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Competitive Analysis for the Flat-Rate Problem∗
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SUMMARY We consider a problem of the choice of price plans offered
by a telecommunications company: a “pay-as-you-go” plan and a “flat-
rate” plan. This problem is formulated as an online optimization problem
extending the ski-rental problem, and analyzed using the competitive ratio.
We give a lemma for easily calculating the competitive ratio. Based on
the lemma, we derive a family of optimal strategies for a realistic class of
instances.
key words: online algorithm, competitive analysis, online optimization,
ski-rental problems

1. Introduction

Suppose that you are going to start using a mobile device
with a telecommunications company. The simplest price
plan offered by the company is of course a “pay-as-you-
go” plan. Namely, you are charged a fee proportional to
the amount of your data usage. A typical alternative plan is
as follows:

• You are charged an initial minimum fee even if you use
little data.
• If you use more data than a pre-defined limit, your fee

increases linearly with the amount of your data usage.
• There is a maximum fee that may be charged.

Interestingly, it seems that they often call such a plan a “flat-
rate” plan, even though the fee is not always completely
flat, as above. Is such a “flat-rate” plan good for saving
cost? One who thinks oneself to be a light user would not
choose the “flat-rate” plan. But he/she will regret in the
case where he/she consequently uses more data than he/she
thinks. Needless to say, that is a bad choice. On the other
hand, it is also a sad ending that one who has chosen the
“flat-rate” plan does not use so much data after all.

These observations let us think of a strategy like: start
by the “pay-as-you-go” plan, keep it for a while, and then
take the “flat-rate” plan. With this strategy we can avoid big
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risks seen above. Then, our next question is what timing is
good for changing plans. In this paper we consider a best
timing via the analysis of the competitive ratio [1].

The competitive ratio is a performance measure that in-
dicates how many times fee one may be charged at most
compared with an ideal player who knows its data usage in
the future. That is to say, the smaller the competitive ratio
is, the smaller the regret in the worst case is.

1.1 Our Contribution

Our results are summarized as follows:
(A) We give an easy way to calculate the competitive

ratio of a strategy. A naive approach involves evaluation
for all possible amount of data usage. We show that a cor-
rect competitive ratio is obtained by calculating a maximum
value just for three cases.

(B) Based on the result of (A), we analyze a typical
class of instances in the real world that “the initial minimum
fee is appropriated for data communication.” A family of
optimal strategies is given in a closed form with parameters
of the instance.

1.2 Related Work

Our problem is an extension of the famous ski-rental prob-
lem [2], which is often cited as an example of online opti-
mization problems. In the ski-rental problem, the player is
asked choose either to rent or to buy a ski gear without in-
formation about how many times he/she skis in the future. It
seems that the mostly related problem to ours is the parking
permit problem [3], which is another extension of the ski-
rental problem. The task is to keep buying some parking
tickets, each valid for a fixed duration, so that they cover an
uncertain period. The multislope ski-rental problem [4]–[7]
is yet another extension in which the player is offered three
or more plans.

2. Problem Statement

We would like to introduce our problem by first formulating
a mathematical program and then explaining its details.

Input: An instance (a, b, r) ∈ Q3 with 0 < a, 0 ≤ b < 1,
and 0 < r.

Output: A strategy x ∈ R with 0 ≤ x.
Objective: Minimize the competitive ratio

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers
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Rx := inf {c | ON(x, t) ≤ c · OPT (t) for all t ≥ 0} ,
(1)

where

ON(x, t) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t, 0 ≤ t < x;

x + b, x ≤ t < x + a;

r(t − (x + a)) + x + b, x + a ≤ t < x + a + 1−b
r ;

x + 1, x + a + 1−b
r ≤ t,

(2)

and

OPT (t) := inf {ON(x, t) | x ≥ 0} . (3)

In instance (a, b, r), if you choose the “flat-rate” plan, then
you are charged as follows: You have to pay at least a fee of
b. In the case where your data usage exceeds a, you need to
pay r times the excess. But, you are not charged over one.
There is of course a “pay-as-you-go” plan. If you choose
it, you are charged as the same amount of fee as your data
usage.

In this way, the maximum fee in the “flat-rate” plan
and the rate in the “pay-as-you-go” plan are both fixed to
one, which is a normalization for ease of calculation. This
normalization is done without lose of generality. At the
end of this section, we mention some price plans offered
by telecommunications companies in the real world.

A strategy x is to switch to the “flat-rate” plan after hav-
ing used x amount of data with the “pay-as-you-go” plan,
that is, after having paid x. For strategy x, ON(x, t) in (2)
is the total cost paid so far when you have used t amount of
data. If t < x, you will use just the “pay-as-you-go” plan.
Otherwise, you will have switched the “flat-rate” plan after
using x amount of data.

To measure the performance of a strategy, we assume
an ideal player, sometimes called the offline player, who
knows how much data it uses in the future. An optimal
offline strategy is an strategy optimized making use of the
future knowledge. OPT (t) in (3), called the optimal offline
cost, is the cost paid along an optimal offline strategy. The
definition (3) is translated as follows: With the amount of
data usage t known in advance, a strategy x is chosen so that
the cost ON(x, t) is minimized.

The competitive ratio Rx in (1) is the objective function
to be minimized. One can think that for any strategy with
x > 0, Rx is the maximum value of ON(x,t)

OPT (x) over all t > 0.
That is to say, the competitive ratio is the maximum ratio
of the cost incurred by strategy x to the cost incurred by an
optimal offline strategy, when the same data usage happens
for the both.

Throughout this paper we analyze the problem for gen-
eral a, b, and r. We sometimes employ an instance of
(a, b, r) = ( 1

3 ,
2
9 ,

2
3 ) ≈ (0.33, 0.22, 0.67) as a numerical ex-

ample. The reason why we use this is simply its easiness of
explanation using figures. Figure 1 depicts the cost incurred
by taking the “pay-as-you-go” plan from the beginning, and

Fig. 1 The cost incurred by taking the “pay-as-you-go” plan from the
beginning (= t), and the cost incurred by taking the “flat-rate” plan from
the beginning (= ON(0, t)), both for instance (a, b, r) = ( 1

3 ,
2
9 ,

2
3 ), when the

amount of data usage is t. For this instance, the optimal offline cost OPT (t)
is the lower envelope of these two costs. Compare Fig. 4.

the cost incurred by taking the “flat-rate” plan from the be-
ginning, as the data usage grows. These costs are described
as functions t �→ t and t �→ ON(0, t), respectively.

Although our instance above is somewhat artificial, it
is not very far from real ones. We consulted the websites of
Japanese telecommunications companies NTT docomo and
KDDI, and found some price plans there. With normaliza-
tion of values, each plan can be translated into an instance
of our problem. The range of each parameter is as follows:
0.08 < a < 0.24, 0.07 < b < 0.24, and 0.4 < r < 0.8.

3. Optimal Offline Strategy

In the ski-rental problem [2], the optimal offline strategy is
either “to buy skis at the beginning” or “to rent skis for-
ever.” Once we know which one is cheaper, we are done. In
contrast, to do the same for our problem may lead us to a
suboptimal strategy. Unlike the ski-rental problem, “to rent
skis for a while and then buy skis” can be an optimal offline
strategy. Thus, the derivation of an optimal offline strategy
needs a bit care.

The following lemma gives an optimal offline strategy
for our problem. Here strategies xoff = t + ε and xoff = 0
mean “to take the pay-as-you-go plan forever” and “to take
the flat-rate plan from the beginning,” respectively.

Lemma 1: For instance (a, b, r), the following xoff is an op-
timal offline strategy. The optimal offline cost OPT (t) is also
given as follows. Let ε be an arbitrary positive number.

Case 1: if 0 < a ≤ b < 1 and 0 < r < 1−b
1−a , then

xoff =

⎧
⎪⎪⎨
⎪⎪⎩

t + ε, 0 ≤ t < b−ar
1−r ;

0, b−ar
1−r ≤ t

and

OPT (t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t, 0 ≤ t < b−ar
1−r ;

r(t − a) + b, b−ar
1−r ≤ t < a + 1−b

r ;

1, a + 1−b
r ≤ t.
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Case 2: if 0 < a ≤ b < 1 and 1−b
1−a ≤ r, then

xoff =

⎧
⎪⎪⎨
⎪⎪⎩

t + ε, 0 ≤ t < 1;

0, 1 ≤ t

and

OPT (t) =

⎧
⎪⎪⎨
⎪⎪⎩

t, 0 ≤ t < 1;

1, 1 ≤ t.

Case 3: if 0 ≤ b < a and r < 1, then

xoff =

⎧
⎪⎪⎨
⎪⎪⎩

t + ε, 0 ≤ t < b;

0, b ≤ t

and

OPT (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t, 0 ≤ t < b;

b, b ≤ t < a;

r(t − a) + b, a ≤ t < a + 1−b
r ;

1, a + 1−b
r ≤ t.

Case 4: if 0 ≤ b < a and 1 ≤ r, then

xoff =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t + ε, 0 ≤ t < b;

0, b ≤ t < a;

t − a, a ≤ t < a − b + 1;

0, a − b + 1 ≤ t

and

OPT (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t, 0 ≤ t < b;

b, b ≤ t < a;

t − a + b, a ≤ t < a + 1 − b;

1, a + 1 − b ≤ t.

As a result, we can write OPT (t) in a simple form.

Corollary 1: For any instance (a, b, r), it holds that

OPT (t) =
⎧
⎪⎪⎨
⎪⎪⎩

min(t, b), 0 ≤ t < a;

min(t, r(t − a) + b, t − a + b, 1), a ≤ t.

Figures 2, 3, 4, and 5 show function t �→ OPT (t) for in-
stances belonging to Case 1, 2, 3, and 4 of Lemma 1, re-
spectively, where the dashed lines are the cost of the “pay-
as-you-go” plan from the beginning (= t), and the cost of
“flat-rate” plan from the beginning (= ON(0, t)). Note that
for Case 4 of Lemma 1, OPT (t) is not the lower envelope of
functions t �→ t and t �→ ON(0, t) (See Fig. 5). The reason is
that it is an optimal offline strategy to take the “pay-as-you-
go” plan for a while and then take the “flat-rate” plan, when
the amount of data usage is between a and a− b+ 1. This is
a remarkable difference from the ski-rental problem.

Case 3 of Lemma 1 applies to instance (a, b, r) =
( 1

3 ,
2
9 ,

2
3 ). The lemma says that: If you know that you will

Fig. 2 Graph of t �→ OPT (t) for instance (a, b, r) = ( 1
4 ,

1
2 ,

1
2 ) belonging

to Case 1.

Fig. 3 Graph of t �→ OPT (t) for instance (a, b, r) = ( 1
4 ,

1
2 ,

4
5 ) belonging

to Case 2.

Fig. 4 Graph of t �→ OPT (t) for instance (a, b, r) = ( 1
3 ,

2
9 ,

2
3 ) belonging

to Case 3.

Fig. 5 Graph of t �→ OPT (t) for instance (a, b, r) = ( 1
3 ,

2
9 ,

3
2 ) belonging

to Case 4.

use less than 2
9 amount of data, you should take the “pay-

as-you-go” plan and keep on it. If you know otherwise, you
should take the “flat-rate” plan from the beginning. For this
case, the optimal offline cost OPT (t) is the lower envelope
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Table 1 Behavior of function x �→ ON(x, t) on (−∞,∞) for an instance
with 0 < r < 1.

x t − a − 1−b
r t − a · · ·

ON(x, t) ↗ t − a − 1−b
r + 1 ↗ t − a + b ↗

· · · t t + ε
↗ t + b t →

of t �→ t and t �→ ON(0, t). See Figs. 1 and 4.
Proof of Lemma 1: We find a strategy xoff that minimizes
ON(x, t) with t as a parameter. To this aim, we formally
regard ON(x, t) as a function of x ∈ (−∞,∞) for a fixed t,
not a function of t. The behavior of the function is roughly
classified into two cases depending on the range of r. We
focus on the interval [0,∞) � x and see what x achieves a
minimum.

(I) For an instance with 0 < r < 1, we know the be-
havior of x �→ ON(x, t) on (−∞,∞) as Table 1. Please recall
(2). Apparently, the function is piece-wise linear and has a
discontinuous point at x = t.

Here, ε is an arbitrary positive number. Note that
ON(x, t) is a constant on x ∈ (t,∞). The fact that t + b ≥
t leads us that the minimum value over [0,∞) is either
ON(0, t) for x = 0, or t for x = t+ε. We next see which case
happens, by investigating what x satisfies ON(x, t) = t.

Case (I-a): 0 ≤ b < a. It holds that t − a + b < t ≤
t + b. Hence, ON(x, t) takes a value of t when x = t − b ∈
(t − a, t], which means that the minimum value over [0,∞)
varies depending on whether t − b is contained in [0,∞) or
not. We thus obtain

xoff =

⎧
⎪⎪⎨
⎪⎪⎩

t + ε, 0 ≤ t < b;

0, b ≤ t.

(This case applies to instance (a, b, r) = ( 1
3 ,

2
9 ,

2
3 ). Figure 6

illustrates how to derive xoff = 0 when t = 3
2 ≥ b.)

Case (I-b): 0 < a ≤ b < 1 and 0 < r < 1−b
1−a . Since

t−a− 1−b
r +1 < t ≤ t−a+b, the equality ON(x, t) = t holds

for x = t − b−ar
1−r ∈ (t − a − 1−b

r , t − a]. The minimum value is
determined by whether t − b−ar

1−r is in [0,∞) or not. We get

xoff =

⎧
⎪⎪⎨
⎪⎪⎩

t + ε, 0 ≤ t < b−ar
1−r ;

0, b−ar
1−r ≤ t.

Case (I-c): 0 < a ≤ b < 1 and 1−b
1−a ≤ r < 1. By the

inequality t ≤ t − a − 1−b
r + 1, we know that ON(x, t) = t

occurs when x = t − 1 ∈ (−∞, t − a − 1−b
r ]. Thus,

xoff =

⎧
⎪⎪⎨
⎪⎪⎩

t + ε, 0 ≤ t < 1;

0, 1 ≤ t.

(II) For an instance with 1 ≤ r, the behavior of x �→
ON(x, t) on (−∞,∞) is a bit more complicated as shown in
Table 2. The function has a minimal point of t − a + b at
x = t − a. In addition to a similar analysis to (I), we have to

Fig. 6 Graph of x �→ ON(x, t) for instance (a, b, r) = ( 1
3 ,

2
9 ,

2
3 ). Here we

set t = 3
2 (≥ b). Then, the function is minimized at x = 0. (Please note that

this is a graph of a function of x, not of t.)

Table 2 Behavior of function x �→ ON(x, t) on (−∞,∞) for an instance
with 1 ≤ r.

x t − a − 1−b
r t − a · · ·

ON(x, t) ↗ t − a − 1−b
r + 1 ↘ t − a + b ↗

· · · t t + ε
↗ t + b t →

compare this minimal value with t.
Case (II-a): 0 ≤ b < a. Since t − a + b < t, it happens

that the minimal value t − a + b is a minimum. We should
note that the equality ON(x, t) = t − a + b holds also for
x = t − a + b − 1. By focusing on the interval [0,∞), we
obtain

xoff =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t + ε, 0 ≤ t < b;

0, b ≤ t < a;

t − a, a ≤ t < a − b + 1;

0, a − b + 1 ≤ t.

Case (II-b): 0 < a ≤ b < 1. The minimal value t−a+b
cannot be a unique minimum because t ≤ t−a+b. Function
ON(x, t) takes a value of t for x = t − 1 ∈ (−∞, t − a − 1−b

r ].
Therefore,

xoff =

⎧
⎪⎪⎨
⎪⎪⎩

t + ε, 0 ≤ t < 1;

0, 1 ≤ t.

The statement of the lemma is derived as follows: Case
1 is from Case (I-b). Case 2 is from Case (I-c) together
with Case (II-b). Case 3 is from Case (I-a). And, Case 4 is
from Case (II-a). Each OPT (t) is obtained immediately by
applying the strategy. �

4. A Lemma for Easily Calculating the Competitive
Ratio

As mentioned before, for any strategy with x > 0, the com-
petitive ratio Rx is the maximum value of ON(x,t)

OPT (x) over all
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t > 0. A straightforward approach is to check the value of
function t �→ ON(x,t)

OPT (t) for all possible values of t. The fol-
lowing lemma states that it suffices to evaluate the function
values just for t = x, x + a + 1−b

r , and a.

Lemma 2: For any strategy with x > 0, it holds that

Rx =

max

⎧
⎪⎪⎨
⎪⎪⎩

ON(x, x)
OPT (x)

,
ON(x, x + a + 1−b

r )

OPT (x + a + 1−b
r )
,

ON(x, a)
OPT (a)

⎫
⎪⎪⎬
⎪⎪⎭
.

Proof: We give a sketch of the proof. We first show that
function t �→ ON(x,t)

OPT (t) is piece-wise monotone, which implies
that the maximum occurs at an endpoint of some interval.
We then conclude that only the three points t = x, x+a+ 1−b

r ,
and a can be such an endpoint, through checking all possible
endpoints. In this proof we drop the case t = 0, since for
strategy x > 0, any c satisfies 0 = ON(x, 0) ≤ c·OPT (0) = 0.

(I) We look at the domain on which function t �→ ON(x,t)
OPT (t)

is defined. We start from function t �→ OPT (t). Suppose that
the given instance corresponds to Case i of Lemma 1, where
i is either of 1, 2, 3, or 4. Lemma 1 says that function t �→
OPT (t) is a linear function, specifically, either an increasing
linear function or a constant, on each interval in Vi, where

V1 = {(0, b − ar
1 − r

), [
b − ar
1 − r

, 1), [1,∞)},

V2 = {(0, 1), [1,∞)},
V3 = {(0, b), [b, a), [a, a +

1 − b
r

), [a +
1 − b

r
,∞)},

and

V4 = {(0, b), [b, a), [a, a + 1 − b), [a + 1 − b,∞)}.
It is immediately derived that for any case, function t �→
OPT (t) is continuous everywhere on (0,∞).

On the other hand, we know from (2) that function t �→
ON(x, t) is either an increasing linear function or a constant
on each interval in

U = {(0, x), [x, x + a), [x + a, x + a +
1 − b

r
),

[x + a +
1 − b

r
,∞)}.

We know that function t �→ ON(x, t) is discontinuous at t =
x and continuous elsewhere.

Consequently, function t �→ ON(x,t)
OPT (t) is explicitly ex-

pressed for each interval A ∩ B with A ∈ U, B ∈ Vi, and
A∩B � ∅. We claim that on any of such interval, t �→ ON(x,t)

OPT (t)
is monotone. In what follows we deal comprehensively with
Cases 1, 2, 3, and 4. Please notice that involved intervals
vary according to the case.

It is obvious that for A = [x, x + a) or A = [x + a +
1−b

r ,∞), function t �→ ON(x,t)
OPT (t) is monotone on A∩B; whereas

t �→ ON(x, t) is a constant, t �→ OPT (t) is an increasing
function or a constant. The rest to be checked are A = (0, x)

and A = [x+a, x+a+ 1−b
r ). If B is an interval on which t �→

OPT (t) is a constant, then function t �→ ON(x,t)
OPT (t) is monotone.

Otherwise, we can write, using constants α, β, γ, and δ, as

ON(x, t)
OPT (t)

=
αt + β
γt + δ

,

where γt + δ > 0 for t ∈ A ∩ B. This turns out be monotone,
since

αt + β
γt + δ

=
α

γ
+
β − αδ

γ

γt + δ
.

(II) We have known that a maximum is never achieved
at an inner point of some interval A ∩ B. We are going to
check each endpoint of intervals. Obvious candidates for a
maximizer are t = x and t = x + a + 1−b

r . Since function
t �→ ON(x, t) is discontinuous at t = x, so is function t �→
ON(x,t)
OPT (t) . See that for any case, ON(x,t)

OPT (t) is a constant on [x+ a+
1−b

r ,∞). Although ON(x,t)
OPT (t) is also a constant on the left most

interval, that is (0, x) ∩ (0, a) ∩ (0, b−ar
1−r ), the interval cannot

be a candidate since the constant is one.
(III) We show that function t �→ ON(x,t)

OPT (t) can be max-
imum at t = a for some cases. For Case 3 or 4, func-
tion t �→ OPT (t) is a constant on the left neighborhood of
t = a, and an increasing function on the right neighborhood.
Therefore, if t �→ ON(x, t) is a constant around t = a, which
occurs when A = [x, x + a) � a, then function t �→ ON(x,t)

OPT (t) is
a constant on the left neighborhood of t = a and an decreas-
ing function on the right neighborhood. This fact implies
that ON(x,t)

OPT (t) can be maximum at t = a.

(IV) The last task is to state that function t �→ ON(x,t)
OPT (t)

cannot achieve a maximum at any other endpoint: t =
b−ar
1−r , b, 1, a + 1 − b, a + 1−b

r , and x + a. We first discuss
t = b−ar

1−r which appears in Case 1. Function t �→ OPT (t)
is an increasing linear function on both of the left and right
neighborhoods of t = b−ar

1−r . For A = [x, x + a), which lets
ON(x, t) be a constant, function t �→ ON(x,t)

OPT (t) decreases on the

left neighborhood. Hence, t = b−ar
1−r cannot be a maximizer,

since there is t in the left neighborhood such that the value
of ON(x,t)

OPT (t) becomes larger. For A = (0, x) � b−ar
1−r , we have for

the right neighborhood

ON(x, t)
OPT (t)

=
t

r(t − a) + b
=

1
r
− b − ar

r
· 1

r(t − a) + b
,

which is an increasing function. This implies that t = b−ar
1−r

cannot be a maximizer. For A = [x + a, x + a + 1−b
r ) � b−ar

1−r ,
we have a decreasing function for the left neighborhood:

ON(x, t)
OPT (t)

=
r(t−(x+a))+x+b

t
= r+

b−ar+(1−r)x
t

,

since b − ar > 0 for Case 1. Thus, t = b−ar
1−r cannot yield a

maximum. Note that A = [x + a + 1−b
r ,∞) � b−ar

1−r does not
happen because b−ar

1−r < a + 1−b
r < x + a + 1−b

r .
We next see t = b, 1, a + 1 − b, and a + 1−b

r together.
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Fig. 7 The cost incurred by strategy x = 1
2 , denoted as ON(x, t), for

instance (a, b, r) = ( 1
3 ,

2
9 ,

2
3 ), when the amount of data usage is t. Three

vertical lines are drawn at t = x, x + a + 1−b
r , and a, which are candidates

for a maximizer of ON(x,t)
OPT (t) .

(Please think that the corresponding case applies to the in-
stance.) Consider each one of these points and denote it by
t̂ below. Function t �→ OPT (t) is an increasing function on
the left neighborhood of t̂ and a constant on the right neigh-
borhood. For A = (0, x) � t̂ or A = [x + a, x + a + 1−b

r ) � t̂,
we immediately know that function t �→ ON(x,t)

OPT (t) increases on
the right neighborhood. For A = [x, x + a) � t̂, function
t �→ ON(t) is a constant. Then, function t �→ ON(x,t)

OPT (t) turns
out to be a decreasing function on the left neighborhood of
t̂. Therefore, function t �→ ON(x,t)

OPT (t) does not take a maximum

at either of t = b, 1, a + 1 − b, or a + 1−b
r .

We check t = x + a similarly. If B is an interval
on which function t �→ OPT (t) is a constant, function
t �→ ON(x,t)

OPT (t) increases on the right neighborhood. Otherwise,

function t �→ ON(x,t)
OPT (t) decreases on the right neighborhood. In

this way we confirm that t �→ ON(x,t)
OPT (t) never takes a maximum

at t = x + a.
We add that t = x + a may coincide with some of t =

b−ar
1−r , b, 1, a+1−b, or a+ 1−b

r . For any of these cases, it holds
that function t �→ ON(x,t)

OPT (t) decreases on the left neighborhood,
or increases on the right neighborhood. Therefore, function
t �→ ON(x,t)

OPT (t) does not achieve a maximum at t = x + a. �
We demonstrate how to apply Lemma 2 for in-

stance (a, b, r) = ( 1
3 ,

2
9 ,

2
3 ). Consider the competitive

ratio of a strategy x = 1
2 for example. We calcu-

late ( ON(x,x)
OPT (x) ,

ON(x,x+a+ 1−b
r )

OPT (x+a+ 1−b
r )
, ON(x,a)

OPT (a) ) = ( 13
6 ,

3
2 ,

3
2 ). Applying

Lemma 2, we know the competitive ratio Rx =
13
6 ≈

2.16667. Figure 7 graphically explains that the three values
are the candidates of the maximum of function t �→ ON(x,t)

OPT (t)
for this example.

5. Optimal Online Strategy for a Typical Class of In-
stances

In this section we consider a class of instances (a, b, r) satis-
fying b = ar. We believe that such an instance is typical in

Table 3 Optimal strategy for instance (a, b, r) with b = ar, and the com-
petitive ratio.

range of r and a optimal strategy x competitive ratio Rx

0 < r < 1 1−r+
√

(1−r)2+4ar2

2r 1 + 1−r+
√

(1−r)2+4ar2

2r
0 < a ≤ 2 − 1

r
0 < r < 1 ar 2
2 − 1

r < a < 1
r

1 ≤ r 1 − 1
r 2 − 1

r

0 < a ≤ (1−r)2

r3

1 ≤ r
√

ar 1 +
√

ar
(1−r)2

r3 < a < 1
r

the real world, because equality b = ar is quite reasonable
for us in a sense that “the initial minimum fee b is later ap-
propriated for fee of data communication at rate r.” In other
words, the initial minimum fee is worth paying as long as
you are going to use at least a amount of data. As far as we
consulted websites, all the “flat-rate” plans in fact belong to
this class.

We obtain a family of optimal strategies for this class
of instances with the help of Lemma 2. Since the definition
of the problem requires b < 1, an implicit condition of a < 1

r
is imposed.

Theorem 1: Strategy x in Table 3 is optimal for instance
(a, b, r) with b = ar, depending on the range of a and r. Its
competitive ratio is as given in Table 3.

Proof: We show the theorem by finding a strategy x of
minimum competitive ratio, with the help of Lemma 2.
Note that for instance (a, b, r) with b = ar, it holds that
ON(x,x+a+ 1−ar

r )

OPT (x+a+ 1−ar
r )
=

ON(x,x+ 1
r )

OPT (x+ 1
r )

. Thus, the function to be min-

imized is now x �→ max{ON(x,x)
OPT (x) ,

ON(x,x+ 1
r )

OPT (x+ 1
r )
, ON(x,a)

OPT (a) }, which

we denote by f (x). We consider the two different cases of
0 < r < 1 and 1 ≤ r.

(I) For an instance with 0 < r < 1, we analyze func-
tion f (x) separately on domains (0, a) and [a,∞). (I-a) By
definition of ON and OPT , we have for domain (0, a),

ON(x, x)
OPT (x)

=

⎧
⎪⎪⎨
⎪⎪⎩

x+ar
x , 0 < x < ar;

x+ar
ar , ar ≤ x < a,

ON(x, x + 1
r )

OPT (x + 1
r )
= x + 1,

and

ON(x, a)
OPT (a)

=
x + ar

ar
.

Since x+ar
ar =

x
ar + 1 > x + 1 for 0 < x < a and x+ar

x > x+ar
ar

for 0 < x < ar, ON(x,x)
OPT (x) is the largest among the three

functions everywhere on (0, a). (See Fig. 8 for instance
(a, b, r) = ( 1

3 ,
2
9 ,

2
3 ), which satisfies b = ar.) Therefore,

it suffices to consider only ON(x,x)
OPT (x) . Obviously, function

x �→ ON(x,x)
OPT (x) is a decreasing function on (0, ar) and an in-

creasing function on (ar, a). Hence, the minimum value of
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Fig. 8 Graphs of ON(x,x)
OPT (x) ,

ON(x,x+ 1
r )

OPT (x+ 1
r )

, and ON(x,a)
OPT (a) for instance (a, b, r) =

( 1
3 ,

2
9 ,

2
3 ). The point indicates the minimum value of the three functions:

1 + 1−r+
√

(1−r)2+4ar2

2r at x = 1−r+
√

(1−r)2+4ar2

2r .

f (x) over domain (0, a) is 2 at x = ar.
(I-b) On domain [a,∞), we derive

ON(x, x)
OPT (x)

=

⎧
⎪⎪⎨
⎪⎪⎩

x+ar
rx , a ≤ x < 1

r ;

x + ar, 1
r ≤ x,

ON(x, x + 1
r )

OPT (x + 1
r )
= x + 1,

and

ON(x, a)
OPT (a)

=
1
r
.

We first find a minimizer of function x �→ max{ON(x,x)
OPT (x) ,

ON(x,x+ 1
r )

OPT (x+ 1
r )
} on domain [a,∞). We calculate an intersection

of the graphs of x �→ x+ar
rx and x �→ x + 1. By formally

solving equation x+ar
rx = x + 1, we get a positive root of

x =
1−r+
√

(1−r)2+4ar2

2r . The following observation confirms
that this root is on domain [a, 1

r ). When x = a, x �→ x+ar
rx

is above x �→ x + 1, since a+ar
ar = 1 + 1

r > 1 + a. On the
other hand, when x = 1

r , x �→ x+ar
rx is below x �→ x+ 1, since

1
r +ar

r· 1r
= 1

r + ar < 1
r + 1. (See Fig. 8.) Besides, x �→ x+ar

rx is

decreasing whereas x �→ x + 1 is increasing. Thus, func-

tion x �→ max{ON(x,x)
OPT (x) ,

ON(x,x+ 1
r )

OPT (x+ 1
r )
} achieves a minimum of

1 +
1−r+
√

(1−r)2+4ar2

2r at x =
1−r+
√

(1−r)2+4ar2

2r .
Our task is to find a minimum of f (x). Inequality 1 +

1−r+
√

(1−r)2+4ar2

2r > 1 +
1−r+
√

(1−r)2

2r = 1 + 2(1−r)
2r = 1

r tells that

the value of ON(x,a)
OPT (a) for x =

1−r+
√

(1−r)2+4ar2

2r is smaller than

the obtained minimum of max{ON(x,x)
OPT (x) ,

ON(x,x+ 1
r )

OPT (x+ 1
r )
}. Hence, it

follows that the minimum value of f (x) over [a,∞) domain

is also 1 +
1−r+
√

(1−r)2+4ar2

2r at x =
1−r+
√

(1−r)2+4ar2

2r .
From (I-a) and (I-b), we know that the minimum value

of f (x) is achieved on either of the domains, depending on

the values of a and r. Some basic calculation leads us that

the value of 1+
1−r+
√

(1−r)2+4ar2

2r is larger than 2 if and only if
a > 2 − 1

r . The optimal strategy for 0 < r < 1 in Theorem 1
has been obtained in this way.

(II) For an instance with 1 ≤ r, we have

ON(x, x)
OPT (x)

=

⎧
⎪⎪⎨
⎪⎪⎩

x+ar
x , 0 < x < 1;

x + ar, 1 ≤ x,

ON(x, x + 1
r )

OPT (x + 1
r )
=

⎧
⎪⎪⎨
⎪⎪⎩

x+1
x , 0 < x < 1 − 1

r ;

x + 1, 1 − 1
r ≤ x,

and

ON(x, a)
OPT (a)

=

⎧
⎪⎪⎨
⎪⎪⎩

x+ar
a , 0 < x ≤ a;

1, a < x.

We first state that ON(x,x)
OPT (x) ≥ ON(x,a)

OPT (a) holds for every x,

which allows us to forget function x �→ ON(x,a)
OPT (a) . This state-

ment is justified as follows. On domain (0, a), x �→ ON(x,x)
OPT (x)

decreases due to ar > 0, while x �→ ON(x,a)
OPT (a) increases. Only

at x = a, the function values coincide. For domain (a,∞),
the minimum value of ON(x,x)

OPT (x) is 1 + ar > 1 = ON(x,a)
OPT (a) .

We thus consider only ON(x,x)
OPT (x) and

ON(x,x+ 1
r )

OPT (x+ 1
r )

. It is imme-

diately derived that the minimum value of x �→ ON(x,x+ 1
r )

OPT (x+ 1
r )

is

2− 1
r at x = 1− 1

r . Hence, if the value of ON(x,x)
OPT (x) for x = 1− 1

r

does not exceed 2 − 1
r , then the minimum is a minimum of

f (x) as well. Solving inequality

2 − 1
r
≥ ON(1 − 1

r , 1 − 1
r )

OPT (1 − 1
r )

= 1 − ar2

1 − r
, (4)

we know that this occurs if and only if a ≤ (1−r)2

r3 .

What remains is to analyze the case where a > (1−r)2

r3 .

We show that x �→ ON(x,x+ 1
r )

OPT (x+ 1
r )

and x �→ ON(x,x)
OPT (x) have a unique

intersection on interval (1 − 1
r , 1) and that f (x) achieves a

minimum at that point. We have already known that when
a > (1−r)2

r3 , inequality (4) does not hold. That is to say,
ON(x,x+ 1

r )

OPT (x+ 1
r )
< ON(x,x)

OPT (x) for x = 1 − 1
r . On the other hand, it

holds that for x = 1,
ON(x,x+ 1

r )

OPT (x+ 1
r )
= 2 > 1 + ar = ON(x,x)

OPT (x) .

Therefore, the two functions have a unique intersection on
interval (1 − 1

r , 1).
Function x �→ ON(x,x)

OPT (x) decreases on (0, 1 − 1
r ), while

x �→ ON(x,x+ 1
r )

OPT (x+ 1
r )

increases on (1 − 1
r ,∞). Hence, the obtained

intersection is indeed a minimizer of f (x). Solving equation
x+ar

a = x+ 1, we get a root of x =
√

ar, for which f (x) takes
a value of 1 +

√
ar. �

The proof may not seem short. However, one
should note that a naive analysis is much more exhausting.
Lemma 2 enables us to skip many steps of classification.



566
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.3 MARCH 2016

Fig. 9 Optimal strategy x = 3+
√

57
12 ≈ 0.87915 for instance (a, b, r) =

( 1
3 ,

2
9 ,

2
3 ). The competitive ratio Rx = 1 + 3+

√
57

12 ≈ 1.87915.

Evaluating the values of the competitive ratios in Ta-
ble 3, we can immediately have the following corollary. The
upper bound of two here comes from the competitive ratio
of the 2-competitive optimal strategy for the ski-rental prob-
lem: “buy skis when the player has so far spent a cost of the
price of skis for renting skis.”

Corollary 2: For any instance (a, b, r) with b = ar, the
competitive ratio of any optimal strategy is no larger than
two.

The numerical example (a, b, r) = ( 1
3 ,

2
9 ,

2
3 ) which we

have used so far in fact belongs to this class because
2
9 =

1
3 · 2

3 . Since 0 < r < 1 and 0 < a ≤ 2 −
1
r , we have x =

1−r+
√

(1−r)2+4ar2

2r = 3+
√

57
12 ≈ 0.87915

and Rx = 1 + 3+
√

57
12 ≈ 1.87915. It is confirmed that

( ON(x,x)
OPT (x) ,

ON(x,x+a+ 1−b
r )

OPT (x+a+ 1−b
r )
, ON(x,a)

OPT (a) ) = (1 + 3+
√

57
12 , 1 +

3+
√

57
12 ,

3
2 ).

See Fig. 9.

6. Discussion

The analysis in this paper finds an optimal strategy among
those such as “start by the pay-as-you-go plan, keep it for a
while, and then take the flat-rate plan.” We should remark
that this setting is fairly strong. Consider an instance with
a > b, b < 1

2 , and b < ar. If it is allowed to switch plans
arbitrary times, an optimal offline strategy is to repeatedly
take the “flat-rate”. More specifically, the offline player will
take the “flat-rate” while using a amount of data, take the
“pay-as-you-go” just a short while, and then take the “flat-
rate” again. For example, when the offline player has used
2a amount of data, it pays about 2b, which is below our
OPT (2a) = min(b + ar, 1). For such a setting, we will need
to carry out an analysis more like the parking permit prob-
lem [3].
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