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Abstract

In this paper, we specify a class of mathematical problems, which we
refer to as “Function Density Problems” (FDPs, in short), and point out
novel connections of FDPs to the following two cryptographic topics; theo-
retical security evaluations of keyless hash functions (such as SHA-1), and
constructions of provably secure pseudorandom generators (PRGs) with
some enhanced security property introduced by Dubrov and Ishai (STOC
2006). Our argument aims at proposing new theoretical frameworks for
these topics (especially for the former) based on FDPs, rather than pro-
viding some concrete and practical results on the topics. We also give
some examples of mathematical discussions on FDPs, which would be of
independent interest from mathematical viewpoints. Finally, we discuss
possible directions of future research on other cryptographic applications
of FDPs and on mathematical studies on FDPs themselves.

1 Introduction

1.1 Background and related works

It is widely understood that some mathematical problems have been playing
indispensable roles in research on cryptography and information security. For
instance, the (expected) computational difficulty of integer factorization is the
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source of security of RSA cryptosystem [10], while the problem of solving multi-
variate quadratic (MQ) equations has attracted several studies after the develop-
ment of Matsumoto-Imai cryptosystem [7] and its variants, whose constructions
are closely related to MQ equations. Hence, posing and studying an interest-
ing mathematical problem which arises in certain cryptographic settings can
contribute to the progress of cryptography and information security.

The aim of this paper is to emphasize the significance of a certain math-
ematical problem, which has connections to the following two major topics
in information security; security analysis of keyless hash functions in the real
world (such as MD5 and SHA-1), and construction of pseudorandom generators
(PRGs) with some enhanced security property. First, we give some descriptions
of these two topics.

Security analysis of keyless hash functions. Intuitively, a hash function
is a function H : X → Y from some (finite) set X to another (finite) set Y that
possesses a certain desirable security property. When we concern efficiency or
computability of H, we consider an algorithm that computes H (also denoted by
H) and call it a hash algorithm. One of the standard security requirements for
hash functions is collision resistance, which informally means that it is difficult
to find a collision pair (x1, x2) for H, i.e., x1 ̸= x2 ∈ X satisfying H(x1) =
H(x2). Hash functions have been playing central roles in various information
security applications, and secure hash functions for real-life applications are
usually expected to possess the collision resistance property.

However, most of the preceding successful studies that show security of hash
functions actually dealt with keyed hash functions (or hash families); intuitively,
a family of hash functions Hk parameterized by a key k is called collision re-
sistant if, for any (efficient) adversary, the attack to find a collision pair of Hk

fails with high probability for a randomly chosen key k. Several constructions
of keyed hash functions have been proposed so far (e.g., [3]). The above security
notion of keyed hash functions can be interpreted as allowing one to (randomly)
choose a concrete instance Hk of the hash family after an adversary is given.
In contrast, in most of real-life applications, the concrete instance of hash algo-
rithms is specified first (for example, by a standardization), and then an adver-
sary can try to attack the fixed hash algorithm. This reversal of order causes a
crucial difficulty in guaranteeing (or even formalizing in a reasonable manner)
security of a keyless hash algorithm H, as (unless the trivial situation where
the domain of H is not larger than the image of H) there does always exist a
collision pair (x1, x2) for H and any adversary (existing in theory) who innately
knows the pair (x1, x2) is obviously able to efficiently attack the fixed hash algo-
rithm H. In fact, even an instance of standardized (or de facto standard) hash
algorithms, whose security must be evaluated well before the standardization,
has been suffered from feasible attacks (e.g., [12]). In this paper, we try to
propose a theoretical and unified way to say something, preferably affirmative,
about security of a concrete (keyless) instance of hash algorithms.

For related works, Rogaway [11] gave a detailed observation about the dif-
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ference between “inexistence of effective attack algorithms” and “lack of knowl-
edge on construction of effective attack algorithms” for keyless hash algorithms.
He emphasized the difference of the two situations (by the term “human ig-
norance”), and discussed how to prove security of a cryptographic protocol by
reducing the security into “lack of knowledge on concrete attacks” on the hash
algorithm internally used by the protocol. However, he did not discuss how to
theoretically evaluate security of keyless hash algorithms themselves, which we
study in this paper. On the other hand, in this paper we adopt concrete secu-
rity formulation rather than asymptotic one; while some observation for security
of keyless hash algorithms in asymptotic security formulation is also given in
Rogaway’s paper.

Construction of enhanced PRGs. A PRG is an algorithm G : S → X with
(finite) set S of inputs (seeds) and (finite) output set X with the property that,
when a seed s ∈ S is chosen uniformly at random, the output G(s) ∈ X of G
is also “random” in some sense. Conventionally, the meaning of “randomness”
here is formulated by using the notion of distinguisher, which is an algorithm
D : X → {0, 1} with 1-bit output and the input set being the output set X of
G. In this paper we adopt concrete security formulation rather than asymptotic
one, in which case the security requirement for PRGs can be formulated as
(T, ε)-security; namely, G is called (T, ε)-secure [5] if, for any distinguisher D
for G with (time) complexity bounded by T , the statistical distance between
the output distribution D(G(US)) of D with input given by G with uniformly
random seed s ∈ S (referred to as “pseudorandom input”) and the output
distribution D(UX) of D with uniformly random input x ∈ X (referred to as
“random input”) is bounded by ε. (Intuitively, any such D cannot distinguish
the random element x and the pseudorandom element G(s) in X with significant
advantage.) There are a large number of constructions of PRGs, most of which
are provably secure (possibly in asymptotic security formulation) under standard
computational assumptions (e.g., [2, 5]).

On the other hand, in a preceding work of Dubrov and Ishai [4], an en-
hanced notion for PRGs, called pseudorandom generators that fool non-boolean
distinguishers (nb-PRGs, in short), was proposed. This notion is obtained by
allowing the distinguishers D in the above security notion to have larger output
sets; namely, G is called (T, n, ε)-secure if, for any “non-boolean” distinguisher
D : X → Y for G with (time) complexity bounded by T and output set Y of size
at most n, the statistical distance between the output distributions of D with
random and pseudorandom inputs is bounded by ε. Dubrov and Ishai showed
interesting applications of nb-PRGs, e.g., secure pseudorandomization of a cer-
tain kind of information-theoretically secure protocols without any restriction
on computational complexity of the adversary’s attack algorithm.

However, constructing secure nb-PRGs seems much more difficult than the
case of the usual PRGs. Indeed, to the authors’ best knowledge, the only
constructions of nb-PRGs proposed so far are ones in the original paper [4],
which are based on certain less standard computational assumptions. Hence it
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will be fruitful if we can give some results implying that any usual PRG (with
some parameter) is also an nb-PRG (with a possibly different parameter). In
fact, a straightforward implication has been mentioned in [4], but this is far from
being efficient (i.e., to obtain nb-PRGs with reasonable security parameters, the
original PRGs are required to have somewhat impractical security parameters).
In this paper, we try to establish a more efficient implication result.

1.2 Our contributions, and organization of this paper

In Section 2, we propose a class of mathematical problems, which we refer to
as “Function Density Problems”. Intuitively, this problem is to evaluate the
possibility of close approximations of arbitrary functions by using some “easily
describable (or analyzable)” functions.

Then we introduce motivating applications of Function Density Problems to
two topics in information security. First, in Section 3, we discuss theoretical
analysis of collision resistance of keyless hash algorithms. We give an abstract
framework for attacking a given hash algorithm by using known attacks on some
other “easily breakable” hash algorithms. In the framework, it is essential to
evaluate how closely a target hash algorithm can be approximated by “easily
breakable” hash algorithms; thus Function Density Problems play a significant
role in the security evaluation of hash algorithms.

Secondly, in Section 4, we study an enhanced security notion for PRGs
(called nb-PRG) introduced by Dubrov and Ishai [4]. We give some implication
results showing that any secure PRG with some parameter is also a secure nb-
PRG with somewhat modified security parameter. In the results, the overheads
in the bounds of (time) complexity and of advantages for the distinguishers are
in trade-off relations, and Function Density Problems can be applied to evaluate
to what extent the trade-off will be improved by our proposed result.

Then, in order to arise some image or intuition of how Function Density
Problems can be mathematically studied, in Section 5 we give some concrete ex-
amples of mathematical discussions on Function Density Problems themselves,
using combinatorial and geometric arguments and techniques in Gröbner bases.
In particular, we deal with special cases where the set of “easily describable (or
analyzable)” functions forms a linear subspace (related to low-degree boolean
functions, perfect linear codes and Reed–Solomon codes), which would be of
independent interest from mathematical viewpoints.

Finally, in Section 6 we give a concluding remark, which includes discus-
sions on further possible applications of Function Density Problems in informa-
tion security, and on possible directions of future research on Function Density
Problems themselves.

2 Function Density Problems

In this section, we specify a class of mathematical problems, which we call
Function Density Problems (FDPs) in this paper. As the class of FDPs in a most
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general form will include too various problems to obtain meaningful insights for
their properties, it is significant to restrict the class suitably according to each
situation under consideration. Relations of FDPs to some concrete topics in
cryptography will be shown in the following sections.

We give a general description of our problem:

Definition 1 (Function Density Problems). Let C be a set of some functions,
and let C′ be a subset of C. Let d(·, ·) be a distance function for the pairs of
functions in C. In this setting, we define a Function Density Problem to be a
problem of estimating the following quantity:

r(C, C′) := sup{d(f, C′) | f ∈ C} , (1)

where, for each f ∈ C, d(f, C′) := inf{d(f, g) | g ∈ C′} is the distance from f to
C′. (The symbol ‘r’ stands for “radius”, by an analogy as if C′ is a single central
point in the figure C, in which case the r is the radius of C in usual sense.)

Among very various situations covered by Definition 1 (where C in fact need
not even to be a set of functions), in the applications of FDPs discussed in this
paper we will focus on the following typical cases:

Definition 2 (Function Density Problems – typical cases). Let C be the set of
all functions f : X → Y from a given finite set X to a given finite set Y . Let
C′ ⊂ C. For any f, g ∈ C, we define the distance between f and g by

dH(f, g) := |{x ∈ X | f(x) ̸= g(x)}| . (2)

In this setting, a Function Density Problem is a problem of estimating the
quantity r(C, C′) defined by (1) with d(·, ·) = dH(·, ·).

In the case of Definition 2, the “sup” and “inf” in Definition 1 can be simply
replaced with “max” and “min”, respectively. Moreover, the distance defined
by (2) coincides with the (generalized) Hamming distance when members of C
are identified with sequences of length |X| over the alphabet Y in a natural
manner. Note that the quantity r(C, C′) can be regarded as a special case of so-
called Hausdorff distance for two subsets of a metric space, which would support
that it is reasonable to consider r(C, C′).

An intuitive explanation of a motivation for the above definition is as follows.
Given a set C of functions, a subset C′ consists of members of C which are in
some sense “easily analyzable” or “with simple descriptions”. The distance
d(f, g) measures how two functions f and g are similar. Then the quantity
d(f, C′) evaluates how accurately a function f ∈ C can be approximated by
an “easy” function in C′, and the quantity r(C, C′) evaluates how densely the
“easy” functions distribute among the entire set C. In other words, when r(C, C′)
is revealed to be small, it shows potential availability of a close approximation
of any member of C by an “easy” function in C′. For example, in the case of
Definition 2, any function f ∈ C can in principle be converted into some function
g ∈ C′ by changing the values f(x) for at most r(C, C′) points x ∈ X. (We
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emphasize that it does not mean that a close approximation of f by a function
in C′ can be efficiently computable. Such a difference between existence and
efficient computability is also relevant to a preceding observation for “human
ignorance” by Rogaway [11].)

3 Hash Functions and FDPs

In this section, we point out a relation of FDPs introduced in Section 2 to
security analysis of keyless hash functions. Here we propose a new framework
for theoretical security evaluation of keyless hash functions based on FDPs.
Although theoretical security evaluation of keyless hash functions is evidently
an extremely difficult problem and our proposed framework is unfortunately not
yet practical, we hope that our framework can be a clue to this problem.

We consider a keyless hash function H : X → Y with possibly large but
finite domain X and relatively small (finite) range Y . Among the major security
requirements for hash functions, we focus on the collision resistance of H; we
discuss how it is difficult to find a collision pair (x1, x2) for H (recall that
(x1, x2) is called a collision pair for H if we have x1, x2 ∈ X, x1 ̸= x2 and
H(x1) = H(x2)). To show the relevance of FDPs to this problem, first we give
a somewhat informal description of an abstract “typical” strategy for finding a
collision pair:

1. Construct a close approximation H ′ : X → Y of H in such a way that
collision pairs for H ′ can be found with reasonable computational time.

2. Find randomly a collision pair (x′1, x
′
2) for H

′.

3. Construct from (x′1, x
′
2) a candidate (x1, x2) of a collision pair for H (in

the simplest case, we just set (x1, x2) = (x′1, x
′
2)).

4. Check if (x1, x2) is a collision pair of H; if it is indeed a collision pair of
H, then output (x1, x2) and stop the process.

5. If (x1, x2) is not a collision pair of H, go back to Step (2) and repeat the
process.

Intuitively, the number of iterations in the above strategy before finding a col-
lision pair for H would be expected to be small if the approximation H ′ is
sufficiently close to H (see Lemma 1 below for a quantitative expression of this
expected tendency). Hence security of a hash algorithm H against such an
attack strategy is related to the possibility of finding its close approximation.

More precisely, we set (x1, x2) = (x′1, x
′
2) in the above strategy for simplicity.

We consider the case of Definition 2, and let C′ be a subset of C with the property
that any hash function H ′ in C′ admits an efficient attack (finding a collision
pair) by a certain known attack strategy. In the above attack strategy, the
approximation H ′ for H specified in Step (1) is supposed to be chosen from C′.
Now we have the following lemma:
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Lemma 1. Suppose that H and H ′ are functions X → Y with |Y | = n ≥ 2,
and dH(H,H

′) = d, 0 < d < |X|. Then the probability that a collision pair for
H ′, which is chosen uniformly at random from the set of all collision pairs for
H ′, is also a collision pair for H is not lower than

2α0|X| − n(α0 + 1)α0 − 2dα0

2α0|X|+ 2d|X| − n(α0 + 1)α0 − 2dα0 − d2 − d
, (3)

where α0 = ⌊(|X| − d− 1)/n⌋. Moreover, when |X| ≥ d+ (n− 1)2, the value in
(3) is getting larger as d becomes smaller.

A proof of Lemma 1 will be provided in the last of this section. Now let us
imagine the following situation. Two candidate sets C1, C2 for a new standard
hash function are given, and we can specify subsets C′

1 ⊂ C1 and C′
2 ⊂ C2 in such

a way that each C′
i (i = 1, 2) consists of some hash functions for which collision

pairs can be found in reasonable computational time by using some known
techniques. We suppose that r(C1, C′

1) is significantly small and r(C2, C′
2) is

significantly large. Then any hash function H chosen from C1 can be potentially
attacked by just finding a close approximationH ′ ∈ C′

1 ofH (using some expert’s
sixth sense, for example) and applying the above attack strategy combined with
known collision finding techniques. On the other hand, C2 contains at least one
hash function H for which the above attack strategy combined with any known
collision finding technique will not succeed. This would suggest that it can be
potentially safer to choose a new hash function from C2 rather than C1, as we
already know the potential attack on any hash function in C1 but not the same
for C2.

The authors hope that studies of FDPs can contribute to security analysis
of keyless hash functions in the above manner, though how to specify the subset
C′ in practical cases is of course a big problem to be concerned. One may also
feel that it seems infeasible to compute the quantity r(C, C′) for practical classes
of hash functions; even if so, some estimate of a bound or tendency of r(C, C′)
would still give us an insight into the security level of those hash functions.

Remark 1. Here we notice that, although we have focused on the collision re-
sistance in the above argument, a similar idea would also be applicable to other
security notions for keyless hash functions, such as the (second) preimage resis-
tance.

To conclude this section, we give a proof of Lemma 1.

Proof of Lemma 1. We write (m)2 := m(m − 1) for any integer m. Put Y :=
{y1, . . . , yn}, and for each 1 ≤ i ≤ n, put

ai := |{x ∈ X | H ′(x) = yi}| , bi := |{x ∈ X | H(x) ̸= H ′(x) = yi}| . (4)

Moreover, put

φ1(⃗a; b⃗) :=

n∑
i=1

(ai)2 , φ2(⃗a; b⃗) :=

n∑
i=1

(ai − bi)2 , (5)
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where a⃗ := (a1, . . . , an) and b⃗ := (b1, . . . , bn). Then the number of collision pairs

for H ′ is φ1(⃗a; b⃗), while the number of collision pairs for H is at least φ2(⃗a; b⃗).
Therefore the probability specified in the statement of Lemma 1 is at least

φ(⃗a; b⃗) :=
φ2(⃗a; b⃗)

φ1(⃗a; b⃗)
. (6)

From now, we give a lower bound for the values of φ under the following con-
ditions implied by the definitions: 0 ≤ bi ≤ ai for each i,

∑n
i=1 ai = |X|, and∑n

i=1 bi = d. For the purpose, we show the following two lemmas:

Lemma 2. In the above setting, if the minimum value of the function φ is
attained by a⃗ and b⃗, then we have bi > 0 for a unique index i, and ai − bi ≥ aj
for every index j ̸= i.

Proof. If we have i ̸= j and bi, bj > 0, and we suppose ai ≤ aj by symmetry,
then we have(

(ai − 1)2 + (aj + 1)2
)
−

(
(ai)2 + (aj)2

)
= 2(aj − ai + 1) > 0 , (7)

therefore the value of φ1 increases when ai, aj , bi and bj are replaced with
ai − 1, aj + 1, bi − 1 and bj + 1, respectively. On the other hand, the value of
φ2 is not changed by this replacement. Therefore the value of φ is decreased
by this replacement, contradicting the assumption on the choice of a⃗ and b⃗.
Hence an index i with bi > 0 is unique, therefore bi = d. Similarly, if j ̸= i and
ai − bi < aj , then we have(
(ai − bi +1)2 +(aj − 1)2

)
−
(
(ai − bi)2 +(aj)2

)
= 2(ai − bi − aj +1) ≤ 0 , (8)

with equality holding when and only when ai − bi = aj − 1. This implies that

the value of φ at the a⃗ and b⃗ is larger than or equal to the value of φ with bi
and bj (= 0) being replaced with bi − 1 and 1, respectively, where the equality
holds if and only if ai − bi = aj − 1. As the former value is assumed to be the
minimum, the equality condition ai − bi = aj − 1 should hold. Moreover, if
bi − 1 > 0, then the latter value of φ (which is now equal to the former) cannot
be the minimum by the above argument, which also leads to a contradiction.
Hence we have bi = 1 (therefore d = 1) and ai = aj . Now we have(

(ai + 1)2 + (aj − 1)2
)
−

(
(ai)2 + (aj)2

)
= 2(ai − aj + 1) > 0 . (9)

This implies that the value of φ will decrease when ai and aj are replaced with
ai + 1 and aj − 1, respectively, contradicting the assumption that the former
value is the minimum. Hence we have ai − bi ≥ aj for every j ̸= i, concluding
the proof of Lemma 2.

Lemma 3. In the above setting, if the minimum of the function φ is attained
by a⃗ and b⃗, then we have |ai − aj | ≤ 1 for any pair of indices i ̸= j satisfying
bi = bj = 0.
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Proof. Assume contrary that ai − aj ≥ 2 for such a pair of indices i ̸= j. For

ℓ ∈ {1, 2}, let αℓ denote the value of φℓ at the a⃗ and b⃗, and let βℓ denote the value
of φℓ with ai and aj being replaced with ai−1 and aj+1, respectively. Then we
have β1 −α1 = β2 −α2 = 2(aj − ai +1) < 0. On the other hand, for the unique
index i′ with bi′ > 0 (see Lemma 2), we have ai′ ≥ bi′ + ai ≥ bi′ + aj +2 ≥ 2 by
the assumption and Lemma 2, therefore α1 > α2. Now we present the following
lemma, which is proven by an easy calculation:

Lemma 4. If p > q ≥ 0 and r > 0, then q/p < (q + r)/(p+ r).

By using this lemma, we have

α2

α1
=
β2 − 2(aj − ai + 1)

β1 − 2(aj − ai + 1)
>
β2
β1

, (10)

contradicting the assumption that α2/α1 is the minimum of the value of φ.
Hence Lemma 3 holds.

By Lemma 2 and Lemma 3, the points a⃗ and b⃗ that attain the minimum of
φ satisfy the following conditions: bi > 0 for a unique i, and there is an integer
α satisfying that ai − bi ≥ α+ 1 and aj ∈ {α, α+ 1} for every j ̸= i. Note that
this α can be taken as α ≥ 0; indeed, this is obvious if some aj with j ̸= i is
positive, while the remaining possibility that aj = 0 for every j ̸= i allows us
to choose α = 0 as ai = |X| > d = bi and ai − bi ≥ 1. Let k be the number
of indices j ̸= i with aj = α + 1, therefore 0 ≤ k ≤ n − 1. Then we have
ai = |X| − (n − 1)α − k, while bi = d, therefore the condition ai − bi ≥ α + 1
implies that k ≤ |X|−nα−d− 1. Now we write the values of φ1 and φ2 in this
case as φ1(α, k) and φ2(α, k), respectively. Then we have

φ1(α, k) = k(α+ 1)2 + (n− 1− k)(α)2 + (ai)2 ,

φ2(α, k) = k(α+ 1)2 + (n− 1− k)(α)2 + (ai − d)2 ,
(11)

therefore φ1(α, k)− φ2(α, k) = 2dai − d2 − d. Now by Lemma 4, we have

1− φ2(α, k)

φ1(α, k)
=

2dai − d2 − d

φ1(α, k)
≤ 2dai − d2 − d+ 2d((n− 1)α+ k)

φ1(α, k) + 2d((n− 1)α+ k)

=
2d|X| − d2 − d

k(α+ 1)2 + (n− 1− k)(α)2 + (ai)2 + 2d(n− 1)α+ 2dk

(12)

(note that 2d((n− 1)α+ k) ≥ 0 as α ≥ 0). Let ψ(α, k) denote the denominator
of the right-hand side. Then, by virtue of the property ∂

∂kai = −1, we have

∂

∂k
ψ(α, k) = (α+ 1)2 − (α)2 − (2ai − 1) + 2d = 2α− 2ai + 1 + 2d < 0 (13)

(note that ai − d ≥ α + 1), therefore ψ(α, k) is decreasing as k is increasing.
On the other hand, we have ψ(α, n − 1) = ψ(α + 1, 0). Now note that α ≤
(|X|−d− 1)/n as 0 ≤ k ≤ |X|−nα−d− 1. This implies that ψ(α, k) takes the
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minimum value at α = ⌊(|X| − d− 1)/n⌋ = α0 and k = k0 := |X| − nα0 − d− 1
(note that k0 ≤ n−1). Moreover, we have ai = α0+d+1 if α = α0 and k = k0.
Hence a straightforward calculation shows that

1− φ2(α, k)

φ1(α, k)
≤ 2d|X| − d2 − d

ψ(α0, k0)

=
2d|X| − d2 − d

2α0|X|+ 2d|X| − n(α0 + 1)α0 − 2dα0 − d2 − d
,

(14)

therefore

φ2(α, k)

φ1(α, k)
≥ 1− 2d|X| − d2 − d

2α0|X|+ 2d|X| − n(α0 + 1)α0 − 2dα0 − d2 − d

=
2α0|X| − n(α0 + 1)α0 − 2dα0

2α0|X|+ 2d|X| − n(α0 + 1)α0 − 2dα0 − d2 − d
,

(15)

which proves the lower bound (3) in the statement of Lemma 1.
Finally, suppose that d ≥ 2, and let η1(d) and η2(d) denote the denominator

and the numerator in (3), respectively. For any value x depending on d, let ∆[x]
temporarily denote the value of x at d− 1 minus the value of x at d. Then we
have ∆(−d2 − d) = 2d, therefore

∆[η2(d)] = ∆[2α0|X| − n(α0 + 1)α0 − 2dα0] ,

∆[η1(d)] = ∆[2α0|X| − n(α0 + 1)α0 − 2dα0]− 2|X|+ 2d < ∆[η2(d)] .
(16)

Moreover, we have ∆[α0] ∈ {0, 1}, and if ∆[α0] = 0, then ∆[η2(d)] = 2dα0 > 0.
On the other hand, if ∆[α0] = 1, then we have

∆[(α0 + 1)α0] = (α0 + 2)(α0 + 1)− (α0 + 1)α0 = 2(α0 + 1) ,

∆[2dα0] = 2(d− 1)(α0 + 1)− 2dα0 = 2d− 2α0 − 2 ,
(17)

therefore

∆[η2(d)] = 2|X| − 2n(α0 + 1)− 2d+ 2α0 + 2

= 2|X| − 2(n− 1)α0 − 2n− 2d+ 2

≥ 2|X| − 2(n− 1)
|X| − d− 1

n
− 2n− 2d+ 2

=
2

n

(
|X| − d+ 2n− 1− n2

)
≥ 0

(18)

(where we used the assumption |X| ≥ d+(n− 1)2). Now by Lemma 4, we have

η2(d− 1)

η1(d− 1)
=
η2(d) + ∆[η2(d)]

η1(d) + ∆[η1(d)]
≥ η2(d)

η1(d) + ∆[η1(d)]−∆[η2(d)]
>
η2(d)

η1(d)
. (19)

Hence the proof of Lemma 1 is concluded.
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4 PRGs and FDPs

As our second application of FDPs, in this section we present some results which
prove that any (computationally indistinguishable) PRG with some parameter
is also an nb-PRG with a (possibly different) specified parameter. The concrete
relations between parameters for an algorithm as a PRG and as an nb-PRG,
respectively, will be determined by applying FDPs.

First we recall the security notion for PRGs. We emphasize that, for the
sake of simplicity, here we adopt definitions in forms of concrete security rather
than asymptotic security. Let UX denote the uniform probability distribution
over a finite set X.

Definition 3 (see e.g., [5]). Let G : S → X be an algorithm with finite input
set S and finite output set X. Given parameters T ≥ 0 and ε ≥ 0, G is called
a (T, ε)-secure pseudorandom generator (PRG) if, for any algorithm (called a
distinguisher) D : X → {0, 1} with time complexity bounded by T , we have
AdvD(G) ≤ ε where AdvD(G) denotes the advantage of D defined by

AdvD(G) := |Pr[D(UX) = 1]− Pr[D(G(US)) = 1]| . (20)

Let ∆(P1, P2) denote the statistical distance of two probability distributions
P1, P2 over the same finite set Z defined by

∆(P1, P2) :=
1

2

∑
z∈Z

|Pr[P1 = z]− Pr[P2 = z]| (21)

= max
E⊂Z

|Pr[P1 ∈ E]− Pr[P2 ∈ E]| . (22)

Then the advantage AdvD(G) of a distinguisher D defined above is equal to
∆(D(UX), D(G(US))), as both D(UX) and D(G(US)) are probability distribu-
tions over {0, 1}. This interpretation of the advantage gives us a motivation
to enhance the above security notion of PRGs, as in the following definition
introduced by Dubrov and Ishai [4] (with slightly different formulation):

Definition 4 ([4]). Let G : S → X be an algorithm with finite input set S and
finite output set X. Given parameters T ≥ 0, ε ≥ 0 and an integer n ≥ 2, G is
called (T, n, ε)-secure if, for any algorithm (distinguisher)D : X → {0, 1, . . . , n−
1} with time complexity bounded by T , we have AdvD(G) ≤ ε where we put
AdvD(G) := ∆(D(UX), D(G(US))). Such an algorithm G is called a PRG that
fools non-boolean distinguishers (nb-PRG, in short).

Note that (T, 2, ε)-security is equivalent to (T, ε)-security in Definition 3.
Several applications of nb-PRGs are discussed in [4]. For example, it was shown
that randomness used in some kinds of information-theoretically secure pro-
tocols (such as multi-party computation of certain types) can be replaced with
outputs of nb-PRGs, without any restriction on computational complexity of the
adversary against the protocol. However, despite the significance of nb-PRGs
mentioned above, it seems much more difficult to construct secure nb-PRGs
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than the case of usual PRGs against 1-bit output distinguishers. Indeed, to the
authors’ best knowledge, the only constructions of nb-PRGs in the literature so
far are the ones by Dubrov and Ishai themselves in the original paper [4], and
their construction is based on certain computational assumption which is less
standard than those used in constructions of usual PRGs. Hence, it is worthy
to investigate a method to construct nb-PRGs (under standard computational
assumptions).

Our proposal here is to establish a general theorem of the following form:
Any (T ′, ε′)-secure PRG is also a (T, n, ε)-secure nb-PRG, where the parameters
T ′ and ε′ as a usual PRG are determined by T , n and ε in a certain manner.
Such an implication result is evidently meaningful, as it enables us to convert a
large number of existing PRGs under standard assumptions into nb-PRGs. In
fact, an implication relation as above has been mentioned (without proof) in
[4]. Our aim here is to improve the preceding relation by introducing the idea
of FDPs.

The above-mentioned relation is derived from the first expression (21) of
statistical distance, in the following manner (which refers to a description in [9]).
We introduce some notations. Put Y := {0, 1, . . . , n− 1} for simplicity. For any
subset Z ⊂ Y , let χZ : Y → {0, 1} denote the characteristic function of Z defined
by χZ(x) = 1 if x ∈ Z and χZ(x) = 0 if x ∈ Y \ Z. We write χz = χ{z} for
simplicity when Z = {z}. In this setting, for any PRG G : S → X and any non-
boolean distinguisher D : X → Y , the statistical distance ∆(D(UX), D(G(US)))
is equal to

1

2

∑
y∈Y

|Pr[D(UX) = y]− Pr[D(G(US)) = y]|

=
1

2

∑
y∈Y

|Pr[χy ◦D(UX) = 1]− Pr[χy ◦D(G(US)) = 1]|

=
1

2

∑
y∈Y

Advχy◦D(G) ,

(23)

where χy◦D denotes an algorithm performed by first executing the distinguisher
D and then evaluating the output of D by the function χy. An important
property is that χy◦D is a 1-bit output algorithm, therefore it can be regarded as
a distinguisher for the PRG G. This implies that, to show that a (T ′, ε′)-secure
PRG G is also a (T, n, ε)-secure nb-PRG, it suffices to choose the parameters
as T ′ = T + δ1 and ε′ = 2ε/n, where δ1 is the maximum of the overhead in
computational complexity of composing some χy (y ∈ Y ) to D (usually, δ1 can
be set to be almost zero in practical situations). In other words, we have the
following proposition (which has been mentioned in [4]):

Proposition 1. In this setting, any (T +δ1, 2ε/n)-secure PRG is also (T, n, ε)-
secure, where the quantity δ1 is defined in the above manner.

A drawback of this result is that, in practical applications the parameter n
(which is relevant to the allowable input size for an adversary against a protocol
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under consideration) should frequently be large, which makes the overhead in a
bound of advantage in Proposition 1 too heavy. We try to resolve the drawback
by improving or modifying the above result.

Our first idea is to use the second expression (22) of statistical distance
instead of the first one (21) used in the preceding argument. Namely, in the
same setting as above, the statistical distance ∆(D(UX), D(G(US))) is equal to

max
Z⊂Y

|Pr[D(UX) ∈ Z]− Pr[D(G(US)) ∈ Z]|

= max
Z⊂Y

|Pr[χZ ◦D(UX) = 1]− Pr[χZ ◦D(G(US)) = 1]|

= max
Z⊂Y

AdvχZ◦D(G) .

(24)

In the same way as Proposition 1, the above argument implies the following
result:

Proposition 2. In this setting, any (T + δ2, ε)-secure PRG is also (T, n, ε)-
secure, where δ2 is the maximum of the overhead in computational complexity
of composing some χZ with Z ⊂ Y := {0, 1, . . . , n− 1} to D.

In contrast to Proposition 1, there exists no overhead for a bound of ad-
vantage ε in Proposition 2. However, instead, the overhead δ2 for a bound of
time complexity of distinguishers is expected to be too heavy, as the set Y (of
somewhat large size) may contain an extremely complicated subset Z, for which
the computation of χZ would be inefficient.

From now, we try to improve the above-mentioned trade-off between over-
heads for bounds of advantage and of computational complexity, by applying
the idea of FDPs. Put Y := {0, 1, . . . , n − 1} as above, and let C be the set of
characteristic functions χZ : Y → {0, 1} for subsets Z ⊂ Y , and let d = dH (see
(2)). Then for χY1

, χY2
∈ C, dH(χY1

, χY2
) is equal to the size of the symmetric

difference Y1 ⊖ Y2 := (Y1 \ Y2) ∪ (Y2 \ Y1) of two subsets Y1 and Y2. Now we
fix a subset C′ of C. Let δ3 be the maximum of the overhead in computational
complexity of composing some χZ ∈ C′ to D. Moreover, we put r := r(C, C′) for
simplicity. Then we have the following result (we notice that, when C′ = {χ∅},
the theorem gives almost the same result as Proposition 1):

Theorem 1. In the above situation, let δ1 be as specified in Proposition 1.
If G : S → X is (T + δ1, ε1)-secure and (T + δ3, ε3)-secure, then G is also
(T, n, rε1 + ε3)-secure.

Proof. For each distinguisher D : X → Y := {0, 1, . . . , n− 1}, we write µ(Z) :=
Pr[D(UX) ∈ Z] and µ′(Z) := Pr[D(G(US)) ∈ Z] for a subset Z ⊂ Y . Let Y0
be a subset of Y that attains the maximum of the second expression (22) of the
statistical distance;

∆(D(UX), D(G(US))) = |µ(Y0)− µ′(Y0)| . (25)

Note that Y0 can be chosen in such a way that µ(Y0) − µ′(Y0) ≥ 0 (if this
inequality fails, use Y \ Y0 instead of Y0), therefore

∆(D(UX), D(G(US))) = µ(Y0)− µ′(Y0) . (26)
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Moreover, by the definition of r, there is a subset Y1 ⊂ Y satisfying that χY1 ∈ C′

and dH(χY0 , χY1) = |Y0 ⊖ Y1| ≤ r. Now we have

ν(Y0)− ν(Y1) = ν(Y0 \ Y1)− ν(Y1 \ Y0) for each ν ∈ {µ, µ′} , (27)

therefore we have

(µ(Y0)− µ′(Y0))− (µ(Y1)− µ′(Y1))

= (µ(Y0)− µ(Y1))− (µ′(Y0)− µ′(Y1))

= (µ(Y0 \ Y1)− µ′(Y0 \ Y1))− (µ(Y1 \ Y0)− µ′(Y1 \ Y0)) .
(28)

Moreover, the right-hand side is equal to∑
y∈Y0\Y1

(µ({y})− µ′({y}))−
∑

y∈Y1\Y0

(µ({y})− µ′({y}))

≤
∑

y∈Y0⊖Y1

|µ({y})− µ′({y})|

=
∑

y∈Y0⊖Y1

|Pr[χy ◦D(UX) = 1]− Pr[χy ◦D(G(US)) = 1]|

=
∑

y∈Y0⊖Y1

Advχy◦D(G) .

(29)

Now if D has computational complexity bounded by T , then the assumption on
G and the definition of δ1 imply that∑

y∈Y0⊖Y1

Advχy◦D(G) ≤
∑

y∈Y0⊖Y1

ε1 = |Y0 ⊖ Y1| · ε1 ≤ rε1 . (30)

Summarizing, we have

(µ(Y0)− µ′(Y0))− (µ(Y1)− µ′(Y1)) ≤ rε1 . (31)

This and (26) implies that

∆(D(UX), D(G(US)))

= (µ(Y0)− µ′(Y0))− (µ(Y1)− µ′(Y1)) + (µ(Y1)− µ′(Y1))

≤ rε1 + (Pr[D(UX) ∈ Y1]− Pr[D(G(US)) ∈ Y1])

≤ rε1 + |Pr[χY1 ◦D(UX) = 1]− Pr[χY1 ◦D(G(US)) = 1]|
= rε1 + AdvχY1

◦D(G) ≤ rε1 + ε3 ,

(32)

concluding the proof of Theorem 1.

Regarding the relation between parameters in Theorem 1, first note that it is
natural by the definitions to expect that δ1 ≤ δ3, which allows us to suppose that
ε1 ≤ ε3. Now let us imagine the following situation: We can find an appropriate
subset C′ ⊂ C in such a way that every characteristic function χZ ∈ C′ has low
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computational complexity and the quantity r := r(C, C′) is small. In this case,
δ3 can be small as well as r, and it would make the implication relation given
by Theorem 1 more efficient than those in Propositions 1 and 2, therefore the
above-mentioned trade-off is improved. Hence a study of FDPs (in particular,
those for functions with 1-bit output sets) will contribute to establish a better
relation between PRGs and nb-PRGs.

Remark 2. We mention that, for the two applications of FDPs discussed in the
last two sections, a kind of “risk-hedging” relation exists as follows. Namely,
if we find that the quantity r(C, C′) tends to be large in general, then it would
support the argument in Section 3 to show that keyless hash functions under
consideration would have better security. On the other hand, if we find that the
quantity r(C, C′) tends to be small in general, then it would support the argu-
ment in Section 4 to show that overheads in parameters for nb-PRGs compared
to PRGs would be practically small.

At the last of this section, we give an example of the possible choices of the
distinguished subset C′ of C. We consider the case that n = 2ℓ for an integer ℓ;
now the set Y is identified with {0, 1}ℓ via the binary expression of integers, and
each element χZ of C is regarded as a boolean function {0, 1}ℓ → {0, 1} with ℓ-
bit input. In this setting, our task is to find a set C′ of “easy” boolean functions
with ℓ-bit inputs, for which each function in C can be closely approximated
by some function in C′. Here we consider ℓ-variable disjunctive normal form
(DNF ) formulae; recall that a literal is yi or yi (logical NOT of yi) where
y1, . . . , yℓ ∈ {0, 1} are input bits for a boolean function, a term is a logical AND
of literals, and a DNF formula is a logical OR of terms. The number of terms
in a DNF formula is called the size of the formula. It is straightforward to show
that any ℓ-bit input boolean function is equivalent to some DNF formula of
size 2ℓ. Below we will define C′ to be the set of (ℓ-bit input) boolean functions
which are either a logical XOR of at most ℓ DNF formulae of size significantly
smaller than 2ℓ, or the logical NOT of such a function. Now the functions in C′

is expected to be easier to compute than general boolean functions, hence the
overhead δ3 in the bound for the distinguisher’s computational complexity in
Theorem 1 would be significantly better (i.e., smaller) than its counterpart δ2
in Proposition 2, as desired.

Before specifying the sizes of the DNF formulae in the choice of C′, first we
give the following argument. A boolean function f : {0, 1}ℓ → {0, 1} is called
monotone, if yi ≤ y′i for every i ∈ {1, . . . , ℓ} implies f(y1, . . . , yℓ) ≤ f(y′1, . . . , y

′
ℓ).

We note that χZ ∈ C is monotone if and only if Z ⊂ {0, 1}ℓ is a filter (i.e., upper-
closed set) of the ℓ-dimensional lattice {0, 1}ℓ. Then we have the following result:

Lemma 5. Any χZ ∈ C with 0⃗ := (0, 0, . . . , 0) ̸∈ Z can be expressed as the
logical XOR of at most ℓ monotone boolean functions.

Proof. Let Z1 denote the filter of {0, 1}ℓ generated by the minimal (with respect
to the order of {0, 1}ℓ) elements of Z. Then we have Z ⊂ Z1 and χZ =
χZ1

⊕χZ1\Z where ⊕ denotes the logical XOR. The claim holds if Z1\Z = ∅. On
the other hand, if Z1 \ Z ̸= ∅, then we iterate the process to decompose χZ1\Z .
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As the minimum weight of minimal elements of Z1 \ Z is strictly larger than
the minimum weight of minimal elements of Z, and 0⃗ ̸∈ Z by the assumption,
the process terminates with at most ℓ steps, giving the decomposition χZ =
χZ1

⊕ · · · ⊕ χZℓ′ with Zi being filters of {0, 1}ℓ, 1 ≤ i ≤ ℓ′ ≤ ℓ. Hence the claim
holds.

By the lemma, for any χZ ∈ C, either χZ or χZ = χ{0,1}ℓ\Z can be expressed
as the logical XOR of at most ℓmonotone boolean functions. On the other hand,
for each of these monotone functions, recently Blais, H̊astad, Servedio and Tan
[1] showed the following result:

Proposition 3 (See [1]). For any 0 < η < 1, every ℓ-bit input monotone boolean

function f can be approximated by a DNF formula g of size 2ℓ−Ω(
√
ℓ) satisfying

that d(f, g) ≤ η · 2ℓ (where the dependence on η is omitted in the Ω notation for
simplicity).

Owing to the result, we define the subset C′ of C as above, with the sizes
of the DNF formulae satisfying the bound in Proposition 3. Then by Lemma 5
and Proposition 3, we have r = r(C, C′) ≤ ℓη · 2ℓ, which is o(2ℓ) if η = o(1/ℓ).
This makes the trade-off in Theorem 1 better than Proposition 1 as desired, if
ε3 is not too larger than r · ε1.

We note that there are several results in the literature on approximations
of boolean functions by not only DNF formulae but also those in other special
classes. For example, upper approximations of boolean functions (i.e., approx-
imations of f by g satisfying that f(y) ≤ g(y) for every y ∈ {0, 1}ℓ) by affine
boolean functions were studied in e.g., [6]. The authors hope that the present
work provides another motivation for the well-studied area of good approxima-
tions of boolean functions.

5 Mathematical Examples of FDPs

This section is devoted to describe some examples for mathematical studies
of FDPs themselves, rather than their cryptographic applications such as ones
discussed in Sections 3 and 4. The authors hope that one would feel that
FDPs themselves are of independent interest as mathematical problems and
mathematical studies of FDPs will be promoted.

5.1 Vector spaces and their subspaces: A general bound

The examples of FDPs discussed below can be interpreted in the following man-
ner. The set C forms a finite-dimensional vector space over a finite field F, with
a distinguished basis v1, . . . , vd where d := dim(C), hence each element of C ad-
mits a vector expression. A subset C′ is a linear subspace of C, and the distance
d(f, g) is defined to be the (generalized) Hamming distance with respect to the
vector expressions of f, g ∈ C. In this subsection, we show a general upper
and lower bounds of the quantity r(C, C′) in this case. Namely, we have the
following:
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Proposition 4. In the above setting, let ℓ denote the minimal integer ℓ′ sat-

isfying that
∑ℓ′

i=0

(
d
i

)
(|F| − 1)i ≥ |F|codimC(C′), where codimC(C′) denotes the

codimension d− dim(C′) of C′ in C. Then we have ℓ ≤ r(C, C′) ≤ codimC(C′).

Proof. Put d′ := dim(C′), therefore codimC(C′) = d−d′. First we prove the lower
bound. For each w ∈ C and k ≥ 0, put B(w, k) := {w′ ∈ C | d(w,w′) ≤ k}. Then
we have |B(w, k)| =

∑k
i=0

(
d
i

)
(|F| − 1)i. On the other hand, by the definition of

r(C, C′), we have C ⊂
∪

w∈C′ B(w, r(C, C′)). This implies that

|C| ≤ |C′| ·
r(C,C′)∑
i=0

(
d

i

)
(|F| − 1)i , (33)

or equivalently |F|d−d′
= |C|/|C′| ≤

∑r(C,C′)
i=0

(
d
i

)
(|F| − 1)i. Hence we have ℓ ≤

r(C, C′) by the choice of ℓ.
Secondly, we prove the upper bound. By applying Gaussian elimination to

any basis of C′, it follows that there exist a basis u1, . . . , ud′ of C′ and distinct
indices i1, . . . , id′ ∈ {1, 2, . . . , d} with the property that, for each 1 ≤ j ≤ d′,
the coefficient of a basis element vij of C in uj is 1 and the coefficient of vij in

any other uk (k ̸= j) is 0. Now for an arbitrary element w =
∑d

i=1 civi ∈ C
(ci ∈ F), the above property of u1, . . . , ud′ implies that the distance between w

and w′ :=
∑d′

j=1 cijuj ∈ C′ is at most d− d′, therefore d(w, C′) ≤ d− d′. Hence
we have r(C, C′) ≤ d− d′, concluding the proof of Proposition 4.

The next result shows how the lower and upper bounds in Proposition 4 are
close to each other:

Proposition 5. In the setting of Proposition 4, we have

ℓ ≤ codimC(C′) ≤ log|F|
(
cℓ(|F| − 1)ℓdℓ/ℓ!

)
= ℓ(log|F|(|F| − 1) + log|F| d) + log|F| cℓ − log|F| ℓ! ,

(34)

where cℓ = ℓ + 1 if F is the two-element field F2, and cℓ = (|F| − 1)/(|F| − 2)
otherwise.

Proof. It suffices to prove the second inequality. As |F|codimC(C′) ≤
∑ℓ

i=0

(
d
i

)
(|F|−

1)i by the definition of ℓ, it suffices to show that
∑ℓ

i=0

(
d
i

)
(|F| − 1)i ≤ cℓ(|F| −

1)ℓdℓ/ℓ!, or more generally,
∑m

i=0

(
N
i

)
(q − 1)i ≤ c′m(q − 1)mNm/m! for all inte-

gers N ≥ m ≥ 0 and q ≥ 2, where we put c′m := (q − 1)/(q − 2) if q ≥ 3 and
c′m := m + 1 if q = 2, and we set 00 = 1 (note that ℓ ≤ codimC(C′) ≤ d). We
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use induction on m. The case m = 0 is trivial. For the case m ≥ 1, we have

m∑
i=0

(
N

i

)
(q − 1)i =

m−1∑
i=0

(
N

i

)
(q − 1)i +

(
N

m

)
(q − 1)m

≤
c′m−1(q − 1)m−1Nm−1

(m− 1)!
+

(
N

m

)
(q − 1)m

≤
c′m−1(q − 1)m−1Nm−1

(m− 1)!
+

(q − 1)mNm

m!

=
(q − 1)mNm

m!

(
c′m−1m

(q − 1)N
+ 1

)
.

(35)

By the relation m ≤ N and the definition of c′m, we have

c′m−1m

(q − 1)N
+ 1 ≤

c′m−1

q − 1
+ 1 = c′m , (36)

therefore the desired inequality holds for this m as well. Hence the claim of
Proposition 5 holds.

5.2 Boolean functions of low degrees

As a first concrete example, here we deal with the set C of the functions X → Y
with n-bit inputs and 1-bit outputs, i.e., we set X := {0, 1}n and Y := {0, 1}
(which is relevant to the situation of Section 4). First note that, when we
identify {0, 1} naturally with F2, each function f : X → Y can be expressed as
an n-variable square-free polynomial;

f(x1, . . . , xn) =
∑

a⃗=(a1,...,an)∈{0,1}n

f (⃗a)χa⃗(x1, . . . , xn) (37)

where we put

χa⃗(x1, . . . , xn) :=
∏

i;ai=0

(1− xi)
∏

i;ai=1

xi for a⃗ = (a1, . . . , an) (38)

(note that χa⃗(x1, . . . , xn) = 1 if xi = ai for every i and χa⃗(x1, . . . , xn) = 0
otherwise, therefore χa⃗ is indeed the characteristic function of a⃗ ∈ {0, 1}n). For
example, when n = 2 we have

f(x1, x2) = f(0, 0)(1− x1)(1− x2) + f(0, 1)(1− x1)x2

+ f(1, 0)x1(1− x2) + f(1, 1)x1x2 .
(39)

Now for each 0 ≤ k ≤ n, we set C′ = C′
k to be the subset of C consisting of

functions that can be expressed as a square-free polynomial of degree ≤ k. For
example, C′

0 is the set of constant functions, and C′
1 is the set of affine functions.

The distance d(f, g) = dH(f, g) is defined as in (2). Note that changing the
value of f ∈ C at a point a⃗ ∈ {0, 1}n is equivalent to adding the function χa⃗ to
the f . In this situation, we have the following upper and lower bounds for the
quantity r(C, C′

k):
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Proposition 6. In the above setting, put un,k :=
∑n

i=k+1

(
n
i

)
, and let ℓn,k be

the minimum integer ℓ satisfying that 2un,k ≤
∑ℓ

i=0

(
2n

i

)
. Then we have

ℓn,k ≤ r(C, C′
k) ≤ min{un,k, 2n−1} . (40)

Proof. For the upper bound, note that r(C, C′
k) ≤ 2n−1, as any function f ∈ C

can be converted into a constant function by changing the value f(x) at every
point x ∈ {0, 1}n with the property that f(x) is in the minority among the
2n values of f (the number of such points is at most 2n−1). Then the upper
bound follows from Proposition 4, as C is an F2-vector space of dimension 2n

and C′
k is its subspace of codimension un,k. The lower bound also follows from

Proposition 4.

By Proposition 5, the quantities ℓn,k and un,k in Proposition 6 satisfy the
relation ℓn,k ≤ un,k ≤ nℓn,k+log2(ℓn,k+1)− log2 ℓn,k!. Table 1 gives the precise
values of ℓn,k for some smaller cases.

Table 1: The values of ℓn,k for some small parameters
n− k

1 2 3 4 5 6 7 8
2 1 2
3 1 2 4
4 1 2 4 8

n 5 1 2 5 10 16
6 1 2 5 13 22 32
7 1 2 6 16 31 49 64
8 1 2 6 19 43 75 105 128

Here we introduce a geometric point of view to the above problem. We
introduce some notations. For a subset I ⊂ [n] := {1, 2, . . . , n}, put xI :=∏

i∈I xi, and let aI be the element (a1, . . . , an) of {0, 1}n determined by ai = 1

when and only when i ∈ I. We write δI := χaI
for simplicity. Let ∆n−1

+ be the
disjoint union of an isolated point P and the standard (n− 1)-simplex ∆n−1 on
the vertex set [n]; we regard P as “the (−1)-dimensional face” of ∆n−1

+ . For
each ∅ ̸= I ⊂ [n], let ⟨I⟩ denote the (|I| − 1)-dimensional sub-simplex of ∆n−1

spanned by I, and let ⟨I⟩o be its relative interior (note that ⟨{i}⟩o = ⟨{i}⟩ = {i}
for each i ∈ [n]). On the other hand, we put ⟨∅⟩ = ⟨∅⟩o := P . Now for each
function f(x) =

∑
I⊂[n] cIxI (cI ∈ F2), we define its geometric realization Gf

by

Gf :=
∪

I;cI=1

⟨Ic⟩o (disjoint union), (41)

where Ic denotes the complement [n] \ I of I in [n]. For each I ⊂ [n], by
the definition and the fact that δI =

∑
J⊃I xJ (recall that now the values of

functions are in F2), GδI is the (disjoint) union of P and ⟨J⟩o for all ∅ ̸= J ⊂ Ic,
therefore we have GδI = P ∪ ⟨Ic⟩. Moreover, for any 0 ≤ k ≤ n and I ⊂ [n],
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we have |I| ≥ k + 1 if and only if ⟨Ic⟩ is at most (n− k − 2)-dimensional. This
implies that a function f ∈ C belongs to C′

k if and only if Gf does not intersect
with the (n − k − 1)-dimensional skeleton ∆n

n−k−1 of ∆n−1
+ , which consists of

the faces of ∆n−1
+ of dimension up to n− k − 1.

Based on the above observation, we consider the following puzzle. We imag-
ine a situation that a lamp is associated to each face of ∆n−1

+ . A state of ∆n−1
+

is a collection of light/dark properties of all the lamps. Given a function f , the
corresponding initial state If is defined in such a way that a lamp at a face is
light if and only if the relative interior of the face is contained in Gf . At any
state, the player of the puzzle is allowed to indicate a face F of ∆n−1

+ (we call
it “push the face F”), then the light/dark properties of lamps at P and every
sub-face of F are flipped; such a process is regarded as a move of the puzzle.
An initial state If is said to be solved when the lamps of all faces of ∆n

n−k−1 are
switched off by a sequence of moves started from If . With this interpretation,
the distance d(f, C′

k) from f ∈ C to C′
k is the minimum of the number of moves

to solve If , and the quantity r(C, C′
k) is the minimal necessary number of moves

to solve any initial state.
Moreover, we also introduce a simplified puzzle on ∆n−1 instead of ∆n−1

+ by
ignoring the isolated point P in the above puzzle. Let r′n,k denote the minimal
necessary number of moves to solve (for the simplified puzzle) any initial state.
Then we have r(C, C′

k) = r′n,k+1, as for an initial state I of the simplified puzzle
for which solving I requires precisely r′n,k moves, one of the two initial states
of the original puzzle obtained by adding a lamp at P which is light and dark,
respectively, requires r′n,k +1 moves. Hence it suffices to consider the simplified

puzzle on ∆n−1 for determining the quantity r(C, C′
k).

Example 1. We set n = 4 and show that r(C, C′
1) = 6, or equivalently r′4,1 = 5.

Note that the general bounds in Proposition 6 only guarantee that 4 ≤ r(C, C′
1) ≤

8 (note that u4,1 = 11 > 8 = 24−1). We identify naturally each state in the
puzzle on ∆n−1 = ∆3 with each family of non-empty subsets of [n] = [4], and
we write {i1, i2, . . . , iℓ} as i1i2 · · · iℓ for simplicity. Moreover, to express each
state we omit the subsets of [4] of size larger than 2, as the lamps at faces of
dimension at least n − k − 1 = 2 are not relevant to determine whether the
puzzle has been solved or not. In other words, in the present situation, we can
regard each state as edge and vertex coloring of the complete graph K4.

First, we show that the initial state I = {13, 24} requires more than 4 moves
to solve. Assume contrary that I can be solved by at most 4 moves. If the player
pushes the face 1234, then a state {1, 2, 3, 4, 12, 23, 34, 41} is obtained. To solve
the state by at most 3 remaining moves, the player has to push at least one
2-dimensional face; we may assume by symmetry that the face is 123. Then
the resulting state is {4, 13, 34, 41}; however, a case-by-case analysis shows that
to solve the state by at most 2 remaining moves is impossible. Therefore the
player does not push the face 1234. On the other hand, if the player pushes
a 2-dimensional face, then we may assume by symmetry that the face is 123,
resulting in a state {1, 2, 3, 12, 23, 24}. To solve the state by at most 3 remaining
moves, the player has to push at least one more 2-dimensional face. If it is 124,
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then we obtain a state {3, 4, 23, 41}, but a case-by-case analysis shows that to
solve the state by at most 2 remaining moves is impossible (the case of 234 is sim-
ilar by symmetry). If it is 134, then we obtain a state {2, 4, 12, 13, 14, 23, 24, 34},
but a case-by-case analysis shows that to solve the state by at most 2 remaining
moves is impossible as well. Therefore the player does not push a 2-dimensional
face. This implies that the player should push 13 and 24, resulting in a state
{1, 2, 3, 4}, from which to solve the state by at most 2 remaining moves is im-
possible. Hence we have a contradiction, therefore the initial state S = {13, 24}
indeed requires more than 4 moves to solve.

Secondly, we show that any initial state I can be solved by at most 5 moves.
The player can solve I by at most 4 moves when no lamps in I at 1-dimensional
faces are light, therefore I can be solved by at most 5 moves when at most 1
lamp in I at 1-dimensional face is light. When 2 lamps in I at 1-dimensional
faces are light, a case-by-case analysis shows that I can be solved by at most
4 moves unless I is of the form {i1i2, i3i4} with {i1, i2} ∩ {i3, i4} = ∅, and for
any I of the latter form, I can be solved by pushing the faces 1234, i1i2i3,
i1i2i4, i1, and i2. When 3 lamps in I at 1-dimensional faces are light, the
problem can be reduced to the case of 2 light lamps at 1-dimensional faces by
pushing one of the 3 light lamps at 1-dimensional faces. When 4 lamps in I
at 1-dimensional faces are light, the problem can be reduced to the case of 2
light lamps at 1-dimensional faces by pushing the face 1234 unless I is of the
form {1, 2, 3, 4, i1i3, i1i4, i2i3, i2i4} with {i1, i2} ∩ {i3, i4} = ∅, and for any I of
the latter form, I can be solved by pushing the faces i1i2i3, i1i2i4, i1, and i2.
When 5 lamps in I at 1-dimensional faces are light, the problem can be reduced
to the case of 2 light lamps at 1-dimensional faces by pushing an appropriate
2-dimensional face. Finally, when 6 lamps in I at 1-dimensional faces are light,
the problem can be reduced to the case of no light lamps at 1-dimensional faces
by pushing the face 1234. Hence any initial state I can be solved by at most 5
moves, therefore we have r′4,1 = 5 as desired.

From now, we investigate FDPs in the above setting by using Gröbner bases.
Recall that X = {0, 1}n. Let R := K[zv | v ∈ X] be a polynomial ring in 2n

variables over a field K of characteristic 0. We define the following ideal of R:

I0 := (zv
2 − 1 | v ∈ X) ⊂ R . (42)

For each f ∈ C, put
zf :=

∏
v∈X

zv
f(v) . (43)

Then the set {zf | f ∈ C} of all square-free monomials in R forms a linear basis
of the quotient ring A0 := R/I0. Note that zfzg = zf+g (mod I0) and the
degree deg(zf ) of zf in R is equal to d(f, 0) for any f, g ∈ C, where 0 denotes
the function in C taking constant value 0.

Let C′ be a subset of C, which need not be a linear subspace of C unless
otherwise specified. We define the following ideal of R:

ǏC′ := (zf − zg | f, g ∈ C′) ⊂ R , (44)
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and consider the ideal IC′ := I0 + ǏC′ of R. We identify the quotient ring
AC′ := R/IC′ with the quotient ring of A0 by the image of ǏC′ . Now fix a
graded monomial order, i.e., a monomial order ≺ satisfying that

∏
v∈X zv

αv ≺∏
v∈X zv

βv for any exponents (αv)v∈X and (βv)v∈X with
∑

v∈X αv <
∑

v∈X βv.
Let G be a Gröbner basis for the ideal IC′ , and consider the reduction process
with respect to the Gröbner basis G. As each generator of IC′ is of the form
“(monic monomial)− (monic monomial)”, G can be chosen in such a way that
every element of G is of the same form, and the linear basis of A0 consisting
of the square-free monic monomials can be partitioned into equivalence classes
when projected onto the quotient ring AC′ . This also implies that the normal
form nf(zf ) of each f ∈ C with respect to G is a square-free monic monomial,
i.e., of the form zg with g ∈ C, and we have

deg(nf(zf )) = min{deg(zf
′
) | zf

′
= zf (mod IC′)}

= min{deg(zf
′
) | zf

′
− zf ∈ IC′} .

(45)

Now we consider the case that 0 ∈ C′. Note that zfzf = 1 = z0 (mod I0)
for any f ∈ C. Now if f, g ∈ C and zf = zg (mod IC′), then we have zf+g =
zfzg = zfzf = z0 (mod IC′), therefore f + g ∈ C′. Conversely, if f + g ∈ C′,
then we have zfzg = zf+g = z0 = 1 (mod IC′), therefore zf = zfzgzg = zg

(mod IC′). Hence deg(nf(zf )) is equal to the minimal degree of zg with g ∈ C
satisfying that f + g ∈ C′, therefore d(f, C′) = deg(nf(zf )). This argument
reduces the FDP in this setting to the problem of computing (the degrees of)
the normal forms of square-free monomials. More precisely, let hi denote the
number of monic monomials in AC′ whose normal forms have degree i, and put
s := max{i | hi > 0}. (If the ideal is homogeneous, then (hi)i is called the
Hilbert function and it does not depend on the choice of a monomial order.)
Now the above argument implies that r(C, C′) = s. Moreover, if C′ is a linear
subspace of C, then we have hi · |C′| = |{f ∈ C | d(f, C′) = i}|, therefore the data
(hi)i express the distributions of the distances d(f, C′) over the functions f ∈ C.

Based on the above argument, Proposition 4 can be restated for the present
case as follows:

Proposition 7. In the above setting, suppose that C′ is a linear subspace of C.
Then we have

min{ℓ |
ℓ∑

i=0

(
n

i

)
≥ 2n

|C′|
} ≤ r(C, C′) ≤ 2n

|C′|
. (46)

Proof. Note that the number of monic monomials in AC′ is 2n/|C′|. Then the
lower bound follows from the fact that the normal form of each monic monomial
is also a monic monomial and that there exist

(
n
i

)
square-free monic monomials

of degree i, hence hi ≤
(
n
i

)
. On the other hand, the upper bound is deduced

from the fact that each divisor of a monic monomial of normal form is also of
normal form, hence hi = 0 if hj = 0 and j < i. This concludes the proof.
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For the case C′ = C′
k as discussed above, Table 2 shows a calculation result

of r(C, C′
k) and (hi)i for small parameters n and k, which is obtained by using

computer algebra software Singular/Sage. By the table, we have r(C, C′
k) = 6

when (n, k) = (4, 1), as explained in Example 1. Note that the values of r(C, C′
k)

in Table 2 are consistent with the lower bounds shown in Table 1.

Table 2: Computer calculation result for some small parameters
n k r(C, C′

k) (hi)i≥0

2 1 1 (1, 1)
3 1 2 (1, 8, 7)
3 2 1 (1, 1)
4 1 6 (1, 16, 120, 560, 875, 448, 28)
4 2 2 (1, 16, 15)
4 3 1 (1, 1)

5.3 Perfect codes and Reed–Solomon codes

In this subsection, we consider the case that C is an n-dimensional vector space
over the q-element field Fq, hence C is identified with Fq

n, the distance d(·, ·) is
defined to be the (generalized) Hamming distance (with respect to the vector
expressions of elements), and C′ is a linear subspace of C coming from the
coding theory. Let the subspace C′ be an (n,m, d)-code, i.e., dim(C′) = m and
the minimum distance of C′ is d. By the definition of minimum distance, we
have the following well-known relation

qm
⌊d/2⌋∑
i=0

(
n

i

)
(q − 1)i ≤ qn . (47)

This and the argument in Proposition 4 implies that r(C, C′) ≥ ⌊d/2⌋.
We say that C′ is a perfect code, if the equality holds in (47). For a perfect

code C′, the above argument and Proposition 4 implies that r(C, C′) = ⌊d/2⌋.
For example, if n = 2k − 1, q = 2 and C′ is the Hamming code Hk which is a
(2k − 1, 2k − k − 1, 3)-code, then we have r(C, C′) = 1. On the other hand, if
n = 23, q = 2 and C′ is the binary Golay code G23 which is a perfect (23, 12, 7)-
code, then we have r(C, C′) = 3. (In the case of the extended Golay code
C′ = G24 which is a nearly perfect (24, 12, 8)-code, where we set n = 24 and
q = 2, we also have r(C, C′) = 4 in a similar manner.)

As another concrete class of C′ for which the quantity r(C, C′) can be explic-
itly determined, from now we study the case of Reed–Solomon codes, which is
also an important class of linear codes. We write q = pe with a prime number p
and an integer e ≥ 1, and choose an integer k with 1 ≤ k < n. Take a primitive
element α of Fq, i.e., Fq

× = ⟨α⟩. Define a polynomial G(x) ∈ Fq[x] of degree
n− k by

G(x) := (x− 1)(x− α)(x− α2) · · · (x− αn−k−1) . (48)
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For any integer j ≥ 0, let Pj denote the set of polynomials in Fq[x] of degrees up
to j, which is a (j+1)-dimensional Fq-linear subspace of Fq[x]. We identify Pn−1

with C via the correspondence
∑n−1

i=0 aix
i 7→

∑n−1
i=0 aivi, where (v0, . . . , vn−1) is

a distinguished linear basis of C. Now we introduce the following two linear
maps:

φn,k : Pk−1 → Pn−1 , f(x) 7→ G(x)f(x) , (49)

ψn,k : Pn−1 → Fq
n−k , f(x) 7→ (f(1), f(α), f(α2), . . . , f(αn−k−1)) . (50)

Let C′ be the image of φn,k, which is a subspace of C (via the above identification
C ≃ Pn−1). This C′ is a Reed–Solomon code. Note that C′ coincides with the
kernel of ψn,k. Now we have the following result:

Proposition 8. In the above setting of Reed–Solomon code, we have r(C, C′) =
n− k.

Proof. As dim(C′) = k, the inequality r(C, C′) ≤ n− k follows from Proposition
4. From now, we show that r(C, C′) ≥ n − k, or equivalently, there exists an
element u ∈ C satisfying that d(u, C′) ≥ n− k.

For each polynomial f(x) ∈ Pn−1, the condition d(f(x), C′) ≤ n − k − 1 is
equivalent to the following: There exist indices 0 ≤ ν1 < ν2 < · · · < νn−k−1 ≤
n − 1 and coefficients cj ∈ Fq (1 ≤ j ≤ n − k − 1) for which we have f(x) −∑n−k−1

j=1 cjx
νj ∈ C′ = kerψn,k, or equivalently,

f(αi) =

n−k−1∑
j=1

cjβνj

i for every 0 ≤ i ≤ n− k − 1 , (51)

where we put βνj
:= ανj . The condition (51) can be expressed as

f(α0)
f(α1)

...
f(αn−k−1)

 =


βν1

0 βν2
0 · · · βνN−K−1

0

βν1
1 βν2

1 · · · βνN−K−1
1

...
...

...
...

βν1
n−k−1 βν2

n−k−1 · · · βνn−k−1
n−k−1

 c⃗ , (52)

where c⃗ denotes the column vector t(c1, c2, . . . , cn−k−1). For simplicity, let B

and b⃗ denote, respectively, the first n−k− 1 rows and the last row of the above
matrix; i.e., the above condition is written as

t(f(α0), f(α1), . . . , f(αn−k−1)) =

(
B

b⃗

)
c⃗ . (53)

Now, as α is a primitive element of Fq, all βνj
are distinct with each other and

hence B is a Vandermonde matrix which is invertible. Therefore, the condition
(51) implies that c⃗ = B−1 · t(f(α0), f(α1), . . . , f(αn−k−2)) and f(αn−k−1) = b⃗c⃗.
On the other hand, the latter condition is not satisfied when f(αi) = 0 for every

0 ≤ i ≤ n− k− 2 and f(αn−k−1) ̸= 0, e.g., f(x) =
∏n−k−2

i=0 (x−αi). Hence this
element f(x) ∈ C satisfies that d(f(x), C′) ≥ n − k, as desired. This concludes
the proof of Proposition 8.
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6 Concluding Remarks

In this paper, we first specified a class of mathematical problems, which we call
Function Density Problems. Then we pointed out novel connections of Function
Density Problems to theoretical security evaluations of keyless hash functions
and to constructions of provably secure pseudorandom generators with some
enhanced security property. Our argument aimed at proposing new theoretical
frameworks for these topics (especially for the former) based on Function Den-
sity Problems, rather than providing some concrete and practical results on the
topics. We also gave some examples of mathematical discussions on the prob-
lems, which would be of independent interest from mathematical viewpoints.

To conclude this paper, we discuss some possible directions of future works.
First, there exist some cryptographic protocols for which the constructions are
motivated by some NP-complete/NP-hard problems, but actually the distribu-
tions of the problem instances in the protocols are somewhat biased, therefore
it has not succeeded to prove the security of the protocols directly from the
hardness of the underlying problems (e.g., McEliece cryptosystem and other
code-based protocols relevant to decoding problem for random linear codes;
knapsack cryptosystem relevant to Subset Sum Problem; etc.). We hope that
the idea of Function Density Problems can be applied to measure the close-
ness of the approximations of the underlying hard problems in those protocols.
Secondly, for the mathematical characteristics of Function Density Problems, it
would be interesting to evaluate the computational difficulty of Function Den-
sity Problems (e.g., to prove, if possible, that Function Density Problems are
NP-hard). Moreover, as the examples of Function Density Problems in this pa-
per are for the case that the subset C′ of C forms a linear subspace, it would be
also significant to study the other cases that C′ is not a linear subspace of C.
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