
06); two sequences with a coat (SetB: CL-01 to CL-02,); two se-
quences with a bag (SetC: BG-01, to BG-02). Hence, for each sub-
ject, we have at most 6 video sequences of the same condition.
Therefore, in order to tune the classifiers’ hyper-parameters, we
perform 6-fold stratified cross validation. That is equivalent to
leaving one sequence out for each subject. Then, for feature se-
lection, in the normal case we train on five normal sequences
and test against the held-out normal sequence. In the covariate
cases, we train on three normal sequences and one sequence
from each of the covariate factor (clothes and bag) and we test
against the held-out covariate sequence.

4.4 results and discussions

4.4.1 Exploratory Analysis

Figure 27 and 28 report via box-and-whiskers plots the distribution
of classification accuracy across experiments, namely the median av-
erage CCR and its interquartile range. Six different types of feature
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selection, plus no feature selection, are included in this comparative
study. Each method is tested together with each of the three con-
sidered classifiers on each of the covariate factors. These classifier-
covariate combinations, on the SOTON and on the CASIA-B datasets,
account for the 18 and 9 experimental units displayed in Figure 27
and 28 respectively.

As shown in Figure 27, which illustrates the experiment with the
SOTON dataset, we observe that the ExtraTrees and SVM classifiers
achieve a better CCR than the KNN classifier. As for the covariate fac-
tors, carrying and clothing seem to be the more challenging ones, but
we can also observe variations with the classifier in use. For example,
the SVM accuracy appears slightly lower in the presence of differ-
ent clothing conditions as compared to different carrying conditions,
whereas KNN seems to be also affected by varying walking speed.
ExtraTrees, on the contrary, appear to consistently yield a good per-
formance. To further test the effectiveness of the methods, the larger
gait database of CASIA-B is also used in the evaluation process, and
the experimental results are shown in Figure 28. It can be observed
that the ExtraTrees classifier achieves better results than the SVM and
KNN classifiers across all covariate factor. Amongst the covariate fac-
tors, the carrying condition appears to be the most challenging one
in the CASIA-B dataset.

Regarding the effect of feature selection, the accuracy improve-
ments achieved by the investigated methods seem to vary across clas-
sifiers and covariates; moreover, visual inspection suggests compar-
atively close figures from different methods. Therefore, in order to
better assess their relative impact, we move onto a statistical analysis
of the experimental results.

4.4.2 Statistical Analysis

Question 1. Is there a significant effect of feature selection on gait classifi-
cation accuracy?

4.4.2.1 Three-way ANOVA

Let CCRijkr denote the random variable giving the classification accu-
racy from replication r of random subsampling cross-validation when
applying feature selection method i and classifier j to the walking se-
quences with varying covariate factor k. In our case, feature selection
(fs), classifier (clf ), and covariate (cov), are the experimental factors
whose effect on classification accuracy we want to investigate. In SO-
TON dataset, we considered 7 feature selection methods, 3 classifiers,
and 6 covariates. On the contrary, we considered 7 feature selection
methods, 3 classifiers, and 3 covariates for CASIA-B dataset. Since
we measure CCR at every combination of fs, clf, and cov, our factors
are crossed and we have a balanced 7 × 3 × 6 ANOVA design with
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Figure 27: Box plots of test accuracy of the models on SOTON dataset. Note
the different scales in the y-axis, that is, the range of ExtraTrees
accuracies is shorter and closer to 1. Feature selection methods,
from left to right: ANOVA, MI, TRT, HC, RFECV, JMIM, None.

50 observations per experimental unit for SOTON dataset. As for
the CASIA-B dataset, we have a balanced 7× 3× 3 ANOVA design
with 80 observations per experimental unit. In the complete three-way
model:

CCRijkr = μ+αi+βj+γk+(αβ)ij+(αγ)ik+(βγ)jk+(αβγ)ijk+εijkr
(9)

where μ is the overall average CCR, αi is the main effect of feature
selection method i, βj is the main effect of classifier j, γk is the main
effect of covariate factor k, and (αβ)ij (αγ)ik (βγ)jk and (αβγ)ijk are
the two-way and three-way interaction terms, respectively; εijkr are
the i.i.d. unexplained residuals.

In essence, this is a simple additive linear model. We use it to per-
form a classical analysis of variance in order to tests whether or not
the average CCR differs significantly across the experimental units
defined by the blocking factors (fs, clf, and cov) and their interactions.
Table 10 and 11 report the ANOVA results for SOTON and CASIA-B
datasets, respectively.

As it can be noticed by looking at the sums of squares, most of
the observed variance in correct classification rate can be explained
by considering the classifier in use, the covariate dataset it is applied
to, and their combination. Feature selection has a significant effect
(P < 2.2e−16), meaning that at least one of the feature selection meth-
ods in this study produces a significant impact on the average clas-
sification accuracy when compared to the other methods. However,
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Figure 28: Box plots of test accuracy of the models on CASIA-B dataset. No-
tice again that, in contrast with the subsequent interaction plots,
the y-axis have here different ranges. Feature selection methods,
from left to right: ANOVA, MI, TRT, HC, RFECV, JMIM, None.

the presence of significant three-way interaction (fs:clf:cov) does not
allow us to discuss the main effects or the two-way interaction either.
In other words, the effect of feature selection on average model accu-
racy seems to depend on both the classifier and the dataset.

Figure 29 and 30 provides an illustration of this three-way interac-
tion in both datasets. In the absence of it, the lines of average CCR
by feature selection method would be parallel to each other across
the blocks of classifier and covariate factors. This would allow us to
aggregate results and directly examine the effect of feature selection.
Instead, we can visually appreciate differences. Therefore, we need
to follow-up the analysis by fixing one of the blocking factors and
performing series of two-way ANOVAs.

Let us start with the SOTON dataset. If we subset our data by clas-
sifier (tables not reported), we still have a significant two-way interac-
tion between feature selection method and covariate factors for both
KNN and SVM classifiers. With ExtraTrees though, the interaction is
not significant (P = 0.915379), but the main effects of feature selec-
tion (P = 0.001076) and covariate factors (P < 2.2−16) are. In this
case, we can perform a post-hoc Tuckey’s Honestly Significant Dif-
ference (HSD) Test [54] to see which feature selection method has a
significantly-different average CCR. We obtain that only HC brings
an improvement over the baseline model with no feature selection;
all other methods are indistinguishable. But all CCR differences are
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Figure 29: Interaction plot. Mean CCR by feature selection method for each
level of the blocking factors “classifier” (by row) and “covariate”
(by column).
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Figure 30: Interaction plot. Mean CCR by feature selection method for each
level of the blocking factors “classifier” (by row) and “covariate”
(by column).
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Table 10: Analysis of variance - SOTON dataset.

Df Sum Sq Mean Sq F value Pr(>F)

fs 6 0.201 0.0335 131.85 < 2.2e−16

clf 2 3.677 1.8385 7241.78 < 2.2e−16

cov 5 0.902 0.1804 710.55 < 2.2e−16

fs:clf 12 0.099 0.0082 32.49 < 2.2e−16

fs:cov 30 0.078 0.0026 10.28 < 2.2e−16

clf:cov 10 0.497 0.0497 195.73 < 2.2e−16

fs:clf:cov 60 0.080 0.0013 5.28 < 2.2e−16

Residuals 6174 1.567 0.0003

Abbreviation note: fs = feature selection, clf = classifier, cov = covariates.

Table 11: Analysis of variance - CASIA-B dataset.

Df Sum Sq Mean Sq F value Pr(>F)

fs 6 1.408 0.2347 304.94 < 2.2e−16

clf 2 14.124 7.0620 9175.40 < 2.2e−16

cov 2 17.432 8.7161 11324.49 < 2.2e−16

fs:clf 12 1.303 0.1086 141.12 < 2.2e−16

fs:cov 12 0.274 0.0229 29.69 < 2.2e−16

clf:cov 4 0.111 0.0277 35.98 < 2.2e−16

fs:clf:cov 24 0.257 0.0107 13.89 < 2.2e−16

Residuals 4977 3.831 0.0008

Abbreviation note: fs = feature selection, clf = classifier, cov = covariates.

in the range [−0.005, 0.005]: the effect is statistically significant but
practically irrelevant.

Indeed, if we follow up the two-way analysis by fixing also the
covariate factor and hence performing series of one-way ANOVAs,
we see that feature selection has a significant impact on the accu-
racy of ExtraTrees models only in the case of all conditions together
(P = 7.544−12). In contrast, KNN accuracy significantly differs across
feature selection methods on all covariate subsets. With SVM, finally,
we can reject the null hypothesis of all feature selection methods yield-
ing the same average CCR in the cases of five covariate factors out of
six. The only exception is clothing (P = 0.02908).

Similarly, on the CASIA-B dataset, we always have a significant two-
way interaction between the feature selection method and covariate
factors for both KNN and SVM classifiers. With ExtraTrees again, the
interaction is not significant (P = 0.02355), but the main effects of
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feature selection (P < 2.2−16) and covariate factors (P < 2.2−16) are.
Only if we follow up the two-way analysis by fixing also the covariate
factor and hence performing series of one-way ANOVAs, we then
find that feature selection has a significant impact on the accuracy of
all classifier models and in the case of all covariate conditions.

These results tell us that the gait recognition task can be more or
less complicated by varying covariate factors, depending on the fea-
ture extraction process and on the classifier in use. Moreover, feature
selection can have a significant impact on classification accuracy, but
this in turn depends on both the classifier and the covariate subset.
Because of such interaction, a simple ANOVA does not allow us to
discuss and compare feature selection methods in isolation.

Question 2. How can we generalise? can we find a common effect of feature
selection methods across the experimental units defined by the combinations
of classifier and covariate factors?

4.4.2.2 Mixed Model

The linear model presented in equation (9) allows us to make in-
ferences only considering the classifiers and covariate factors under
study. These choices, naturally, do not cover all combinations of all
possible classifiers and covariates. Moreover, we did not set to discuss
the effectiveness of those specific classifiers or the hardness of those
specific covariate factors. Nevertheless, as we have seen, classifier and
covariate (and their interaction) have a strong impact on classification
accuracy, which we need to model. We could regard our classifiers
and covariates as drawn at random from a hypothetical population
of all possible classifiers and covariates, and thus treat their combina-
tions as random factors. This would allow us to estimate and com-
pare the eventual impact of the chosen feature selection methods,
while still taking into account the experimental conditions and the
interdependencies that they generate among our observations. In sta-
tistical jargon, we will then refer to feature selection as the fixed-effect
in which we are interested, and to the experimental units of classifier-
covariate combination as the random-effect from which we would like
to abstract.

Let CCRijr be a random variable representing the classification ac-
curacy observed from replication r of Monte-Carlo cross-validation
when testing a model that applies feature selection method i to the
experimental conditions j, where j indicates one possible classifier-
covariate combination. The full mixed-effect ANOVA model [27, 11]
can be specified as:

CCRijr = μ+αi +Bj + (αB)ij + εijr (10)

where μ is the overall average CCR, αi is the parameter represent-
ing the effect of feature selection method i, Bj is a random variable
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Table 12: Fixed effects estimates from the mixed model for SOTON dataset.
Estimated gain in average CCR across experimental units with re-
spect to the baseline of not using any feature selection method.

Estimate Std. Error t value

(Intercept) 0.9265∗∗∗ 0.0081 113.88

fsANOVA-Fclass 0.0127∗∗∗ 0.0034 3.76

fsMI 0.0138∗∗∗ 0.0033 4.14

fsTRT 0.0141∗∗∗ 0.0034 4.14

fsHC 0.0199∗∗∗ 0.0039 5.06

fsRFECV 0.0090∗∗ 0.0029 3.09

fsJMIM 0.0113∗∗∗ 0.0029 3.84
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

representing the random effect of experimental block j, and (αB)ij
is a random variable representing the possible random deviation be-
tween the common effect αi and the specific effect that feature se-
lection method i displays in experimental condition j. It has to be
noticed that, strictly speaking, Bj and (αB)ij are not model param-
eters (they are obtained after the model fit, as model residuals εijr
are). Indeed, they are random variables with zero mean, whose vari-
ances and covariances are model parameters. Hereby, model residuals
are now i.i.d. only within each experimental block. Notice also that
we explicitly include the second-level random effect (αB)ij since we
are aware of significant interactions between effects, but also because
using the maximal random-effect structure that is supported by the
data, allows us to avoid anti-conservative results in the estimation of
αi, the fixed-effects of interest [5]. That is to say, we want to obtain
the most generalisable inferences that the dataset under study could
support.

Table 12 and 13 report the maximum-likelihood estimates of the co-
efficients μ, the intercept, and αi, the fixed-effects parameters for SO-
TON and CASIA-B dataset, respectively. Each of the latter represents
the difference in expected CCR between feature selection method i

and the control group of models without any feature selection. Each
estimate is tested against the null hypothesis αi = 0 and the respec-
tive p-values are reported, symbolically encoded. All feature selection
methods seem to yield a significant gain in accuracy, which, after
all, was the sole optimisation objective. However, in SOTON dataset,
the first observation to make is that such an improvement is only
marginal, ranging from 0% to 2.15% over the baseline model with
no feature selection (Intercept). As for CASIA-B dataset, we observe
a better improvement of CCR, ranging from 0% to 6.77% over the
baseline (Intercept). In particular, the wrapper search-based method
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Figure 31: Simultaneous estimation of all pairwise comparisons for the
fixed-effect of feature selection in the mixed model. 95% confi-
dence intervals are adjusted following Tukey’s method.
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Figure 32: Simultaneous estimation of all pairwise comparisons for the
fixed-effect of feature selection in the mixed model. 95% confi-
dence intervals are adjusted following Tukey’s method.
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Table 13: Fixed effects estimates from the mixed model for CASIA-B dataset.
Estimated gain in average CCR across experimental units with re-
spect to the baseline of not using any feature selection method.

Estimate Std. Error t value

(Intercept) 0.6440∗∗∗ 0.0342 18.82

fsANOVA-Fclass 0.0365∗∗ 0.0119 3.06

fsMI 0.0416∗∗∗ 0.0109 3.82

fsTRT 0.0368∗∗∗ 0.0102 3.59

fsHC 0.0436∗∗∗ 0.0122 3.56

fsRFECV 0.0227 0.0163 1.40

fsJMIM 0.0038 0.0021 1.80
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

seems to have a slight edge, but the relative rankings are different on
the two datasets and, more importantly, care needs to be taken when
performing multiple comparisons.

To address the problem of family-wise errors in multiple hypoth-
esis testing, Figure 31 and 32 report the simultaneous estimates of
fixed-effects’ confidence intervals with Tukey’s HSD adjustments for
SOTON and CASIA-B dataset, respectively. There is enough empiri-
cal evidence to state that, on SOTON dataset, JMIM, RFE and first-
improvement hill-climber HC approaches outperform conventional
filter approaches in terms of final gait recognition accuracy. Nev-
ertheless, we can observe only minor differences and, notably, no
statistically-significant difference between MI-based rankings and rank-
ings based on the analysis of variance. However, in CASIA-B dataset,
the conventional method of MI-based rankings outperforms other sta-
tistical approaches in terms of final gait recognition accuracy. That
makes it difficult to generalise results from one dataset to another.
But we notice that, in the case of the CASIA-B dataset, the number
of training samples per class is very small. Therefore, the k-nearest
neighbors estimation of joint-mutual information within the JMIM
method and the built-in estimation of feature importances of embed-
ded methods, are most probably noisy and biased due to a lack of
subject-specific data. Hence, the performances of those approaches
are hard to disentangle and also rather close to what can be obtained
by the simpler MI or ANOVA univariate rankings.

4.4.3 Analysis of Computational Time and Best Feature Subset Length

Figure 33 and 34 show, for all the combinations of feature selection
method, classifier, and covariate factors, the average computational
time required by feature selection and classification (in secs) and the
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Figure 33: Top: Computational Time (in secs) on SOTON. Bottom: reduction
(%) in Best Feature Subset Length on SOTON. Notice the different
y-axis time scales. Feature selection methods, from left to right:
ANOVA, MI, TRT, HC, RFECV, JMIM, None.

length of the best feature subset (in percentage of the original fea-
ture set cardinality) for SOTON and CASIA-B dataset, respectively. In
both datasets, we notice that the KNN classifier requires a computa-
tion time significantly lower than the other two classifiers. However,
its recognition accuracy is also lower than that of SVM and Extra-
Tree across the different covariate factors in this dataset. ExtraTrees
are, comparatively, the slowest classifier in this study: their compu-
tational complexity is exposed by the Monte Carlo cross-validation,
which at each iteration requires to fit and test a large ensemble of un-
pruned trees. SVMs, in contrast, produce sparse models that are not
only faster to fit but also relatively faster to poll for predictions when
testing.

As for the feature selection methods, we observe that conventional
statistical approaches are much cheaper to evaluate than search-based
wrapper approaches. In particular, ranking features according to uni-
variate statistics is almost immediate, except when extracting variable
importances from randomised trees. What adds to the computation
time then is the linear search for the best number of features to retain,
which is again based on cross-validation. Overall, the hill-climber
(HC) method took longer than all other feature selection methods
across all types of covariate factors. As can it can be seen in the bot-
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Figure 34: Top: Computational Time (in secs) on CASIA-B. Bottom: reduc-
tion (%) in Best Feature Subset Length on CASIA-B. Notice the
different y-axis time scales. Feature selection methods, from left
to right: ANOVA, MI, TRT, HC, RFECV, JMIM, None.

tom parts of Figures 33 and 34, HC also seems to select smaller sets
of optimal gait features. On both datasets however, embedded meth-
ods took relatively less time to achieve comparable results, both in
terms of accuracy and feature set reduction. This would suggest that,
when the feature set is not overly complex, simple embedded meth-
ods should probably be the preferred solution for feature selection in
gait classification.

Regarding the parsimony of the selected models, search-based meth-
ods discarded more aggressively the “irrelevant” features, resulting
overall in smaller feature sets, despite the fact that the size of the se-
lected subset was not part of the search objective. Nonetheless, such
behaviour again depends on the classifier in use. Decision trees for in-
stance, internally select the most discriminative features to split upon,
hence the smaller reduction in feature subset length when optimising
the final classification accuracy of ExtraTrees.

As for the selected features, on both datasets and for all classifiers,
the features that are most often discarded by all selection procedures
are related to the angular trajectories. In particular, the total angle of
the trailing knee appears to be the less reliable one in the presence of
occlusions.
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Table 14: Correct classification rate (%) of different methods on the SOTON
database [97].

Feature Extraction #Covariates #Subject #Sequences FS Classifier CCR (%)

Bouchrika et al. [20]
11 10 440 None KNN

73.4

Our approach 74.5

Pratheepan et al. [90]
4 10 180 None SVM-Ln

86.0

Our approach 93.0

Ng et al. [85]
13 11 2722 None SVM-Ln

84.0

Our approach 93.0

Our approach 15 11 3178
None

SVM-RBF
93.6

HC 96.0

JMIM 95.0

4.4.4 Further Comparisons with Conventional Methods

Table 20 summarizes the comparison of results with respect to other
conventional techniques for gait classification that use the SOTON co-
variate database. To have a fair comparison, we evaluate our approach
under the same experimental settings and data subset. That is to say,
we train the same classifier as in the approach we compare to, but
using our own feature extraction technique and without performing
any feature selection.

Overall, we seem to obtain higher classification accuracy than the
results published in Bouchrika et al. [20], Pratheepan et al. [90] and
Ng et al. [85], after taking into account the number of subjects, the
number of covariate factors and the number of walking sequences
that were used for training and testing. The feature extraction method
proposed by Bouchrika et al. requires to manually label model tem-
plate in order to describe the joints’ motion, which could result in
decreased classification accuracy. Moreover, in comparison with the
approach by Pratheepan et al., we do not incorporate the removal
of occluded sequences for estimating the gait cycle; instead, our ap-
proach uses the entire walking sequence for gait analysis. It can also
be noticed from the results that our approach outperforms Ng et al.’s
as their approach have difficulty in extracting gait features from the
silhouette and self-occluding silhouette model, which can lead to an
erroneous extraction of the gait features.

In conclusion, our technique for feature extraction shows an im-
provement in recognition accuracy as compared to previous results
in the literature, without any feature selection and by using all the re-
spective walking sequences in the SOTON dataset. This further helps
putting into perspective the relative accuracy gain that feature selec-
tion methods can provide.
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Table 15: Comparisons with other existing methods on the CASIA gait
database B using lateral view (90◦). The bold font highlights the
highest accuracy for each test scenario in the experiment.

Method Normal Carrying Clothing Overall

Yu et al. [126] 97.60 32.70 52.00 60.77

Han et al. [81] 99.60 57.20 23.80 60.20

Bashir et al. [8] 100.00 78.30 44.00 74.10

Bashir et al. [9] 97.50 83.60 48.80 76.63

Bashir et al. [7] 99.40 79.90 31.30 70.20

Dupuis et al. [37] 98.80 73.80 63.70 78.77

Rida et al. [92] 95.97 63.39 72.77 77.38

Hu et al. [55] 94.00 45.20 42.90 60.70

Kusakunniran et al. [68] 95.40 60.90 52.00 69.43

Kusakunniran et al. [67] 94.50 60.90 58.50 71.30

Jeevan et al. [59] 93.36 56.12 22.44 57.31

Our method (None-KNN) 64.60 48.60 55.60 56.30

Our method (None-SVM) 70.90 54.70 62.80 62.80

Our method (None-ETC) 81.10 67.60 73.60 74.1

Our method (RFECV-KNN) 70.60 57.70 61.90 63.40

Our method (TRT-SVM) 74.60 62.60 65.50 67.57

Our method (HC-ETC) 83.70 70.60 76.00 76.77

Then, to investigate the performance of gait recognition on the
CASIA-B database, an experiment was carried out to compute the
CCR, and the experimental results are listed in Table 15. Results
have been compared with those obtained by other approaches avail-
able in the literature. It can been seen that methods investigated in
this work display good results, especially against changes in clothing
types. This can be explained by the fact that our method eliminates
noisy features which, in turn, improves the recognition performance
in the clothing conditions when these features are considerably af-
fected. However, the overall performance is comparable to that of
other conventional methods.

4.5 summary

In this chapter, we presented and compared feature selection tech-
niques, designed to maximise the final gait classification accuracy.
The overall approach constitutes a general framework for different
machine learning algorithms, which we applied to the problem of
feature selection under the effect of various covariate factors in a
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model-based approach. The main goal of the present work was to
find a best set of features in order to improve the overall classification
accuracy.

The experiments were performed on a two well-known gait datasets,
namely the SOTON covariate dataset and the CASIA-B dataset. The
experimental results on both showed that search-based and embed-
ded approaches can improve the Correct Classification Rate of the fi-
nal model. Such accuracy gain is more pronounced when using a sim-
ple classifier as KNN, but not so evident in the case of decision-tree
variants ExtraTrees. Nevertheless, we could confirm a common, signif-
icant improvement over not performing any feature selection and also
over more conventional feature ranking techniques, across the consid-
ered combinations of classifiers and covariate factors. A mixed-effect
statistical analysis of model accuracy gives empirical evidence for this
conclusion. In our experiments, feature selection is able to select the
discriminative input gait features and provides an improved overall
classification performance, which is comparable to that of other state-
of-the-art approaches. Hence, the proposed methodology provides a
valid alternative for the selection of relevant features for model-based
gait recognition.

Nevertheless, this improvement in classification accuracy remains
marginal over the baseline accuracy of a given classifier, and over
what could be gained switching feature extraction technique or clas-
sifier technology. It also comes at the cost of a manyfold increase in
computation time. Therefore, if a wrapper approach is practically fea-
sible for the dataset under study and if the feature space does not
seem to require strong global-search capabilities, we would recom-
mend a simple local search. In our experiment, a hill-climber showed
to provide final classification rates comparable to those from a genetic
algorithm but with a comparably smaller computational complexity.

Naturally, since all methods have problems for which they are es-
pecially well-suited and others for which they are not, a small change
in the problem setup might change the performance rankings and the
results of a comparative study. Hence, we invite the interested reader
to be careful extrapolating our reasonable yet empirical conclusions
to other problems or datasets [48]. Despite the fact that we did our
best to avoid anti-conservative estimations, our findings are based on
the analysed datasets. With this work, we hope to have provided not
only the first comparative study of feature selection methods for gait
classification, but also a modest example of analytical methodology.

This work can be extended in several directions in the future. For
instance, the primary limitation of our approach is its dependency on
the viewing angle and speed. The selected set of features would be
uninformative and irrelevant if the viewpoint of the camera were to
change, and also if the same subject were to walk at a significantly
different speed. We intend to extend our approach to make it invari-
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ant to speed and viewing angles changes by better understanding
and correlating the set of features that have maximum discrimination
power in order to overcome these limitations in the future. Moreover,
it will be interesting to see how our approach can be modified to ac-
commodate the case of multi-view gait identification under the effect
of different covariate factors. The extension of this work will involve
working with larger available gait databases and also on challenging
gait covariate factors. This will not only further test the validity of
our results but also reaffirm the reliability of our feature set. There-
fore, our future goal will be to optimize the system for invariance
in speed, viewing angle, and hence develop a reliable human gait
recognition system. On a different note, the feature selection problem
could also be addressed in a multi-objective optimisation context; in
this way, we could analyse human gait patterns from other perspec-
tives, and explicitly include models parsimony in the maximisation
problem. In addition, we would like to explore the possibility of using
deep neural networks in gait recognition tasks as means to automatic
feature engineering. Deep learning approaches are very often effec-
tive, although at the expenses of a very high computational burden,
yet they only require the use of minimal problem domain knowledge.





Part IV

W H E N G A I T R E C O G N I T I O N M E E T S W I T H
D E E P L E A R N I N G

In recent years, significant efforts have been put into the
problem of human identification based on gait recognition.
However, most of the conventional approaches have been
used hand-crafted features for representing human gait,
which might not generalize well to diverse datasets. In ad-
dition, in recent studies, deep learning approaches have
shown promising results on various image classification
tasks. In this part, we explore the use of deep learning-
based approaches for learning and extracting gait features
that suitable for gait recognition under challenging covari-
ate factors such as changes in the clothing and variations
in viewing angle.





5
D E E P L E A R N I N G F O R G A I T R E C O G N I T I O N

5.1 overview

Recently, deep learning has gained significant attention from the com-
puter vision community. This is because deep learning models are ca-
pable of learning multiple layers of feature hierarchies by construct-
ing high-level features from low-level features [3]. Hence, they are
more generic since the feature construction process is fully automated.
In addition, many recent studies have shown promising results for
applying deep learning approaches to a variety of applications (e.g.
image classification, text classification, natural language processing,
scene labeling, etc.) [66, 128, 29, 39]. However, conventional state-of-
the-art methods have mostly used hand-crafted features for repre-
senting the human gait. To the best of our knowledge, deep learning
based approaches have not been well applied to address the problem
of gait recognition yet. Therefore, in this work, we explore the use
Convolutional Neural Networks (CNNs) with appropriate gait repre-
sentation for gait recognition. Specifically, the variations in clothing
types can cause the recognition rate decreased greatly. Therefore, we
also employed a model based on stacked auto-encoders for clothing-
invariant gait recognition. The model is trained to handle gait data
with clothing variations. We also demonstrate the effectiveness of
both proposed methods in gait recognition tasks using the publicly
available gait database. We will describe the framework in the Sec-
tion 5.3 and Section 5.4, respectively.

5.2 existing work

Many promising works of human identification based on gait ap-
proaches have been introduced (for a recent review see [73, 79]). These
works demonstrate the feasibility of using gait signature for human
identification at a distance. However, gait recognition is still a compli-
cated task because of the variations in view angles, clothing, carrying
condition and other covariate factors. These factors can degrade the
overall performance of gait recognition. This problem has recently
gained considerable attention from the gait researchers.

Several gait approaches [80, 69] based on view transformation have
been proposed which have the ability to deal with large viewing an-
gle changes and do not rely on camera calibration. Recently, Makihara
et al. [80] established a Singular Value Decomposition (SVD) based
view transformation model to transform the gait features in probe

73
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viewing angle to that in gallery viewing angles. In [69], Kusakunni-
ran et al. established a View Transformation Model (VTM) from the
different point of view by adopting Support Vector Regression (SVR)
technique.

On the other hand, clothing type has been demonstrated to be the
most challenging one [42]. It will drastically alter the individual’s ap-
pearance with the variation of different clothing types, such as baggy
pants, skirt, down jacket, and coats. The task of gait analysis becomes
much more challenging [84]. In recent conventional methods, such as
that in [42], proposed a technique by introducing a Random Subspace
Method (RSM) framework for clothing-invariant gait recognition by
setting up multiple inductive biases in a random manner. Islam et
al. [57] conducted a study on human gait by dividing it into small
window chunks and developed a Random Window Subspace Method
(RWSM) for clothing invariant gait recognition.

However, previous conventional approaches have mostly used hand-
crafted features for representing human gait. This hand-crafted fea-
tures to try to capture the essence of different visual of gait patterns.
Although most of the conventional approaches have satisfactory per-
formance, but the main drawback of these approaches are highly
problem-dependent. Therefore, this work studies an approach to gait
based human identification via deep learning approaches.

5.3 convolutional neural network

The convolutional neural network (CNN or ConvNet) [41] model is
a type of feed-forward artificial neural network which was inspired
by biological processes [83]. It contains a variations of multilayer per-
ceptrons which are designed to to use minimal amounts of prepro-
cessing [71]. The connectivity pattern between its neurons within the
network was inspired by the organization of the animal cortex [56],
whose individual neurons are tiled in such a way that they respond to
overlapping regions in the visual field. In general, a typical CNN ar-
chitecture is formed by a sequence of layers that transform the input
image volume into an output volume through a differentiable func-
tion. It is usually made up of a convolution layer, a spatial pooling layer,
a normalization layer and followed by fully-connected layer.

A few distinct types of ConvNet layers are commonly used in deep
learning networks and we explain them further below:

1. Convolutional layer: This layer’s parameters consist of a set of
learnable filters (or kernels), which have a small receptive field,
but it extends through the full depth of the input data volume.
Moreover, during the forward pass, each filter is convolved across
the width and height of the input volume, and computing the
dot product in between the entries of the filter and the input
and creating a two dimensional activation map of that filter.
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Hence, the network learns filters that activate when they see a
particular type of visual feature at some spatial position in the
input images. The full output volume of the convolution layer is
formed by stacking the activation maps for all filters along the
depth dimension. Therefore, every entry in the output volume
can thus be considered as an output of a neuron that observes at
a small region in the input and shares parameters with neurons
in the same activation map.

2. Pooling layer: This layer divides the given input image into a
set of non-overlapping rectangles and, for each such sub-region,
it outputs the maximum. The exact location is not as impor-
tant as its rough location corresponding to other features once
a feature has been found. The aim of using pooling layer is to
reduce the spatial dimensions of the feature. Eventually, it will
minimize the amount of parameters and computation in the
network, and hence to also control overfitting. It is a common
practice in deep learning to regularly insert a pooling layer in
between successive convolution layers in a CNN architecture.
Moreover, the pooling operation provides a form of translation
invariance.

3. Fully-connected layer: Finally, after several convolutional and max-
pooling layers, the high-level reasoning in the neural network is
done via fully connected layers. Hence, neurons in the fully-
connected layer have full connections to all activations in the
previous layer.

For a more detailed of the latest deep learning findings and the archi-
tecture of a CNN is designed, the interested readers may refer to the
works in [35, 41].

5.3.1 Methodology

In this section, we describe our proposed method to address the prob-
lem of gait recognition using CNN for gait recognition tasks. The
proposed framework for gait recognition based on CNN is illustrated
in Figure 35a and Figure 35b for CASIA-B and OU-ISIR Treadmill B
dataset, respectively.

5.3.1.1 Input data

In this work, we use a Gait Energy Image (GEI) [81] as the gait feature
descriptor and input data to the CNN. Example GEIs belonging to
one subject in the CASIA-B dataset and OU-ISIR Treadmill B dataset
are shown in Figure 36a and Figure 36b, respectively. GEI is a spa-
tiotemporal gait representation constructed using silhouettes. Given
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(b) OU-ISIR Treadmill B dataset

Figure 35: The proposed convolutional neural network (CNN) architecture
for gait recognition. Top: CASIA-B dataset. Bottom: OU-ISIR
Treadmill B dataset.

a size-normalized and horizontal aligned human walking binary sil-
houette sequenece B(x,y, t), the grey-level GEI G(x,y) is defined as
follows

G(x,y) =
1

N

N∑

t=1

B(x,y, t) (11)

where N is the number of frames in complete cycles of the sequence,
x and y are values in the 2D image coordinate.

5.3.1.2 Network Structure

The proposed method provides an end-to-end framework with con-
volutional neural network is shown in Figure 35a and Figure 35b. The
network contains 6 layers, with 3 convolutional layers (Conv1, 2 and
3), and 2 fully connected layer (FC4-5) and last follow by softmax
layer. In CASIA-B dataset, the first layer accepts GEI size of 128x128
which obtained from the sequence of GEI as input. On the hand, in
OU-ISIR Treadmill B dataset, the first layer accepts GEI size of 88x128
pixels. The conv1, 2 and 3 yield 32, 64, 96 feature maps respectively.
We set the number of neurons to 4096 and 2048 in FC4 and FC5,
respectively. The input to the last layer, softmax layer, has n units,
where n represents to the number of training subject samples taken
from the dataset. Filter size for conv1 is set as 7x7 with strides of 1.
While conv2 and conv3 use stride of 1, conv2 has filter size of 5x5,
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(a) CASIA-B gait dataset: the leftmost GEI image is the gallery, GEI with
view angle of 36◦, while the righmost GEI image are the probe GEIs
with view angle variations.

(a) (b) (c) (d) (e) (f) (g)

Gallery GEI Probe GEIs

(b) OU-ISIR B dataset: the leftmost GEI image (a) is the gallery GEI in nor-
mal clothing condition, while the rightmost GEI image (b)-(g) are the
probe GEIs with different clothing combinations.

Figure 36: Samples of GEIs of a similar person are computed by averaging
silhouettes over the whole sequence.

and conv3 has filter size of 3x3. Local Response Normalization (LRN)
is employed after conv1, conv2 and conv3 with similar settings in [66].
Due to large number of parameters in the architecture, overfitting is
inevitable. Hence, it is important to use dropout as form of regular-
izer. We follow the implementation shown in [66] to use the dropout
after the FC4 and FC5 as most of the parameters are concentrated
in these layers. We employed Rectified Linear Unit (ReLU) used as a
activation function for all convolution layers, except for softmax layer
that uses softmax regression as activation and act as a multi-class clas-
sifier for gait classification. The activation function has been proved
to yield a better performance and speed up training time as reported
in [66].

5.3.2 Experiments

To evaluate the effectiveness of the performance of our proposed
method for clothing-invariant gait recognition, we conducted all our
experiments on the CASIA-B dataset [126] and OU-ISIR Treadmill
dataset B [53] which contains the largest variations of view and cloth-
ing variations.

5.3.2.1 Dataset Description

OU-ISIR Treadmill B dataset The dataset [53] is an indoor gait dataset
and consists of 68 subjects in total with 15 to 32 different clothing
combinations as listed in Table 16, while the list of clothes available
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Figure 37: A sample of images for each clothing variations taken from the
OU-ISIR-B dataset [53].

in the dataset shown in Table 17. The original dataset is divided into
three subsets, i.e., training set, gallery set and probe set. For most
of the conventional approaches, the experiments are evaluated using
this test setup. They used a subset containing 446 sequences of 20 sub-
jects with all possible clothing types for training purpose. For testing,
they used a gallery set consisting gait sequences of the remaining
of 48 subjects in standard clothing combination. The probe set com-
prising 856 gait sequences for these 48 subjects with all types of dif-
ferent clothing combinations excluding standard one in gallery set.
This database setup does not suitable for most of the deep learning
approaches as the training and test sets have been captured under dif-
ferent clothing conditions. The designed CNN network cannot learn
the discriminative gait features that are invariant to various clothing
conditions if the training data only consists samples of one normal
clothing type. Hence, in this work, the whole dataset was split into
into non-overlapping training and test set (using ratio of 80/20 re-
spectively). For each subject in the test set, we used the gait image
sequences which consists only standard clothing types as gallery set
and whereas other clothes types to construct the probe set. Figure 37
shows sample images of different combinations of clothing variation
in the dataset.
CASIA-B gait dataset The dataset [126] consists of the data from 124
subjects. The gait data was captured from 11 viewing angles, namely
0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, and 180◦. There are
6 video sequences for each person under each different viewing an-
gle. Therefore, we use a total of 8184 gait sequences. Figure 38 shows
sample images of different combinations of clothing variation in the
dataset.
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Table 16: Different combinations of clothing variation in the OU-ISIR-B
dataset[53].

Type S1 S2 S3 Type S1 S2 Type S1 S2

3 RP HS Ht 0 CP CW F CP FS

4 RP HS Cs 2 RP HS G CP Pk

6 RP LC Mf 5 RP LC H CP DJ

7 RP LC Ht 9 RP FS I BP HS

8 RP LC Cs A RP Pk J BP LC

C RP DJ Mf B RP DJ K BP FS

X RP FS Ht D CP HS L BP Pk

Y RP FS Cs E CP LC M BP DJ

N SP HS - P SP Pk R RC -

S Sk HS - T Sk FS U Sk Pk

V Sk DJ - Z SP FS - - -

Table 17: List of variations in clothing types used in the dataset (Abbrevia-
tion: Clothes type ID).

RP: Regular pants HS: Half shirt CW: Casual wear

BP: Baggy pants FS: Full shirt RC: Rain coat

SP: Short pants LC: Long coat Ht: Hat

Sk: Skirt Pk: Parker Cs: Casquette cap

CP: Casual pants DJ: Down jacket Mf: Muffler
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Figure 38: CASIA-B dataset: top row: normal walking (NM), mid row: with
a coat (CL), bottom row: with a bag (BG).

5.3.2.2 Implementation details

We used stochastic gradient descent (SGD) to train our models with
mini-batch of size 40 and a momentum value of 0.8. The weights are
initialized by using Gaussian distribution with zero mean and a stan-
dard deviation of 0.01 for all trainable layers. All the bias terms are
initialized with the constant zero. We set our initial learning rate to
0.01. When a network has a too small learning rate will eventually
lead to slow convergence, while having a too big learning rate will
make the weights and objective function diverge. We reduced the
learning rate for all layers by factor of 10 every 1000 iterations prior
to termination. We trained the model for 5000 iterations (∼ 50epochs)
for all experiments. We noticed that further training the model does
not improve the results. The experiments was carried out using Mat-
ConvNet library [105] on NVIDIA GTX 970 4GB GPU. This library
allows to prototype CNN architectures in an easy and fast manner
using the Matlab environment. Besides, it takes advantage of CUDA
and cuDNN [26] to improve the network’s performance on classifica-
tion tasks.

After we have acquired the gait features, the final stage (fully con-
nected layer, FC5) consists of identifying those features to predict a
subject identity. During this stage, we compute a common set of simi-
larity feature to individual subjects using the Euclidean distance. Dur-
ing the matching between a corresponding pair of subjects (probe GEI
Pi and gallery GEI Gi sequences), the similarity score between them
can computed through a trained network as follows:

d(Pi,Gi) =

n=1∑

N

∥∥Pi(n) −Gi(n)
∥∥
2

(12)

where d(Pi,Gi) is a distance between the gait signatures Pi and Gi. N
is size of gait feature vector. The smaller value of d means the higher
possibility that the gait signature in between of the given matching
pair, Pi and Gi are belong to the same person. Although the top layer
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Table 18: Comparison of results on CASIA-B dataset.

Probe Angle

Method 54◦ 90◦ 126◦ Average

C3A [117] 56.64% 54.65% 58.38% 56.56%

SVR [69] 53.62% 45.90% 53.82% 51.11%

CNN+Softmax 57.50% 50.91% 58.39% 55.70%

CNN+SVM 60.19% 54.24% 61.39% 58.61%

of the CNN already comprises a softmax classifier, we can have the
advantage of replacing the softmax layer with linear Support Vec-
tor Machine (SVM) classifier and using the extracted gait signatures
as the input. Since our work is dealing with a multiclass problem,
we use a binary SVM classifier with a linear kernel in a one-vs-all.
In [103], they also indicated that this configuration of binary classi-
fiers is suitable to obtain top-tier results in this problem. In our case,
we L2-normalize the top fully connected layer before using it as a
feature vector.

5.3.3 Results and Discussion

5.3.3.1 Results on CASIA-B dataset

The performance of our proposed approach on CASIA-B dataset can
be observed from Figure 39. In overall, our method showed that these
approaches can obtain good results when the data viewing angle
is relatively small, i.e., 18◦, however, the performance will eventu-
ally decreased due to view angle variations. In Table 18, the exper-
imental results of C3A [117], SVR [69] and the proposed method
are listed. From the experimental results, we can conclude the fol-
lowing key points. (1) CNN-SVM provides the highest accuracy than
CNN-Softmax. (2) Being compared with conventional approach [69,
117], our proposed method performs better than the traditional ap-
proaches.

5.3.3.2 Results on OU-ISIR Treadmill B dataset

Performance analysis with clothing variations effect. We conducted
all our experiments on OU-ISIR Treadmill B dataset to examine the
performance of our proposed approach with the effect different cloth-
ing types. The performance for the proposed method can be observed
from Figure 40. From the experiment results, we have the following
observations:
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Figure 39: Performance evaluation on the CASIA-B dataset under the effects
of view angle variation on gait identification.

In experiment 1 (Exp. 1), it consists of walking sequences that only
involve basic clothing combinations (e.g., Y:regular pants+full shirt,
I:baggy pants+half shirt, etc), the average CCR is above 94.0%. Be-
sides from the basic clothing combinations in Exp. 1, we can see that
in Experiment 2 (Exp. 2), the clothing combinations consists of walk-
ing sequences that include challenging clothing covariates (e.g., 7:reg-
ular pants+long coat, P:short pants+parker, etc). In this case, we are
still able to achieve relatively high performance. The average CCR
is above 88.0%. In Experiment 3 (Exp. 3), the recognition task be-
comes much more complicated when a complicated clothing type
(e.g, down jacket or long coat) is combined with a basic clothing
type (e.g., regular pants). However, based on results obtained by the
proposed method, the performance still yields competitive results,
with an average recognition rate above than 81.0%. The combinations
of challenging clothing types shown in Experiment 4 (Exp. 4) lead
to a decrease in gait recognition accuracy performance. We can ob-
serve the average CCR is further drop to 68.4% and 72.2% for CNN-
Softmax and CNN-SVM, respectively. For instance, given a query
gait pattern is under the effect of difficult combinations of clothing
types (e.g. V:skirt+down jacket), the recognition rate is decreased to
around 60.5% and 64.6% for CNN-Softmax and CNN-SVM, respec-
tively. However, in the event of these circumstances, the recognition
task would be difficult even for a human operator, as clothing oc-
cluded most of the discriminative features of the person. Interestingly,
CNN is able to identify human gait under challenging combination
of clothing types. In general, our experimental results using L2-SVMs
show that by replacing softmax function with linear SVMs gives sig-
nificant performance gains especially when the combination of cloth-
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Figure 40: Performance evaluation on the OU-ISIR Treadmill B dataset un-
der the effect of different clothing combinations.

Table 19: Comparison of results on OU-ISIR Treadmill B dataset.

Features Algorithms CCR (%)

Hand-crafted
Guan et al. (RSM) [42] 80.44

Islam et al. (RWSM) [57] 78.54

Deep-learnt
Proposed method (CNN+SVM) 91.38

Proposed method (CNN+Softmax) 87.80

ing types get more complicated. The performance of CNN in identi-
fying people based on their gait signatures shows that CNN is able to
learn and differentiate these non-representational patterns. In order
to better understand why CNN works in identifying human based on
their gait, further investigation is needed and we leave it for future
work.
Comparison with conventional approaches. We apply five-fold cross-
validation on this dataset. All the subjects in the dataset are randomly
divided into five disjoint groups. In each run, keep one set for test-
ing, and train a network with the remaining sets. Finally, the average
correct classification accuracy are reported. Table 20 summarizes the
comparison of results with respect to other conventional approaches
(hand-crafted features) on the OU-ISIR Treadmill B dataset. Our ap-
proaches outperformed the methods proposed by Guan et al. [42]
and Islam et al. [57]. Nevertheless, our CNN-based signature extrac-
tor has been trained in a fully automatic manner, in contrast to the
hand-crafted steps need for computing GEI.



84 deep learning for gait recognition

5.4 stacked progressive auto-encoders (spae)

In gait recognition, when the combinations between the clothing types
is simple, it is easier to obtain an individual’s gait patterns. However,
if the type of clothing differs between the gallery and the probe, parts
of the body seen in the silhouettes are likely to change and the abil-
ity to identify subjects decreases with respect to these body parts [53].
In this work, we proposed to extract clothing-invariant gait feature by
learning the complex non-linear transform from the most challenging
combinations of clothing types to normal condition. Specifically, our
proposed method is inspired by the one [62] where a stacked progres-
sive auto-encoders network is proposed to deal with face recognition
across different poses. In this work, we propose a solution based on
the extension of this principle to deal with the effect of challenging
combinations of different clothing covariates. We summarize the con-
tributions of this study as follows.

• We present a model Stacked Progressive Auto-Encoders for clothing-
invariant gait recognition named as SPAEGait. It’s designed to
transform the input gait images from challenging combinations
of clothing types to a normal one. The method tries to leverage
gradually the information about the different clothing combina-
tions in order to achieve clothing-invariant identification.

• We evaluate the performance of the proposed method on the
challenging clothing-invariant of the OU-ISIR Treadmill-B dataset,
achieving improved performance compared to other conven-
tional approaches.

5.4.1 Methodology

In this section, we propose a solution for a clothing-invariant feature
learning based gait recognition framework, which is especially effec-
tive for dealing with clothing variations. The proposed framework
for gait recognition is represented in Figure 41. We will describe our
proposed framework in the following sections.

5.4.1.1 Input data (GEI)

In this work, we employ a spatio-temporal gait representation called
Gait Energy Image (GEI) [81] as the input raw data of our method.
Example GEIs belonging to one subject are shown in Figure 42. GEI
is constructed by averaging the silhouette in one complete gait cy-
cle. Given a size-normalized and horizontal aligned human walking
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Figure 41: The schema of the proposed Stacked Progressive Auto-Encoders
(SPAE) network for clothing-invariant gait recognition. We illus-
trate a model architecture of the stacked network with two hid-
den layers, which can deal with the variations in different combi-
nation of clothing types ranging from challenging ones to normal
conditions. In training stage of our SPAE, each progressive auto-
encoder aims at mapping the GEI images at challenging combi-
nations of clothing types to normal condition, while keeping the
GEI images with normal combination of clothing type unchanged.
In the testing stage, given a GEI image, it is pass into the SPAE
network, and the outputs of the topmost hidden layers with easy
combination of simple clothing types are used as the clothing-
invariant features for gait recognition.

binary silhouette sequenece B(x,y, t), the grey-level GEI G(x,y) is
defined as follows

G(x,y) =
1

N

N∑

t=1

B(x,y, t) , (13)

where N is the number of frames in complete cycles of the sequence,
x and y are values in the 2D image coordinate.

5.4.1.2 Auto-Encoder (AE)

In recent years, auto-encoder [4, 14] played an important role in unsu-
pervised learning and in deep architectures for transfer learning and
other tasks. In general, a shallow auto-encoder neural network usu-
ally contains two parts: encoder and decoder. In addition, it is usually
made up of a input layer, a hidden layer and followed by an output
layer [106]. The encoder, denoted as f(.) can transform the input data
into a new representation in the hidden layer. It usually comprises of
a linear transform and a nonlinear transformation as follows:

z = f(x) = s(Wx+ b) , (14)

where W is the linear transform, b is the basis and s(.) is the nonlinear
transform, which is also called a element-wise “activation function”,
such as sigmoid function or tanh function:

s(x) =
1

1+ e−x
(15)
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Figure 42: Samples of GEIs of a similar person are computed by averaging
the silhouettes over one gait cycle taken from OU-ISIR Treadmill
B dataset[53]. The leftmost GEI image (a) is the gallery GEI in
normal clothing condition, while the rightmost GEI image (b)-(g)
are probe GEIs with different clothing combinations.

or

s(x) =
ex − e−x

ex + e−x
. (16)

The decoder, denoted as g, tries to transform the hidden representa-
tion z back to input data x, i.e.,

x
′
= g(z) = s(W

′
z+ b

′
) , (17)

where g(.) denotes the decoder, w
′

and b
′

denote the linear transfor-
mation and basis in decoder and x

′
is the output data. In general, we

usually employ least square error as the cost function to optimize the
parameter of w, b, W

′
and b

′
.

[
Ŵ, b̂, Ŵ ′, b̂ ′] = argmin

W,b,W ′,b ′

N∑

i=1

∥∥∥xi − x
′
i

∥∥∥2 (18)

= argmin
W,b,W ′,b ′

N∑

i=1

‖xi − g(f(x))‖2 , (19)

where xi denotes the ith training sample of N samples and x ′
i means

the corresponding output of xi. In our experiments, we train the au-
toencoder with Stochastic Gradient Descent (SGD). Our implementa-
tion for this network is based on the Caffe framework [60].

5.4.1.3 SPAEGait for clothing variations

In this paper, we propose a method by stacking multiple progres-
sive auto-encoders together to deal with the effect caused by clothing
variations. During the model training, the output is synthesized in a
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progressive way. For gait recognition, a combination of simple cloth-
ing types contains more dynamic information about one person’s gait
pattern because the appearance changes are very minimal. Hence, we
try to transform all the gait energy images to normal conditions. The
first layer of auto-encoders is employed to handle the most challeng-
ing combination of clothing types. Then, after some layer of auto-
encoders, all GEI images would gradually narrow down the clothing
variation to normal condition as shown in Figure 41, improving the
accuracy for gait recognition.

The combination of clothing types are {0,2,3,4,. . . ,X,Y,Z}. In the first
layer, the auto-encoder would transform the GEI images from chal-
lenging combinations of clothing types in Group 4 to Group 3. In
other words, this progressive AE narrows down the clothing varia-
tions. Meanwhile it keeps the GEI images with normal condition un-
changed. Similarly, the auto-encoder in the second layer is designed
transform the GEI image which is slightly complicated in Group 3
to Group 2. Finally, the last progressive AE layer would transform all
the GEI images to normal conditions but maintain the simple clothing
types unchanged.

We train each progressive AE layer separately and the output of
a hidden layer is the input of the next successive layer. The whole
network is fine tuned by optimizing all layers together after training
all the auto-encoders, as below

[
Ŵk|

L
k=1, b̂k|Lk=1, Ŵ ′

L, b̂ ′
L

]
= argmin

Wk|
L
k=1,bk|

L
k=1,W ′

L,b′
L

N∑

i=1

∥∥x ′
i − gL(fL(fL−1(. . . (f1(xi)))))

∥∥2 ,

(20)

where k is the kth layer in all L layers.

5.4.1.4 Clothing-invariant feature extraction and recognition

As the GEIs with clothing variations are transformed to normal ones,
the output representation of the topmost layer fL should be almost re-
duced down to normal condition. However, the representation emded-
ded in the lower hidden layers do not contain clothing-invariant fea-
tures, but only contain very small clothing variations. Therefore, we
accumulate the output representation of multiple hidden layers as the
clothing-invariant features as follows:

F = [fL−i, fL−i+1, . . . , fL] , (21)

where 0 � i � L − 1. The resulting features, F learnt from SPAE-
Gait model may not be class discriminative. We then employ Princi-
pal Component Analysis (PCA) for dimensionality reduction and the
nearest neighbor for classification.
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5.4.2 Experiments

In this section, we firstly describe the experimental settings for the
evaluations including the datasets and implementation details; then
investigate our proposed SPAEGait model on the effect of variation
of different combination of clothing types; finally, compare it with the
existing approaches on the OU-ISIR Treadmill dataset B [53].

5.4.2.1 Dataset Description

The OU-ISIR Treadmill dataset B [53] is one of the largest clothing
variations gait database. It consists of 68 subjects in total with 15 to
32 different clothing combinations as listed in Table 16, while the list
of clothes available in the dataset is shown in Table 17. The original
dataset is divided into three subsets, i.e., training set, gallery set and
probe set. During the training, same as in conventional approaches,
we used a subset containing 446 sequences of 20 subjects with all
possible clothing types for training purpose. For testing, we used
a gallery set consisting gait sequences of the remaining 48 subjects
in standard clothing combination. The probe set consists of 856 gait
sequences for these 48 subjects with all types of different clothing
combinations excluding the standard one in the gallery set. Figure 37
shows the sample images of different combinations of clothing varia-
tion in the dataset.

5.4.2.2 Implementation Details

In the experiments, the structure of our proposed autoencoder with 2
fully-connected hidden layers as shown in Figure 41 are used. During
the training phase, we used the Caffe software [60], a very popular
open source deep learning framework to train the model. Particu-
larly, each progressive auto-encoder needs to be trained separately.
The weights are initialized to random values using Gaussian distribu-
tion with zero mean and standard deviation of 0.01 for all trainable
layers. All the bias terms are initialized with the constant zero. We
set our base learning rate to 0.1. We reduced the learning rate for all
layers by a factor of 10 every 1000 iterations prior to termination. We
trained the model for 10,000 iterations and the activation function is
sigmoid for all experiments. After this, the two hidden layers have
been trained then combined in a stacked way, and fine-tuned as a
whole in the model. In the fine-tuning, the base learning rate was
set to 0.01 and the maximum number of iterations was 5000. One im-
portant parameter to the proposed model is the numbers of hidden
layer neurons. Following the work in [13], our model is evaluated
with different numbers of neurons from 500 to 3000. From the evalu-
ation, we noticed that when the number is 2000 the model achieves
the best recognition rate. So, we set this as the number of neurons for
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each hidden layer in the model. Besides the feature from the topmost
layer, we can also select features from lower layers as the invariant
gait feature for gait recognition. We observed that the feature consist-
ing of the multiple hidden layers did not help to improve recognition
rates. However, in our case, the features from the topmost hidden
layer achieved the best performance with a significant improvement.
The final step of the invariant gait feature extraction was to reduce
the dimension using PCA, same as in [62]. The feature dimension
was reduced from 2000 to 100. The value 100 was chosen according
the experiments. The features obtained from the topmost encoding
layer are then compressed using PCA and used as input to a nearest-
neighbour classifier (NN).

5.4.3 Results and Discussions

5.4.3.1 On the effect of clothing variations

We conducted all our experiments on the OU-ISIR Treadmill B dataset
to examine the performance of our proposed approach with the effect
of different clothing types. The performance for the proposed method
can be observed in Figure 43. From the experiment results, we have
the following observations:

In experiment 1 (Exp. 1), consisting of walking sequences that only
involve normal clothing combinations (e.g., Y:regular pants+full shirt,
2:regular pants+half shirt, etc), we can see that the average CCR is
above 98.5%. It is also clear from Figure 43 that the gait pattern is
not affected by an appearance change caused by easy combinations
of clothing types. Apart from the basic clothing combinations in Exp.
1, we can observe that in Experiment 2 (Exp. 2), the clothing com-
binations consists of walking sequences that involve some headwear
covariates (e.g., 3:regular pants+half shirt+hat, P:regular pants+half
shirt+casquette cap, etc). In this case, we are still able to achieve rela-
tively high performance. The average CCR is above 94.2%. The head-
wear covariates does not affect the performance of gait recognition
significantly.

In Experiment 3 (Exp. 3), we analyze the scenario of clothing com-
bination type B and E when a complicated clothing type (e.g, down
jacket or long coat) is combined with a basic clothing type (e.g., ca-
sual or regular pants), the recognition task becomes much more com-
plicated. However, based on results obtained by the proposed method,
the performance still yields competitive results, with an average recog-
nition rate above than 85.5%. The combinations between the challeng-
ing clothing types shown in Experiment 4 (Exp. 4) lead to a decrease
in gait recognition accuracy performance. We can observe the aver-
age CCR is reduced further to 77.3%. For instance, given a query gait
pattern under the effect of difficult combinations of clothing types S,
the recognition rate decreased to around 73.5%. Similarly, for clothing
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Figure 43: Performance evaluation on the OU-ISIR Treadmill B dataset un-
der the effect of different clothing combinations.

type V, the recognition rate decreased to around 72.6%. Notice that
for the same task a human would also have difficulties as clothes of
this type occlude many discriminative features, nevertheless our pro-
posed method is still able to recognize in most cases the individual’s
gait.

In general, these experiments revealed that the proposed approach
is able to provide high classification accuracy even when the com-
bination of clothing types get more complicated. The performance
of our method in identifying subjects based on gait under the effect
of clothing variations shows that the proposed stacked progressive
AE is able to learn clothing-invariant features by converting challeng-
ing combinations clothing types to basic ones progressively which, in
turn, means the clothing variations are narrowed down eventually.

5.4.3.2 Comparison with conventional approaches

The experimental results have been compared with the ones obtained
by other approaches available in the literature. Table 20 summarizes
the comparison of results with respect to other conventional approaches
on the OU-ISIR Treadmill B dataset. It can been seen that our method
displays good results, especially for the challenging clothing types.
This can be explained by the fact that our method gradully narrows
down the clothing variations which, in turn, improves the recogni-
tion performance in the challenging clothing combination conditions
when these features are considerably affected. In addition, the overall
performance outperforms all the state-of-the-art methods considered
in our experiments [42, 57, 121]. This further demonstrates the spe-
cific effectiveness of using a stacked auto-encoder on gait recognition
with clothing variations.
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Table 20: Comparison of results on OU-ISIR Treadmill B dataset.

Algorithms CCR (%)

Guan et al. (RSM) [42] 80.44

Islam et al. (RWSM) [57] 78.54

Yeoh et al. (CNN+SVM) [121] 91.38

Yeoh et al. (CNN+Softmax) [121] 87.80

Proposed method (SPAEGait) 94.80

5.5 summary

In this section, we employed convolutional neural network to build
an end-to-end learning framework for clothing-invariant gait recog-
nition. The experimental validation has been carried out on the chal-
lenging CASIA-B and OU-ISIR-B dataset, by using gait energy image
(GEI) as a raw input to a CNN network. We designed convolutional
neural network model so that it can extract a clothing-invariant and
discriminative feature from the input of GEI images. The experimen-
tal results showed that the proposed method outperformed the state-
of-the-art methods for both dataset.

We achieved better results than the previous conventional approaches
even we trained a CNN from scratch. We also plan to investigate
various fine tuning strategies to transfer learned recognition capabil-
ities from general domains to the specific challenge of gait recogni-
tion task. In our future work, we are interested in visualizing the
features in the CNN layers [127] for a better understanding of how
CNN works in learning patterns in gait under various clothing types
effect. In addition, we plan to extend our study by using our pro-
posed approach to other large-scale datasets for gait recognition. Our
research can also be extended to evaluate pre-trained CNNs such as
AlexNet, GoogLeNet, ResNet and etc. It would be ideal to experiment
whether these architectures can yield better classification accuracy as
compared to the proposed approach. We also plan to investigate fur-
ther the use deep network such as ResNet [49, 38] for our problem.
This is because recently it has been reported that by training using
deeper networks can obtain promising results.

We also have presented a stacked progresssive auto-encoders model
to extract clothing-invariant gait feature for gait recognition under
various clothing covariates. The proposed framework can tranform
gradually GEI images from a challenging combination of clothing
types to the normal ones by multiple shallow progressive auto-encoders.
These features extracted from few topmost layers of stacked AE net-
work only contain very small clothing variations, that are further
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integrated with PCA for clothing-invariant gait recognition. The ex-
periments were performed on a well-known and the largest clothing
variation gait dataset, namely the OU-ISIR Treadmill B dataset. Exper-
imental results show that our model can effectively improve recogni-
tion rate by reducing the clothing variations especially when there is
a large clothing variation and achieves a far better performance over
existing approaches.

As a future work, we intend to extend our approach to cope with
more challenging covariate variations. Moreover, it will be interest-
ing to see how our approach can be modified to accomodate the case
of gait identification under the effect of various covariate factors. Be-
sides, using another large gait database can also be investigated to
evaluate the effectiveness of our method.



Part V
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6
C O N C L U S I O N S A N D F U T U R E W O R K

This chapter provides conclusions for each of the research objectives
of this thesis and gives main findings and highlights from each indi-
vidual chapter, then presents potential research areas for future work.

6.1 conclusions

Gait is a relatively new and emergent biometric that pertains to the
use of an individual’s walking style to it. In recent years, human iden-
tification based on gait has received enormous interest due to their
ability to apply it in automated visual security and surveillance sys-
tems. However, variations in covariate factors such as cloth, walking
speed, object carrying, footwear and view angle can alter an indi-
vidual’s gait pattern. These variations make the task of gait analysis
became much more complicated.

In this thesis, we have focused on covariate factor analysis by re-
ducing their influence in gait recognition. We carefully analysed their
effect and summarised the challenges to this problem. We proposed
covariate-invariant methods to deal with the presence of various fac-
tors in order to mitigate their effect. Our proposed algorithms were
evaluated on standard gait databases with various covariate factors
(e.g., carrying condition, clothing, camera viewpoint, etc.) and exper-
imental results confirmed their effectiveness. We also discussed sev-
eral important and practical problems in gait recognition (e.g., feature
representation, feature selection and feature learning) and provide so-
lutions to them.

6.2 contributions and discussions

We summarise our main contributions and the important research
findings, which is helpful for the future research in gait recognition
and related areas as follows.

1. In Chapter 2, we have provided a detailed literature review of
gait recognition frameworks, feature representation categories,
existing databases and the related works.

2. In Chapter 3, we have presented a robust approach for extract-
ing human gait features from human silhouette images. The
features are extracted by determining the joints from the body
segments based on a priori knowledge of human body propor-
tion. Once the body joints have been identified, the joint trajec-
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tories can be computed using a straightforward approach. This
approach has shown to be more effective as it is capable to to
identify the joints from self-occluded human silhouettes. Then,
the proposed feature post-process approach mitigates the effect
of variation in covariate factors which complicate the individ-
ual’s gait recognition process. Our experimental results demon-
strated the proposed approach significantly outperforms the ex-
isting conventional techniques. In addition, the higher recogni-
tion rate also showed that proposed approach is robust and can
perform well under different covariate factors.

3. In Chapter 4, we presented and compared feature selection tech-
niques, designed to maximise the final classification accuracy.
The overall approach constitutes a general framework for differ-
ent machine learning algorithms, which we applied to the prob-
lem of feature selection under the effect of various covariate
factors in a model-based approach. The experiments were per-
formed on two-well known gait datasets, namely the SOTON
covariate dataset and the CASIA-B dataset. The experimental
results on both showed that the inevestigated approach is able
to select the discriminative input gait features and achieve an
improved classification accuracy on par with other state-of-the-
art methods.

4. In Chapter 5, we employed convolutional neural networks to
build an end-to-end learning framework for clothing and view-
invariant gait recognition. The experimental validation has been
carried out on the challenging dataset of OU-ISIR B treadmill
and CASIA-B dataset, by using the gait energy image (GEI)
as raw input to the CNN network. We designed a structure of
CNN so that it can extract an invariant and discriminative fea-
tures against clothing and view covariates. Experimental results
showed that our method can achieves a far better performance
over existing approaches in both these databases. In the later
part of this chapter, we have presented a stacked progressive
auto-encoders model to extract clothing-invariant gait features
for gait recognition under various clothing covariates. The pro-
posed framework can transform gradually GEI images from a
combination of clothing types to more simpler ones by multi-
ple shallow progressive auto-encoders. These features extracted
from few topmost layers of the stacked AE network only contain
very small clothing variations, that are further integrated with
PCA for clothing-invariant gait recognition. The experiments
were performed on a well-known and the largest clothing vari-
ation gait dataset, namely OU-ISIR Treadmill B dataset. Experi-
ment results suggested that our model can effectively improve
recognition rate by reducing the clothing variations especially
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when there is a large variation and achieves a far better perfor-
mance over existing approaches.

6.3 future research directions

This thesis has contributed to several areas of a gait recognition sys-
tem, however there are still many areas could address. Areas of future
work, that could further improve techniques proposed in this thesis,
as well potential new research are listed below:

6.3.1 Investigations in the short-term

1. Experimental evaluation on large-scale gait databases

To ensure the gait recognition system’s applicability on a real
world environment it needs to be evaluated on large scale data.
Thus, we intend to extend our work to large-scale gait dataset in
order to examine how the results will generalize to larger data
sets under various different covariate factors. So, it will be more
meaningful to test the proposed method to show robustness
with respect to different covariate factors potentially affecting
performance.

2. Transfer learning using convolutional neural network

Given insufficient training samples from small gait dataset, trans-
ferring feature representations learned from a larger gait dataset
becomes necessary. Hence, as future work, we think fine-tuning
our existing network with transfer learning could be more faster
and easier than training a network with randomly initialized
weights from scratch to any new gait dataset. Thus, we should
go beyond existing gait datasets and consider much larger sources.

3. Combining gait with other biometric traits

Face and iris are the commonly used biometrics in access con-
trol and identity management applications. A gait recognition
system can be developed that combines these biometrics to pro-
vide a non-intrusive verification process and improve recogni-
tion performance. The fusion techniques within the different
biometric modalities will be the important issues for future re-
search.

6.3.2 Investigations in the long-term

1. Gait recognition using shadow analysis

The identification of human beings based on their biometric
body parts such as face, fingerprint, gait, iris, and voice, etc. Ex-
isting traditional biometrics rely on the direct observation (e.g.
image of face/body), but it may be the case that a projection
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may have more information than the direct signal. For example,
the shadow of a person observed from a higher point, or from
an overhead camera. To identify people based on their shadow,
gait may be used to extract human characteristics. It is possible
to exploit this biometric information in human shadow silhou-
ettes for recognition of human identity.

2. Towards efficient clinical gait analysis with wearable sensors

After decades of evolution, measuring instruments for quantita-
tive gait analysis have become an important clinical tool for as-
sessing pathologies manifested by gait abnormalities. However,
such instruments tend to be expensive and require expert opera-
tion and maintenance besides their high cost, thus limiting them
to only a small number of specialized centers. Consequently,
gait analysis in most clinics today still rely on observation-based
assessment. Recent advances in wearable sensors, especially in-
ertial body sensors, have opened up a promising future for gait
analysis. Not only can these sensors be more easily adopted in
clinical diagnosis and treatment procedures than their current
counterparts, but they can also monitor gait continuously out-
side clinics. Hence, we plan to extend our work to provide seam-
less patient analysis from clinics to free-living environments.
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D ATA S E T

The details of the datasets were presented in Section 2.3. This ap-
pendix shows additional samples of usage samples. Usable samples
are defined as walking sequences in which the subject performs at
least one full gait cycle.

a.1 soton covariate database

Figure 44
shows the examples of silhouette data quality of the database.

a.2 ou-isir treadmill b dataset

Figure 45
shows the examples of silhouette data quality of the database.

a.3 casia-b dataset

Figure 46
shows the examples of silhouette data quality of the database.
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102 dataset

Figure 44: Pre-processed silhouettes with missing body parts, noise and
shadows
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Figure 45: Pre-processed silhouettes with missing body parts, noise and
shadows
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Figure 46: Pre-processed silhouettes with missing body parts, noise and
shadows



B I B L I O G R A P H Y

[1] Selim Aksoy and Robert M Haralick. Feature normalization
and likelihood-based similarity measures for image retrieval.
Pattern recognition letters, 22(5):563–582, 2001.

[2] Rosa Altilio, Luca Liparulo, Andrea Proietti, Marco Paoloni,
and Massimo Panella. A genetic algorithm for feature selec-
tion in gait analysis. In Evolutionary Computation (CEC), 2016
IEEE Congress on, pages 4584–4591. IEEE, 2016.

[3] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe
Garcia, and Atilla Baskurt. Sequential deep learning for human
action recognition. In International Workshop on Human Behavior
Understanding, pages 29–39. Springer, 2011.

[4] Pierre Baldi. Autoencoders, unsupervised learning, and deep
architectures. In Proceedings of ICML Workshop on Unsupervised
and Transfer Learning, pages 37–49, 2012.

[5] Dale J Barr, Roger Levy, Christoph Scheepers, and Harry J Tily.
Random effects structure for confirmatory hypothesis testing:
Keep it maximal. Journal of memory and language, 68(3):255–278,
2013.

[6] David Barrett. One surveillance camera for every 11 people in
britain, says cctv survey. The Telegraph, 10, 2013.

[7] Khalid Bashir, Tao Xiang, and Shaogang Gong. Feature selec-
tion on gait energy image for human identification. In Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE Interna-
tional Conference on, pages 985–988. IEEE, 2008.

[8] Khalid Bashir, Tao Xiang, and Shaogang Gong. Gait recogni-
tion without subject cooperation. Pattern Recognition Letters,
31(13):2052–2060, 2010.

[9] Khalid Bashir, Tao Xiang, Shaogang Gong, and Q Mary. Gait
representation using flow fields. In BMVC, pages 1–11, 2009.

[10] Matthieu Basseur and Adrien Goëffon. Hill-climbing strategies
on various landscapes: an empirical comparison. In Proceedings
of the 15th annual conference on Genetic and evolutionary computa-
tion, pages 479–486. ACM, 2013.

[11] Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker.
Fitting linear mixed-effects models using lme4. arXiv preprint
arXiv:1406.5823, 2014.

105



106 bibliography

[12] Chiraz BenAbdelkader, Ross Cutler, Harsh Nanda, and Larry
Davis. Eigengait: Motion-based recognition of people using im-
age self-similarity. In Audio-and Video-Based Biometric Person Au-
thentication, pages 284–294. Springer, 2001.

[13] Yoshua Bengio. Practical recommendations for gradient-based
training of deep architectures. In Neural networks: Tricks of the
trade, pages 437–478. Springer, 2012.

[14] Yoshua Bengio et al. Learning deep architectures for ai. Foun-
dations and trends R© in Machine Learning, 2(1):1–127, 2009.

[15] Mohamed Bennasar, Yulia Hicks, and Rossitza Setchi. Feature
selection using joint mutual information maximisation. Expert
Systems with Applications, 42(22):8520–8532, 2015.

[16] Aaron F Bobick and Amos Y Johnson. Gait recognition using
static, activity-specific parameters. In Computer Vision and Pat-
tern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, volume 1, pages I–I. IEEE, 2001.

[17] Imed Bouchrika, John N Carter, and Mark S Nixon. Towards au-
tomated visual surveillance using gait for identity recognition
and tracking across multiple non-intersecting cameras. Multi-
media Tools and Applications, 75(2):1201–1221, 2016.

[18] Imed Bouchrika, Michaela Goffredo, John Carter, and Mark
Nixon. On using gait in forensic biometrics. Journal of foren-
sic sciences, 56(4):882–889, 2011.

[19] Imed Bouchrika and Mark S Nixon. Model-based feature ex-
traction for gait analysis and recognition. In International Con-
ference on Computer Vision/Computer Graphics Collaboration Tech-
niques and Applications, pages 150–160. Springer, 2007.

[20] Imed Bouchrika and Mark S Nixon. Exploratory factor anal-
ysis of gait recognition. In Automatic Face & Gesture Recogni-
tion, 2008. FG’08. 8th IEEE International Conference on, pages 1–6.
IEEE, 2008.

[21] L Breiman, J Friedman, R Olshen, and C Storne. Classifica-
tion and regression trees. belmont, ca: Wadsworth international
group; 1984. Google Scholar.

[22] Leo Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[23] Leo Breiman. Manual on setting up, using, and understanding
random forests v3. 1. Statistics Department University of Califor-
nia Berkeley, CA, USA, 1, 2002.



bibliography 107

[24] Christopher JC Burges. A tutorial on support vector machines
for pattern recognition. Data mining and knowledge discovery,
2(2):121–167, 1998.

[25] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for
support vector machines. ACM transactions on intelligent systems
and technology (TIST), 2(3):27, 2011.

[26] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan
Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer.
cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[27] Marco Chiarandini and Yuri Goegebeur. Mixed models for the
analysis of optimization algorithms. Experimental Methods for
the Analysis of Optimization Algorithms, 1:225, 2010.

[28] Robert T Collins, Ralph Gross, and Jianbo Shi. Silhouette-based
human identification from body shape and gait. In Automatic
Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE Inter-
national Conference on, pages 366–371. IEEE, 2002.

[29] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel Kuksa. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning Re-
search, 12(Aug):2493–2537, 2011.

[30] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine learning, 20(3):273–297, 1995.

[31] Thomas Cover and Peter Hart. Nearest neighbor pattern clas-
sification. IEEE transactions on information theory, 13(1):21–27,
1967.

[32] David Cunado, Mark S Nixon, and John N Carter. Automatic
extraction and description of human gait models for recogni-
tion purposes. Computer Vision and Image Understanding, 90(1):1–
41, 2003.

[33] Brian DeCann and Arun Ross. Gait curves for human recog-
nition, backpack detection, and silhouette correction in a night-
time environment. Proc. SPIE, Biometric Technology for Human
Identification VII, 7667:76670Q–76670Q, 2010.

[34] Wilfrid Taylor Dempster and George RL Gaughran. Properties
of body segments based on size and weight. Developmental Dy-
namics, 120(1):33–54, 1967.

[35] Li Deng. A tutorial survey of architectures, algorithms, and
applications for deep learning. APSIPA Transactions on Signal
and Information Processing, 3, 2014.



108 bibliography

[36] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and
Trevor Darrell. Long-term recurrent convolutional networks for
visual recognition and description. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2625–
2634, 2015.

[37] Yohan Dupuis, Xavier Savatier, and Pascal Vasseur. Feature sub-
set selection applied to model-free gait recognition. Image and
vision computing, 31(8):580–591, 2013.

[38] Mohammad Sadegh Ebrahimi and Hossein Karkeh Abadi.
Study of residual networks for image recognition.

[39] Clement Farabet, Camille Couprie, Laurent Najman, and Yann
LeCun. Learning hierarchical features for scene labeling.
IEEE transactions on pattern analysis and machine intelligence,
35(8):1915–1929, 2013.

[40] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely
randomized trees. Machine learning, 63(1):3–42, 2006.

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. book in preparation for mit press. URL< http://www.
deeplearningbook. org, 2016.

[42] Yu Guan, Chang-Tsun Li, and Yongjian Hu. Robust clothing-
invariant gait recognition. In Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP), 2012 Eighth International
Conference on, pages 321–324. IEEE, 2012.

[43] Yu Guan, Chang-Tsun Li, and Fabio Roli. On reducing the ef-
fect of covariate factors in gait recognition: a classifier ensemble
method. IEEE transactions on pattern analysis and machine intelli-
gence, 37(7):1521–1528, 2015.

[44] Baofeng Guo and Mark S Nixon. Gait feature subset selection
by mutual information. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 39(1):36–46, 2009.

[45] Isabelle Guyon and André Elisseeff. An introduction to vari-
able and feature selection. Journal of machine learning research,
3(Mar):1157–1182, 2003.

[46] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir
Vapnik. Gene selection for cancer classification using support
vector machines. Machine learning, 46(1):389–422, 2002.

[47] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H Witten. The weka data mining soft-
ware: an update. ACM SIGKDD explorations newsletter, 11(1):10–
18, 2009.



bibliography 109

[48] David J Hand et al. Classifier technology and the illusion of
progress. Statistical science, 21(1):1–14, 2006.

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[50] Martin Hofmann, Jürgen Geiger, Sebastian Bachmann, Björn
Schuller, and Gerhard Rigoll. The tum gait from audio, image
and depth (gaid) database: Multimodal recognition of subjects
and traits. Journal of Visual Communication and Image Representa-
tion, 25(1):195–206, 2014.

[51] Martin Hofmann, Stephan M Schmidt, A N Rajagopalan, and
Gerhard Rigoll. Combined face and gait recognition using al-
pha matte preprocessing. In Biometrics (ICB), 2012 5th IAPR
International Conference on, pages 390–395. IEEE, 2012.

[52] Emdad Hossain and Girija Chetty. Multimodal feature learning
for gait biometric based human identity recognition. In Interna-
tional Conference on Neural Information Processing, pages 721–728.
Springer, 2013.

[53] Md Altab Hossain, Yasushi Makihara, Junqiu Wang, and Ya-
sushi Yagi. Clothing-invariant gait identification using part-
based clothing categorization and adaptive weight control. Pat-
tern Recognition, 43(6):2281–2291, 2010.

[54] Torsten Hothorn, Frank Bretz, and Peter Westfall. Simultane-
ous inference in general parametric models. Biometrical journal,
50(3):346–363, 2008.

[55] Maodi Hu, Yunhong Wang, Zhaoxiang Zhang, De Zhang, and
James J Little. Incremental learning for video-based gait recog-
nition with lbp flow. IEEE transactions on cybernetics, 43(1):77–89,
2013.

[56] David H Hubel and Torsten N Wiesel. Receptive fields, binoc-
ular interaction and functional architecture in the cat’s visual
cortex. The Journal of physiology, 160(1):106–154, 1962.

[57] Md Shariful Islam, Md Rabiul Islam, Most Sheuli Akter,
MA Hossain, and MKI Molla. Window based clothing invariant
gait recognition. In Advances in Electrical Engineering (ICAEE),
2013 International Conference on, pages 411–414. IEEE, 2013.

[58] Anil K Jain, Arun Ross, and Salil Prabhakar. An introduction to
biometric recognition. IEEE Transactions on circuits and systems
for video technology, 14(1):4–20, 2004.



110 bibliography

[59] Mahadevu Jeevan, Neha Jain, Madasu Hanmandlu, and Gir-
ija Chetty. Gait recognition based on gait pal and pal entropy
image. In Image Processing (ICIP), 2013 20th IEEE International
Conference on, pages 4195–4199. IEEE, 2013.

[60] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional architecture for fast feature em-
bedding. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 675–678. ACM, 2014.

[61] George H John, Ron Kohavi, Karl Pfleger, et al. Irrelevant fea-
tures and the subset selection problem. In Machine learning:
proceedings of the eleventh international conference, pages 121–129,
1994.

[62] Meina Kan, Shiguang Shan, Hong Chang, and Xilin Chen.
Stacked progressive auto-encoders (spae) for face recognition
across poses. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1883–1890, 2014.

[63] Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. Single-layer
learning revisited: a stepwise procedure for building and train-
ing a neural network. Neurocomputing: algorithms, architectures
and applications, 68(41-50):71, 1990.

[64] Ron Kohavi and George H John. Wrappers for feature subset
selection. Artificial intelligence, 97(1-2):273–324, 1997.

[65] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger.
Estimating mutual information. Physical review E, 69(6):066138,
2004.

[66] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages 1097–
1105, 2012.

[67] Worapan Kusakunniran. Attribute-based learning for gait
recognition using spatio-temporal interest points. Image and Vi-
sion Computing, 32(12):1117–1126, 2014.

[68] Worapan Kusakunniran. Recognizing gaits on spatio-temporal
feature domain. IEEE Transactions on Information Forensics and
Security, 9(9):1416–1423, 2014.

[69] Worapan Kusakunniran, Qiang Wu, Jian Zhang, and Hong-
dong Li. Support vector regression for multi-view gait recogni-
tion based on local motion feature selection. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
974–981. IEEE, 2010.



bibliography 111

[70] Peter K Larsen, Erik B Simonsen, and Niels Lynnerup. Gait
analysis in forensic medicine. Journal of forensic sciences,
53(5):1149–1153, 2008.

[71] Yann LeCun et al. Lenet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet, 2015.

[72] Lily Lee and W Eric L Grimson. Gait analysis for recognition
and classification. In Automatic Face and Gesture Recognition,
2002. Proceedings. Fifth IEEE International Conference on, pages
155–162. IEEE, 2002.

[73] Tracey KM Lee, Mohammed Belkhatir, and Saeid Sanei. A com-
prehensive review of past and present vision-based techniques
for gait recognition. Multimedia tools and applications, 72(3):2833–
2869, 2014.

[74] Zongyi Liu and Sudeep Sarkar. Effect of silhouette quality on
hard problems in gait recognition. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 35(2):170–183, 2005.

[75] Gilles Louppe. Understanding random forests: From theory to
practice. arXiv preprint arXiv:1407.7502, 2014.

[76] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre
Geurts. Understanding variable importances in forests of ran-
domized trees. In Advances in neural information processing sys-
tems, pages 431–439, 2013.

[77] Frederik Maes, Andre Collignon, Dirk Vandermeulen, Guy
Marchal, and Paul Suetens. Multimodality image registration
by maximization of mutual information. IEEE transactions on
medical imaging, 16(2):187–198, 1997.

[78] Yasushi Makihara, Hidetoshi Mannami, Akira Tsuji, Md Altab
Hossain, Kazushige Sugiura, Atsushi Mori, and Yasushi Yagi.
The ou-isir gait database comprising the treadmill dataset. IPSJ
Transactions on Computer Vision and Applications, 4:53–62, 2012.

[79] Yasushi Makihara, Darko S Matovski, Mark S Nixon, John N
Carter, and Yasushi Yagi. Gait recognition: Databases, repre-
sentations, and applications. Wiley Encyclopedia of Electrical and
Electronics Engineering, 2015.

[80] Yasushi Makihara, Ryusuke Sagawa, Yasuhiro Mukaigawa,
Tomio Echigo, and Yasushi Yagi. Gait recognition using a
view transformation model in the frequency domain. Computer
Vision–ECCV 2006, pages 151–163, 2006.

[81] Ju Man and Bir Bhanu. Individual recognition using gait en-
ergy image. IEEE transactions on pattern analysis and machine
intelligence, 28(2):316–322, 2006.



112 bibliography

[82] Raúl Martín-Félez and Tao Xiang. Uncooperative gait recogni-
tion by learning to rank. Pattern Recognition, 47(12):3793–3806,
2014.

[83] Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitari, and Yuji
Kaneda. Subject independent facial expression recognition with
robust face detection using a convolutional neural network.
Neural Networks, 16(5):555–559, 2003.

[84] Anup Nandy, Rupak Chakraborty, and Pavan Chakraborty.
Cloth invariant gait recognition using pooled segmented sta-
tistical features. Neurocomputing, 191:117–140, 2016.

[85] Hu Ng, Hau-Lee Ton, Wooi-Haw Tan, Timothy Tzen-Vun Yap,
Pei-Fen Chong, and Junaidi Abdullah. Human identification
based on extracted gait features. International Journal of New
Computer Architectures and their Applications (IJNCAA), 1(2):358–
370, 2011.

[86] Mark S Nixon, Tieniu Tan, and Rama Chellappa. Human iden-
tification based on gait, volume 4. Springer Science & Business
Media, 2010.

[87] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. Journal of Machine Learning
Research, 12(Oct):2825–2830, 2011.

[88] Florent Perronnin and Diane Larlus. Fisher vectors meet neural
networks: A hybrid classification architecture. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 3743–3752, 2015.

[89] P Jonathon Phillips, Sudeep Sarkar, Isidro Robledo, Patrick
Grother, and Kevin Bowyer. The gait identification challenge
problem: Data sets and baseline algorithm. In Pattern Recogni-
tion, 2002. Proceedings. 16th International Conference on, volume 1,
pages 385–388. IEEE, 2002.

[90] Yogarajah Pratheepan, Joan V Condell, and Girijesh Prasad. In-
dividual identification using gait sequences under different co-
variate factors. In International Conference on Computer Vision
Systems, pages 84–93. Springer, 2009.

[91] Imad Rida, Somaya Almaadeed, and Ahmed Bouridane. Gait
recognition based on modified phase-only correlation. Signal,
Image and Video Processing, 10(3):463–470, 2016.



bibliography 113

[92] Imad Rida, Ahmed Bouridane, Gian Luca Marcialis, and Pier-
luigi Tuveri. Improved human gait recognition. In Interna-
tional Conference on Image Analysis and Processing, pages 119–129.
Springer, 2015.

[93] Imad Rida, Xudong Jiang, and Gian Luca Marcialis. Human
body part selection by group lasso of motion for model-free
gait recognition. IEEE Signal Processing Letters, 23(1):154–158,
2016.

[94] Sudeep Sarkar, P Jonathon Phillips, Zongyi Liu, Isidro Robledo
Vega, Patrick Grother, and Kevin W Bowyer. The humanid gait
challenge problem: Data sets, performance, and analysis. IEEE
transactions on pattern analysis and machine intelligence, 27(2):162–
177, 2005.

[95] Bernhard Schölkopf, Christopher JC Burges, and Alexander J
Smola. Advances in kernel methods: support vector learning. MIT
press, 1999.

[96] Vijay Bhaskar Semwal, Joyeeta Singha, Pinki Kumari Sharma,
Arun Chauhan, and Basudeba Behera. An optimized feature
selection technique based on incremental feature analysis for
bio-metric gait data classification. Multimedia Tools and Applica-
tions, pages 1–19, 2016.

[97] Jamie D Shutler, Michael G Grant, Mark S Nixon, and John N
Carter. On a large sequence-based human gait database. In Ap-
plications and Science in Soft Computing, pages 339–346. Springer,
2004.

[98] Karen Simonyan and Andrew Zisserman. Two-stream convolu-
tional networks for action recognition in videos. In Advances in
neural information processing systems, pages 568–576, 2014.

[99] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[100] Kenneth Sörensen. Metaheuristics—the metaphor exposed. In-
ternational Transactions in Operational Research, 22(1):3–18, 2015.

[101] Zehang Sun, George Bebis, and Ronald Miller. Object detection
using feature subset selection. Pattern recognition, 37(11):2165–
2176, 2004.

[102] Rawesak Tanawongsuwan and Aaron Bobick. Gait recognition
from time-normalized joint-angle trajectories in the walking
plane. In Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on,
volume 2, pages II–II. IEEE, 2001.



114 bibliography

[103] Yichuan Tang. Deep learning using linear support vector ma-
chines. arXiv preprint arXiv:1306.0239, 2013.

[104] Dacheng Tao, Xuelong Li, Stephen J Maybank, and Xindong
Wu. Human carrying status in visual surveillance. In Computer
Vision and Pattern Recognition, 2006 IEEE Computer Society Con-
ference on, volume 2, pages 1670–1677. IEEE, 2006.

[105] Andrea Vedaldi and Karel Lenc. Matconvnet: Convolutional
neural networks for matlab. In Proceedings of the 23rd ACM in-
ternational conference on Multimedia, pages 689–692. ACM, 2015.

[106] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Ben-
gio, and Pierre-Antoine Manzagol. Stacked denoising autoen-
coders: Learning useful representations in a deep network with
a local denoising criterion. Journal of Machine Learning Research,
11(Dec):3371–3408, 2010.

[107] David Kenneth Wagg and Mark S Nixon. On automated model-
based extraction and analysis of gait. In Automatic Face and Ges-
ture Recognition, 2004. Proceedings. Sixth IEEE International Con-
ference on, pages 11–16. IEEE, 2004.

[108] Ai-Hua Wang and Ji-Wei Liu. A gait recognition method based
on positioning human body joints. In Wavelet Analysis and Pat-
tern Recognition, 2007. ICWAPR’07. International Conference on,
volume 3, pages 1067–1071. IEEE, 2007.

[109] Chen Wang, Junping Zhang, Liang Wang, Jian Pu, and Xiaoru
Yuan. Human identification using temporal information pre-
serving gait template. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11):2164–2176, 2012.

[110] Jin Wang, Mary She, Saeid Nahavandi, and Abbas Kouzani.
A review of vision-based gait recognition methods for human
identification. In Digital Image Computing: Techniques and Appli-
cations (DICTA), 2010 International Conference on, pages 320–327.
IEEE, 2010.

[111] Junqiu Wang, Yasushi Makihara, and Yasushi Yagi. People
tracking and segmentation using spatiotemporal shape con-
straints. In Proceedings of the 1st ACM workshop on Vision net-
works for behavior analysis, pages 31–38. ACM, 2008.

[112] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition
with trajectory-pooled deep-convolutional descriptors. In Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 4305–4314, 2015.



bibliography 115

[113] Tenika Whytock, Alexander Belyaev, and Neil M Robertson. On
covariate factor detection and removal for robust gait recogni-
tion. Machine Vision and Applications, 26(5):661–674, 2015.

[114] Tenika P Whytock, Alexander Belyaev, and Neil M Robertson.
Towards robust gait recognition. In International Symposium on
Visual Computing, pages 523–531. Springer, 2013.

[115] TP Whytock, A Belyaev, and NM Robertson. Robust gait recog-
nition via covariate factor mitigation. 2013.

[116] Zifeng Wu, Yongzhen Huang, and Liang Wang. Learning repre-
sentative deep features for image set analysis. IEEE Transactions
on Multimedia, 17(11):1960–1968, 2015.

[117] Xianglei Xing, Kejun Wang, Tao Yan, and Zhuowen Lv. Com-
plete canonical correlation analysis with application to multi-
view gait recognition. Pattern Recognition, 50:107–117, 2016.

[118] Mihalis Yannakakis. The analysis of local search problems and
their heuristics. STACS 90, pages 298–311, 1990.

[119] Tze-Wei Yeoh, Wooi-Haw Tan, Hu Ng, Hau-Lee Tong, and
Chee-Pun Ooi. Improved gait recognition with automatic body
joint identification. In International Visual Informatics Conference,
pages 245–256. Springer, 2011.

[120] Tze Wei Yeoh, Saúl Zapotecas-Martínez, Youhei Akimoto,
Hernán E Aguirre, and Kiyoshi Tanaka. Feature selection in
gait classification using geometric pso assisted by svm. In Inter-
national Conference on Computer Analysis of Images and Patterns,
pages 566–578. Springer, 2015.

[121] TzeWei Yeoh, Hernán E Aguirre, and Kiyoshi Tanaka. Clothing-
invariant gait recognition using convolutional neural network.
In Intelligent Signal Processing and Communication Systems (IS-
PACS), 2016 International Symposium on, pages 1–5. IEEE, 2016.

[122] TzeWei YEOH, Youhei AKIMOTO, and Hernan AGUIRRE.
A gait-based human identification method under various co-
variate factors (special issue on computer vision and applica-
tions). IIEEJ transactions on image electronics and visual computing,
3(2):193–205, 2015.

[123] TzeWei Yeoh, Saúl Zapotecas-Martínez, Youhei Akimoto, Her-
nan Aguirre, and Kiyoshi Tanaka. Genetic algorithm assisted
by a svm for feature selection in gait classification. In Intelligent
Signal Processing and Communication Systems (ISPACS), 2014 In-
ternational Symposium on, pages 191–195. IEEE, 2014.



116 bibliography

[124] Jang-Hee Yoo and Mark S Nixon. Automated markerless analy-
sis of human gait motion for recognition and classification. Etri
Journal, 33(2):259–266, 2011.

[125] Jang-Hee Yoo, Mark S Nixon, and Chris J Harris. Extracting
human gait signatures by body segment properties. In Image
Analysis and Interpretation, 2002. Proceedings. Fifth IEEE South-
west Symposium on, pages 35–39. IEEE, 2002.

[126] Shiqi Yu, Daoliang Tan, and Tieniu Tan. A framework for eval-
uating the effect of view angle, clothing and carrying condition
on gait recognition. In Pattern Recognition, 2006. ICPR 2006. 18th
International Conference on, volume 4, pages 441–444. IEEE, 2006.

[127] Matthew D Zeiler and Rob Fergus. Visualizing and understand-
ing convolutional networks. In European conference on computer
vision, pages 818–833. Springer, 2014.

[128] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level
convolutional networks for text classification. In Advances in
neural information processing systems, pages 649–657, 2015.

[129] Shuai Zheng, Junge Zhang, Kaiqi Huang, Ran He, and Tieniu
Tan. Robust view transformation model for gait recognition. In
Image Processing (ICIP), 2011 18th IEEE International Conference
on, pages 2073–2076. IEEE, 2011.


