
VOL. E97-A NO. 6
JUNE 2014

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



1200
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.6 JUNE 2014

PAPER Special Section on Discrete Mathematics and Its Applications

Analysis of Lower Bounds for the Multislope Ski-Rental Problem∗

Hiroshi FUJIWARA†a), Yasuhiro KONNO††, Nonmembers, and Toshihiro FUJITO†, Member

SUMMARY The multislope ski-rental problem is an extension of the
classical ski-rental problem, where the player has several options of paying
both of a per-time fee and an initial fee, in addition to pure renting and
buying options. Damaschke gave a lower bound of 3.62 on the competitive
ratio for the case where arbitrary number of options can be offered. In this
paper we propose a scheme that for the number of options given as an input,
provides a lower bound on the competitive ratio, by extending the method
of Damaschke. This is the first to establish a lower bound for each of the 5-
or-more-option cases, for example, a lower bound of 2.95 for the 5-option
case, 3.08 for the 6-option case, and 3.18 for the 7-option case. Moreover,
it turns out that our lower bounds for the 3- and 4-option cases respectively
coincide with the known upper bounds. We therefore conjecture that our
scheme in general derives a matching lower and upper bound.
key words: online algorithm, competitive analysis, online optimization,
ski-rental problems

1. Introduction

In the ski-rental problem the player is offered two options
for getting his/her ski gear: either to rent ski gear by paying
a fee each time of skiing, or to buy it. Once the player has
bought ski gear, it is available for free forever. The objective
is to minimize the total cost, under the setting that the player
does not know how many times he/she is going skiing in the
future. A strategy of such a player is to rent ski gear for the
time being and then buy it. The performance of a strategy is
measured by the competitive ratio. We say the competitive
ratio of a strategy to be c if the player according to the strat-
egy is charged at most c times the optimal offline cost, i.e.,
one with the number of times of skiing known in advance.
A matching upper and lower bound on the competitive ratio
is known to be 2 [1]. In other words, for any price setting,
there exists a strategy with a competitive ratio of 2 and it
cannot be improved.

The multislope ski-rental problem is an extension of the
ski-rental problem [2], [3]. The player here has not only the
pure rent and buy options, but also several options of paying
both of some per-time fee and some initial fee, for example,
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to rent only a pair of skis and boots after having bought other
gear like ski clothes. For this problem, an upper bound of 4
[4] and a lower bound of 3.62 [5] are known.

When it comes to application, however, the result for
the multislope ski-rental problem seems less helpful, since
each of these bounds becomes tight in the case where suf-
ficiently many options are offered to the player. We should
mention here that the multislope ski-rental problem can be
thought as Dynamic Power Management [6] on an electronic
device equipped with multiple energy-saving states, such as
a Windows computer equipped with Sleep, Stand By, and
Hibernate states. The energy-saving states correspond to the
options in the multislope ski-rental problem. The objective
is to minimize the energy consumption during an idle time
with its length unknown. In reality, it seems that the number
of energy-saving states on a device is at most ten or so. Our
aim is thus to seek a lower bound for such a realistic case.

1.1 Our Contribution

In this paper we reveal lower bounds on the competitive ra-
tio for the multiple ski-rental problem for the case where the
number of options is specified. More precisely, we design
a scheme that provides a lower bound with the number of
options given as an input, extending the method of Dam-
aschke [5]. See Table 1. This work is the first to establish
a lower bound for each of the 5-or-more-option cases. We
show a lower bound of 2.95 for the 5-option case, 3.08 for
the 6-option case, 3.18 for the 7-option case, and so on.

Besides, it turns out that our lower bounds for the 3-
and 4-option cases, 2.47 and 2.75, exactly coincide with the
matching upper and lower bounds identified in [7], respec-
tively. We therefore conjecture that also for the 5-or-more-
option cases, the output of our scheme is equal or quite close
to the matching lower and upper bound.

1.2 Related Work

The ski-rental problem was first introduced as an optimiza-
tion model of snoopy caching by Karlin et al. [1], where a
matching lower and upper bound of 2 was derived.

The start point of research on the multislope ski-rental
problem can be found in the paper of Irani et al. in the con-
text of Dynamic Power Management [6]. They studied on-
line strategies for switching multiple energy-saving states.
Augustine et al. [2] proposed an algorithm that for a given
instance of the multislope ski-rental problem, outputs the

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Table 1 Lower and upper bounds for the multislope ski-rental problem. Bold font indicates bounds
established in this paper. “# states” means how many options are offered to the player.

# states 2 3 4 5 6 7 8 9 10 general

Lower bound 2 [1] 2.47 [7] 2.75 [7] 2.95 3.08 3.18 3.25 3.31 3.36 3.62 [5]
Upper bound 2 [1] 2.47 [7] 2.75 [7] 4 [4]

best possible strategy and its competitive ratio. The best
lower bound so far of 3.62 was established by Damaschke
[5], on which our contribution is mainly based. On the other
hand, the best upper bound so far of 4 was shown by Be-
jerano et al. [4]. These two works preceded the introduction
of the multislope ski-rental problem, since they are a corol-
lary from the results on the online investment problem which
can be regarded as a special case of the multislope ski-rental
problem, in which the player is obliged to buy new gear ev-
ery time changing options. Fujiwara et al. [7] gave a match-
ing lower and upper bound for each of the 3- and 4-option
cases: 2.47 and 2.75, respectively.

To establish a lower bound is, in other words, to reveal
the hardest instance for the player. For the multislope ski-
rental problem the easiest instance had also been non-trivial.
Fujiwara et al. [7] showed the easiest instance and the best
possible competitive ratio for it.

1.3 Note on Rounding

Throughout this paper numerical rounding is all done to
the nearest value. It would be a conventional manner that
a lower bound is rounded down while an upper bound is
rounded up. The reason why we nevertheless insist on
rounding to the nearest is because there appear some match-
ing lower and upper bounds, such as those in Table 1. Refer
to Table 2 for the values with more precision.

2. Problem Statement

2.1 Instance

An instance of the (k + 1)-slope ski-rental problem consists
of k + 1 states, each of which stands for a way to get the
player’s ski gear. We collectively refer to the (k + 1)-slope
ski-rental problem for all k as the multislope ski-rental prob-
lem. Although we have called a state an option in Sect. 1
for ease of understanding, we will hereafter use the word
“state”. This is referred to as a slope in some literature.
State 0 and state k are to rent and to buy, respectively. States
1, . . . , k − 1 correspond to the options that the player pays
both of some per-time fee and some initial fee, for exam-
ple, to rent only a pair of skis and boots after having bought
other gear such as ski clothes. Let ri and bi, j(≥ 0) denote
the per-time fee of state i and the initial fee for transitioning
from state i to j, respectively. In this paper we impose the
following natural constraints:

r0 = 1, rk = 0, b0,k = 1 (1)

ri > r j for 0 ≤ i < j ≤ k, (2)

bl, j − bl,i ≤ bi, j ≤ bl, j for 0 ≤ l < i < j ≤ k. (3)

(1) normalizes so that per-time and initial fees are all scaled
down to between zero and one. This normalization may look
somewhat strange, but it makes sense; the number of times
of skiing will also be scaled soon. (2) says that the states are
ordered so that the per-time fee decreases. The left inequal-
ity in (3) is a constraint that a direct transition from state
l to j is equal to or cheaper than one shortly stopping an-
other state i. The right inequality in (3) says that a transition
from state i to j is no cheaper than one from state l < i. An
instance is thus represented by a pair of such vectors (r, b).

For example, a store may offer the following op-
tions: Rent everything for $50 per day (state 0), buy ev-
erything for $500 (state 2), or rent just skis and boots for
$30 per day with buying other gear for $100 (state 1).
Also, the store may allow you to change state 1 to 2 by
charging $450. Then, we may formulate as (r0, r1, r2) =
(50/50, 30/50, 0) = (1, 0.6, 0) and (b0,1, b0,2, b1,2) =

(100/500, 500/500, 450/500) = (0.2, 1, 0.9).

2.2 Strategy and Competitiveness

Without loss of generality, we assume the number of times
of skiing is a real number t ≥ 0. We sometimes identify t
with the time during which the player repeatedly goes ski-
ing. At each time instant, the player at state i, who is paying
ri per time unit, either (a) transitions to a different state j by
paying bi, j or (b) keeps staying at state i. In this setting a
strategy of the player is described by a vector x with k + 1
entries. Each entry xi indicates the time when the player
transitions to state i from state i − 1. The sequence of the
entries is assumed to be non-decreasing, since we consider
only such instances for which the player cannot save cost by
backward transition, due to the constraint (2). Since state
0 incurs no initial fee, we can assume that x0 = 0, i.e., the
player always starts from state 0. The player may transition
from state i directly to j by skipping the states between. For
such a transition, we set xi+1 = · · · = x j−1 = x j and define a
relation of i ≺ j. By time t such that xi ≤ t < xi+1, the player
according to strategy x will have paid a cost of

ON(x, t) := ri (t − xi) +
i−1∑
l=0

rl (xl+1 − xl) +
∑

0≤l≺m≤i

bl,m.

The first and second terms are the sum of per-time fees for
the states chosen so far, and the third is the sum of initial
fees. On the other hand, the optimal offline player behaves
optimally with t known. Due to the constraint (3), the op-
timal offline player will choose the best state for him/her at
the beginning and then keep staying there. Therefore, the
cost incurred by time t is written as



1202
IEICE TRANS. FUNDAMENTALS, VOL.E97–A, NO.6 JUNE 2014

OPT (t) := min
0≤ j≤k

(r jt + b0, j).

We measure the performance of a strategy using the compet-
itive ratio, which is a standard measure in online optimiza-
tion [8]. We say that strategy x has a competitive ratio of c,
if

ON(x, t) ≤ c · OPT (t)

holds for all t ≥ 0.

2.3 Investment Instance

In the rest of this paper we consider the subset of instances
that satisfies an additional constraint

bi, j = b0, j for 0 < i < j ≤ k,

which means in reality that when the player transitions to a
state, his/her own gear cannot be reused and therefore he/she
is obliged to buy new gear from scratch. In [7] such an in-
stance is referred to as an investment instance, which cor-
responds to online capital investment [5]. Note that in the
above numerical example, we can have an investment in-
stance if we change b1,2 into one.

In the following two sections we will deal with only
investment instances and therefore write bi, j simply as bj. It
is demonstrated how to determine b = (b1, . . . , bk) so that a
lower bound is established. We add also that there will no
longer appear any explicit strategy x; our discussion is based
on a known lemma (Lemma 1) which bounds the competi-
tive ratio of arbitrary strategies.

3. General Lower Bound

Damaschke derived a lower bound of 5+
√

5
2 ≈ 3.62 for the

general case, that is to say, for the case where arbitrary
number of states can be offered [5]. We here review the
derivation of the result in such a way that we can later ex-
tend it to the case where the number of options is fixed. We
first extract the construction of b with some modification.
Although Damaschke constructed r and b through a single
procedure, we here discuss them separately.

Procedure 1: (for determining b, [5]) Given c ≥ 2 as a
parameter, starting with

q1(c) =
c

c − 1
, (4)

determine sequence {q} according to

qi+1(c) =
c3 − c2 + cqi(c)

c3 − c2 − (c − 1)2qi(c)
. (5)

Let m(c) be the largest integer such that for all 1 ≤ i ≤ m(c),
qi(c) ≤ c holds. Next, starting with bm(c)+1 = 1, determine
sequence {b} in a reverse order by

bi =
bi+1

c − c−1
c qi

for 1 ≤ i ≤ m(c). Case (i): if qm(c)(c) is exactly equal to
c, output b = (b1, . . . , bm(c)). (Note that due to (5), bm(c) =

bm(c)+1 holds.) Case (ii): otherwise, i.e., if qm(c)(c) < c,
output b = (b1, . . . , bm(c)+1).

It is observed that qi+1(c) is defined for every qi(c) with
1 ≤ i ≤ m(c), since noting qi(c) ≤ c, the denominator of the
right hand side of (5) is

c3−c2−(c−1)2qi(c) = (c−1)2

(
c+1+

1
c−1
−qi(c)

)

≥ (c−1)2

(
1+

1
c−1

)

> 0.

With some proper r, an (m(c)+1)-state instance is generated
from Case (i), and an (m(c) + 2)-state instance from Case
(ii). In the later discussion, an instance from Case (i) plays
a significant role. We here give a numerical example of c =
2.5. We first have q1 = 1.66667, q2 = 2.40741. Since
the next term q3 = 3.88889 is bigger than 2.5, we know
m(c) = 2. Then, corresponding to Case (ii), b is determined
as (b1, b2, b3) = (0.631579, 0.947368, 1).

In Procedure 1 above, we have made two modifications
to the original construction, which do not affect the argu-
ment of competitiveness. One is that the values in b are
scaled down between zero and one. The other is that we
have clarified the condition of stopping the generation of se-
quence {q}.
Lemma 1: ([5]) For c ≥ 2, determine b according to Pro-
cedure 1. Then, for all ε > 0, there exists r such that any
strategy for instance (r, b) has a competitive ratio of at least
min(c − ε, qm(c)).

The purpose of Procedure 1 is to obtain this lemma. Accord-
ing to the original description [5], state i + 1 is inductively
constructed from states i and i−1 so that if the strategy skips
state i, then the competitive ratio becomes above c−ε. Con-
sequently, any strategy with one or more skips of states has
a competitive ratio of at least c − ε, while any strategy with
no skip has a competitive ratio of at least qm(c). The values
of r1, r2, . . . , rk−1 are chosen sufficiently small so that they
form a decreasing sequence.

For example, applying Lemma 1 to the above example,
we know that any strategy for that instance has a competitive
ratio larger than 2.40741.

The paper [5] then states that for any c = 5+
√

5
2 − δ with

δ > 0, there exists i such that qi(c) > c, which leads to the
conclusion below.

Theorem 1: ([5]) Any strategy for the multislope ski-

rental problem has a competitive ratio of at least 5+
√

5
2 (≈

3.62).
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4. Lower Bound for the Case where the Number of
States is Fixed

4.1 Our Scheme

In this section we obtain a lower bound for the case where
the number of states is explicitly specified. The general
lower bound derived in Sect. 3 involves an instance with suf-
ficiently many states; m(c) grows as c approaches 5+

√
5

2 . Our
aim is to construct a (k + 1)-state instance so that qk(c) is
equal to c, exploiting Procedure 1 and Lemma 1.

The key is the choice of c. A (k + 1)-state instance
can simulate an instance with k or fewer states by making
redundant states. Besides, it is known that a lower bound for
2-state (i.e., classical) ski-rental problem is 2 [1]. Therefore,

the range of candidates for c is between 2 and 5+
√

5
2 .

It is yet unclear how many states Procedure 1 outputs
for given c. One should take good care in handling the se-
quence {q}. If one does not terminate the generation as we
do there, the sequence is in general not either increasing or
decreasing, and may even include a negative term.

We propose a simple scheme for obtaining a lower
bound: For given k, solve formally the equation c = qk(c),
derived from (4) and (5) without plugging a value into c, and
take the largest root among real roots which lie between 2
and 5+

√
5

2 . The following arguments will guarantee that the
largest root in fact leads to a (k + 1)-state instance and is
consequently a lower bound for the (k + 1)-slope ski-rental
problem.

We begin with analyzing the behavior of each qi(c) as a
function of c. Although the general term of qi(c) can be de-
rived in a closed form with the generating function method,
we do not carry it out here.

Lemma 2: Run Procedure 1 with c0 such that 2 < c0 <
5+
√

5
2 . For 1 ≤ i ≤ m(c0) + 1, see each qi(c) as a function

qi : c 	→ qi(c). Then, qi is continuous and monotonically

decreasing on the interval [c0,
5+
√

5
2 ).

Proof: We prove the lemma by induction. In addition to
the statement of the lemma, we show the differentiability on

[c0,
5+
√

5
2 ) as well. It is easy to confirm that q1(c) = c

c−1 is
continuous, differentiable, and monotonically decreasing on

[c0,
5+
√

5
2 ).

Suppose that for some i with 1 ≤ i ≤ m(c0), qi is con-

tinuous and differentiable, and dqi(c)
dc < 0 holds on [c0,

5+
√

5
2 ).

From (5), we immediately know that qi+1 is continuous and

differentiable on c ∈ [c0,
5+
√

5
2 ). Denoting qi(c) simply as q,

we have
dqi+1(c)

dc
=

1
(c − 1)2(c2 + q − cq)2

·
{
−q(c4 − 2c3 + 4c2 − 2c − (c2 − 1)q)+

c2(c − 1)(c2 − c + 1)
dq
dc

}
(6)

See the denominator. By the assumption it follows that c ≥
c0 ≥ qi(c0) ≥ q. Then, since

c2 + q − cq = (c − 1)

(
c + 1 +

1
c − 1

− q

)

≥ (c − 1)

(
1 +

1
c − 1

)

> 0,

dqi+1(c)
dc is always defined. The proof is done if we show that

on [c0,
5+
√

5
2 ), dq

dc < 0 implies dqi+1(c)
dc < 0. Let us see the

numerator of (6). We easily have for c ≥ 2,

c2(c − 1)(c2 − c + 1) > 0.

We finally look into the function

h(c, q) := c4 − 2c3 + 4c2 − 2c − (c2 − 1)q.

Apparently, this function decreases as q grows. Thus, for

q ≤ c0 <
5+
√

5
2 < 4, h(c, q) > h(c, 4) = (c − 2)(c3 − 2) ≥ 0.

Therefore, dqi+1(c)
dc < 0 if dq

dc < 0. �
Intuitively, the following Lemma 4 claims that the

number of states can always be increased by choosing larger
c. Before presenting it, we give a helper lemma, which is a
statement found in [5].

Lemma 3: ([5]) For all i ≥ 1, qi(
5+
√

5
2 ) <

√
5.

Lemma 4: The following two statements hold true. (A)

For all 2 < c ≤ c′ < 5+
√

5
2 , m(c′) ≥ m(c). (B) For all

2 < c < 5+
√

5
2 , there exists c′ such that c < c′ < 5+

√
5

2 ,
m(c′) = m(c) + 1, and qm(c′)(c′) = c′.

Proof: (A) By the definition of m, qi(c) ≤ c holds for all

1 ≤ i ≤ m(c). Lemma 2 implies that for any c ≤ c′ < 5+
√

5
2 ,

qi(c′) ≤ qi(c) for each i. We thus have for all 1 ≤ i ≤ m(c),
qi(c′) ≤ qi(c) ≤ c ≤ c′. Going back to the definition of m, it
is concluded that m(c′) ≥ m(c).

(B) See the functions x 	→ qm(c)+1(x) and x 	→ x on

the interval [c, 5+
√

5
2 ). By the definition of m, it holds that

qm(c)+1(c) > c. Lemma 3 guarantees qm(c)+1( 5+
√

5
2 ) <

√
5 <

5+
√

5
2 . Lemma 2 says that the function x 	→ qm(c)+1(x)

is continuous and monotonically decreasing on [c, 5+
√

5
2 ).

Therefore, the two functions must have an intersection point

c′ ∈ (c, 5+
√

5
2 ) such that qm(c)+1(c′) = c′.

The rest is to prove m(c′) = m(c) + 1 for such c′. Note
that if this is done then qm(c′)(c′) = c′ immediately follows.
Similarly to (A), we know that for all 1 ≤ i ≤ m(c), qi(c′) ≤
qi(c) ≤ c ≤ c′. In addition, qm(c)+1(c′) = c′ also holds.
Therefore, m(c′) ≥ m(c) + 1. On the other hand, applying
(5), we have

qm(c)+2(c′) =
c′3 − c′2 + c′qm(c)+1(c′)

c′3 − c′2 − (c′ − 1)2qm(c)+1(c′)

=
c′3 − c′2 + c′2

c′3 − c′2 − c′(c′ − 1)2
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Table 2 Our lower bound and the equation that has a root of that value. Each equation is displayed
in a reduced form by eliminating irrelevant factors.

# states Lower bound Equation

3 2.46557 c3 − 4c2 + 5c − 3 = 0

4 2.75488 c3 − 5c2 + 8c − 5 = 0

5 2.94789 c5 − 7c4 + 19c3 − 27c2 + 21c − 8 = 0

6 3.08302 c5 − 8c4 + 25c3 − 40c2 + 34c − 13 = 0

7 3.18123 c7 − 10c6 + 42c5 − 99c4 + 145c3 − 135c2 + 76c − 21 = 0

8 3.25479 c7 − 11c6 + 51c5 − 132c4 + 210c3 − 209c2 + 123c − 34 = 0

9 3.31128 c9 − 13c8 + 74c7 − 246c6 + 534c5 − 795c4 + 822c3 − 577c2 + 254c − 55 = 0

10 3.35558 c9 − 14c8 + 86c7 − 308c6 + 717c5 − 1137c4 + 1241c3 − 909c2 + 411c − 89 = 0

Table 3 b of the instance that achieves our lower bound.

# states b1 b2 b3 b4 b5 b6 b7 b8 b9

3 0.682328 1

4 0.398445 0.699223 1

5 0.216735 0.422177 0.711088 1

6 0.113682 0.236803 0.43869 0.719345 1

7 0.0584374 0.127465 0.25124 0.450502 0.725251 1

8 0.0296859 0.0669354 0.137759 0.261927 0.459209 0.729605 1

9 0.0149719 0.0346041 0.0735019 0.145631 0.270046 0.465803 0.732901 1

10 0.00751682 0.0177065 0.0385179 0.0786695 0.151777 0.276354 0.470914 0.735457 1

= c′ + 1 +
1

c′ − 1
> c′, (7)

which implies that m(c′) ≤ m(c)+1. Hence, m(c′) = m(c)+1.
�

The next lemma is the heart of our scheme.

Lemma 5: For given k ≥ 2, solve the equation qk(c) = c
formally. Let c be the maximum of its real roots which lie

between 2 and 5+
√

5
2 . Procedure 1 with c outputs b with k

entries.

Proof: Let M be the set of real roots of the equation qk(c) =

c which are in (2, 5+
√

5
2 ).

(I) First we show that there exists c ∈ M such that
m(c) = k. Let us generate sequence {q} with some small
c, say c1 = 11/5 = 2.2. We have q1(c1) = 11/6 < 11/5 and
q2(c1) = 671/216 > 11/5. Hence, m(c1) = 1. Repeatedly
applying (B) of Lemma 4 to this for k − 1 times, we find c
such that m(c) = k and qm(c)(c) = qk(c) = c. The found c
surely belongs to M.

(II) Next we claim that m(c) ≤ k for all c ∈ M. By the
definition of M, any c ∈ M satisfies qk(c) = c. What should
be noted is that some qk(c) may not be the last element of
the sequence {q} defined by Procedure 1. In other words, for
some c ∈ M, the generation of the sequence may stop earlier.
Even for such c, similarly to (7), we derive qk+1(c) > c,
which implies that m(c) ≤ k by the definition of m.

(III) By (A) of Lemma 4 and the above (II), it follows
that for all c ∈ M, m(c) ≤ m(c) ≤ k. Together with (I), we
conclude m(c) = k. Since qk(c) = c, Case (i) of Procedure 1
applies. Therefore, Procedure 1 outputs b with k entries. �

Our main theorem follows immediately from Lem-
mas 1 and 5.

Theorem 2: Any strategy for the (k + 1)-slope ski-rental
problem has a competitive ratio of at least the maximum of
real roots of the equation qk(c) = c which lie between 2 and
5+
√

5
2 .

Table 2 shows our lower bound for each 2 ≤ k ≤ 9 and the
equation that has a root of that value. See Table 3 for nu-
merical values of b. The reason why only up to the 10-state
case is presented here is simply because of space limitation.

If one is interested only in the numerical value of the
lower bound, one needs not even derive the equation qk(c) =
c in an explicit form. Since for any value of c, qk(c) can be
calculated by repeatedly applying (5), a binary search on c
leads to a numerical root of qk(c) = c.

4.2 Matching Lower and Upper Bound for the 3- and 4-
Slope Problems

For each of the 3- and 4-state cases, the matching lower
and upper bound has been already established as below [7].
One will quickly notice that for each case, our lower bound
matches the matching bound, in the sense that the equation
of c is the same (see Table 2). From this observation, it
is likely that also for the 5-or-more-state cases, our lower
bound is equal or fairly close to the matching lower and up-
per bound.

Theorem 3: ([7]) Any strategy for the 3-slope ski-rental
problem has a competitive ratio of at least the real root of
the equation c3 − 4c2 + 5c − 3 = 0, which is approximately
2.47.
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Theorem 4: ([7]) Any strategy for the 4-slope ski-rental
problem has a competitive ratio of at least the real root of
the equation c3 − 5c2 + 8c − 5 = 0, which is approximately
2.75.

5. Concluding Remarks

For the case where arbitrary number of states are allowed,
there remains a gap between the lower and upper bounds of
3.62 and 4. Damaschke in his paper [5] conjectured that the
matching lower and upper bound is 4. Our conjecture is, in
contrast, that the matching bound is 3.62. In other words, the
lower bound derived from Damaschke’s method is the best
possible. In Sect. 4.2, we have already provided an evidence
for the 3- and 4-state cases that Damaschke’s method with
our extension establishes the matching bound.

A future work is to design a simpler scheme, or hope-
fully to express the lower bound explicitly with k. Another
interesting work is to improve the upper bound of 4.
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