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Cities are highly relevant since the last decades. They are common areas
where people, meet, live and perform several activities. Mobility is the way
to move or be moved freely and easily and includes infrastructure and ser-
vices demand. For the managers and decision makers of the city, to guarantee
an acceptable mobility level of service is a continuous challenge because the
mobility and transportation system involve huge geographical areas, many
variables, components and interactions among them and therefore shifts in
a complex problem. Besides, developing a sustainable system where social,
economic and environmental aspects are taken into account, imposes addi-
tional difficulties and constraints. For a decision maker, dealing with all of
those aspects variables and relationships is troublesome because the variable
space turns vast and some objectives can be in conflict with each other.

This work focuses on a framework implementation that joins evolution-
ary computing, mobility and transportation simulators and data mining tech-
niques. The aim is to provide a method and tools that allow the exploration
of the potential solutions and also the trajectory of the evolution. The frame-
work starts with mobility problem modelling according to a specific case of
study. After that, evolutionary computing with single and multi-many ob-
jective optimization evolutionary algorithms is used to explore the tentative
solutions according to the model. The outcome of optimization is analyzed
in the variable and objective space to identify patterns, understand better the
model, and extract some knowledge for the decision maker. The framework
is iterative, where the knowledge extracted for the decision maker can be
used as feedback to fine tune the model or to study more complex formula-
tions of the problem.
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In this work, Quito city’s business centre is used as real world case study
which covers approximately 5x8 km2. This work implements a mobility
model for Quito, including mobility plans and the transportation network.
Also, it studies traffic signal optimization formulating the problem from a
single and multi-objective optimization perspective. Additionally, it studies
level of service in public and private transportation using three-objective and
bi-objective formulations of the problem.

As a first scenario, a 70 traffic signals optimization scenario is executed
modelling the mobility of 20.000 agents that use private transportation. It
is a large scenario not only due to the geographical area but also the vari-
able space size which implies an expensive simulation computational time
to evaluate each solution. A set of genetic operators is proposed to accelerate
the convergence of the algorithm and promote a better solution’s configu-
ration for inducing continuous traffic flow among intersection neighbours.
Several experiments perform single objective approach to minimize travel
time.

A complete analysis is given in three type of spaces: the variable, the
objective and the geographical. In the variable space, analysis verifies that
the neighbourhood operators induce coordination between signals and find
some patterns which are identified using clustering methods. The identified
groups are geolocated, verifying that they are positioned in neighbourhoods
as expected. Such clusters of coordinated signals favour the continuous traf-
fic flows. In the objective space, analysis verifies that the groups of coordi-
nated signals no only benefit the reduction of travel time, but also decline
emissions. Analyzing the difference in CO2 emissions between two solu-
tions, one in the initial population and the other an optimized one, emissions
reductions across the area of study when signals are optimized is found.

In another study, a bi-objective optimization approach to minimize travel
time and fuel consumption simultaneously is conducted. A set of experi-
ments using the same mobility scenario but changing the emission model
is performed. Mainly, the study examines the conflict between objectives, if
any, when they are optimized simultaneously and how the settings of the
signals relate to the trade-offs between them. One of the challenges in this
study is the computational time to evaluate the emissions and fuel consump-
tion. That imposes an investigation to figure out a method to accelerate the
evolution using small populations with relative small evaluations. In part,
it is achieved by the implementation of deterministic varying mutation op-
erator used in single-objective. Results show that the optimization of sig-
nals enabling different cycle times and coordinating them by adequately set-
ting their offsets, lead to significant reductions in both fuel consumption and
travel time. The small number of non-dominated solutions in the last gener-
ation show that both objective functions are correlated.
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In this research, a different problem examines traffic density levels in ur-
ban transportation. The study contemplates the urban transportation system
under various proportions of private and public transportation users. The
purpose is to explain the conditions to achieve different levels of service and
their relationships with the optimal configuration of the public transporta-
tion, traffic density, travel time, fuel consumption and emissions. The level
of service (LoS) refers to quality measures in a traffic stream. In this work,
LoS is defined concerning to traffic density. The scenario is based in Quito’s
business center, modelling the mobility of 27.000 agents that use private and
public transportation. In Quito, the massive passenger transportation is op-
erated by private and public companies. Five main Bus Rapid Transit (BRT)
corridors which are the most demanded and congested routes are considered
for this mobility model. The levels of service are influenced by the propor-
tions of the population that uses public and private transportation and trans-
lates to a bi-level optimization problem. For a given proportion, the model
determines a proper configuration of public transportation system in terms
of capacities of the buses and departure times between buses. A first scenario
concerns with three-objective optimization, focus on minimizing travel time,
fuel consumption and traffic density. The Adaptive ε-Sampling and ε-Hood
(AεSεH) algorithm is adopted to search the optimal solutions. A set of ex-
periments and a trade-off analysis between objectives is conducted. The neg-
ative correlation between objectives verified a trade-off between travel time
versus fuel consumption and travel time versus density. The results show
that in general solutions with the best LoS, have low values of fuel consump-
tion, but high travel times in opposite with solutions with worst levels of
service that show best travel time but the worst fuel consumption. Sustain-
able public transportation implies a low environmental impact. In general,
the results prove that best levels of service and low levels of fuel consump-
tion can be achieved simultaneously. An analysis in Particulate Matter (PM)
emission and its geo-location is conducted between two optimal solutions
from the Pareto optimal set. The analysis pointed that a reduction in PM de-
pends on BRT headways and technology (fuel type).

Another study concern to analyze the same scenario as a bi-objective op-
timization problem, focusing only on travel time and traffic density as op-
timization objectives. Comparable results show a confirmation that better
LoS (low density) corresponds to a high proportion of public transportation
users. Also, a new set of solutions with the same LoS is chosen to make
a complete analysis of the variable, objective and geographical space. This
complementary analysis revealed that even if the solutions share the same
LoS with different configurations in capacities and headways, effects in pol-
lution must be taken into consideration by the decision makers when they
decide to improve the transportation system.

Finally, this work is summarized presenting the conclusions and future
work.
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Chapter 1

Introduction

This chapter presents an overview of the research. The background, moti-
vation and the objective of the study are introduced together with a list and
description of the contributions. At the end of the chapter, the outline of this
work is presented.

1.1 Background

Transportation exists at the foundation of any functioning city, providing mo-
bility and access to jobs, amenities and resources. As a result, transportation
systems are a vital component of building sustainable cities and have a pro-
found impact on both the global and local environment.
Transportation and mobility systems have become large-scale and complex
in many cities, with broad social impacts and strong implications for the
economy and the environment. Urban population is overgrowing around
the globe (United Nations and Social Affairs, 2014) bringing an increase in
transportation and mobility demand that improperly satisfied often causes
congestion of the system.

Traffic congestion has become a problem in different cities around the
world. Also, road transportation is one of the main human-made green-
house gas sources. Mobility related pollution shares around 11% of global
greenhouse gas emissions. Also, congestion adds substantial costs due to
delays, the risk of accidents and health concern. Thus, efforts to continu-
ously redesign the transportation system and make it sustainable to guar-
antee the mobility of larger populations and the accessibility of cities are
required. These efforts include the increase of infrastructure capacity, land-
use planning, improving public transportation, and the incorporation of soft-
computing methods to implement Intelligent Transportation Systems (ITS).

In big cities located around the world, the effects of traffic congestion due
to increment in citizen trips to accomplish diary tasks such as work, study,
shopping or leisure, is a testimony that traffic jams (Sugiyama et al., 2008)
become a serious issue for residents living in that cities. Also in urban areas
located in developing countries, the travel times, usually are high because
the number of vehicles is continuously increasing (Gakenheimer, 1999) while
the infrastructure is not advancing at the same pace to support the demand,
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producing congestion and affecting all aspects of live.

To gain a better understanding of complex sustainable systems and pro-
pose solutions to their problems is fundamental first to model the current
systems. Currently, there are various simulators available that can be used by
transport engineers to define scenarios, analyse, and understand transporta-
tion and mobility problems that arise in cities. However, the complexity of a
model that captures a whole city could be overwhelming even for an expert.
So, the expert usually limits the scope of its exploration to small local areas
and intersections of the city and can perform simulations only on few alter-
native scenarios. Thus, the space of alternatives an expert observe is quite
limited and incomplete, even by using sophisticated transport and mobility
simulators.

Complex problems usually are characterized by properties such as multi-
many objectives formulations, multi-modality, nonlinearity, discreteness, hard
and soft constraints and non-separability(Reed et al., 2013). Thus, meta-
heuristics like multi-objective evolutionary algorithms (MOEA) play a major
role in dealing with that kind of problems. MOEAs provide the means to
search and explore several alternatives, allowing the human expert to learn
about the solution space and focus on the most suitable solutions. MOEAs
are population-based iterative processes that need several iterations to achieve
good results. However, evaluating mobility scenario is very costly, since it re-
quires the generation of a mobility plan for a synthetic population of agents,
and the simulation of such plan in an agent-based model. This seriously lim-
its the population size and the number of generations that the evolutionary
algorithm can use. In addition, to get a better understanding of the problems
of the city and provide global solutions to them, we should simulate a signif-
icant part of the traffic in the city, which implies a large search space. Thus,
the problem is at the same time computationally expensive and large-scale.

This work focuses on Quito city (Ecuador) as an example of a real world
case study. Quito is a large city where almost two millions of persons com-
mute every day for several reasons as work, study, leisure, shopping etc.,
using private and public transportation. The area of study includes the busi-
ness district, eight major universities, several hospitals, large malls, two large
parks, and one major soccer stadium, covering approximately 5×8 Km2. The
varied and large number of services and the abundant population make the
existing traffic infrastructure clearly not well engineered for the daily de-
mand. Quito’s urban population growth has put enormous strains on its
transportation system. There is the need to model the system, better under-
stand the problems associated with transportation and mobility, find sustain-
able solutions to solve them and improve life in the city.
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1.2 Motivation & Goal

The research aims to implement a framework that integrates evolutionary
computation, traffic simulation, emission models, and data mining tools.
That framework will facilitate the transition from a current transportation
and mobility system to a desired optimal one, bridging the gap between pol-
icy making and the required design and implementation of the new system
that secures the sustainability of the city.
The proposed framework will be of great value to transport and mobility
engineers as well as city planners and decision makers. It will allow to the
expert leave the exploration of a vast number of possible designs and scenar-
ios to intelligent optimisation tools and concentrate on directing evolution
and analysing promising designs and scenarios found in artificial evolution.
The objective of this research is to develop a framework that integrates trans-
port and mobility simulators with emission models, evolutionary optimizers,
and data mining tools. Implement the methods to improve the performance
of EA for single and multi-objective optimization for design innovation of
large-scale transport and mobility systems. As a proof of concept, we choose
Quito Metropolitan District (DMQ), Capital of Ecuador, as a test case. Sup-
ported by data mining tools, we analyse Pareto optimal designs to extract
trade-off knowledge.

1.3 Contribution

Research contributions of this work are as follows:
A framework for testing large-scale evolutionary design problem’s hy-

pothesis related to mobility and transportation: The method implemented
provides a guide, methods, tools to formulate and test hypothesis related to
mobility and transportation problems. Based on evolutionary design opti-
mization and coupling single and multi-many objective evolutionary algo-
rithms with traffic and emission simulators; the framework implemented is
a virtual laboratory for run experiments with complex models.

The framework developed is a powerful tool to explore and analyse op-
timized solutions: A complete method which explores three different spaces:
variable, objective and geographical have been implemented. Those three
spaces are interrelated; the framework implemented concede a complete and
comprehensive analysis from that three different perspectives.

Operators that run on two-dimensional neighbourhoods of traffic sig-
nals aiming to quickly find clusters of coordinated signals by propagating
cycle times and setting offsets based on the distance between signals. In-
tuitively, we expect groups of correlated signals for which similar settings
could be appropriate for given scenarios. The algorithm searches for opti-
mal combinations of correlated signals. Due to the topography of the city
and its mobility patterns, it is important to define neighbourhoods as two-
dimensional and optimize in both directions of traffic flow (north-south-north



4 Chapter 1. Introduction

and east-west-east). These two-dimensional correlations increase the com-
plexity of the problem substantially concerning to optimization.

Introduces varying mutation rates with high selection pressure to accel-
erate the algorithm convergence: The appropriate combination of operators,
selection, and varying mutation rates allows searching effectively even with
small populations. The problem is computationally expensive, for that rea-
son, a rapid convergence is highly relevant. Moreover, a quick convergence
and fewer evaluations (simulations) benefit to the EA to be scalable.

In addition, the work presents a detailed analysis of the algorithm de-
sign and its parameters showing alternative ways the algorithm can be used
to find solutions to the given problem, which is valuable for the non-expert
in evolutionary algorithms.

Improvement in the analysis and understanding of the level of service
in urban transportation: The model and the framework provide a set of out-
comes to study and learn the effects of changing the proportion of cars vs
public transportation users. The analysis of effects on traffic density, fuel con-
sumption and travel time help to explain the variables and their relationships
to achieve a sustainable transport system. The variable space, the trade-off
from different perspectives and geo-location analysis give a comprehension
to the decision makers to gain knowledge about the model.

MOEA Adaptive ε-Sampling and v-Hood (AεSvH): The AεSvH algo-
rithm, an extension of the multi- and many-objective AεSεH algorithm. The
proposed AεSvH creates neighborhoods in variable space to bias mating for
recombination and uses ε-dominance principles to truncate the population
when the number of non-dominated solutions is larger than the population
size. The difference between the proposed AεSvH algorithm and the AεSεH is
the space where neighborhoods for parent selection is performed. In AεSεH
neighborhoods are created in objective space, whereas in AεSvH neighborh-
ods are created in decision space. Specifically, we use AεSvH in bi-objective
optimization problem of Level of Service (LoS). We use variable nPt which
defines the proportion of public transportation users, to create the neighbor-
hoods so that all solutions with the same proportion of public transportation
users belong to the same neighborhood. In this way, the method allows a less
disruptive recombination compared to AεSεH for the problem dealt with in
this work.

1.4 Outline

Chapter 2 describes the optimization framework and its components. A de-
scription of each model’s component is given according to the next order:
Problem formulation, Simulation, Evolutionary Algorithms, Analysis of So-
lutions and Design Knowledge. Problem formulation refers to the imple-
mentation model. Simulation refers to the traffic simulator used to test the



1.4. Outline 5

mobility scenarios. Evolutionary Algorithms (EA) introduces the main con-
cepts, definitions and EAs implemented. Analysis of Solutions are the meth-
ods that we use to study the optimized solutions, the variable, objective and
geographical space. Finally, a description of Design of Knowledge is given.

Chapter 3 describes the area of the study and the main components of the
mobility and transport scenario: the network infrastructure and the mobility
model based on activities.

Chapter 4 is devoted to the traffic signal optimization problem since a
single objective approach. It includes the problem formulation, the EA al-
gorithm, the problem representation and the operators designed and imple-
mented. The optimization problem is addressed considering the travel time
as a fitness function. A complete and comprehensive analysis of results is
performed and discussed. Finally, conclusion and future work are presented.

Chapter 5 describes a bi-objective optimization approach for traffic sig-
nals considering travel time and fuel consumption as objective functions. The
trade-off is analyzed and discussed in the results section.

Two additional chapters examine a different problem regarding Level of
Service optimization based on traffic density levels in urban transportation.
A multi-objective evolutionary algorithm searches the combinations of pro-
portion private/public transport users, capacity and headways of Bus Rapid
Transit (BRT) of five main corridors in the area of study. Different proportions
and configurations impact the traffic density, travel time and fuel consump-
tion.

In chapter 6 a bi-objective approach studies the trade-off between traffic
density and travel time. The method, the evolutionary algorithm, the repre-
sentation and operators are described. A complete trade-off analysis is con-
ducted in the respective chapter sections. Two BRT optimized configurations
are studied to analyze the effects of fuel consumption and emissions in the
geographical area.

Chapter 7 study the Level of Service optimization from a three-objective
approach considering travel time, traffic density and fuel consumption. The
chapter describes the method, the evolutionary algorithm, the operators, the
results and discussion.

Finally, Chapter 8 summarizes this work, presents the conclusions and
propose a future research.
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Chapter 2

Design Optimization Framework

This chapter presents the framework and its components: Problem formula-
tion, Simulation, Evolutionary Algorithms, Analysis of Solutions and Design
Knowledge. The chapter includes a description of each component, the sim-
ulators, the evolutionary algorithms and definitions.

2.1 Introduction

The central purpose of this work is to implement a design optimization frame-
work which applies the evolving design concept. Evolving designs on com-
puters (EDC) empower us to employ computer models at every stage of the
design process improving the quality, productivity, speed and decreasing the
expense of design. EDC is based on evolutionary biology principles to gen-
erate elaborate and innovative designs (Bentley, 1999). The proposed de-
sign optimization framework is based on evolutionary design optimization,
which starts with an existing design and evolves those variables or parame-
ters of the design which we are searching for improvement. Starting from a
problem definition in terms of search-space, an evolutionary algorithm (EA)
uses an analogy with natural evolution to perform the search by evolving
solutions to problems. The variables or parameters are encoded in a specific
problem-representation by a genetic code which is evolved by an EA. The
EA guide the evolution towards better areas of the search space by evalu-
ating every solution in the population by a fitness function which assesses
how well the solution satisfies the problem. Those solutions that represent
promising designs are analyzed and judged by the experts who accept the
proposed design or suggest a new set of design parameters to be evolved.

2.2 Components

We follow the design optimization approach illustrated in Fig 2.1. We first
formulate a problem related to mobility and transport, simulate the move-
ments in the city using a specialized transport simulator. We use a single
and multi-objective evolutionary algorithm to find optimal solutions to the
formulated problem evaluating the quality of solutions using the outcome
of the simulation, analyze the solutions produced by the evolutionary al-
gorithm and extract knowledge about the system. The approach is iterative,
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where the solutions and obtained knowledge are made available to the expert
for further analysis. The feedback from the expert could be used to reformu-
late the problem to study additional details. Once the expert is satisfied, the
knowledge gained could be suggested to improve the real system.

FIGURE 2.1: Method

2.3 Problem Formulation

The problem formulation is an abstraction or simplification of the real-world
problem, and it represents the model. The real-world solving problem could
be a challenging task, especially when those problems remain complicated
due to the coincidence of several factors. One factor is that the search space
could be broad that the exhaustive solution exploration is denied. Another
one refers to the evaluation function; it could be hard to find a complete
formulation. Moreover, some hard constraints can restrict feasible solutions
search. In this work, we use models that consider those factors, by using
evolutionary algorithms (EA) to explore the search space and simulators to
evaluate the solution.
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2.4 Simulation

Computer simulation refers to the use of computational models to gain ad-
ditional insight into a complex system’s behaviour. Furthermore, those com-
putational models allow the evaluation of designs and plans without bring-
ing them to the real world (e.g. road networks and traffic lights). Synthetic
environments are in most cases a necessity since the simulated system is non-
observable (currently being designed), unsafe or unethical (e.g. humans or
animals involved could be harm) or directly unpractical (experiment or data
acquisition costs, change in the systems observed is slow). Simulation is not
a decision-making tool but a decision support tool, allowing better-informed
decisions to be made. For this work, we use mobility and traffic simulators
to implement the mobility model and emission simulator to compute the fuel
consumption and gas emissions. Next section describes each of them.

2.4.1 Multi-Agent Transport Simulation MATSim

Matsim comes from Multi-Agent Transport Simulation, provides a frame-
work to implement large-scale agent-based transport simulations(Horni, Nagel,
and Axhausen, 2016). It uses a microsimulation approach. The term micro-
simulation relates to the microscopic (individual) demand of each person in
the scenario. MATSim works in four main phases. In the first, a synthetic
population is generated, which is then used to generate the initial travel de-
mand (initial mobility plans). The travel demand is then optimized, and fi-
nally, results are analyzed (see Fig.2.2). Next section describes the Matsim
process(Horni, Nagel, and Axhausen, 2016).

• Scenario Creation: It refers to set the geographical area and geograph-
ical data sources, and other information like census data or mobility
studies that can help to model the mobility scenario. An important
topic is the transportation network modelling, for that purpose, open
geographic data sources have been used.

• Initial Individual Demand Modeling: Here, set the initial mobility plan
for each agent. A mobility plan defines activities that each person will
perform. Major activity attributes are type, location, duration, opening
and closing times.

• Demand Execution: In this process, the simulator uses all plans for all
individuals to simulate the traffic during 24 hours. The simulation is
based on a queue model and uses a time step based approach with a
step width of one second, meaning that the system state is calculated
every second.

• Scoring: To improve the mobility plan in each iteration, it uses a scoring
function. The score function rate the quality of the day plans in the
population. The scoring function has two main components: the first
part evaluates accomplished activities, a positive contribution for the
(usually) positive utility earned by performing an activity. The function
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FIGURE 2.2: Matsim process

for activity evaluates duration for each activity and penalize for waiting
time, late arrival, early departure and short duration. The second part
evaluates the movements. It is a negative contribution (penalty) for
travelling.

• Replanning: Each re-planning module takes charge for a specific part in
the optimization process. As an example, the Router module calculates
the routes of a plan based on the amount of traffic from the last traffic
flow simulation. The Time Allocation Mutator module modifies depar-
ture times and activity durations of a daily plan. This module varies
the corresponding times randomly. Additional modules could change
activities’ locations, or change the sequence of activities. A character-
ization of modules is whether they modify a plan randomly (Random
Mutation) or whether they search for the best solution based on the re-
sults of the last traffic flow simulation (Best Response).

• Relaxation: The relaxed state of the co-evolutionary algorithm of MAT-
Sim is reached if the utility for each agent does not noticeably change
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through variation of the day plans. The simulator evaluates the aver-
age worst plan for all agents and compares with the average best plan
if there is not a considerable difference, the iteration ends. This condi-
tion is known as relaxation or equilibrium state. The relaxed state of the
co-evolutionary algorithm of MATSim is reached if the utility for each
agent does not noticeably change through variation of the day plans.

• Post process analysis: The simulator provides as output a detailed log
of the movement and time of all agents. This log is used for analyzing
the mobility and the status of the infrastructure around the city.

2.4.2 Modules

Emissions

MATSim emission extension (Hülsmann et al., 2011) computes the gas emis-
sions per link per agent, at the time an agent enters a link of the transport
network. It calculates warm and cold-start exhaust emissions for cars by con-
necting MATSim simulation output to the detailed database Handbook on
Emission Factors for Road Transport (HBEFA) (Keller and Wuthrich, 2014).

MATSim computes warm emissions deriving the kinematic characteris-
tics from the simulation and combines this information with vehicle charac-
teristics to extract emission factors from the database of the Handbook on
Emission Factors for Road Transport (HBEFA). To derive the kinematic char-
acteristics, the emission model considers ‘free flow’ and ‘stop&go’ as traffic
states per road segment. To calculate cold-start emissions, MATSim derives
parking duration and accumulated traveled distance from the simulation.
For parking duration, HBEFA database differentiates emission factors in one
hour time steps from 1h to 12h. After 12 hours the vehicle is fully cooled
down. There are also different cold emission factors for short trips (less than
1Km) and longer trips (greater than 1Km)(Kickhöfer et al., 2013).

Traffic Signals

MATSim uses an specific configuration to simulate traffic lights microscop-
ically using fixed-time control. MATSim uses an structure displayed in the
figure 2.3, given by Signal System, Signal Group, Control and Signal.

• Signal System is a collection of signal groups that is controlled by the
same group.

• Signal Group refers to a logical group of the traffic lights, all lights dis-
play same color at the same time. A group as a set of lights that control
a specific flow or movements: for example North-South or West-East.

• Control: Algorithm or control scheme that determines which colors are
displayed by the different signal groups.
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FIGURE 2.3: Traffic Light MATSim Representation

• Signal is the traffic light or traffic signal located at specific place in the
network.

2.4.3 Comprehensive Modal Emission Model (CMEM)

CMEM is a microscopic emissions simulator that computes second-by-second
tailpipe emissions and fuel consumption based on different vehicle operating
modes (modal), such as idle, steady-state, cruise, and various levels of accel-
eration/deceleration (G.Scora and Barth, 2006). It is called comprehensive
because it can predict emissions for a wide range of vehicle / technology
categories and various operating conditions, such as properly functioning,
deteriorated, malfunctioning. CMEM requires two groups of inputs, input
operating variables and model parameters. The input operating variables in-
clude information about the activity of the vehicles, that is second-by-second
speed (from which acceleration can be derived) and the slope of the road.
The model parameters are determined for each one of the vehicles used in
the simulation according to the categorization established by CMEM.

2.5 Evolutionary Algorithms

2.5.1 Main Concepts and Definitions

Evolutionary Algorithms (EA) are a set of meta-heuristic problem-solvers which
guide to lower-level heuristics to search feasible solutions in complex search
land-scapes (Coello, Lamont, and Veldhuizen, 2006). A heuristic is a tech-
nique in which comparison rules select the most appropriate partial or local
solution. EA comprises genetic algorithms (GA), evolution strategies (ES),
and evolutionary programming (EP). In this work, we focus in single and
multi-objective EAs as a meta-heuristic model to search the feasible solutions
of the real-world problem that we model.
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Because of the complexity of the problem owing to either the number of pos-
sible solutions in the search space is vast or evaluation function that describes
the quality of any proposed solution is noisy or varies with time or has con-
straints that require special operations(Michalewicz and Fogel, 2010), EA al-
gorithms are a set of tools that facilitate the exploration of vast spaces, not
just a single solution but an entire series of solutions.
EA techniques are based on the Darwinian evolution concept which relies on
natural selection and the principle of survival of the fittest. It consists of a
population (of encoded solutions) shaped by a set of mutation and crossover
operators and evaluated by a fitness function that determines which survive
into the next generation.

Algorithm 1: Evolutionary Algorithm
1: P← Initial Population()
2: Evaluation (P)
3: repeat
4: P′ ← Parent selection(P)
5: Q← Recombination and mutation (P′)
6: Evaluation (Q)
7: P← Survival selection (P,Q)
8: until condition is met

A simple EA is shown in Alg.1. A population P of individuals is initial-
ized, and then each is evaluated by a fitness function Evaluation(P) accord-
ing to its worth in some domain or problem. Fitness evaluation can be a
simple formulation or a more complex evaluation by an elaborate simula-
tion. After that, an iterative process where parent selection, recombination
and mutation, evaluation and survival selection is performed generation by
generation until a specific condition such as a number of generations or eval-
uations is met. Parent selection decides which one becomes a parent and
the number of children that they can breed. Individuals with higher fitness
are more likely to be parents. Recombination and mutation operators create
offspring Q. Recombination allows interchanging the genetic code between
parents and mutation alter the offspring. The offspring are then evaluated.
Finally, the survival step decides which one persists in the population. A
variation in this step is to consider elistism that allows to the best individual
always to survive, ensuring that when optimum is found it cannot be lost.

2.5.2 Single Objective Optimization

Definition 1 (Single-Objective Optimization Problem) Given a vector �x =
[x1, . . . , xn]T , of n decision variables xi, that fulfills the following r = a + b re-
strictions:

�g(�x) = [g1(�x), ..., ga] ≥ 0 (2.1)

�h(�x) = [h1(�x), ..., hb] = 0 (2.2)
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and minimize (or maximize) the function:

�f (�x) (2.3)

Definition 2 (Single-Objective Global Minimum Optimization) Given a func-
tion f : Ω ⊆ Rn → R, Ω �= ∅, for x ∈ Ω the value f ∗ � f (x∗) > −∞ is called a
global minimum if and only if:

∀x ∈ Ω : f (x∗) ≤ f (x) (2.4)

x∗ is by definition the global minimum solution, f is the objective function, and
the set Ω is the feasible region of x. The goal of determining the global minimum
solution(s) is called the global optimization problem for a single objective problem.

2.5.3 Multi-Many Objective Optimization

In particular, multi-many objective EA (MOEA) possess characteristics that
are beneficial for problems involving i) multiple conflicting objectives, and
ii) intractably large and highly complex search spaces(Eckart, 2004). In this
work we use the Adaptive ε-Sampling and ε-Hood (AεSεH) (Aguirre, Oyama,
and K., 2013) algorithm to search optimal solutions. AεSεH is an elitist evolu-
tionary multi- and many-objective optimizer that applies ε-dominance prin-
ciples both for survival selection and parent selection. In the following, we
describe the main features of the algorithm, representation, operators of vari-
ation, and fitness functions used to study our system.

Following section present generic multi-objective problem (MOP) and
Pareto optimally mathematical and formal symbolic definition

Definition 3 (Multi-Objective Optimization Problem) Given a vector�x = [x1, . . . , xn]T

, of n decision variables xi, that fulfills the following r = a + b restrictions:

�g(�x) = [g1(�x), ..., ga] ≥ 0 (2.5)

�h(�x) = [h1(�x), ..., hb] = 0 (2.6)

and optimizes the vector of functions:

�f (�x) = [ f1(�x), ..., fm]
T (2.7)

Optimize here could indicate minimizing or maximizing the values of each objective
functions which is subject to the problem at hand. A Multi-Objective Optimization
Problem becomes a Many-Objective one when, according to the above definition,
m ≥ 4 (Coello, Lamont, and Veldhuizen, 2006).

The concept of Pareto optimum was formulated by Vilfrido Pareto dur-
ing the XIX century and marks the origin of the research on Multi-Objective
Optimization (Coello, Lamont, and Veldhuizen, 2006). In this section will be
defined the concepts of Pareto dominance, Pareto optimality, Pareto set and
Pareto front (Veldhuizen99; ToscanoPulido01).
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Definition 4 (Pareto dominance) Given two decision vectors �u = (u1, . . . , un),
�v = (v1, . . . , vn):

�u ≺ �v
�u dominates �v

�u  �v
�u weakly dominates �v

�u ∼ �v
�u is not comparable to �v

if and only if fi(�u) < fi(�v)
∀i ∈ (1, . . . , k)

if and only if fi(�u) ≤ fi(�v)
∀i ∈ (1, . . . , k)

if and only if fi(�u) � fi(�v) ∧ fi(�u) � fi(�v)
∀i ∈ (1, . . . , k)

The previous operators are given in function of a minimization problem,
nevertheless the definitions are similar to the ones for maximization prob-
lems (�,�,∼).

Definition 5 (Pareto optimality) Given a decision vector �u, it can be said that its
Pareto optimal if and only if: �u ∈ Ω | ¬∃ �v ∈ Ω | �f (�v)  �f (�u)

A decision vector that its Pareto optimal cannot be improved in any of the objec-
tives without this inflicting a degradation in at least one other objective.

Definition 6 (Pareto optimal set) Is defined as P = {�u ∈ Ω | ¬∃ �v ∈ Ω |
�f (�v)  �f (�u)}.

The Pareto optimal set is part of the decision variable space

Definition 7 (Pareto front) Given a Multi-Objective Optimization problem �y =
�f (�x) and a Pareto optimal set P∗, the Pareto front (PF) its defined as:

PF = {�y = �f = (�f1(�x), ..., �fk(�x) | �x ∈ P}
The Pareto front is part of the solutions space.

2.5.4 EA used in this work

Elitism Single Objective EA

We use a single-objective EA for the traffic signal optimization problem. Traf-
fic signal functioning is defined by several parameters. First, the cycle length.
Then, the green times of the different phases for the intersecting lanes. Fi-
nally, the offset between the beginning of the cycles of consecutive signals to
coordinate them and induce continuous flows. Therefore, the search space
for the optimal setting for a set of traffic lights grows rapidly with the num-
ber of signals being considered. Evolutionary algorithms (EAs) provide the
means to search and explore several alternatives, allowing the human expert
to learn about the solution space and focus on the most suitable solutions.
Fig. 2.4 illustrates the flowchart of the EA algorithm. In the following, we
describe the main steps of the algorithm based on this figure. Each solution
is a traffic signal coded by its representation.
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FIGURE 2.4: Evolutionary Algorithm Flow Chart

The initial population μ is formed by 20 deterministically created solu-
tions. No repetitions are allowed. We do this to guarantee maximum diver-
sity for each signal across the population so that, evolution could explore a
broad region of variable space. Each solution is evaluated running MATSim
with the traffic signals settings it encodes. Parents are selected for repro-
duction using binary tournaments among randomly sampled solutions. The
offspring population λ is created applying crossover to the selected parents
with probability Pc followed by mutation. Mutation updates the probability
P(t)

m , selects a mutation operator and apply it with the updated P(t)
m per signal.

There are two mutation operators, one for cycle time and offset and another
for green time. The operators’ probabilities are PCtO and PGt = 1− PCtO, re-
spectively. During the evolution we relax the initial assumption of common
cycle length for all signals in a solution. The proposed mutation operators for
cycle time and offset searches for groups of signals with same cycle length by
propagating the cycle of a signal to its neighbors and induce their coordina-
tion by setting their offset based on the distance between neighboring signals.
The operators’ probabilities allows to balance the search for cycle lengths and
green times.

After crossover and mutation, the offspring is evaluated running MAT-
Sim as indicated above. Selection of solutions for the next generation ap-
plies elitism, taking into consideration the current population μ(t) and the
offspring population λ(t). Namely, the population μ(t+1) is formed by the
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best in the combined population of the top nElite from μt and the λt off-
spring, i.e. nElite(μ(t)) + λ(t) → μ(t+1). Also, we introduce varying muta-
tion rates for P(t)

m . The algorithm evolves solutions repeating parent selection,
crossover and mutation, offspring evaluation, and survival selection until a
pre-determined number of generations T has been reached. The appropriate
combination of operators, high selection pressure via elitism, and varying
mutation rates accelerate convergence of the algorithm and allows to search
effectively even with small populations.

MOEA:Adaptive ε-Sampling and ε-Hood AεSεH Algorithm

AεSεH follows the main steps of a population-based evolutionary algorithm,
i.e. parent selection, offspring creation and survival selection, adjusting its
operation depending on whether the population contains dominated solu-
tions or not.

To perform survival selection, the current population and its offspring are
combined and divided into non-dominated fronts using the non-dominated
sorting procedure. If the number of non-dominated solutions in the first front
is smaller than the population size, the sorted fronts of non-dominated solu-
tions are copied one at the time to the next population until it is filled; if
the last copied front overfills the population, the required number of solu-
tions are chosen randomly from it to have the exact number specified by the
population size. On the other hand, if the number of non-dominated so-
lutions in the first front is larger than the population size, the first front is
truncated to the size of the population using the ε-sampling procedure. ε-
sampling randomly chooses solutions from the first front to include them in
the surviving population, eliminating from the front those solutions that are
ε-dominated by the chosen samples. As a result, solutions in the next pop-
ulation are spaced according to the �f (�x) �→εs �f

′
(�x) mapping function and

parameter εs used to compute ε-dominance between solutions.
For parent selection, the algorithm first uses a procedure called ε-hood cre-

ation to cluster solutions in objective space and then applies ε-hood mating to
select parents. When all solutions in the population are non-dominated, ε-
hood creation selects randomly an individual from the population and applies
ε-dominance with mapping function �f (�x) �→εh �f

′
(�x) and parameter εh. A

neighborhood is formed by the selected solution and its εh-dominated solu-
tions. Neighborhood creation is repeated until all solutions in the population
have been assigned to a neighborhood. ε-hood mating sees the neighborhoods
as elements of a list and visits them one at the time in a round-robin schedule.
The first two parents are selected randomly from the first visited neighbor-
hood in the list. The next two parents are selected randomly from the second
neighborhood in the list, and so on. When the end of the list is reached, par-
ent selection continues with the first neighborhood in the list. On the other
hand, when dominated solutions are present in the population, ε-hood cre-
ation makes sure that the solution sampled to create the neighborhood is a
non-dominated solution and ε-hood mating uses binary tournaments based on
dominance rank to select parents within the neighborhoods. Both epsilon
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Algorithm 2: AεSvH
Require: Population size Psize
Ensure: F1, set of Pareto non-dominated solutions

1: εs← 0, Δs← Δ0 {set εs-dominance factor and its step of adaptation}

2: P ← random {initial population P , |P| = Psize}
3: evaluation( P )
4: repeat
5: {Parent selection}
6: {H, NH} ← v-hood creation ( P ) {H = {Hj}, j = 1, 2, · · · , NH}
7: P′ ← v-hood mating(H, Psize )
8: {Offspring creation}
9: Q← recombination and mutation( P′ ) {|Q| = |P| = Psize}

10: {Evaluation and front sorting}
11: evaluation(Q )
12: F ← non-dominated sorting( P ∪Q )

{F = {Fi}, i = 1, 2, · · · , NF}
13: {Survival selection}
14: {P , NS} ← ε-sampling truncation( F , εs, Psize ) {NS, number of

samples}
15: {εs, Δs} ← adapt ( εs, Δs, Psize, NS )
16: until termination criterion is met
17: return F1

parameters εs and εh used in survival selection and neighborhood creation,
respectively, are dynamically adapted during the run of the algorithm. This
algorithm has been shown to work effectively on continuous and discrete
multi- and many-objective optimization problems (Aguirre, Oyama, and K.,
2013) (Aguirre et al., 2014b) (Aguirre et al., 2014a). Further details about the
algorithm can be found in (Aguirre, Oyama, and K., 2013) and (Aguirre et al.,
2014b).

MOEA: Adaptive ε-Sampling and v-Hood (AεSvH) Algorithm

In this section we explain the proposed AεSvH algorithm, an extension of
the multi- and many-objective (AεSεH) algorithm (Aguirre2014; Aguirre,
Oyama, and K., 2013). The proposed AεSvH creates neighborhoods in vari-
able space to bias mating for recombination and uses ε-dominance principles
to truncate the population when the number of non-dominated solutions is
larger than the population size.

The algorithm’s flow is illustrated in Procedure 2. It starts by setting ini-
tial default values for the parameter εs used in and its step of adaptation
Δs. The population P is randomly initialized and evaluated. The main loop
starts by creating neighborhoods of solutions, grouping them by proximity in
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variable space using a v-hood creation procedure. Next, v-hood mating cre-
ates a pool of mates P′ selecting them from the same neighborhood. The se-
lected mates are recombined and mutated to create the offspring population
Q. Since mates come from the same neigborhood, a solution would recom-
bine only with a solution that is close by in decision space. After offspring
Q is evaluated, non-dominated sorting is performed on the population that
results from joining the current population P and its offspringQ. The pop-
ulation of size 2Psize sorted in non-dominated fronts F is then truncated to
obtain the surviving populationP of size Psize using a ε-sampling truncation
procedure set with parameter εs. The parameter εs and its step of adaptation
Δs are adapted every generation so that the number of ε-sampled solutions
approach the size of the population. In the following we explain with more
detail v-hood creation, v-hood mating and ε-sampling truncation.

The v-hood creation procedure splits the surviving population P into
neighborhoods as illustrated in Procedure 3. First, this procedure randomly
selects an individual z from the population P . Then, solutions in P with
the same proportion of public transportation users as zNPt are grouped in Y .
Next, z and Y are assigned to neighborhoodHi and removed from the pop-
ulation P . Neighborhood creation is repeated until all solutions in P have
been assigned to a neighborhood.

Mating for recombination is implemented by the procedure v-hood mat-
ing illustrated in Procedure 4. Neighborhoods are considered to be elements
of a list. To select two mates, first a neighborhood from the list is specified de-
terministically in a round-robin schedule. Then, two individuals are selected
randomly within the specified neighborhood, so that an individual will re-
combine with other individual that is located close by in variable nPt space.
Due to the round-robin schedule, the next two mates will be selected from
the next neighborhood in the list. When the end of the neighborhood lists
is reached, mating continues with the first neighborhood in the list. Thus,
all individuals have the same probability of being selected within a specified
neighborhood, but due to the round-robin scheduling individuals belonging
to neighborhoods with fewer members have more recombination opportu-
nities that those belonging to neighborhoods with more members. Once the
pool of all mates P′ has been established, they are recombined and mutated
according to the order they were selected during mating.

The ε-sampling truncation (Aguirre, Oyama, and K., 2013) receives the
sets of solutionsF created by non-dominated sorting and selects exactly Psize
surviving solutions from them. If the number of non-dominated solutions
|F1| < Psize, the fronts Fi are copied iteratively to P until the population
is filled. If Fi overfills P , the required number of solutions are selected ran-
domly from Fi and copied to P . On the other hand, if the number of non-
dominated solutions |F1| > Psize, it calls ε-sampling with parameter εs to
get from F1 a sample of εs non-dominated solutions F ε

1 ≤ F1 and the set
of εs-dominated solutions Dεs . F ε

1 is copied to P . If |P| > Psize, solutions
are randomly eliminated from P until its size is Psize. If |P| < Psize, solu-
tions are randomly copied from the εs-dominated solutions Dεs to P until
its size is Psize. The ε sampling procedure is done in way that the surviving
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population P always includes the extreme solutions present in F1.

Algorithm 3: v-hood creation ( P )
Require: Population P
Ensure: NeighborhoodsH = {Hi}, i = 1, 2, · · · , NH

1: H← ∅

2: i← 0
3: while P �= ∅ do
4: z← xr ∈ P | r = rand( 1, P ) {z, is a randomly chosen

solution from list}
5: Y ← {y ∈ P | zNPt == yNPt} { solutions which NPt variable

are equal }
6: i← i + 1
7: Hi ← {{z} ∪Y} { z and its solutions form the NPt-hood }
8: H←H∪Hi
9: P ← P \Hi

10: end while
11: NH ← i
12: return H, NH

Algorithm 4: v-hood mating (H, Psize )
Require: NeighborhoodsH = {Hi}, i = 1, 2, · · · , NH , and population

size Psize
Ensure: Pool of mated parents P′ , |P′| = 2Psize

1: P′ ← ∅

2: i← 1
3: j← 0
4: while j < Psize do
5: {xr1 , xr2 ∈ Hi | r1 ∧ r2 = rand( 1, |Hi| ), r1 �= r2}
6: y← tournament(xr1 , xr2) {d}ecide based on dominance rank
7: {xr3 , xr4 ∈ Hi | r3 ∧ r4 = rand( 1, |Hi| ), r3 �= r4}
8: z← tournament(xr3 , xr4) {d}ecide based on dominance rank
9: P′ ← P′ ∪ {y, z}

10: i← 1 + (i mod NH)
11: j← j + 1
12: end while
13: return P′
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The difference between the proposed AεSvH algorithm and the AεSεH is
the space where neighborhoods for parent selection is performed. In AεSεH
neighborhoods are created in objective space, whereas in AεSvH neighborh-
ods are created in decision space. Specifically, we use the variable nPt to
create the neighborhoods so that all solutions with the same proportion of
public transportation users belong to the same neighborhood. In this way
the method allows a less disruptive recombination compared to AεSεH for
the problem dealt with in this work.

2.6 Analysis of Solutions

Qualitative data analysis is a process that pretends to simplify and make
sense of a massive amount of information from diverse sources. It allows to
take descriptive information and offer an explanation or interpretation. The
proposed framework generates several outcomes generated by simulation
and MOEA. Agent-based transport simulation models integrate and manage
several data sources (e.g. spatial data, activity diary trips, agent attributes).
EA (single- and multi-objective) gives the set of solutions (variables and ob-
jectives) during the evolution. In this work, the analysis focus in variable
space, objective space and spatial geo-location space. For variable and objec-
tive space, the study is centred in the range of the variables and objectives. A
complementary analysis is conducted to seek an additional meaning, expla-
nation and interpretation in the context of the problem by a geo-location of
the evolved solutions into the geographical area of study.

2.7 Design Knowledge

Our framework aims to be a support and add value to the body of knowledge
during the design process for different complex problems. For this work, the
central intention of the evolving design is to provide the designer with a set of
potential solutions so that he/she has a plethora of candidates solutions from
the optimal set. Moreover, show a path to go from the current to a potential
optimized state. In many-objective optimization problems with trade-offs,
the framework reveals the optimal solution set, so that, the decision maker
decides to choose acceptable solutions based on his/her knowledge and ex-
pertise.

Finally, considering additional criteria from the expert, the proposed prob-
lem modelling and its solutions will be evaluated and verified so that a new
version of the problem can be implemented to accomplish a new cycle itera-
tively.
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Chapter 3

Quito Model Mobility Scenario

This chapter describes the area of study used for this research. A brief intro-
duction about Quito city and its characterization and the mobility scenario:
the transport network and mobility plans.

3.1 Quito Metropolitan District-DMQ

Quito Metropolitan District (DMQ) is the capital city of Ecuador and located
in the central part of the Ecuador. Located at 2850 meters above sea level in
the Andes mountains is the second one highest cities around the world. Fig.
3.1 display a view of the DMQ urban extension.

FIGURE 3.1: DMQ Urban Area (captured by google earth)

DMQ’s urban population growth has put enormous strains on its trans-
portation system. There is the need to model the system, better understand
the problems associated with transportation and mobility, find sustainable
solutions to solve them and improve life in the city. DMQ’s urban population
increased from 1 million in 1990 to 1.7 million in 2015, and it is expected to
increase other 0.5 million by 2030 (United Nations and Social Affairs, 2014).
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TABLE 3.1: Reasons for trips in DMQ

Activity % Population
Study 32.5
Work 31.1
Personal business 24.3
Shopping 4.4
Medical Visits 3.1
Leisure/Sports 1.6
Others 2.9

DMQ concentrates several activities: economic, industrial, services, ad-
ministrative and political, due to of its importance as one of the Ecuador’s
main cities.
DMQ keep a constant and intense interchange traffic flows inside and outside
of its metropolitan area. Outside of the metropolitan area, with other cities
due to activities such as business and tourism. Inside of the metropolitan
area, people continuously move mainly to accomplish several tasks. Accord-
ing to a mobility survey (DMQ, 2012) the main reasons for trips in DMQ are
study, work, personal business, leisure, sports and others. Table 3.1 show the
population percentage for each activity category. DMQ’s urban area has a
high concentration of population, around 77% of the total population live in
the urban area.

In the DMQ the 84.4% of the trips are by using cars or bus. From this per-
centage, 74% are in public transportation and the rest in private cars (DMQ,
2012). In Ecuador, the rate of vehicles for each 1000 inhabitants changed
from 17 to 51 from 1990 to 2010 (INEC, 2010a). Fig. 3.2 shows the inhabitants
against the number of vehicles in Ecuador during 40 years since 1968. Note
a distinct tendency of increase in the number of vehicles according to the
population growth. Inside of DMQ, the average rate of vehicles per family
is 0,51 that represents approximately 0.13 vehicles per inhabitant and more
than 90% use their homes as parking places(DMQ, 2012).
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FIGURE 3.2: Ecuador (1968-2008) Inhabitants vs. Vehicles
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Traffic congestion is a big issue in DMQ, due to a high concentration
of people moving by cars or by bus, the capacity of the infrastructure is
not enough for the demand. Besides to congestion, air pollution is another
concern to the DMQ’s authorities and inhabitants. In a recent report of air
quality(Ambiente, 2016), indicates that the main sources of contamination
in DMQ are the mobility means as public transportation that uses diesel as a
fuel and also the particular vehicles due to high density and congestion. That
mobility characteristics described previously and the levels of use of private
and public transportation becomes a critical geographical area of study in
this research.

The next sections illustrate the area of study and its mobility components.

3.2 Area of Study

The geographical area of study is a large and important part of Quito Metropoli-
tan District (DMQ). The majority of the main facilities: companies, education,
hospitals, food markets, public institutions are in that area. It includes the
business district, eight major universities, several hospitals, large malls, two
large parks, and one major soccer stadium, covering approximately 5 x 8 Km2

as shown in Fig 3.3.

FIGURE 3.3: Area of Study

Moreover, in the city centre, which represents the 17.5% of the total DMQ
area has a concentration of the 66% of workplaces that implies a high mobi-
lization to this zone and inside of it. The 90% of the trips go to that zone as a
destination from the peripheric zones(Demoraes, 2005).
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The next section describes the mobility model components of the area of
study: the supply or network infrastructure and the demand.

3.3 How to build DMQScenario

This section describes the method to create the DMQScenario in MATSim.
In a first step, as is shown in Fig. 3.4, we build the base scenario configu-
ration files: network, facilities and population. The input data provides the
transport network that comes from open sources, activity locations for work
and study, and open times for activities given by land use data. The popula-
tion data provides the neighbourhood density. The fusion process employs a
series of libraries and applications to convert to MATSim into XML format.

FIGURE 3.4: Base DMQ Scenario Implementation

3.3.1 Transport Network Infrastructure

The network information is obtained from OpenStreetMap (OSM) as is shown
in Fig.3.5. After to select the geographical area and its coordinates, we down-
load the complete geographic database which corresponds to Ecuador from
Geofabrik(Frederik, Topf, and Karch, 2007) and extracts the network with
the proper coordinates. To extract the network we used an OSM java com-
mand line application (Osmosis) for processing OSM data. Finally, to convert
the network to MATSim XML format, we use a MATSim’s network editor
application which input is the OSM network file and the geospatial system
reference, which for DMQ is EPSG:24877. Fig. 3.6 shows the DMQ scenario
used in this research.

The number of links of the network corresponding to the area of study is
8192. The links’ attributes are length (m), saturation flow (capacity) that defines
how many cars can pass through the road during a unit of time, e.g. vehi-
cles/hour, and free speed that represents the maximum flow velocity. For this
work, we take into account all the main and secondary pathways with free
speeds equal or above 30 Km/h. Traffic in all main pathways is bidirectional,
and some of them include multiple lanes. Traffic in secondary pathways is
mostly unidirectional.

Fig.3.7 (a) shows the saturation flow rates of lane groups of the network
links. One-lane links are shown in gray and red, two-lane links in blue, green,
violet, and orange, and three-lane links in brown. Thus, the saturation flow
per lane are between 600 and 1500 passenger cars per hour, which is less than
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FIGURE 3.5: DMQ from OpenStreetMap

FIGURE 3.6: DMQ Scenario Network

the base saturation flow of 1900 assumed by the The Highway Capacity Man-
ual (Board, 2000). Fig. 3.7(b) shows the storage capacity of network’s links
which represents the maximum number of vehicles can stand in the queue
for each link. MATSim computes the storage capacities internally (it is not
a link attribute) by linknumber−of−lanes ∗ linklength/7.5m, where 7.5m is the
space occupied by a passenger car unit (PCU).
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FIGURE 3.7: Saturation Flow and Network Storage

FIGURE 3.8: DMQ Scenario Demand Modeling

3.3.2 Initial Demand - Mobility Model

A second step refers to implement the mobility model. Fig. 3.8 displays
the general process to implement the initial demand for DMQScenario. To
build the initial demand we use the files described in subsection 3.3.1 and
additionally important data that comes from a mobility survey.
Demand is the set of mobility plans per each person. Each mobility plan is
defined by some attributes related with activities such as:

• Type: It specifies a kind of activity such as work, study, shop and so on.

• Location: The place which activity is performed.

• Duration: How long does the activity take?.

• Opening or Closing: Time for opening and closing according to each
facility.

To simulate the movement of the agents, we need to provide MATSim
with their initial mobility plans. In this work, a mobility plan of an agent
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consists of two trips. In the first trip, the agent leaves home towards the
location of its activity (Castiglione, 2015) and in the second trip, the agent
returns home from its activity. Thus, each trip is defined by the coordinates
of origin and destination of the trip and the activity specified by the type,
starting time and duration of the activity. The type of vehicle used is also
associated with the journey.

We digitalized the administrative city borders defining a geographical
area per district using QGIS Geographic Information System (QGIS Devel-
opment Team, 2009). We sample home locations for the agents from these
districts in proportion to the population according Tab. 3.2.

TABLE 3.2: Scenario Inhabitants per District (2010)

code INEC District Inhabitants
170101 Belisario Quevedo 45.370
170112 Iñaquito 44.149
170113 Itchimbia 31.616
170114 Jipijapa 34.677
170123 Mariscal Sucre 12.976
170127 Rumipamba 31.300
170130 San Juan 54.027

Total 254.115

Location coordinates of activities are determined based on actual infor-
mation about the city. The origin (home coordinates) of the trips for the
agents are determined based on census of the population. Fig.3.9 (a) shows
in colors the distribution of the home coordinates of the agents and Tab. 3.2
the population of the districts considered in our simulation. The number of
agents from each district is proportional to the district population. Similarly,
the destination of the trips (main activity coordinates) are determined based
on the location of facilities (companies, universities, malls, and so on) and
the fraction of the agents per activity is computed from mobility survey data.
We consider three types of activity: work, study, and others for activities such
as leisure, business, shopping, and so on. The proportions of agents for these
activities are 32%, 33% and 36% respectively, according to mobility survey
data (DMQ, 2012). In the case of activity work, data about the distribution of
workplaces by district in Quito is provided in (Demoraes, 2005). We follow
that distribution to assign the coordinates of workplaces probabilistically. For
the type of activity study, we select probabilistically among the universities
located in the area of study and assign its coordinates. The number of agents
assigned to each university is proportional to the university’s population. In
this activity, we neither consider elementary nor high school students. For
the type of activity other, we use an origin-destination probability matrix to
assign the coordinate, where the probability to go to a destination is propor-
tional to the population of the destination district and inverse to the distance.
Fig. 3.9 (b) shows the coordinates of the main activities of the mobility plan.

Eq.[3.1–3.6] represents the formulation to obtain the proportion of agents
per town in DMQ scenario and Tab.3.3 describes the notation.
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(A) Home Distri-
bution

(B) Main Activities
Distribution

FIGURE 3.9: Origin and Destination Locations

Pop =
Nt

∑
t=1

Popt (3.1)

MovPopt = α.Popt (3.2)

MovPopt,j = MovPopt.ωj (3.3)

Vt,j = MovPopt,j.βt (3.4)

PV =
n

∑
t=1

m

∑
j=1

Vt,j (3.5)

SPt,j =
Vt,j

PV
.SP (3.6)

Eq.3.1 computes the total inhabitants of the area of study. In Eq.3.2,variable
α corresponds to 80% percent of the total population which moves every day
to accomplish several activities.

In Eq.3.3 variable ω represents the fraction value for the main mobility
reasons j such as work, study and others (see table 3.4). As is mentioned be-
fore, the value of ωstudy is adjusted to take into account, only students who
are related to high educational level. For that reason, we consider the total
university population in DMQ given by the universities located in the zone.
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TABLE 3.3: Notation in mobility scenario

Notation Description
Pop Total population of inhabitants to model.
Nt Total number of towns to model.

Popt Total population in t-th town.
α Population percentage which moves for disparate activities.

ωj Mobility factor due to work, study and other activities.
MovPopt,j Population from t-th town which moves due to activity j.

βt Vehicles from t-th town per person.
Vt,j Vehicles from t-th town per activity j.
PV Total population of vehicles corresponding to population P.
SP Syntetic population of agents into simulation.

SPt,j Syntetic population per t-th town per activity j.

ω Value
ωwork 31.1
ωstudy 32.5
ωother 36.4

TABLE 3.4: DMQ Mobility reasons

In Eq.3.4, the β values come from the ratio of the number of vehicles per
family per each town. Eq.3.5 computes the total population by town and
activity. Finally, Eq.3.6 computes the final proportion of population per town
per activity. The variable SP represents the total number of agents to run in
the simulation.

With the final proportion of agents for each town and activity (Eq.3.6), we
create a list of agents trips. Important attributes of a trip are defined by the
tuple (o, d, a, ts, t, v), where o is the origin coordinates, d is the destination
coordinates, a is the type of activity, ts is starting time of the activity, t is
the duration of the activity, and v is the type of vehicle. Starting times and
durations of activities are assigned randomly sampling from ranges defined
for each type of activity. Algorithm 5 and 6 create the list of trips for the
agents in the simulation.

3.4 Evolutionary Algorithm and MATSim Integra-

tion

3.4.1 AnyOEA Framework

AnyOEA Framework comes from Any Objective Evolutionary Algorithms Frame-
work, which is an active project from Shinshu University (Nagano - Japan)
and MODO research group (MODO Frontiers in Massive Optimization and
Computational Intelligence). AnyOEA Framework is a complete set of objects
for experimenting and developing single, many, multiple and any objective
evolutionary algorithms developed in C++.
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Algorithm 5: Initial Mobility Plan
Data: SP,PV ,Vt,j
Result: m̄p = [origin, activity, dest, starttime, duration, vehtype]
�� �������	�
��� �� ��
���
��� ���
���
����Φw, Φs, Φo���

�
��
��� 
�����Φstw, Φsts, Φsto���

����
����Φdw, Φds, Φdo��� �����	� 
����Φv ��

1 {Φw, Φs, Φo, Φstw, Φsts, Φsto, Φdw, Φds, Φdo, Φv} ←
setProbabilities();

2 for t to Nt do

3 SPt = ∑3
j=1 SPt,j where j ∈ [1 = work, 2 = study, 3 = others]

4 for i = 1 to SPt do
5 if i <= SPt,work then
6 act← work;
7 Φdestination← Φw;
8 Φstarttime← Φstw;
9 Φduration← Φdw;

10 else
11 if i <= SPt,work + SPt,study then
12 act← study;
13 Φdestination← Φs;
14 Φstarttime← Φsts;
15 Φduration← Φds;
16 else
17 act← others;
18 Φdestination← Φo;
19 Φstarttime← Φsto;
20 Φduration← Φdo;
21 end

22 end
23 origin = generateCoord(t);
24 activity = act;
25 dest_town = getDescriptor(Φdestination);
26 dest = generateCoord(dest_town);
27 starttime = getDescriptor(Φstarttime);
28 duration = getDescriptor(Φduration);
29 vehtype = getDescriptor(Φv);
30 m̄p← [origin, activity, dest, starttime, duration, vehtype];
31 write(m̄p);
32 end

33 end
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Algorithm 6: getDescriptor(Φ)
Data: Φ = {Φi, i = 1...n} where Φi = {Φi.descriptor, Φi.weight}
Result: Descriptor

1 total=0;
2 for i = 0 to |Φ| do
3 total=total + Φi.weight;
4 end
5 r=random();
6 prob=0;
7 for i = 1 to |Φ| do

8 prob = prob + Φi.weight
total ;

9 if r < prob then
10 return Φi.descriptor;
11 end

FIGURE 3.10: Evolutionary Algorithm Framework

Fig. 3.10 shows the structure of AnyOEA Framework. The main component
are:

• EA: Implements the evolutionary algorithm’s main flow structure which
allows a generic implementation that can be re-used for each specific
EA implementation e.g. Single Objective Algorithm, AεSεH(Aguirre,
Oyama, and K., 2013), etc.

• Problem: Implements a problem behaviour given by the decision vari-
ables, the objectives and the way to evaluate each solution.

• Representation: Implements different representations according to de-
cision variables types such as real, integers, binary or problem-oriented
solution’s codification.

• Reproduction: Implements the variation operators.
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• Selection: Implements the selection mode e.g. binary tournament, εHood,
etc.

3.4.2 MATSim Process

Matsim internally optimizes the demand by a systematic relaxation process
until to reach an equilibrium state by the modification of some specific de-
mand variables as route, departure time, activity duration or mobility means.
For more details, please refer to subsection 2.4.1.

3.4.3 AnyOEA-MATSim Integration

The integration between simulator(s) and the optimization framework is an
operative component of this research. A first step involves communication
between MATSim in Java and optimization framework in C++. A first ap-
proach using Java Native Interface (JNI) allows bidirectional communication
between C++ and Java, which grants to C++ routine to call a method on Java
platform. JNI provides a fast communication between Matsim (Java) and
AnyOEAFramework (C++). The simulator is used to evaluate each solution
from the evolutionary algorithm(AnyOEA). For that purpose, the AnyOEA
send the genotype to the simulator and Matsim converts to phenotype and
evaluates each solution to get the fitness. Matsim submits the fitness to Any-
OEA which uses each fitness to evolves and complete the iteration per each
generation.
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FIGURE 3.11: AnyOEA-MATSim Integration

Fig. 3.11 shows the diagram of the main implemented classes for the traf-
fic signal problem optimization. The implemented classes belong to three
types following the AnyOEA Framework: EA, Problem, and Representation.
The SEA implements a single objective evolutionary algorithm extended from
EA class. The SimTraffic class is extended from Problem, and it contains the
problem definition. Mobility Representation is extended from Representation,
and it implements the problem’s solution codification. Finally, The callMat-
sim class implements the interface between AnyOEAFramework with Mat-
sim.
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Chapter 4

Traffic Signals Optimization -
Single Objective Formulation

In this chapter, the optimization of traffic signals is studied. A first scenario
to test the framework since a single-objective approach is studied. A de-
scription of the scenario, algorithm and operators is given. A complete and
comprehensive study of the results is also included.

4.1 Introduction

The main objectives of signal timing at an intersection are to reduce the av-
erage delay of all vehicles and the probability of crashes(Garber Nicholas,
2009). Another important issue is the signal coordination as a method to
provide the ability to synchronize multiple intersections to enhance the op-
eration of one or more directional movements in a system. The intent of
coordinating traffic signals is to provide smooth flow of traffic along streets
and highways to reduce travel times, stops and delay(STM, 2008).

The re-design of road network infrastructure implies substantial costs that
are hardly affordable. Hence, a way to reduce traffic congestion is to make
better use of the existing road network, which can be achieved in part by a
proper set of traffic signals. Furthermore, proper setting of traffic signals also
helps reducing emissions and can induce traffic patterns to control speed in
sensible areas to increase pedestrian security.

We concentrate on the optimization of a large number of traffic lights de-
ployed on a wide area of the city and study their impact on travel time, emis-
sions and fuel consumption. A proper setting of traffic signals can help to
alleviate the traffic congestion with better use of the current infrastructure.
Moreover, it is a key component to study other important problems related
to mobility in order to improve the sustainability of the transport system.

We use evolutionary algorithms (EA) to explore a significant number of
alternative signal settings under various scenarios of mobility. Activity based
micro-simulation allows us to model the mobility demand of each person in
the scenario and facilitates a detailed analysis of the traffic in the city. How-
ever, it is computationally expensive. This imposes limits on the number of
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fitness evaluations, population size, number of generations, and on the num-
ber of times the stochastic evolutionary algorithm can be run. In addition,
the search space is vast due to the number of signals considered and the sev-
eral parameters that define a traffic signal. Hence, an important aim of this
work is to develop an evolutionary algorithm to search effectively in large
decision spaces under a small budget of iterations (generations), perform-
ing a reliable short-term evolution to find high-quality solutions. To achieve
this, we design a set of specialized mutation operators to search for clusters
of coordinated signals with similar cycle length by propagating cycle length
between neighboring signals and setting offsets based on the distance be-
tween them. Due to the topography of the city and its mobility patterns, it
is important to define neighborhoods as two-dimensional and optimize in
both directions of traffic flow (north-south-north and east-west-east). Also,
we introduce varying mutation rates with high selection pressure to acceler-
ate convergence of the algorithm. The appropriate combination of operators,
selection, and varying mutation rates allows to search effectively even with
small populations. We use machine learning (ML) for parameter analysis of
the evolutionary algorithm to compare our settings with ones suggested by
ML methods.

To gain knowledge, we use data mining methods to perform hierarchical
clustering in decision space of the best solutions found by the evolutionary
algorithm. We include the analysis of signal clusters and their geolocation,
estimation of fuel consumption, spatial analysis of emissions, and analysis of
signal coordination. This gives an overall picture of the systemic effects of
the optimization process.

We verify the effectiveness of the developed algorithm for short-term evo-
lution using a small population. We also show that the design optimization
approach is a useful tool to advance the understanding of the transport and
mobility problems of Quito city, essential for decision making.

4.2 Related Work

Several techniques have been proposed for signal timing optimization. These
range from statistical based methods in the 60’s (Webster, 1958; Miller, 1963)
to computational intelligence based methods in the last years (Zhao, Dai,
and Zhang, 2012) oriented to implement intelligent transportation systems.
In the following, we review the literature where meta-heuristics and biologi-
cally inspired algorithms have been combined with traffic simulators for op-
timization. The review is brief and tries to give a broad perspective, but it
does not mean that is comprehensive.

The level of traffic simulation has been either macroscopic (Ceylan and
Bell, 2004; Rouphail, Park, and Sacks, 2000; Teklu, 2006; Taniguchi and Shi-
mamoto, 2004), mesoscopic (Park, Messer, and Urbanik, 1999), or micro-
scopic (Sánchez, Galán, and Rubio, 2010; Sánchez, Galán, and Rubio, 2008;
Garcia-Nieto, Alba, and Olivera, 2012; Garcia-Nieto, Olivera, and Alba, 2013).
Some works model toy or virtual scenarios mostly for proofs of concept to
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verify the hypothesis about mobility and transport issues, and to test opti-
mization methods (Park, Messer, and Urbanik, 1999; Hong et al., 1999; Cey-
lan and Bell, 2004; Turky et al., 2009; Chen and Xu, 2006; Tomforde et al.,
2008; Peng et al., 2009; Kachroudi and Bhouri, 2009). Other works model real
world problems (Sánchez, Galán, and Rubio, 2010; Sánchez, Galán, and Ru-
bio, 2008; Rouphail, Park, and Sacks, 2000; Teklu, 2006) and have mainly
focused on small areas of interest with relatively few signalized intersec-
tions. For example, seven signalized intersections are optimized in (Sánchez,
Galán, and Rubio, 2010) and nine in (Rouphail, Park, and Sacks, 2000). In
these studies, usually, the phases of the signals have been modeled in de-
tail, including several phases for some of the signals. However, typically one
common cycle has been considered for all signals and some studies do not
consider offsets between them. In (Sánchez, Galán, and Rubio, 2010) different
cycle lengths are implicitly modeled, but no offsets are considered. Examples
of real-world problems with a relatively large number of signalized intersec-
tions are (Garcia-Nieto, Alba, and Olivera, 2012; Garcia-Nieto, Olivera, and
Alba, 2013), (Teklu, 2006) and (Stevanovic et al., 2011). In (Garcia-Nieto, Oliv-
era, and Alba, 2013) twenty to forty signal controls were considered in an area
of 0.42 Km2, signals were modeled to allow different cycle lengths with two
or more phases, but offsets were not explicitly considered. In (Teklu, 2006)
seventy-five signalized intersections with two or more phases and offsets be-
tween signals were considered in an area of 30 Km2. However, a common
cycle was used for all signals. In (Stevanovic et al., 2011) seventy consecu-
tive signalized intersections located on a 13-mile corridor were optimized.
The modeling of the signals is detailed, including 12 NEMA movements and
right turns, basic and Transit Signal Priority (TSP) timing parameters, with
more than two phases in some intersections. However, it uses a binary cod-
ing representation for integers applying one-point crossover and bit flipping
mutation. Unfortunatelly, with this representation the magnitude of change
depends more on the position of the bit being mutated than on the muta-
tion probability. Thus, tuning of the algorithm and robustness to parameters
settings become a serious issue. Even more so when mutation rates are con-
trolled over time, as we do it in our work.

In the above-referenced works, Genetic algorithms (GA) have been the
favored optimization technique. Another popular optimization technique
has been Particle Swarm Optimization(PSO) (Chen and Xu, 2006; Peng et al.,
2009; Kachroudi and Bhouri, 2009; Garcia-Nieto, Olivera, and Alba, 2013).
Although most works have focused on fixed settings of the signals, there are
also important works on dynamic settings, for example (Hong et al., 1999;
Srinivasan, Choy, and Cheu, 2006; Tomforde et al., 2008; Turky et al., 2009;
McKenney and White, 2013).

In our work we focus on a real-world network that covers a wide area of
40 Km2 and include in its main backbone seventy signalized intersections, a
relatively large number similar to (Teklu, 2006) and (Stevanovic et al., 2011).
We consider a different offset and a different cycle length per signal, instead
of a common cycle for all signals. The traffic simulation is agent-based at a
microscopic level, and mobility is modeled based on agents’ activities, which
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allows us to build and test real world scenarios for the city under study. Our
study also includes analyses of solutions to understand the systemic effects of
the optimization based on several indicators that measure the sustainability
of transport systems (Richardson, 2005).

4.3 Problem Formulation

We follow the design optimization approach described in section 2.2 in Fig 2.1.
In this work, the objective is to minimize travel time optimizing settings of
70 signalized intersections located in the business centre of Quito aiming to
reduce traffic congestion, fuel consumption and emissions. We concentrate
on the optimization of a large number of traffic lights deployed on a wide
area of the city and study their impact on travel time, emissions and fuel
consumption.
We simulate the mobility of a large number of agents and study the impact of
traffic light settings on travel time, fuel consumption and emissions. Besides,
we analyze optimal solutions to get patterns of signal settings and verify
these patterns according to their geolocation. Most signalized intersections in
the area of study are two-phased and implement a fixed-time control. Only a
few main intersections use left turn signals because most intersections where
left turns are allowed have been gradually redesign to include diverging and
merging ramps. Also, there are exclusive lanes for some bus lines, but there
are no signals with special phases to establish bus transit priority. Recently
there are efforts to study the incorporation of some adaptive signals. Since
several sectors of the city are highly congested at certain hours, it is antic-
ipated that adaptive signals would be only partially effective. Thus, its is
important to have fixed-time optimal schemes that can be used as default
timing plans to improve traffic conditions in the city. In Quito city, mobility
represents a constant challenge due to the transportation infrastructure is not
adequate to the demand.

The principal components of a traffic signal are cycle length, phase, offset,
green and inter-green time. Cycle length is the time in seconds required for
one complete color sequence of the signal. A phase is the set of movements
that can take place simultaneously. An Offset is the time lapse in seconds be-
tween the beginning of a corresponding green phase at an intersection and
the beginning of a corresponding green phase at the next intersection. In this
work we extend the representation used in (Teklu, 2006) to include a cycle
per signal. Also, we use integer instead of binary representation. The vari-
ables per signal to optimize are cycle length, offset, and green times. We
choose these three variables because we aim to find appropriate green times
for groups of signals, where signals in the same group share a similar cycle
length and are coordinated with the offset but different groups use differ-
ent cycle lengths. Thus, a solution x with the specification of all n signals
considered in the system is represented by

x = (S1, · · · , Sh, · · · , Sn), (4.1)
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FIGURE 4.1: Traffic light components

where the h-th traffic signal is defined by the following tuple of integer vari-
ables

Sh =
(
Ch, θh, φh,1, · · · , φh,rh

)
. (4.2)

Here, Ch is cycle length, θh is the offset, and φh,1, · · · , φh,rh are the green
times for the rh phases of the signal. Fig 4.1 illustrates the main components
of a signal.

The ranges and constraints of these variables are given in Eq. (4.3) – Eq.
(4.9), where Ih,j is the inter-green time at signal h for phase j and rh is the total
number of phases of signal h. Equations Eq. (4.3) – Eq. (4.5) represent the
range for cycle length Ch, offset θh and green time φh,j, respectively. Cmin is
determined by identifying the signal that needs the longest duration just to
accommodate the inter-green times and the minimum green times as shown
in Eq. (4.6). Cmax is set to 135 seconds and inter-green per phase to 3 seconds.
These values imply that the minimum cycle time Cmin is 40 seconds in two
phase signals.

The minimum green time should allow drivers to react to the start of
the green interval and meet driver expectancy. We follow the Traffic Sig-
nal Timing Manual (TSTM)(Federal Highway Administration, 2010) guide-
lines taking into consideration the driver expectancy(Ellis, 1972) and pedes-
trian crossing time. TSTM suggests a minimum green time to satisfy driver
expectancy between 7 to 15 seconds for major arterials with speed limit of
64 Km/h or less. In our scenario the free speed in most major arterials is
around that value. As we mentioned in 4.3 section, the business district has
several facilities and services with a high pedestrian volume in some areas.
Thus, considering both, the driver expectancy and walk interval duration for
pedestrian crossing, we decided to set the minimum green time to 17 seconds
for all signalized intersections as shown in Eq. (4.7).

Regarding the maximum green time, TSTM suggests between 40 to 60
seconds for the kind of arterials considered in our scenario. In our work, we
search simultaneously cycle length, green times and offsets. As mentioned
above the range allowed for cycle length is between 40 and 135 seconds. The
maximum cycle length (135) allows us to set maximum green times (as sug-
gest by TSTM) to both phases.
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Eq. (4.8) ensures that the sum of the green times in a signal together with
inter-green do not exceed the cycle length set for the signal. Eq. (4.9) estab-
lishes the maximum green time for the signal phase based on the cycle time,
inter-green and minimum green time.

Cmin ≤ Ch ≤ Cmax (4.3)

0 ≤ θh ≤ Ch− 1 (4.4)

φh,jmin
≤ φh,j ≤ φh,jmax

(4.5)

Cmin = max
h=1,2...,n

{(
rh

∑
j=1

φh,jmin
+

rh

∑
j=1

Ih,j

)}
(4.6)

φh,jmin
= 17 sec ∀h, j (4.7)

Ch =
rh

∑
j=1

φh,j +
rh

∑
j=1

Ih,j ∀h (4.8)

φh,jmax
= Ch−

rh

∑
j=1

Ih,j−
rh

∑
k=1,k �=j

φh,kmin (4.9)

4.4 Simulation and EA Integration

Fig 4.2 shows the integration between the simulator and the evolutionary al-
gorithm (EA). The EA searches optimal settings for the traffic lights. To eval-
uate a solution, MATSim simulates the mobility of all agents starting from the
equilibrium state computed previously and setting its signals controls with
the tentative solution provided by the optimizer. MATSim simulates traf-
fic lights microscopically using fixed-time controls (Grether and Neumann,
2011). The output collected from that iteration of the simulator is used to
calculate travel time and passed back to the optimizer as the fitness of the
solution.

4.5 Evolutionary Algorithm

The optimizer is an evolutionary algorithm described in section 2.5.4 that
combines elitism with varying mutations. In the following, we detail the
representation, operators, the varying mutation schedule, and fitness func-
tion.

4.5.1 Traffic Signals Representation

Fig 4.3 ilustrates the representation of a solution to a system with n signals,
each one with rh phases.
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FIGURE 4.2: Simulation and EA integration

FIGURE 4.3: Solution representation

4.5.2 Operators of Variation

In this work, we use either one or two point crossover to interchanges sig-
nals between parents. The crossing points are selected randomly with equal
probability in the range [1,n - 1], where n is the number of signals.

The algorithm selects between two operators to mutate signals. One is the
Green time mutator (GtM) and the other one is Neighborhood cycle propagation
with distance-based offset mutator (NCtOPM).
The GtM operator decreases the green time of one phase and adds it to an-
other phase using step size stepGt. The phase i to decrease its green time
is randomly chosen among those where the decrement does not violate the
constraint for minimum green time φh,imin . Similarly, the phase j �= i to in-
crease its green time is also randomly chosen.

The NCtOPM operator aims to improve traffic flow along the two main
axis of circulation, South-North-South (SNS) and West-East-West (WEW), fa-
voring traffic signal coordination by simultaneously modifying the parame-
ters of a signal Sh and its neighbors Nh. The operator stochastically selects
the axis of circulation, either NSN or WEW. Then, it chooses one direction
of the axis, for example, NS for axis NSN, and propagates the cycle length
(Ch) of the reference signal (Sh) to its neighbors in that direction. In addi-
tion, it sets the offsets of the neighboring signals based on the time required
to cover the distance d from Sh to the neighbor traveling at free speed. The
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operator does the same with the other direction of the axis, i.e. SN. The prop-
agation of cycle and offset to the neighborhood is illustrated in Fig 4.4. Since
the cycle length of the signals may change, green times are also adjusted so
that the ratios of green time per phase to cycle are the same before and after
propagation.

FIGURE 4.4: Cycle and offset propagation

4.5.3 Varying mutation schedule

Varying mutation operators combined with high selection pressure have been
proved effective to accelerate the convergence of evolutionary algorithms
(Back and Schutz, 1996; Aguirre and Tanaka, 2004). The proposed algorithm
introduces elitism inducing a high selection pressure. Also, it includes a time-
dependent schedule that deterministically varies mutation rate P(t)

m in the
range [P(0)

m , P(T)
m ]. P(t)

m varies in a hyperbolic shape (Back and Schutz, 1996)
and is expressed by

Pm
(t) =

⎛
⎝ 1

Pm
(0)

+

1

Pm
(T) − 1

Pm
(0)

T − 1
t

⎞
⎠
−1

(4.10)

where T is the maximum number of generations, t ∈ {0, 1, ..., T − 1} is
the current generation, Pm

(0) and Pm
(T) are the desired mutation probabili-

ties per signal at time 0 and T , respectively.

4.5.4 Fitness Function

The fitness of a solution is the average travel time of all agents computed
from MATSim’s simulation, setting traffic lights with the values encoded in
the solution. MATSim outputs, for all agents, the time it takes to travel each
link of an agent’s route. The fitness function is expressed by

min
∑V

i=1 ∑L
l=1 til

V
, (4.11)

where til is the travel time on link l for vehicle i, V is the number of vehicles
being simulated, and L is the number of links in the network.
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TABLE 4.1: Probability of mutation operators PCtO and PGt and
mutation probability Pm and P(t)

m per signal.

Exp Op.Prob Mutation Probability Observations
PCtO, PGt per Signal

E3 0.7,0.3 Pm = 4/70 Constant
E4 0.3,0.7 Pm = 4/70 Constant

E4DVM 0.3,0.7 P(t)
m = [P(0)

m = 20/70, P(T)
m = 4/70] Varying

4.6 Experimental Setup

4.6.1 Evolutionary Algorithm

We run the algorithm ten times per experiment, use each time a different
random seed but always start from the same initial population.We config-
ure three experiments named E3, E4, and E4DVM to test different strategies
with mutation operators. The experiments are described with more detail in
section 4.7.1.

The number of generations is set to 50, population size is 20, and the
number of elite individuals is nElite=10. Unless stated otherwise, crossover
rate is set to Pc = 1.0 and the range for varying mutation per signal P(t)

m is
[20/n, 4/n], where n = 70 is the number of signals. To compare with varying
mutation probability per signal, we also apply the mutation operators with
constant probability Pm = 4/n per signal. Probabilities PCtO and PGt of the
mutation operators GtM and NCtOPM are detailed in Table 4.1 together
with the mutation probabilities per signal for the three experiments.

Step size for the green time mutation operator GtM is stepGt = 3. In the
case of the neighborhood mutation operator NCtOPM, we define in advance
two neighborhoods for each signal Sh, one for the axis of circulation SNS and
another one for the axis WEW. The neighborhoods are based on the actual
geographical location of the signals. Also, we pre-calculate the distance and
the average free speed to its neighbors along each axis. In this work, the
radius of the neighborhood is set to one, i.e. the neighborhood includes the
next and previous signal to the reference signal. The neighborhood operator
selects for mutation the axis NSN and WEW with probabilities 0.85 and 0.15,
respectively, in agreement with the most common traffic flow and mobility
patterns in the city.

4.6.2 Initial Mobility Plans

In this work, we design three different mobility scenarios as illustrated in
Fig 4.5. In the first one (S124h), the trips start from 06:00h and there are
several small peaks during the whole day where 500 vehicles or less are in
route. In the second one (S2M), the agents move during morning hours (
06:00h-09:00h) from home to their activity destinations, with a high peak be-
tween 07h30 and 08h30 where more than 4000 vehicles are in route. In the
last one (S2A), the same agents of S2M move back home. In S2A the trips
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FIGURE 4.5: Mobility Scenarios S124h, S2M and S2A

are spread over a longer period from 15h00 to 20h00 with a peak around
19h00, where approximately 1500 vehicles are in route. These mobility plans
of S2M and S2A are conceived to study the system under saturated scenar-
ios during morning and afternoon peak hours. The three scenarios simu-
late the mobility of 20.000 agents. Thus, the less saturated scenario is S124h,
and the most saturated one is S2M. This number of agents represents ap-
proximately the 30% of the estimated number of vehicles according to the
inhabitants in the zone of study(DMQ, 2012). We assign a type of vehicle to
each agent as explained in section 4.7.5. MATSim requires around 8 hours
to reach the equilibrium state of 20.000 agents and around 2.5 minutes per
individual to compute its fitness. The average number of vehicles is around
3,660 vehicles/hour in the morning rush hours from 7:00 to 9:00 am and 3,655
vehicles/hour in the afternoon hours from 15:00 to 20:00 according to traffic
count data taken in 8 intersections located in the area of study. As indicated
above, our scenario S2M simulates a saturated situation that approaches the
counters observed in the morning rush hour. The other two scenarios model
less saturated situations to test signal settings under different conditions.

4.7 Simulation Results and Discussion

4.7.1 Effects of Operators

In this section, we study the effects of the operators of variation. First, we fix
one point crossover and look at mutation operators applied with constant or
varying mutation probability.
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TABLE 4.2: Mean travel time, standar deviation and interquar-
tile range of best solutions in experiment E3,E4 and E4DVM.

Exp.
Travel Time

avg std iqr

E3 776.44 30.64 34.04
E4 749.34 20.36 26.53
E4DVM 746.50 17.43 21.20

Fig 4.6 shows the mean travel time over the generations for mobility sce-
nario S124h. In addition, variance of the best solutions at the last generation
is shown in detail in Fig 4.7 and Table 4.2 includes numerical values of stan-
dard deviation and inter-quartile range.

Experiments E3 and E4 apply the NCtOPM and GtM operators with
constant mutation probability Pm = 4/n per signal. E3 applies more often
NCtOPM to propagate cycle and offset than GtM to mutate green time.
Conversely, E4 applies more often GtM than NCtOPM, as shown by the op-
erator probabilities PCtO and PGt in Table 4.1. Note from Fig 4.6 and Fig 4.7
that mutating more often green times (E4, PGt=0.7) eliminates outliers and
the algorithm converges to travel times lower than propagating more often
cycle and offset (E3, PCtO=0.7). Also, from Fig 4.6 note that E3 converges
slower than E4. This suggests that configurations with a relatively larger rate
for the GtM operator to explore green times combined with lower rates for
the NCtOPM operator to propagate cycle length and offsets lead to faster
and better convergence.

To study whether larger mutation rates per signal could be useful, in ex-
periment E4DVM we keep the configuration for mutation operators of E4
but instead of using constant mutation rate Pm = 4/n we vary mutation rate
in the range P(t)

m = [20/n, 4/n]. From Fig 4.6 it is remarkable the fast con-
vergence of the algorithm that applies varying mutations. Note also from
Table 4.2 that travel time, standard deviation and interquartile range reduce
further compared to E4. We also performed Mann-Whitney-Wilcoxon non-
parametric tests, verifying significant statistical differences between E3 and
E4 and E3 and E4DVM. Between E4 and E4DVM there is no significant dif-
ference in generation 50. This is because both algorithm configurations con-
verge to the same good quality results given an enough number of genera-
tions. However, Mann-Whitney-Wilcoxon tests verify that there is a signif-
icant difference between generation 25 and 50 for E4 but not for E4DVM,
showing that E4DVM converges faster. Fig 4.8 shows the expected number
of mutated signals per solution by GtM and NCtOPM when constant and
varying mutation are applied.

To verify the search ability and convergence of the algorithm under satu-
rated situations, we run E4 and E4DVM configurations on denser scenarios
with larger traffic volume in shorter periods of time compared to S124h.

Fig 4.9 shows mean travel time over the generations on scenarios S2M
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(top) and S2A (down), respectively. From these figures it can be seen that
E4DVM convergence faster towards lower travel times than E4. Additionally,
it should be noted that the difference in travel time between E4DVM and E4
increases as the scenario becomes denser.

In addition to the design of appropriate mutation operators and their
schedule, we also study the effects of crossover. In the above experiments
we use one-point crossover with rate Pc = 1. We also conduct experiments
setting crossover rate to Pc = 0 in order to switch off the crossover and re-
place one-point with two-point crossover keeping the same rate Pc = 1.

Fig 4.10 shows mean travel time over generations on the densest scenario
S2M by E4DVM with and without crossover. Here, it should be noted that the
algorithm using either one- or two-point crossover converges to lower travel
time than the algorithm that switch off the crossover. It is known that one-
point crossover could be more disruptive than the two-point crossover, par-
ticularly when the landscape of the problem is rugged (Spears, 2000; Aguirre
and Tanaka, 2003). However, note that in this scenario there is no significant
difference between one-point and two-point crossover. In the future, it could
be worth studying crossover operators specially tuned for this problem.

The no-crossover configuration is particularly interesting and deserves
further discussion. Remember that the same value of cycle length is assigned
to all signals of a solution in the initial population. Also, that different val-
ues of cycle length are assigned to different solutions. Thus, no-crossover
means that signals with different cycle length never get mixed to form a new
solution. In addition, the propagation of cycle length between neighboring
signals in the same solution by the NCtOPM operator has no effect, pre-
cisely because all signals have the same cycle length. In other words, the no-
crossover configuration searches only green times by the GtM operator and
propagates offsets based on the distance between signals by the NCtOPM
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FIGURE 4.10: Effect of crossover operator on mean travel time

operator. This is equivalent to searching an optimal cycle length for all sig-
nals instead of one per signal. As can be seen from the figure, better solutions
in terms of travel time can be found when we search an optimal cycle length
per signal. Other works mostly focus on one common cycle for all signals
(Park, Messer, and Urbanik, 1999; Ceylan and Bell, 2004; Teklu, 2006).

The algorithm discussed here is the result of investigating several strate-
gies and configurations of the operators. A first basic approach applies step
mutation operators for the cycle and offset, in addition to the step mutation
operator for green time discussed here, with an operator probability for each
one of them (Armas, Aguirre, and Tanaka, 2014; Armas et al., 2015). A sec-
ond approach propagates the cycle length and keeps step mutation opera-
tors for green time and offset. The introduction of the neighborhood reduces
variance and improves convergence speed of the algorithm over the basic
approach, however, the search in offsets is not effective with a small number
of generations. A third approach, included in this paper, propagates both cy-
cle length and offset in one operator NCtOPM and keeps step mutation for
green time. The inclusion of offset propagation allows an effective search and
improves results further. Besides, we also conduct experiments applying step
cycle mutation previous to propagate the cycles and offsets in NCtOPM.
However, travel time over the generations and final results are almost the
same as those obtained when cycle length is propagated without the muta-
tion. These results suggest that the diversity of cycle lengths present in the
initial population is appropriate and additional variation of cycles seem not
to be required in the scenarios we study here. A detailed discussion and com-
parison of these approaches using constant mutation probability per signal
can be found in (Armas et al., 2016b). As discussed above, another important
component of the algorithm is varying mutation. Initial results comparing
constant mutation per signal with the varying mutation have been reported
in (Armas et al., 2016a).
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TABLE 4.3: SMAC solutions: EA parameters

Pc P(0)
m P(T)

m PCtO tt avg.
Conf1 0.60 0.93 0.63 0.19 564.10
Conf2 0.50 0.28 0.61 0.29 554.52
E4DVM 1.00 0.29 0.06 0.3 555.90

TABLE 4.4: Expected Number of Mutated Signals by SMAC
configuration and E4DVM

NCtOPM GtM
t=0 t=T t=0 t=T

Conf1 12.4 8.4 52.7 35.7
Conf2 5.7 12.4 13.9 30.3
E4DVM 6.1 1.3 14.2 2.9

4.7.2 Algorithm’s Parameters Analysis

In the previous section, we have shown that varying mutation from high to
low rates per signal combined with a strong elitist selection leads to faster
and better convergence. Here we use Sequential Model-based Algorithm
Configuration (SMAC) (Hutter, Hoos, and Leyton-Brown, 2011) to derive
other combinations of parameters settings related to the operators of vari-
ation in E4DVM that can lead to good performance. Namely, we analyze
optimal combinations of crossover rate Pc, the initial P(0)

m and final mutation
probability P(T)

m per signal of the deterministic varying mutation schedule,
and the probability of cycle and offset propagation operator PCtO. 1− PCtO
determines the probability of the green time mutation operator. Mostly, de-
terministic varying mutation schedules are used to reduce mutation rates,
i.e. Pm

(0) > Pm
(T). In our case, we also use it to investigate the effect of

increasing mutation rate by allowing Pm
(0) < Pm

(T).
Table 4.3 shows the parameter settings Conf1 and Conf2 found by two

runs of SMAC using travel time as the observed performance. The settings
used by E4DVM are also included for comparison. The settings found by
SMAC are different to those used in E4DVM, however, convergence behav-
ior of the algorithm with these configurations and E4DVM are very similar
(Armas et al., 2016a). To better interpret the values of these parameters, Table
4.4 shows the expected number of mutated signals per solution at time t=0
and t=T by the two mutation operators in the configurations suggested by
SMAC and E4DVM.

From Tables, 4.3 and 4.4 note that the three strategies Conf1, Conf2 and
E4DVM mutate green time more often than cycle time, as can be seen by the
higher expected numbers of green time mutations compared to the expected
numbers of cycle time mutations. Conf2 is a strategy opposite to Conf1 and
E4DVM, in the sense that Conf2 increases the expected number of mutations
with time whereas Conf1 and E4DVM decrease them. Note that although
Conf1 reduces mutations with time similar to E4DVM, the expected number
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of mutations is significantly larger in the former. See that in Conf1 at t=0,
and t=T the number of expected cycle mutations are two and seven times
more than E4DVM, respectively. Similarly, the expected number of green
time mutations at t=0 and t=T are three and twelve times more in Conf1 than
in E4DVM.

Though Conf1 and Conf2 mutate more than E4DVM, these strategies ap-
ply crossover with rate 0.6 and 0.5, respectively. This means that in the con-
figurations found by SMAC, 40 and 50 percent of the offspring are created ap-
plying mutation alone (no crossover), whereas in E4DVM the crossover rate
is 1.0 and therefore crossover always precedes mutation. It has been shown
that the likelihood of interferences between operators increases when mu-
tation with a high rate per variable follows crossover (Aguirre and Tanaka,
2004). This is because a good recombination could be compromised by dele-
terious mutations or an inefficient recombination could hurt the propaga-
tion of beneficial mutations. Thus, smaller rates of crossover combined with
higher varying mutations as suggested by SMAC is in accordance with pa-
rameter settings that reduce interference between operators. As mentioned
above, these three strategies produce similar convergence behavior and lead
to a similar low travel time. A more detailed discussion about parameters
settings can be found in (Armas et al., 2016a).

4.7.3 Vehicle Movement Distribution

In section 4.6.2, Fig. 4.5 shows the overall vehicle movement distribution
over time classifying by departures, arrivals and cars en route. In this sec-
tion, we focus on the peak hour from 07:30 AM to 08:30 AM to illustrate the
vehicle movement distribution in the whole network, in a corridor where
15 signals are located, and with more detail in 3 consecutive signals. The
data corresponds to an optimized solution of experiment E4DVM with cycle
length of 60 seconds (c60E4DVM).

Fig. 4.11 shows the number of cars per link in the whole network. Links
are colored according to the number of cars as shown in the pallete. The
numbers close to the black dots identify signalized intersection. Note that
in general a larger flow can be observed in the central region than in the
perimeter. Also, note that at this hour the largest flow can be seen in the
corridor where signals S1 to S6 are located. Fig. 4.12 focuses on the links
that belong to the corridor where signals S1 to S15 are located. Here, rows
correspond to 15 minutes interval, columns specify links, and colors indicate
the number of cars as shown in the pallete.

Similarly, Fig. 4.13 shows the number of cars (nPCU) that crossed a sig-
nalized intersection over the time at which green time starts. Results are
shown for consecutive signalized intersections S3, S4 and S5 with south-
north flow. These intersections are located in a zone close to saturation as
shown in Fig.4.11. The storage capacity and max flow capacity per green
time of the link where the signal is located are shown as reference in hori-
zontal dotted and dashed lines, respectively. Note that the number of cars
counted when they leave the signalized intersections increases from 7:30 to
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FIGURE 4.11: DMQ scenario flow from 07:30AM to 08:30AM

Space

T
im

e

07:30−07:45

07:45−08:00

08:00−08:15

08:15−08:30

S3 S5 S7 S9 S11 S13

0
50
100
150
200
250
300
350
400

FIGURE 4.12: Signals Corridor S1-S15

7:45 and approaches the max flow capacity per green time around 7:50 to
8:00, which is in accordance with Fig.4.11.

4.7.4 Analysis of Solutions:Decision Space and Cluster Anal-

ysis

In this section, we analyze optimal signal settings found by the algorithm.

Fig 4.14 shows the cycle length of the best solutions at the last generation
for all runs. Results are shown for experiment E4DVM on the most saturated
scenario, S2M. A row corresponds to the settings of all signals in a particular
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FIGURE 4.14: Cycle length of the best solutions for experiment
E4DVM scenario S2M. Annotated heatmap: solutions by row
(associated travel time in the row label), variables by column

(one per signal), values by color (see color legend).

solution and column identifies a signal. The value of cycle length is shown
with color as indicated by the color legend. The labels for each row report
the travel time of the corresponding solution.
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FIGURE 4.15: Offset times of the best solutions for experiment
E4DVM scenario S2M
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FIGURE 4.16: Hierarchical clustering of cycle length of the best
solutions for experiment E4DVM scenario S2M

From this figure, note that groups of signals with the same cycle can be
seen in the best solutions found by the algorithm in all runs. This is because
the NCtOPM operator propagates the cycle length value of the reference
signal to its neighborhood. However, not all signals have the same cycle. This
is an important difference with several approaches that assume one common
cycle for all signals (Teklu, 2006) based on simple rules for traffic engineering
applicable when the number of signals are few and are closely located (Roess,
Prassas, and McShane, 2011). Fig 4.15 shows the values of offsets of the best
solutions at the last generation for all runs, similar to Fig 4.14. Note that
there is variability of offset values in each solution due to the operator that
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FIGURE 4.17: Geolocation of signal clusters, experiment
E4DVM scenario S2M

adjusts the offset based on the distance between neighbor and the reference
signal.

An objective of the neighborhood mutation operator NCtOPM was to
induce coordination between signals. Fig 4.14 and Fig 4.15 suggest that
there are some patterns in the settings of cycle length and offsets.

To distinguish these patterns and extract some design knowledge from
them, we cluster signals based on their similarity. Namely, we apply Ward’s
agglomerative procedure (Ward, 1963; Murtagh and Legendre, 2014) to cre-
ate a hierarchy of clusters, using the Euclidean distance between cycle length
(or offset) as a measure of similarity. Fig 4.16 shows the hierarchical cluster-
ing of cycle lengths represented as an inverse tree diagram, where the dissim-
ilarity between clusters is proportional to the height at which the branches
split. That is, the higher the similarity between signals the lower the split.
Below the inverse tree diagram, we show the solutions with the columns re-
ordered according to the clustering.

Bootstrapping is used to test the stability of the assignment of variables to
clusters. This also gives us a statistically based criterion to determine where
to cut the inverted tree and which clusters to keep (Suzuki and Shimodaira,
2015). Clusters that are strongly supported by the data are shown in red
in the tree diagram. Signals belonging to the selected clusters are coded by
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FIGURE 4.18: Geolocation of signal clusters, experiment
E4DVM scenario S124h

color and overlaid on the urban map, as shown in Fig 4.17. We can see
that most clusters of the signals are aligned with the axis SNS of the prin-
cipal roads of the transport network. Also, large chunks of the clusters are
spatially contiguous. Thus, the cluster geolocalization identifies micro-zones
with similar characteristics in the city, which can be further analyzed in order
to incorporate additional mobility criteria such as safety, emissions and fuel
consumption, multi-modality, etc. Similarly, Fig 4.18 shows the geolocaliza-
tion of the selected clusters of signals obtained from the best solution of the
less saturated experiments E4DVM on S124h. Note that for scenarios under
saturated conditions (Fig 4.17) the number of clusters is higher.

4.7.5 Emissions and Fuel Consumption

In this section, we analyze the effects of optimizing traffic light settings on
fuel consumption and gas emissions. We use MATSim emission extension
(Hülsmann et al., 2011) that computes the gas emissions per link per agent,
at the time an agent enters a link of the transport network. It calculates warm
and cold-start exhaust emissions for cars by connecting MATSim simula-
tion output to the detailed database Handbook on Emission Factors for Road
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Transport (HBEFA) (Keller and Wuthrich, 2014). We have selected seven cate-
gories of vehicles based on model year, fuel type and weight. Table 6.1 shows
the distribution of vehicle categories chosen for the scenarios, which is in ac-
cordance with census transportation data (INEC, 2010b) for Quito city. We
assign a category of vehicle to each agent randomly following this distribu-
tion.

MATSim computes warm emissions deriving the kinematic characteris-
tics from the simulation and combines this information with vehicle charac-
teristics to extract emission factors from the database of the Handbook on
Emission Factors for Road Transport (HBEFA). To derive the kinematic char-
acteristics, the emission model considers ‘free flow’ and ‘stop&go’ as traffic
states per road segment. To calculate cold-start emissions, MATSim derives
parking duration and accumulated traveled distance from the simulation.
For parking duration, HBEFA database differentiates emission factors in one
hour time steps from 1h to 12h. After 12 hours the vehicle is fully cooled
down. There are also different cold emission factors for short trips (less than
1Km) and longer trips (greater than 1Km)(Kickhofer, 2014).

TABLE 4.5: Car distribution (fuel=gasoline and weight �
2Tons)

Year-Category % Year-Category %
2000-2002|Euro2 24.40 2008-2010|Euro5 13.70
2002-2004|Euro3 7.80 2010-2012|Euro6 23.80
2004-2006|Euro4 12.20 2012-2014|Euro6 5.20
2006-2008|Euro4 13.00

Table 4.6 shows travel time (TT) and fuel consumption (FC) together with
HC, CO, NOx, and CO2 emissions produced by all agents on S124h. First,
we show as reference results corresponding to the equilibrium state with-
out traffic signals and the solution with smallest travel time at generation 0
when traffic signals are included. Note that at generation 0 all signals are
set with the same cycle length, as explained before. Next, we show results
for solutions with traffic signals that minimize travel time at generation 50 in
experiments E4 and E4DVM. Comparing with generation 0, results at genera-
tion 50 illustrate that in addition to minimizing travel time, fuel consumption
and the various kinds of emissions can also be reduced significantly if traffic
lights are optimized. Further, the experiments E4 and E4DVM represents an
incrementally better optimization process for TT, as discussed above. Note
that FC and emissions also reduce incrementally in these experiments. Thus,
a better optimization process for TT, given by the neighborhood operators
and deterministic varying mutation, is also highly correlated to a better opti-
mization for FC and emissions.

Similarly, Table 4.7 shows results for experiments E4 and E4DVM with
one point (XP1) and two point crossover (XP2) on the most saturated scenario
S2M. Note from this table that significant reductions in FC and emissions can
also be obtained in this kind of saturated scenarios.
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TABLE 4.6: Emissions of best solutions on scenario S124h

g=0 g=50
Eq.St. Ch=130 E4 E4DVM

TT 591.28 1302.06 694.17 700.19
FC 14275.90 15201.26 14961.03 14864.17

CO2 26960.42 29150.52 28434.11 28348.46
PM 0.28 0.29 0.29 0.29

NOx 32.41 33.38 33.06 33.01
NO2 1.08 1.14 1.12 1.12
SO2 0.13 0.14 0.14 0.14
CO 772.98 774.13 773.96 773.91

FC in Liters - Emission in Kg. - TT in s.

TABLE 4.7: Emissions of best solutions on scenario S2M.

g=0 g=50
Eq.St. Ch=85 E4 E4DVM(XP1) E4DVM(XP2)

TT 386.63 650.62 530.96 517.98 524.11
FC 6356.91 6883.16 6771.98 6746.11 6746.52

CO2 14903.61 16553.44 16204.88 16123.79 16125.08
PM 0.15 0.16 0.16 0.16 0.16

NOx 15.75 16.55 16.40 16.36 16.36
NO2 0.55 0.59 0.58 0.58 0.58
SO2 0.07 0.08 0.08 0.08 0.08
CO 482.93 484.14 484.09 484.01 483.99

FC in Liters - Emission in Kg. - TT in s.

4.7.6 Spatial Analysis for CO2 Emissions

In the following, we analyze carbon dioxide emissions (CO2) on a spatially
disaggregated level for scenario S2M. MATSim output emissions are aggre-
gated per link for all agents. For geolocation on the urban area of the sce-
nario, CO2 emissions are spatially smoothed using the inverse distance weighted
interpolation method (Shepard, 1968). For that, we used as sampling points
the centroid of each link and its corresponding accumulated measure of emis-
sions.

Our spacial analysis of the emissions is not an indication of how the emis-
sions are being dispersed in the atmosphere, instead, we illustrate the origin
and intensity of the emissions to compare an optimized traffic signal plan
against a not optimized one.

Fig 4.19 shows the difference in CO2 emissions between the best solution
in the initial population, where all signals have the same cycle Ch = 85, and
the best solution at the last generation of experiment E4DVM. We use the
single-value cycle length (Ch = 85) as reference for comparison to show the
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improvement that can be achieved from same-cycle solutions at the initial
population and to highlight the relevance of having different cycle lengths
for different clusters of signals at the end of evolution.

We use a red-blue palette to show emission differences, where levels of
red represent increments and levels of blue represent reductions of emis-
sions. White is used to show no difference in emissions between the two
cases. Note the dark blue regions, which show that emissions mostly reduce
across the area of study when signals settings are optimized. However, note
that in some regions there is a relative increase in emissions. This figure gives
an overall view of the effects of optimization in CO2 emissions. It provides
useful information for city planners and can be used to feedback the evolu-
tionary algorithm to favor low emissions in certain regions of interest.

FIGURE 4.19: Change in CO2 emissions

4.7.7 Coordination Analysis

An important aspect of signal coordination is improving the traffic flows and
reduce congestion. A continuous traffic flow during several intersections in
one main direction is usually referred as a green wave. In this section, we an-
alyze the optimized signal settings to determine if their coordination induce
green waves or not.
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FIGURE 4.20: Variables to detect green phase crossing

Let us denote li−1 and li two links with consecutive signals Si−1 and Si
located at the end of each one of them, as illustrated in Fig 4.20. The time
at which an agent exits link li and crosses signal Si is tx

i . The starting and
ending time of the green time phase when the agent crosses signal Si are tsG
and teG, respectively.

The earlier expected arrival time to signal Si after crossing signal Si−1

is tx
i−1 + t f s

i , where t f s
i is the time that takes to cover the distance of link

li traveling at free speed, i.e. the maximum speed at which an agent can
circulate at a given link.

In this work, an agent is said to cross two consecutive signalized intersec-
tions in an uninterrupted flow if the earlier expected arrival time to signal
Si and the actual exit time from link li (cross signal Si) are within the green
phase window of signal Si, i.e.

tsG ≤ tx
i−1 + t f s

i ≤ teG ∧ tsG ≤ tx
i ≤ teG (4.12)

Fig 4.21 represent the phenotype expression of some consecutive signals
of the best individual of experiment E4DVM on the saturated scenario S2M.
Fig 4.21(a) shows in different rows the offset and three cycles (green, inter-
green, red) of consecutive geolocated signalized intersections s39–s42 and
s58 that belong to cluster 6 as shown in Fig 4.17. Similarly, Fig 4.21(b) shows
consecutive geolocated signalized intersections s66–s70 that belong to clus-
ter 9. A visual inspection of these signals settings suggests that green waves
could emerge from them. To verify this, we count the number of agents that
cross these signals.

Table 4.8 and 4.9 show the percentage of agents that cross two or more
consecutive green signals. In addition, it shows in detail the number of
agents that cross 2, 3, 4 and 5 consecutive signals. Results are shown for
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FIGURE 4.21: Best individual (lowest travel time) cluster No.6
(a) and cluster No. 9 (b) for South-North direction, experiment

E4DVM, scenario S2M

gw Ch85 E4 E4DVM
% 0.49 0.42 0.47
2 137 123 73
3 20 – 43
4 – – 14

TABLE 4.8:
Green waves
cluster 6 total

agents=253

gw Ch85 E4 E4DVM
% 0.39 0.45 0.68
2 554 377 556
3 60 230 245
4 – 18 127
5 – 1 61

TABLE 4.9:
Green waves
cluster 9 total

agents=1400

the best solution in the initial population, where cycle length of all signals is
Ch = 85, and the best solutions of experiments E4 and E4DVM. Note that in
cluster 6 there is not much difference in percentage between the initial solu-
tion and the optimized ones, although for E4DVM some agents can cross up
to 4 consecutive signals. On the other hand in cluster 9 there is a significant
increase in percentage in the optimized solutions and some agents can cross
up to 4 or 5 consecutive signals. Looking at Fig 4.19 note that in the region
where cluster 6 is located there is no reduction in CO2 emissions. However
in the area where cluster 9 is located there is a significant reduction in emis-
sions.

4.8 Conclusions and Future Work

This work presented a design optimization framework for the transportation
system of Quito. An evolutionary algorithm to search efficiently using small
populations in few generations was proposed. The algorithm was coupled to
the multi-agent transport simulator MATSim to study the optimization of a
large number of traffic signal controls located on a wide area of the city. Three
mobility scenarios of 20,000 agents modeled based on activities were used
to verify the effectiveness of the evolutionary algorithm. It was shown that
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green times should be mutated with higher probability than cycle and offsets,
the propagation of cycle length to neighboring signals with offsets set based
on distance leads to better coordination of signals, and the use of varying
mutation increases convergence speed. The combination of these strategies
efficiently and effectively explore the large search space of traffic signal pa-
rameters. The effect of crossover was also verified, showing that better con-
vergence can be achieved when the crossover is activated, although no sig-
nificant difference between one and two point crossover was observed. The
proposed algorithm combines a strong selection pressure given by elitism
with crossover followed by varying mutation, where an appropriate balance
between exploration and exploitation can be achieve in several ways. An
analysis of the parameters of the algorithm using sequential model based al-
gorithm configuration (SMAC) confirmed our finding that mutation of green
times should be emphasized over cycle length and offset propagation. It also
showed that other configurations with varying mutations relatively higher
than the suggested in our configuration but using smaller rates of crossover
lead to similarly good results.

Also, hierarchical clustering was performed on the best solutions found in
several runs of the algorithm. An analysis of signal clusters and their geolo-
cation, estimation of fuel consumption, spatial analysis of emissions, and an
analysis of signal coordination provided an overall picture of the systemic ef-
fects of the optimization process. It also showed that the proposed approach
is helpful to deepen our understanding of the problem and gain knowledge
about the system.

There is ongoing work on multi-objective formulations of the traffic sig-
nals problem, where criteria for sustainable transport systems are considered
as objectives to be optimized.

In the future, we would like to include the multi-modality of the transport
network and study ways to improve the sustainability of Quito’s transport
and mobility system. Additionally, we would like to include signals with
more than two phases. Also, it will be important to combine adaptive signals
with default pre-fixed timing plans that are optimal under certain conditions
or scenarios.
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Chapter 5

Traffic Signals Optimization - Bi
Objective Formulation

In this chapter, a bi-objective approach of the traffic signal optimization prob-
lem is considered. Here an analysis of the trade-off between travel time and
fuel consumption is studied. It concludes with a discussion of the results.

5.1 Introduction

In this work, we integrate MATSim (Horni, Nagel, and Axhausen, 2016),
the Comprehensive Modal Emission Model (CMEM) simulator (G.Scora and
Barth, 2006), and a multi-objective evolutionary algorithm. The mobility
scenario is the same used for the single objective optimization problem de-
scribed previously, where 20.000 vehicles move and 70 signal lights are lo-
cated on Quito’s business district. We aim to study and understand the influ-
ence of optimal signal settings on travel time and fuel consumption. Partic-
ularly, we want to clarify the extent of the conflict between these objectives,
if any, when they are optimized simultaneously and how the settings of the
signals relate to the trade-offs between them. We also compare with a single-
optimization algorithm where only travel time is optimized and evaluate the
impact of the signals settings on gas emissions.

The three main components of the optimization system considered in this
study are MATSim, CMEM simulator, and a multi-objective evolutionary al-
gorithm. Figure 5.1 illustrates their interaction. CMEM is a microscopic
emissions simulator that computes second-by-second tailpipe emissions and
fuel consumption based on different vehicle operating modes (modal), such
as idle, steady-state, cruise, and various levels of acceleration/deceleration.
Before we run the optimizer, we prepare the initial mobility plans of the
agents as well as the model of the transport infrastructure and run MATSim
without signal lights until it reaches an equilibrium state. Also, we prepare
the profiles of the vehicles associated with the agents, which are required by
CMEM.

The multi-objective evolutionary algorithm evolves a population of can-
didate solutions. Each solution represents the configuration of all light sig-
nals (signal control) of the transportation system under study. The algorithm
minimizes simultaneously two fitness functions, the average travel time and
the fuel consumption of the agents that move in the transport network. At



66 Chapter 5. Traffic Signals Optimization - Bi Objective Formulation

FIGURE 5.1: Optimization System

each generation, to compute the fitness of a solution, the evolutionary algo-
rithm calls MATSim and CMEM, one after the other. MATSim sets the signals
of the transport system with the values specified by the tentative solution
provided by the evolutionary algorithm. Then, MATSim runs one iteration
to simulate the movement of the agents following the mobility plans and
routes that led the system to the equilibrium state. The output generated by
MATSim is used to compute the average travel time of the agents. CMEM is
called with the travel details of each agent extracted from the MATSim out-
put and the profiles of the vehicles prepared in advance. The output gener-
ated by CMEM is used to compute the fuel consumption of the agents. Once
all solutions are evaluated, the evolutionary algorithm continues to the next
generation, stopping after a specified maximum number of generations has
been completed.

5.2 Multi-objectivization

Multi-objectivization refers to a method which implies the addition of other
objectives to the single objective optimization (SOO) problem to become multi-
objective and compare two solution that is common in multi-objective op-
timization (MOO) techniques using the notion of inferiority under Pareto
optimization. In that way, the multi-objectivization method may open up
monotonically increasing paths to the global optimum that are not available
under the original SOO problem (Knowles, Watson, and Corne, 2001). By
the multi-objectivization method, we want to analyze the effect on the solu-
tions when travel time and fuel consumption are optimized simultaneously
and compare with a single-optimization algorithm where only travel time is
optimized.
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5.3 Evolutionary Algorithm

In this work we use the Adaptive ε-Sampling and ε-Hood (AεSεH) (Aguirre,
Oyama, and K., 2013) algorithm described in section 2.5.4 to search optimal
solutions.

5.3.1 Representation & Operators

For this work, the representation and operators are the same as described in
single-objective problem in section 4.5.2.

5.3.2 Fitness Functions

In this work, we minimize two fitness functions, the average travel time and
the total fuel consumption of the agents that move in the network. To com-
pute the fitness of a solution, MATSim sets the signals of the system with the
values specified by the solution passed by the evolutionary algorithm, sim-
ulates the movement of the agents following the routes that led the system
to an equilibrium state, and outputs the time taken by each agent to travel
each one of the links included in its route. A transport network can be rep-
resented by a directed graph G = (N, A), where N represents nodes and A
represents links. The travel time for a given vehicle is

tia = tx
ia− te

ia a = 1, ..., A; i = 1, ..., V , (5.1)

where tia represents the travel time on link a for vehicle i, tx
ia denotes the

time vehicle i exited link a (see Figure 5.1), te
ia denotes the time vehicle i

entered link a, V is the number of vehicles being simulated, A is the number
of links in network, e is the entry node and x is the exit node (Spiegelman,
Sug-Park, and Rilett, 2011). Thus, the average travel time, the first fitness
function, is expressed by

f1 =
∑V

i=1 ∑A
a=1 tia

V
, (5.2)

subject to signal timing design and feasibility constraints shown in Eq. (4.3)-
Eq. (4.9) (Teklu2007).

The second fitness function corresponds to the fuel consumption of the
agents along their legs. It is computed from the output generated by CMEM,
which is called along with the travel details of the agents produced by MAT-
Sim and the profiles of the vehicles. The second function is stated by

f2 =
V

∑
i=1

L

∑
j=1

cj
i (5.3)

where V is the number of vehicles, L the number of legs, and cj
i is the fuel

consumption (in grams/km) of the ith vehicle at the jth leg.
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5.4 MATSim and CMEM Preliminaries

The scenario includes 70 signal lights located on the main pathways with
flows in south-north-south, and east-west-east directions (see Figure 5.5). We
run the multi-agent transport simulator MATSim for 200 iterations, making
sure it reaches a user equilibrium state without setting any traffic signal. The
traffic simulation period is for 24 hours. It takes approximately 10 hours
of computation time to run MATSim for this number of iterations. Traffic
signals are optimized using the equilibrium state as an initial condition.

CMEM uses a total of 55 static parameters to characterize the vehicle
tailpipe emissions for the appropriate vehicle/technology category. CMEM
defines 24 Light-Duty Vehicle (LDV) categories based on fuel and emission
control technology, accumulated mileage, power to weight ratio, emission
certification level, and emitter level category. We have selected 4 categories
based on two main features: accumulated mileage and emitter level cate-
gory based on model year distribution according to transportation census
data (INEC, 2010b). Table 5.1 shows the vehicle categories chosen for our
scenario. We assign randomly a category to each agent according to the dis-
tribution obtained from the census.

TABLE 5.1: CMEM Vehicle Categorization

LDV Categories
9 Tier 1>50K miles high power/weight
24 Tier 1>100K miles
26 Ultra-Low Emission Vehicle
27 Super Ultra-Low Emission Vehicle

5.5 Evolutionary Algorithm Experimental Setup

We use a fixed population size of 20. The initial population is created de-
terministically as follows. We prepare 20 cycle lengths in the range [40, 135]
seconds in steps of 5. All solutions are set with a different cycle length, but
all signals of a solution are set to the same cycle length. The offset times of
all signals are set to zero and green times per phase are set to the same value
according to the cycle length, i.e. green time = (cycle length - inter-green) /2.
That is, all signals are synchronized to start at the same time but are not coor-
dinated to allow the uninterrupted flow of vehicles along contiguous signals
in the same pathway.

For the operators, we set crossover rate to Pc = 1.0 and mutation rate per
signal to Pm = 4/n, where n is the number of signals. The mutation rates for
cycle length, offset and green time operators are Pm

(Ct) = 0.5, Pm
(O f ) = 0.3

and Pm
(Gt) = 0.2, respectively. The mutation steps are set to: stepCt=5,

stepO f f =10, stepGt=3 for cycle, offset and green time, respectively. These
mutation steps reduce considerably the search space.
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We conduct 10 runs of the algorithm setting the number of generations to
50, use different random seeds but all runs start with the same initial popu-
lation. To evaluate one individual, it takes in average 4 minutes to run MAT-
Sim and compute the first fitness function, and 16 minutes to run CMEM and
compute the second fitness function.
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FIGURE 5.2: Objective values of solutions by bi- and single-
objective optimization

5.6 Simulation Results and Discussion

Figure 5.2 (a) shows the Pareto fronts found by the algorithm at generations
{0, 5, 10, 15, 25, 35, 50} for one of the runs. Fuel consumption is converted to
liters from kilograms using a gasoline density of 0.755 Kg/liter. The intersec-
tion of the dashed lines marks the fitness value of the solution at equilibrium
state without signals. Note that a clear trade-off between travel time and fuel
consumption can be observed at generation 0 in the initial population. As
evolution proceeds, travel time and fuel consumption reduce and approach
the values observed at equilibrium state, but the number of non-dominated
solutions reduce to a few and in some generations even to one. These re-
sults illustrate that the optimization of signals allowing different cycle times
and coordinating them by properly setting their offsets lead to significant
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reductions in both fuel consumption and travel time. The small number of
non-dominated solutions in the last generation is expected, because both ob-
jective functions are correlated. That is, a reduction in travel time implies
that the engines are turned-on for a shorter time and therefore use less fuel.

Here an important question is whether optimizing a single fitness func-
tion, either travel time or fuel consumption, could be enough to minimize
both objectives. We verify this by optimizing only travel time with an elitist
single-objective optimization algorithm (Armas, Aguirre, and Tanaka, 2014)
set with the same initial population, operators, and parameters used for the
bi-objective optimizer. Figure 5.2 (b) shows the Pareto fronts found at the
last generation of the 10 runs of the bi-objective optimization algorithm. It
also includes in black squares the best solutions found by the single-objective
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optimization algorithm. From this figure note that overall results by the bi-
objective optimization are better than by the single-objective optimization,
thought both point towards the same minimum values. These results sug-
gest that although there could be few non-dominated solutions in the region
where both objectives are minimized the inclusion of the second objective
helps to perform a more effective optimization. It is also worth noting that
variance by the single-objective optimization is larger than by the bi-objective
optimization. Nonetheless, the multi-objective optimization could also get
trapped in local optima far away from the region of optimality, as observed
for run 9 in Figure 5.2 (b) where travel time and fuel consumption are around
300 seconds and 800 liters worse than the solutions with minimum fitness
found in run 4. This is a computationally very expensive problem, and not
many runs are possible. Thus, it is important to reduce the variance of the
solutions found in different runs to increase the reliability of the algorithm.
To that end, we should analyze further the operators, population size, and
selection of the algorithm in order to find ways to escape local optima.

Figure 5.2 (a) and (b) illustrate the trade-offs in objective space. In the fol-
lowing, we analyze the settings in decision space, particularly cycle length
and offset of the signals. Figure 5.3 shows the non-dominated solutions in
the initial population, fuel consumption over travel time (labeled with cycle
length), where all signals of a solution are set to the same cycle length, offset
is set to 0, and green times are similar in both traffic flow directions. Note
from the figure that when signals are not coordinated, offset set to 0, smaller
travel times are achieved by longer cycle lengths and lower fuel consump-
tions are achieved by shorter cycle lengths. Figure 5.4 shows box-plots of
the cycle length of the best solutions in travel time found by the single- and
bi-objective optimization. Note that the optimized solutions include shorter
cycle lengths than the best solutions in the initial population and that the
cycle lengths by the bi-objective optimization are shorter than by the single-
objective optimization. For the single-objective algorithm the highest ranked
solution are the ones with the larger cycle length. So, those solutions will be
preferred for mating and reproduction. This could imply a loss of diversity
of solutions with shorter cycle lengths. However, as indicated above, opti-
mal solutions are a combination of signals with shorter but different cycle
lengths. In the case of the bi-objective optimizer, solutions with shorter cy-
cle length will also have a high rank thanks to the second objective, i.e. fuel
consumption. Thus, the bi-objective optimizer will not suffer from a lack of
diversity of solutions with shorter cycle length. This explains why the bi-
objective approach performs a more effective optimization than the single
objective approach.

Figure 5.5 shows the cycle length of the signal lights of the solutions with
shorter travel time by the single and bi-objective optimization approaches,
deployed on the map of the area of study. Similarly, Figure 5.6 shows the
offsets of the signal lights. From Figure 5.5 it is worth noting that a pattern
can be seen in the solutions produced by both approaches. In both solutions,
the largest cycle lengths are assigned to signals located in the south-north
avenue in the western part of the city. This illustrates the kind of design
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(a) Single-objective (b) Bi-objective

FIGURE 5.5: Best Solution Cycle

(a) Single-objective (b) Bi-objective

FIGURE 5.6: Best Solution Offset

knowledge we aim to extract from the optimization process, useful to under-
stand and decide the final settings of the signal lights. From Figure 5.6 it
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should be noted that both solutions include some signals with offset 10 or 20,
however still many of them remain 0. This is due to the short-term evolution
used in this work. The proper setting of offsets undoubtedly helps improve
traffic. In the future, we should look for ways to enhance the optimization of
offsets.

TABLE 5.2: Scenario Emissions

Eq.
State

g=0
Ch=130

g=0
Ch=50

g=50
Bi-obj.

g=50
Single-obj.

Travel Time (s) 608 1320 1513 709 734
Fuel Consum. (l) 15817 18384 17780 16665 16858
HC (Kg) 121.97 129.76 128.26 125.81 126.32
CO (Kg) 2623.90 2764.50 2762.97 2736.81 2737.88
NOx (Kg) 277.44 253.71 262.34 264.18 261.89
CO2 (Kg) 33347.37 39248.40 37810.00 35188.40 35647.50

Table 5.2 shows travel time and fuel consumption together with HC, CO,
NOx, and CO2 emissions produced by all agents corresponding to the equi-
librium state without traffic signals. Also solutions including traffic signals
at generation 0 with smallest values in travel time and fuel consumption, and
solutions with traffic signals that minimize travel time by the bi- and single-
objective optimizer at generation 50. These results illustrate that in addition
to minimizing travel time and fuel consumption, the various kinds of emis-
sions can also be reduced significantly if traffic lights are optimized.

Finally, Figure 5.7 shows the traffic volume for the one-day simulation
and during peak hours observed for the scenario studied in this work. Note
that the main flows of agents go south-north-south rather than east-west-
east, which reflects the demographics of the city.

5.7 Conclusion and Future Work

In this work, we analyzed the evolutionary optimization of traffic signals
minimizing simultaneously travel time and fuel consumption on a large real-
world scenario. We integrated a multi-objective evolutionary algorithm with
the transport simulator MATSim and the emissions model simulator CMEM.
We used as a case study the transport network of a 5×8 Km2 area of Quito set
with 70 signal lights, and simulated one day traffic of 20.000 agents moving
according a two-leg mobility plan. We showed that there is a clear trade-
off between travel time and fuel consumption when the signals are set with
the same cycle length and are not coordinated (there is not offset between
the start of the cycles). We also showed that the optimization of the sig-
nals allowing different cycle lengths between signals and coordinating them
by properly setting their offsets can reduce significantly both travel time
and fuel consumption. This reduces the range of the trade-offs between
the two objectives. Further, we verified that the bi-objective optimization
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(a) One day simulation. (b) Peak hours (08h00 and
17h00).

FIGURE 5.7: Traffic Volume

approach produces better results than a single-objective approach that op-
timizes only travel time. We showed evidence that the single-objective al-
gorithm is misled by the initially uncoordinated signals where larger cycle
lengths allow shorter travel times, whereas combinations of coordinated sig-
nals with shorter cycle lengths lead to better travel times and lower fuel con-
sumption. This was not an issue for the multi-objective optimizers because
the second objective related to fuel consumption favors shorter cycle lengths
even in uncoordinated signals.

As future works, we should improve the evolutionary algorithm to re-
duce its variance and enhance its reliability for short-term evolution and few
fitness evaluations. Also, we should study other mobility plans and scenar-
ios for the agents. Furthermore, in addition to optimizing traffic signals, we
would like to add new variables and optimization criteria to study other im-
portant aspects of sustainable transport systems.
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Chapter 6

Level of Service Optimization:
Bi-Objective Formulation

The optimization of the transportation’s level of service is addressed in this
chapter. A scenario where a proportion of private and public transporta-
tion users move in the area of study was implemented and tested since a
bi-objective perspective. A study of variables, trade-offs and emissions is
also presented.

6.1 Introduction

Currently, around 54 percent of the world’s population lives in urban areas.
The world’s population is expected to grow in the future and the proportion
of the urban population as well. By 2050, the urban population is projected to
increase to 66 percent (United Nations and Social Affairs, 2014). Population
growth and urbanization trends have increased the demand for urban trans-
portation and will continue to do so in the future. Often, existent traffic in-
frastructure and public transportation systems cannot cope with the increas-
ing demand. Thus, dwellers tend to use their private means of transporta-
tion. Particularly, in emerging large cities, where the public transportation
has not been able to satisfy the demand, the number of vehicles is increasing
considerably and rendering mobility problems even worse (Gakenheimer,
1999). Congestion and delays add substantial costs that could be avoided,
increases pollution and the risk of accidents.

The design optimization of urban transportation systems is a complex
problem with multiple interrelated components that impose a continuous
challenge for city planners. Evolutionary algorithms and other heuristics
have proved effective to optimize difficult problems and are being investi-
gated in the mobility and transportation domain. Some applications of sin-
gle and multi-objective evolutionary algorithms to road network design, bus
network optimization, and public transportation routing scheduling are as
follow. In an early work(Bielli, Caramia, and Carotenuto, 2002), the authors
use a single-objective genetic algorithm (GA) for bus network optimization.
In (Hee, Kyung, and Hyuk, 2012) the authors solve a road network design
problem (RNDP) using a bi-level optimization approach that reflects the dif-
ferent objectives between planners and network users. They focused on the
design of a small network with six links and six nodes using a multi-objective
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GA and optimizing three objectives related to travel time, fuel consumption,
and accessibility to network’s nodes. Other works focus on public trans-
portation routing and scheduling. In (Arbex and Cunha, 2015) the authors
use a bi-objective approach to minimize both passengers and operators costs
on a benchmark network (15 nodes and 21 links). In (Ma et al., 2017) the
authors studied stop selection, line planing and timetables for customized
bus (CB).They used a single-objective GA to solve a weighted fitness func-
tion considering passenger, operator, and societal perspectives and test their
model on real network areas that cover 3km2 and 18km2. Other works focus-
ing on frequency setting and vehicle scheduling problem employee genetic
algorithms and a bi-level approach. Regarding frequency setting problem, in
(Yu, Yang, and Yao, 2010), at the upper level, the frequency routes are opti-
mized minimizing the passenger’s travel time meanwhile in the lower level
an assignation of transit trips to bus optimal route strategy is set. A single
objective genetic algorithm (GA) is implemented to search the frequency of
each route. The results obtained show that the optimal solution can decrease
total travel time by about 6% compared with the current situation. They used
a heuristic where the optimal strategy and the expected total travel time from
each node to the destination node are computed, and the demand is assigned
to the network according to the optimal strategy from all origins to the des-
tination. In another study (Verbas and Mahmassani, 2015), the authors pro-
pose a bi-level model where at the upper level a frequency setting problem
is addressed minimizing waiting times and use a heuristic model running a
simulation at the lower level according to a demand and frequency. Both pre-
vious works used one pre-defined demand, a macro-model and simulation
schema to study the effects of a frequency setting in travel time and waiting
time respectively. Regarding scheduling problems, in (Farhan Ahmad, 2005),
the authors state a bi-level approach to solve a bus scheduling problem for
overlapping routes. In the first level, the model minimizes the number of
buses required for each route individually and considering load feasibility.
In the second level, given the fleet size computed in the first level, the fleet
size is minimized again by considering all routes together by using a single
objective genetic algorithm (GA). They tested the model in a real-world net-
work with a total of 60 nodes and 70 links. Link distance in time units and
symmetric demand matrix gives the evaluation of each solution. The results
showed that the reduction in fleet size is not significant as it was expected
during model formulation stage due to little overlapping of routes in the test
network.

In this work, we study the urban transportation system under various
proportions of private and public transportation users, aiming to understand
the conditions to achieve different levels of service and their implications
on the optimal configuration of the public transportation, fuel consumption
(energy), and the impact on the environment.

The level of service (LoS) is a quality measure describing operational con-
ditions within a traffic stream, generally in terms of service measures such as
speed and travel time, freedom of maneuver, traffic interruptions, and com-
fort and convenience (Board, 2000). In this work, we define LoS in terms of
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traffic density, which is determined by the total number of vehicles that cir-
culate in the city given by the proportions of the population that use public
and private transportation.

To make public transportation more attractive, city planners need to guar-
antee a reliable service with appropriate frequency and capacity of buses to
satisfy the mobility demand. For a given proportion of public transportation
users, we should find a proper configuration of bus capacities and depar-
ture times between buses. Different proportion and configurations will im-
pact travel time, fuel consumption, costs and emissions, in addition to traffic
density. Most of these criteria are in conflict with each other. For example,
the transportation service administration would like to maximize the use of
the infrastructure minimizing costs and energy. Increasing the frequency of
buses can increase the capacity of the system. However, this could carry ad-
ditional costs. Users would like to minimize their travel times. This could be
an incentive to use private transportation but could increase their costs. In
addition, people living in zones where there are public transportation routes
would like to minimize emissions or pollution. A way to improve the flow
is reducing the volume of traffic or density. However, reducing density has
impacts in the total travel time of the users because they need to use public
transportation. These trade-offs suggest that compromised solutions can be
found using a multi-objective optimization approach.

We use a multi-objective evolutionary algorithm to search combinations
of number of private/public transportation users, capacity of buses, and time
interval between bus departures, minimizing traffic density and travel time
simultaneously. In order to have a broad vision of the possible solutions to
the problem and their level of service, at this time we assume that buses are
always available in different capacities, do not constraint their total number,
and do not consider cost.

We conduct our study using a scenario based on a real traffic network
from Quito city (Ecuador). Quito’s population has grown considerably in the
last years. Currently, its urban transportation system is highly congested due
to an increase of private vehicles combined with a poorly satisfied demand
by public transportation. It is important to find alternative configurations of
the urban transportation system to improve the level of service and quality
of life in the city. In this work, we model the mobility of 27.000 agents that
use private and public transportation on an area of 40km2, and simulate their
mobility using MATSim, a multi-agent transport simulator.

6.2 Method

6.2.1 Components & Overview

We follow the design optimization and method approach described in section
2.2 and illustrated in Fig 2.1.
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6.2.2 Problem Definition

Given a total fixed number of travellers that can use either public or private
transportation, a number of bus lines and a set of schedule periods, the prob-
lem consists in finding optimal configurations of the public transportation
system in terms of bus capacities and headways (time between bus depar-
tures in the same line) for a range of proportions of public transportation
users minimizing simultaneously travel time and traffic density.

The problem is formulated as follows

minimize f (x) = ( f1(x), f2(x))
subject to

x = (nPc, nPt, c, h)
nA = nPc + nPt

0.2nA < nPt < 0.8nA

c = {cj
i ∈ C}, i = 1, · · · , nB and j = 1, · · · , nS

h = {hj
i ∈ H}, i = 1, · · · , nB and j = 1, · · · , nS

Function f1(x) measures travel time of all travellers and function f2(x)
measures the traffic density, x is the vector of decision variables, nPc is num-
ber of private transportation travellers, nPt is the number of public trans-
portation users, cj

i is the capacity (maximum number of passengers) of the
buses assigned to line i at schedule period j, nB is the number of bus lines,
nS is the number of schedule periods, c is the vector of capacities associated
to all bus lines and schedule periods, hj

i is the headway departure or time
between departure of buses on line i for schedule period j, h is the vector of
headways associated to all bus lines and schedule periods, C is a finite set of
bus capacities, H is a finite set of headways expressed in minutes.

6.2.3 Area of Study

We study the conditions to achieve different levels of service in Quito city
(Ecuador). The geographical area of study includes the central zone of the
city, where several universities, big malls, two parks, a stadium, and the main
hub of the private and public transportation infrastructure are located. The
area of study also includes residential zones and the business district. The
total area represents approximately 40km2. Fig. 6.1 shows the extension of
the geographical area.

The population in Quito was around 2 million in 2010 (INEC, 2010b), of
which 80% move every day to accomplish various activities. Main mobility
reasons according to (DMQ, 2012) are 31% for work, 32.5% for study (all
educational levels) and 36.5% for other different activities. It is estimated that
47% of traffic flows go to the zone we study in this work (GrupoFaro, 2010).
From this percentage, 74.5% use public transportation and 25.5% private cars.
In our study, we simulate a sample of 27.000 agents.
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FIGURE 6.1: DMQ BRT Scenario

The massive passenger transportation in Quito is performed by private
and public companies. The Passenger Transportation Metropolitan Com-
pany is a public company in charge of the Bus Rapid Transit (BRT) service.
In 2015, approximately 650.000 passengers were transported daily by the dif-
ferent BRT lines (DMQ, 2015). In our model, we consider five main BRT
corridors (see Fig. 6.1) which are the most demanded and congested routes.

6.2.4 Simulation and MOEA Integration

MATSim performs a micro-simulation of agents that move on a transporta-
tion system producing information about agent routes and movements. MAT-
Sim requires as inputs the model of the transport network infrastructure,
public transportation configuration, and the agents’ mobility plans.

Fig. 6.2 shows the integration between the simulator and the evolutionary
algorithm (EA). The EA searches optimal settings for capacity and headway
bus line configuration for a given proportion of agents that will use public
transportation.

To evaluate a solution, MATSim sets the bus line capacities and head-
ways with the solution provided by the optimizer, computes the routes of
the agents based on heuristics, and simulates the mobility of all agents (pri-
vate and public transportation) following their mobility plans. MATSim sim-
ulates the public transportation by setting stop locations, lines, schedule,
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FIGURE 6.2: Simulation and EA integration

routes, departures, and vehicles. A line consists of two or more routes de-
fined over the network links and a list of departure times with a reference
to a particular bus specification (for example, capacity, length, technology)
(Horni, Nagel, and Axhausen, 2016). MATSim emission module (Hülsmann
et al., 2011) computes the fuel consumption and emissions for cars and buses
by connecting MATSim output to comprehensive database Handbook on
Emission Factors for Road Transportation (HBEFA) (Keller and Wuthrich,
2014). The output collected from the simulator is used to calculate travel
time and traffic density, which are passed back to the optimizer as objective
values to compute the fitness of the solution.

6.3 Evolutionary Algorithm

In this work, we use the Adaptive ε-Sampling and v-Hood (AεSvH) algo-
rithm to search optimal solutions. AεSvH algorithm is described in section
2.5.4.

6.3.1 Solution Representation

In this work we consider private cars and city buses as the only means of
private and public transportation, respectively. The main components of our
representation are the number of travellers that use public transportation nPt
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FIGURE 6.3: Solution Representation

and the bus lines configurations given by capacities c and headways h. In
this work nPt can take values in the range [0.2nA, 0.8nA] in intervals of 0.1nA,
where nA is the total number of travellers or agents. The number of private
transportation travellers is nPc = nA− nPt. The nB bus lines are identified by
the set of indexes L = {L1, · · · , LnB} and the nS schedule periods by the set
of indexes S = {Mo, Mi, A, N} for morning, midday, afternoon, and night.
A solution for the evolutionary algorithm is represented by the following
integer variables

(nPt, c, h) , (6.1)

where
c = {cj

i ∈ C}, i = 1, · · · , nB and j = 1, · · · , nS (6.2)

c = {cMo
L1

, · · · , cN
L1

, · · · , cMo
LnB

, · · · , cN
LnB
}

h = {hj
i ∈ H}, i = 1, · · · , nB and j = 1, · · · , nS (6.3)

h = {hMo
L1

, · · · , hN
L1

, · · · , hMo
LnB

, · · · , hN
LnB
}

Here, cj
i is the capacity of bus (number of passengers) of line i for schedule

period j, cj
i ∈ C = {0, 1, 2} where 0, 1 and 2 denote small, medium and

large capacity, respectively. hj
i is the headway departure or time between

departure of buses on line i for schedule period j. hj
i ∈ H = {0, 1, · · · , 11},

to represent headways from 5 to 60 minutes in steps of 5. Fig. 6.3 illustrates
the representation of solutions used by the evolutionary algorithm.

6.3.2 Operators

To create offspring we follow the representation described above and apply
uniform crossover (UX) with probability Pc, using a mixing ratio pCv. For
mutation we first decide whether to mutate nPt with probability PnPt

m or ca-
pacities and headways (c,h) with probability 1− PnPt

m . When capacities and
headways are mutated, we traverse capacities and headways for all lines and
schedule periods and mutate them with probability Pm per variable in (c,h).
The mutation operators increase or decrease randomly with equal probabil-
ity the code of the variable in which operates.
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6.4 Evaluation Functions

The fitness functions f1(x) and f2(x) for travel time and traffic density re-
ferred in the problem definition of section 6.2.2 are computed from the out-
come of the simulation. In the following we express them in terms of the data
generated from the simulator.

6.4.1 Travel Time f1

The travel time tt is given by the total travel time of private and public trans-
portation and expressed by

tt = ttpc + ttpt (6.4)

The average travel time for private (cars) is expressed by

ttpc =
1

nPc

nPc

∑
i=1

L

∑
l=1

til, (6.5)

where til represents the travel time on link l for vehicle i and L is the total
links of the route.

The average travel time for public transit users is computed by

ttpt =
1

nPt

nPt

∑
i=1

ta
i − td

i , (6.6)

where where ta
i represents the arrival time to its destination and td

i is the
departure time from the origin of the trip for an agent i. This time includes
walking time to the bus stop, waiting time, and bus riding time.

6.4.2 Density f2

One measure of the effectiveness to define levels of service is density. Den-
sity describes the proximity of vehicles to each other, which is the principal
influence on freedom to manoeuvre. Thus, it is an appropriate descriptor of
service quality(Roess, Prassas, and McShane, 2011). Density is a relationship
given by D = v / S where v is the volume or flow rate, S is the average
passenger-car speed(km/h) and D is the density (pc/km/ln)(Roess, Prassas,
and McShane, 2011). For our scenario, density is computed by

density =
NTripsPc + NTripsPt

AvgSpeed
× 1

AvgNLinks
, (6.7)

where NTripsPc and NTripsPt are the total number of trips of private vehi-
cles and public transportation, respectively, computed on the routes taken
by agents. AvgSpeed is the total average speed of vehicles during the scenario
duration time. AvgNLinks is the average of links traversed for each agent
during its trip.
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6.5 Simulation Results and Discussion

6.5.1 Experimental Setup

We optimize 5 BRT lines, splitting the schedule of buses in four time periods
from 06h00 to 09h00, 09h00 to 16h00, 16h00 to 20h00, and 20h00 to 22h00.
These correspond to the schedule periods set S = {Mo, Mi, A, N} for morn-
ing, midday, afternoon, and night. For each schedule period, the algorithm
searches appropriate capacities and headways (frequencies) of buses. Thus,
the number of variables is 41, one for the proportion of public transporta-
tion users nPt, 5 lines× 4 schedule periods for capacities c and 5 lines×
4 schedule periods for headways h. Capacity categories for BRT vehicles are
small, medium and large with 25, 70 and 115 passengers respectively. Head-
way is split into 12 categories from 5 to 60 minutes in steps of five minutes.

For the evolutionary algorithm, we set population size to 100 and initial-
ize it randomly. For the operators, we set crossover rate to Pc = 1.0 with
mixing ratio probability pCv=0.3. This means that all individuals undergo
uniform crossover and offspring keeps in average 70% of the variables of
one parent and 30% of the other. Mutation rate PnPt

m is set to 0.1 to mutate nPt
and 1− PnPt

m = 0.9 to mutate variables in (c,h). Mutation rate per variable
in (c,h) is Pm = 1/n, where n = 40 is the number of variables in (c,h). Thus,
in average, mutation changes the variable nPt corresponding to the number
of public transportation users for 10% of the population and the variables
corresponding to capacity or headways of one of the bus lines for 90% of
the population. We conduct ten runs of the evolutionary algorithm fixing
the number of generations to 100. We perform the experiments on a 64 bits
Rocks cluster with 12 nodes, of which 9 are six core 2GHz and 3 are sixteen
core 2.8GHz. The population is evaluated in parallel and the evaluation of
one individual takes in average 14 minutes.

To evaluate each solution, we run Matsim simulating the mobility of nA =
27.000 agents. The mobility plan for each agent consists of two main trips or
legs: 1) from home to work, study, or others and 2) from work, study, or
others to home. The plans are designed so that all agents move first from
each home location to different points along the area of study. Those points
are facility locations such as universities, workplaces and others like malls,
and parks. In their second trip, the agents move back home. The distribu-
tion of home locations, workplaces, and education facilities for the mobility
plan were chosen taking into account census data and a previous mobility
study(Demoraes, 2005). We prepare in advance the settings of public trans-
portation configuration: lines, routes, and stop locations. The public trans-
portation configuration consists of five BRT lines, 112 stop locations and two
routes per each bus line. When Matsim recieves the solution proposed by
the evolutionary algorithm, i.e. a vector of values corresponding to vari-
ables (nPt, c,h), the agents that will use public transportation are choosen
randomly with probability nPt/nA. The other agents are set to use private
cars. Also, the capacities and headways for the five lines are set accordingly
to the values suggested by the evolutionary algorithm.
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TABLE 6.1: Automovile distribution (fuel=gasoline and
weight≤ 2Tons)

Year-Category % Year-Category %
2000-2002|Euro2 24.40 2008-2010|Euro5 13.70
2002-2004|Euro3 7.80 2010-2012|Euro6 23.80
2004-2006|Euro4 12.20 2012-2014|Euro6 5.20
2006-2008|Euro4 13.00

To compute emissions, we have selected seven categories of vehicles for
private and one for public transportation. Table 6.1 shows the distribution of
vehicle categories for private transportation chosen for the scenario, which
is in accordance with census transportation data(INEC, 2010b) for Quito city.
We assign a category of vehicle to each agent randomly following this distri-
bution. For public transportation, we have chosen a heavy goods vehicle HGV
type which weight goes from 14 to 20 tons and diesel EuroII as fuel/technology
type. Vehicle characteristics enable to identify the emission factors from
HBEFA database. To compute warm emissions, MATSim combines the vehi-
cle information with the kinematic features such as speed and stop duration
obtained from the simulation.

6.5.2 Comparison between AεSεH and AεSvH

In this section we compare the proposed algorithm AεSvH that creates neigh-
borhoods in decision space to perform recombination with the AεSεH that
creates neighborhoods in objective space.

First, we compute the hypervolume of the non-dominated set of solutions
at each generation to verify their evolution. The reference point to calcu-
late the hypervolume is fixed to the worst values in each objective, obtained
from the Pareto set of non-dominated solutions found by the algorithms in
all runs. Fig. 6.4 shows box plots of the hypervolume over the generations
for the ten runs of both algorithms. In blue we show results by AεSεH and
in red results by AεSvH. Note that the hypervolume rapidly increases with
the generations, showing that evolution is proceeding as expected. However,
the hypervolume by AεSvH is significantly larger than AεSεH. This means
that AεSvH can find sets of non-dominated solutions with better properties
of convergence and diversity than AεSεH.

Figure 6.5 shows the hypervolume of a typical run by both algorithms
starting them with the same random seed. Figure 6.6 shows the sets of non-
dominated solutions found by the algorithms for the same runs. Solutions
by AεSεH are shown in black, whereas solutions by AεSvH are colored ac-
cording to nPt values. Note that AεSvH can find solutions for all proportions
of public transportation users nPt, whereas AεSεH loses diversity in variable
space and is not able to find solutions for large values of nPt, particularly for
0.7 and 0.8. In addition, note that for all values of nPt solutions by AεSvH
converge to better values in objective space than solutions by AεSεH.

The two set coverage index is a metric used to compare non-dominated
sets found by muti-objective evolutionary algorithms and expressed in Eq.6.8.
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FIGURE 6.4: Hypervolume Over Generations
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FIGURE 6.5: Hypervolume Over Generations of One Run.

Given two Pareto non-dominated sets, A and B, set-coverage C(A,B) counts
the number of solutions in the set B that are dominated by the solutions in
the set A upon the number of solutions in the set B.

C(A, B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B| (6.8)

Table 6.2 shows the average set-coverage values of the Pareto non-dominated
solutions found by both algorithms. Note that in average solutions by AεSvH
dominate many more solutions by AεSεH, which is in accordance with the
hypervolume values reported above.

In the following we focus our analysis on solutions found by AεSvH.
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FIGURE 6.6: Pareto Optimal Set of one run.
TABLE 6.2: Two Set Coverage Index (C)

mean sd
C(AεSεH,AεSvH ) 0.24 0.18
C(AεSvH,AεSεH) 0.50 0.31

6.5.3 Trade-offs

Next, we analyze trade-offs between objectives. Unless stated otherwise, we
use in our analysis the set of non-dominated solutions found in the ten runs
of the algorithm. The correlation values between objectives travel time (tt)
and density (dens) are shown in Table 6.3, where negative correlations sug-
gest trade-offs between objectives. This table also includes the correlation
between the objectives and fuel comsuption(fc), which is measured but not
used for optimization.

TABLE 6.3: Objective Correlation Matrix

tt dens fc
tt — -0.91 -0.92

dens -0.91 — 0.99
fc -0.92 0.99 —

Fig. 6.7 shows the trade-off between travel time and density, which is in
agreement with the negative correlation shown in Table 6.3. This figure is
colored according to the proportion of agents nPt that use public transporta-
tion. Also, it includes vertical lines to mark ranges of the levels of service
(LoS) computed from the traffic density. To compute LoS we use the six lev-
els of service defined by The Highway Capacity Manual (Board, 2000), des-
ignated by the letters A through F, with A being the highest level of service
and F the lowest. Table 6.4 shows the different levels according to density. In
the figure, the lines correspond to ranges of LoS A-D.
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TABLE 6.4: Levels of service for basic freeways segments

Levels of Density
Service (pc/km/ln)

A 0-7
B 7-11
C 11-16
D 16-22
E 22-28
F >28

From this figure it can be seen that high densities of traffic correspond
to smaller proportions of public transportation users nPt and vice versa, as
expected. Regarding levels of service, note that the best level of service A
requires that 70% and 80% of the agents use public transportation, level of
service B can be achieved with 50% and 60% of these agents, level C with
30% and 40%, and the worst level D requires 20% when more people uses
private cars that leads to the highest density of traffic.

From the same figure, note that solutions for a given value of nPt are clus-
tered in density and travel time. An analysis of these clusters and their trade-
off ranges provide valuable information. To illustrate, note that within each
cluster there is no much difference in density, but travel time can change sig-
nificantly, especially for larger fractions of public transportation users. The
difference in travel time for each value of nPt is due to the various configu-
rations of bus headways and bus capacities. Within each cluster, solutions
with lower travel time are achieved by scheduling large capacity buses with
high frequency. As mentioned above, larger trade-off ranges in travel time
are seen for larger nPt, where public transportation is used more. For ex-
ample, the trade-off range in average travel time is around 500 seconds for
cluster nPt = 70% and 150 seconds for cluster nPt = 30%. This clearly
shows ranges of improvement in travel time that can be achieved by opti-
mizing public transportation with almost no impact to traffic density for a
given value of nPt. On the other hand, notable changes in density are ob-
served between clusters, for different values of nPt. This suggests that to
reduce density a significant number of users should be encouraged to use
public transportation instead of private cars.

In addition to travel time and density, we also estimate fuel consump-
tion though at this time we do not use it as an objective value for optimiza-
tion. Fig. 6.8 shows travel time and fuel consumption, coloring solutions by the
LoS. Note that there is a perceptible trade-off between fuel consumption and
travel time, in agreement with the negative correlation shown in Table 6.3.
Looking at the levels of service, note that in general solutions with the best
LoS, such as A and B, have lower values of fuel consumption, but higher
travel times. This is because high levels of service imply low traffic densi-
ties, and vice versa. High levels of service are achieved under scenarios with
larger fractions of public transportation users, where, on average takes the
user longer to get to their destinations, but less private vehicles circulate the
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FIGURE 6.7: Travel time and density, colored by fraction of pub-
lic transport users nPt. Black dots show POS founded by the

original algorithm.
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FIGURE 6.8: Fuel consumption and travel time, colored by level
of service LoS.

city. On the other hand, solutions with worst levels of service, C and D, in
general show better travel time but worse fuel consumption. Thus, the in-
crease in fuel consumption is because more people uses their cars instead of
public transportation.

Due to the high positive correlation between density and fuel consump-
tion, shown in Table 6.3, a clear correspondence between Fig. 6.7 and Fig. 6.8
emerges. Looking at these two figures, note that for a given fraction nPt of
public transportation users the difference in fuel consumption can become
significant although density does not change much. This can be seen clearer
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FIGURE 6.9: Fuel consumption and density, colored by fraction
of public transport users nPt.

in Fig. 6.9 that shows fuel consumption and density, coloring solutions accord-
ing to nPt. The strong positive correlation between density and fuel con-
sumption suggests that the latter could be used instead of the former as ob-
jective value for optimization.

6.5.4 Emissions

Another important aspect of sustainable public transportation is its environ-
mental impact. As stated above, larger fractions of public transportation
users nPt reduce overall fuel consumption in the city as shown in Fig. 6.9.
Also, best levels of service and low levels of fuel consumption can be achieved
simultaneously, as shown in Fig. 6.8.

In addition to fuel consumption, we collect data from MATSim’s emis-
sions module. In this work, we analyze particulate matter (PM) emissions.
The concentration of PM is composed of engine exhaust gas emissions as
well as abrasion and suspension. Regarding health effects, the smaller the
particle, the worse the impact on humans. The effects range from damages
of the respiratory system to carcinogenic effects.

Fig. 6.10 shows travel time against PM emissions of the non-dominated
solutions found by the evolutionary algorithm, coloring by nPt. Note that
there is a trade-off between travel time and PM emissions within each cluster
nPt. For a given fraction of nPt the number of private cars is the same and
the range of PM emissions observed is determined by the different configu-
rations of headways (frequency) of buses. Thus, for a given nPt, increasing
the frequency of buses reduces travel time but increases PM. The difference
in travel time is more notorious for large nPt, where most people use pub-
lic transportation. In this work we model buses with diesel as fuel, which
reflects the current technology for most buses in Quito. This results suggest
that a change of technology for buses, for example from diesel to electric,
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is essential to achieve reasonable travel time and low traffic densities with
minimum PM emissions.

From Fig. 6.10 also note that the upper bound of PM increases with smaller
fractions of nPt. This is due to configurations with high frequency of buses
combined with a large number of private cars. In fact, the solution with high-
est PM emissions for nPt = 80% includes a configuration where buses are
run with slightly higher frequency than the solution with highest PM emis-
sions for nPt = 30%. So, the difference in PM emissions between these two
extreme solution is mostly due to the difference in the number of private cars.
High frequency configurations of buses for low demand scenarios slightly
reduce travel time and are likely to have a lower occupancy rate. These solu-
tions appear as non-dominated because at this time we do not consider cost
nor take into account occupancy rate of the buses.

Fig. 6.11 and Fig. 6.12 show box plots of the number of public transporta-
tion trips and PM emissions, respectively, grouped by nPt. From these fig-
ures, note that the median of number of trips and PM emissions increase
with nPt from 20% to 50%, and are similar for fractions 60% and above.

We analyze with more detail the best and second best solutions in travel
time found by the algorithm for nPt = 80%, denoted as A8b and A8a as
shown on Fig. 6.10. Note that there is a considerable difference in PM emis-
sions between them. Fig. 6.13 shows separately the configurations of bus
capacities (top) and headways (bottom) of all five lines and schedules for
these solutions. Capacities and headways are colored according to their code.
Together to the identifier of the solution we also include the value of PM
emissions computed for public transportation, which are lower than those
reported in Fig. 6.10 where the value of PM emissions include private cars as
well. Note that overall the frequency of buses is higher in A8b than in A8a,
which is reflected in the values of PM emissions. In addition, note that to
satisfy the high demand of public transportation these solutions require low
capacities and relatively low frequencies for some lines and schedules, see
for example Line3 in the afternoon schedule. This illustrates the relevance of
assigning buses of different capacities and frequencies to different schedules.

The geo-located differences in PM emissions between A8b and A8a are
illustrated in Fig. 6.14, where red color indicates an increase of PM emissions
in A8b and blue a reduction. Note, for example, that the levels of PM increase
considerably on the network segments where bus lines 4 and 3 are located
(see Fig. 6.1 for the location of bus lines), where A8b has higher frequency
than A8a as shown in Fig. 6.13.

6.6 Conclusions and Future Work

This work studied levels of service in urban transportation on a scenario of a
real world traffic network. We coupled a multi-objective evolutionary algo-
rithm with the multi-agent transport simulator MATSim to perform a bi-level
search of the proportions of private/public transportation users and optimal
configurations of buses capacities and headways associated to each propor-
tion. The multi-objective evolutionary algorithm minimized travel time and
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FIGURE 6.10: Trade-off TT and PM by nPt
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FIGURE 6.12: Public Transportation PM Emission by nPt

density simultaneously. We defined levels of service in terms of density and
analyzed it in conjunction with the trade-offs between objectives on the set
of non-dominated solutions found in ten runs of the algorithm. We also an-
alyzed fuel consumption and the effects of particulate matter (PM) emission
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FIGURE 6.13: Configuration of bus Capacities (top) and Head-
ways (bottom) of solutions A8b and A8a. Schedules: Mo, Mi,
A, N (morning, midday, afternoon, night). Capacities: 0, 1, 2
(small, medium, large). Headways: 0, · · · , 11 (5 min,· · · , 60

min).

FIGURE 6.14: PM Emission Difference Between A8b and A8a

over the area. The results of this study provide valuable insights to under-
stand better the conditions that can lead to different levels of service in the
city. It also suggests ways to improve mobility combining private and public
transportation. Our results, clearly show that to improve LoS, more trav-
elers must use public transportation, but better LoS do not necessary im-
plies a reduction in PM because it depends on the BRT headways and the
diesel engines of the buses. Results also show that the trade-off between
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travel time and fuel consumption agree with several configurations in capac-
ities and headways according to the proportion of users. Also, PM emission
shows that some of that settings can be environmentally friendly and user
convenient. That information is worthy for decision makers due to the com-
promise between that objectives. In addition, results suggest that a change
of technology for buses is essential to achieve reasonable travel time and low
traffic densities with minimum PM emissions.

In the future, we would like to refine the model to consider constraints
in resources. Also include other objectives such as cost, waiting time, bus
occupancy rates, and evaluate the impact of a transition towards hybrid and
electrical cars for private and public transportation. We would also like to
extend the definition of service to cover other criteria besides density.
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Chapter 7

Level of Service: Three-Objective
Formulation

The optimization of the transportation’s level of service since a three-objective
approach is studied in this chapter. Here the objectives to minimize are travel
time, traffic density and fuel consumption. Similarly, a study of variables,
trade-offs and emissions is also presented.

7.1 Introduction

For this work, we use the same scenario employed for the bi-objective opti-
mization problem discussed in the previous chapter. Here our interest is to
study fuel consumption as a new optimization objective, analyze the trade-
off if any with density and travel time and the scalability effects in the sce-
nario. Also, we intend to study and understand the impact of Bus Rapid
Transit (BRT) line headways considering the minimization of density, travel
time and fuel consumption simultaneously. The method, evolutionary al-
gorithm, representation and operators are the same as used by bi-objective
formulation.

7.2 Evaluation Functions

7.2.1 Travel Time

The travel time tt is given by the total travel time of private and public trans-
portation and expressed by

tt = ttpc + ttpt (7.1)

The average travel time for private (cars) is expressed by

ttpc =
1

NPc

NPc

∑
i=1

L

∑
l=1

til, (7.2)

where til represents the travel time on link l for vehicle i and L is the total
links of the route.
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The average travel time for public transit users is computed by

ttpt =
1

NPt

NPt

∑
i=1

ta
i − td

i , (7.3)

where where ta
i represents the arrival time to its destination and td

i is the
departure time from the origin of the trip for an agent i. This time includes
walking time to the bus stop, waiting time, and bus riding time.

7.2.2 Density

One measure of the effectiveness to define levels of service is density. Den-
sity describes the proximity of vehicles to each other, which is the principal
influence on freedom to manoeuvre. Thus, it is an appropriate descriptor of
service quality(Roess, Prassas, and McShane, 2011). Density is a relationship
given by D = v / S where v is the volume or flow rate, S is the average
passenger-car speed(km/h) and D is the density (pc/km/ln)(Roess, Prassas,
and McShane, 2011). For our scenario, density is computed by

density =
NTripsPc + NTripsPt

AvgSpeed
× 1

AvgNLinks
, (7.4)

where NTripsPc and NTripsPt are the total number of trips of private vehi-
cles and public transportation, respectively, computed on the routes taken
by agents. AvgSpeed is the total average speed of vehicles during the scenario
duration time. AvgNLinks is the average of links traversed for each agent
during its trip.

7.2.3 Fuel Consumption & Emissions

Fuel consumption (fc) of the agents along their legs can be expressed by

f c =
V

∑
i=1

L

∑
j=1

cj
i (7.5)

where V is the number of vehicles (public and private), L the number of legs,
and cj

i is the fuel consumption (in grams/km) of the ith vehicle at the jth

leg. Emissions are computed from the output generated by MATSim exten-
sion, which is called along with the travel details of the agents produced by
MATSim and the profiles of the vehicles.

7.3 Simulation Results and Discussion

7.3.1 Hypervolume

First, we compute the hypervolume of the non-dominated set of solutions
at each generation to verify their evolution. The reference point to calculate
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FIGURE 7.1: Hyper Volume Over Generations

the hypervolume is fixed to the worst values in each objective, obtained from
the Pareto set of non-dominated solutions found by the algorithm in all runs.
Fig. 7.1 shows box plots of the normalized hypervolume over the genera-
tions for the ten runs of the algorithm. Note that the hypervolume rapidly
increases with the generations and variance reduces considerably by the end
of the search.

TABLE 7.1: Objective Correlation Matrix

tt dens fc
tt — -0.94 -0.88

dens -0.94 — 0.84
fc -0.88 0.84 —

TABLE 7.2: Levels of service for basic freeways segments

Levels of Density
Service (pc/km/ln)

A 0-7
B 7-11
C 11-16
D 16-22
E 22-28
F >28

7.3.2 Trade-offs

Next, we analyze trade-offs between objectives. Unless stated otherwise, we
use in our analysis the set of non-dominated solutions found in the ten runs
of the algorithm. The correlation values between objectives are shown in
Table 7.1, where negative correlations suggest trade-offs between objectives.
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Fig. 7.2 shows the projection on the plane fuel consumption - travel time of
the three-dimensional Pareto front. Solutions in the plot are colored by the
level of service (LoS), computed from the third objective density. To compute
LoS we use the six levels of service defined by The Highway Capacity Man-
ual (Board, 2000), designated by the letters A through F, with A being the
highest level of service and F the lowest. Table 7.2 shows the different levels
according to density. In the figure, the colors correspond to LoS A-D.

From Fig. 7.2 note that there is a perceptible trade-off between fuel con-
sumption and travel time, in agreement with the negative correlation shown
in Table 7.1. Looking at the levels of service, note that in general solutions
with the best LoS, such as A and B, have low values of fuel consumption, but
high travel times. This is because high levels of service imply low traffic den-
sities. High levels of service are achieved under scenarios with more public
transportation users, where, on average takes the user longer to get to their
destinations, but less private vehicles circulate the city. Solutions with worst
levels of service, C and D, in general show best travel time but the worst fuel
consumption. This is because more people uses their cars instead of pub-
lic transportation. However, note that within each level of service there also
are trade-offs between travel time and fuel consumption. These solutions
represent a diversity of configurations, especially in the proportion of pub-
lic transportation and private car users. To analyze this with more detail,
Fig. 7.3 shows the Pareto front colored according to the proportion of public
transportation users (NPt).
Comparing with Fig. 7.2, note that a level of service A requires that 70%
and 80% of the agents use public transportation. Level of service B can be
achieved with 50% and 60% of these agents. However, level C can span the
range from 30% to 50%, and level D requires 20%. This is crucial because
it shows that, for the same number of agents that use public transportation,
some public transport configurations allow to reduce travel time but could
deteriorate the level of service and vice versa. These trade-offs should be
studied further to provide useful information to those in charge of planning
the transportation services in the city. In Fig. 7.2 and 7.3 also note that the
worst level of service is for NPt = 20% when more people uses private cars,
which is consistent with high densities of traffic as explained below and seen
in Fig. 7.4.

Fig. 7.4 shows the trade-off between travel time and density, which is in
agreement with the negative correlation shown in Table 7.1. This figure is
colored according to the proportion of agents NPt that use public transporta-
tion. Also, it includes vertical lines to mark the ranges of the levels of service
A-D to offer another perspective of the data. From this figure is quite ap-
parent that high densities of traffic correspond to the smaller proportion of
agents using public transportation and vice versa.

7.3.3 Emissions

Another important aspect of sustainable public transportation is its environ-
mental impact. As stated above, larger fractions of public transportation
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FIGURE 7.4: Travel time and density, colored by fraction of pub-
lic transport users NPt

users NPt reduce overall fuel consumption in the city as shown in Fig. 7.3.
Also, best levels of service and low levels of fuel consumption can be achieved
simultaneously, as shown in Fig. 7.2.
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In addition to fuel consumption, we collect data from MATSim’s emis-
sions module. In this work, we analyze particulate matter (PM) emissions.
The concentration of PM is composed of engine exhaust gas emissions as
well as abrasion and suspension. Regarding health effects, the smaller the
particle, the worse the impact on humans. The effects range from damages
of the respiratory system to carcinogenic effects.

Fig. 7.5 shows travel time against PM emissions of the non-dominated so-
lutions found by the evolutionary algorithm, coloring by the level of service.
In general, it can be seen a trade-off between travel time and PT emissions.
Note that PM emissions tend to increase while the level of service decreases
from A to D.

Fig. 7.6 and Fig. 7.7 show box plots of the number of public transportation
trips and PM emissions grouped by LoS, respectively. From these figures,
note that the number of trips and PM emissions increase with density, as
the level of service reduces from A to D. In this work the number of buses
are not constrained, this explains why there are several solutions with both
worst level of service and a large number of bus trips.

To clarify the trade-off between fuel consumption (energy) and PM emis-
sions, we analyze with more detail two solutions relatively close in fuel con-
sumption and travel time, classified with levels of service A and B. One is
set with the proportion of public transportation users to NPt = 70% and
level A and the other one with NPt = 60% and level B. We call them A7
and B6, respectively, as shown in Fig. 7.8. Solution B6 achieves slightly lower
travel time than A7, but fuel consumption is higher in B6 because there are
more private car users. However, note that A7 with lower fuel consumption
than B6 produces more PM emissions, as shown in Fig. 7.9. This is because
solution A7 has a different headway compared with B6. In A7 midday fre-
quencies for bus lines 2, 3 and 5 are higher than B6.

The geo-located differences in PM emissions between A7 and B6 are il-
lustrated in Fig. 7.10, where red color indicates an increase of PM emissions
in A7 and blue color reduction of PM emissions. Note that the levels of PM
increase considerably on the network segments where bus lines are located
(see Fig. 6.1 for the location of bus lines), where A7 has a high frequency in
midday respect to B6. On the other hand, the reduction in emissions shown
by the blue color is because A7 has a smaller number of private cars moving
in the zone.

7.4 Conclusions and Future Work

This work studied levels of service in urban transportation on a scenario of a
real world traffic network. We coupled a multi-objective evolutionary algo-
rithm with the multi-agent transport simulator MATSim to perform a bi-level
search of the proportions of private/public transportation users and optimal
configurations of buses capacities and headways associated to each propor-
tion. The multi-objective evolutionary algorithm minimized travel time, fuel
consumption and density simultaneously. We defined levels of service in
terms of density and analyzed it in conjunction with the trade-offs between
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objectives on the set of non-dominated solutions found in ten runs of the al-
gorithm. We also analyzed the effects of particulate matter (PM) emission
over the area. The results of this study provide valuable insights to under-
stand better the conditions that can lead to different levels of service in the
city. It also suggests ways to improve mobility combining private and public
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transportation. Our results, clearly show that to improve LoS, more travel-
ers must use public transportation, but better LoS do not necessary implies a
reduction in PM because it depends on the BRT headways.

In the future, we would like to analyze deeper the outcome of the opti-
mization, refine the model to consider constraints in resources, and include
other objectives such as cost. We would also like to extend the definition of
service to cover other criteria besides density.
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FIGURE 7.10: PM Emission Difference Between A7 and B6
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Chapter 8

Conclusions

Some complex problems that involve several variables and their interrela-
tionships and constraints become a continuous challenge since several points
of view, but especially since engineering perspective where the expert dealt
with some known models and usually he/she does not count with enough
resources to explore more alternatives. Mobility and Traffic problems in cities
are one of those problems due to not only the complexity but also because the
area of study usually is enormous. Additionally, from a sustainable perspec-
tive where economic, social and environmental aspects meet, the searching of
solutions involves an arduous task to meet simultaneously some objectives
that conflict each other. This research has proposed a framework that cou-
ples mobility, traffic and emission simulators with single and multi-objective
evolutionary algorithms to search and explore alternative designs to mobil-
ity and transportation problems. The framework also proposed a method
to evolve designs starting from a problem formulation and modelled from a
real system, their variables and their respective constraints. Two real prob-
lems were considered to test it. One, related to optimization of traffic sig-
nals coordination and a second one related to Level of Service optimization.
For each problem, a representation and a set of operators were implemented.
Quito city was the case of study, where approximately 2 million of people are
living and suffer traffic and mobility problems. The area of study focused on
the business district area that covers an extension of 40 km2.

A first problem related to optimization of traffic signal coordination was
studied. Seventy signals allocated in the major arteries of the scenario im-
plied not only a huge geographical area but also a vast variable search space.
Only a few works previously have dealt with a significant number of signals
and variables. To improve the coordination and traffic flow, several genetic
operators were implemented. The first set of step operators, one per vari-
able signal (cycle, green time and offset) improved the searching of solutions
which was verified by a notable decrease in the vehicles’ travel time. The
evolutionary algorithm has shown that green times should be mutated with
higher probability than cycle and offsets. However, the coordination of the
signals was an issue to solve; the step-offset variable operator was modified
to consider the propagation of the cycle length to neighbouring signals with
offsets set based on distance. It concedes to the vehicles to cross several in-
tersections during the green time phase. Due to the simulated mobility sce-
nario considers a large area of study, each evaluation was computationally
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expensive. A deterministic varying mutation was implemented to acceler-
ate the convergence. Also, one and two-point crossover effect was analyzed,
with no considerable difference between them, but a better convergence is
achieved when it is present in the evolution. The combination of these strate-
gies efficiently and effectively explore the large search space of traffic sig-
nal parameters. Moreover, a suitable balance between exploration and ex-
ploitation was performed by a combination of a high selection pressure given
by elitism with crossover followed by varying mutation. To verify the pa-
rameter’s effects in the algorithm, an analysis was performed by sequential
model-based algorithm configuration (SMAC). The comparison with SMAC
configurations showed that varying mutations relatively higher than the rec-
ommended in our configuration but using smaller rates of crossover lead to
similarly good results. A complete analysis in the optimized solution’s vari-
able space confirmed that some patterns emerge. A hierarchical clustering
showed that by grouping signals, large chunks of the clusters are spatially
contiguous. The geolocalization identified micro-zones with similar charac-
teristics in the city, which is an essential picture for the decision makers to in-
corporate additional mobility criteria such as safety, emissions and fuel con-
sumption and multi-modality. An examination of emissions revealed that a
better optimization process for travel time given by the neighbourhood oper-
ators and deterministic varying mutation is also highly correlated to a better
optimization for fuel consumptions and emissions. Moreover, a geo-location
of emission showed that emissions mostly reduce across the area of study
when signals settings are optimized. It provided helpful information for city
planners and can be used to feedback the evolutionary algorithm to favour
low emissions in certain regions of interest.

A second problem related to optimization of the level of service (LoS) of
urban transportation based on traffic density was studied. The study was
done in Quito city scenario, modelling the mobility of 27.000 agents that
use private and public transportation. Quito’s urban transportation system
is highly congested due to an increase of private vehicles combined with a
poorly satisfied demand by public transportation. The scenario considered
five main Bus Rapid Transit (BRT) corridors which are the most demanded
and congested routes. A multi-objective evolutionary algorithm was em-
ployed to search combinations of a number of private/public transportation
users, capacity of buses, and time interval between bus departures. Differ-
ent proportion of users and configurations will impact travel time, fuel con-
sumption, traffic density, costs, and emissions. Most of these criteria conflict
with each other. A first approach optimized density, travel time and fuel
consumption simultaneously. The representation considered as variables the
proportion of users in public transportation, the capacity and headways for
the BRT lines to four schedule segments in the day. Uniform crossover was
implemented. The mutation operators implemented, increase or decrease
randomly with equal probability the code of the variable in which operates.
An analysis of the trade-offs exhibited that in general, solutions with the best
level of service, had low values of fuel consumption, but high travel time.
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That is because, public transportation users, on average, take the longer to
get to their destinations, but less private vehicles circulate the city. Studying
the trade-off by the proportion of public transportation users, pointed that,
for the same number of agents that use public transportation, some public
transport configurations allow to reduce travel time but could deteriorate the
level of service and vice versa. Another essential aspect of sustainable public
transportation is its environmental impact. A trade-off between particulate
matter (PM) emissions and travel time classified by level of service, revealed
that PM emissions tend to increase while the level of service decreases. For
the decision makers, that kind of analyses could provide useful information
to those in charge of planning the transportation services in the city.

A more refined model and bi-objective optimization study were done to
examine better the trade-off between travel time and traffic density. The
bi-objective formulation allowed to the evolutionary algorithm found some
clusters of solutions. A trade-off analysis by the proportion of public trans-
portation users, reported that within each cluster there is no much difference
in density, but travel time can change significantly, especially for larger frac-
tions of public transportation users. Clusters also revealed that ranges of
improvement in travel time that can be achieved by optimizing public trans-
portation with almost no impact on traffic density for a given value of public
transportation users. However, distinguished changes in density were ob-
served between clusters, for different values of public transportation users.
That suggests that to reduce density a significant number of users should be
encouraged to use public transportation instead of private cars. Unlike the
previous study, in this one, fuel consumption and emissions were considered
as part of the solution analysis but not as optimized objective. However,
a similar trade-off between travel time and fuel consumption, as previous
work was found. A geo-location analysis of two solutions revealed that PM
emissions from two different configurations in bus capacity and frequency
cause different environmental impacts. In general, the results distinctly ex-
plained that to improve LoS, more travellers must use public transportation,
but an enhancement in LoS does not necessarily imply a reduction in PM be-
cause it depends on the BRT headways and technology, especially fuel type.

As future work, it would be worth implement new scenarios considering
multi-modal mobility like car, bus, bikes and pedestrians. Propose a new for-
mulation problem to find the balance in the network transportation to sup-
port and guarantee the multimodal level of service. Another valuable study
could be to consider the technological transition from vehicles based on fuel
to electric, and the impact from a sustainable standpoint.

Regarding the simulation model and its expensive computational time,
it imposes to implement new methods to deal with that issue. A new step
is the development of new heuristics and operators, or the development of
surrogate models to improve the simulation performance and evaluation.
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