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This study addresses proof validation and modification in geometry wherein students find cases 
invalidating their constructed proofs and revise their proofs in response to this invalidation. We 
implemented a classroom-based intervention in grade 9, in which the students worked on 
assessment tasks designed to assess their performance in proof validation and modification at the 
end of the intervention. After reporting the intervention in brief, this study analyses the results of 
the tasks to examine the number of students who succeeded in proof validation and modification, 
the types of diagrams drawn by the students for invalidation of their proof, and their responses to 
this invalidation. 

INTRODUCTION 

The study reported in this paper addresses proof validation (Selden & Selden, 1995, 2003), which is 
defined as reading and checking an argument constructed as a proof, to determine whether the 
argument really constitutes a legitimate proof, that is, whether the argument can establish the truth 
of a statement. Proof validation is a crucial activity, at not only the undergraduate level, but also 
primary and secondary school levels, since the Common Core State Standards Initiative (2010) 
emphasises the ability to critique the reasoning of others as one of the standards for mathematical 
practice. It can also cultivate students’ critical thinking and attitude that are essential attributes of 
literate citizens. Moreover, explicit instruction in proof validation could enhance students’ ability to 
construct valid proofs (Powers, Craviotto, & Grassl, 2010).  

Existing mathematics education research has investigated actual behaviour regarding proof 
validation by undergraduate students, teachers, and professional mathematicians (Alcock & Weber, 
2005; Inglis & Alcock, 2012; Knuth, 2002; Ko & Knuth, 2013; Segal, 1999; Selden & Selden, 
2003; Weber, 2008, 2010), demonstrating that proof validation is difficult for undergraduate 
students and teachers. It is therefore easily conjectured that this difficulty would be clearly shown 
through the work of secondary school students; however, there is little research that explores how 
these students really engage in proof validation. 

In what follows, we illustrate a specific task to introduce proof validation into secondary school 
geometry and construct a framework for classifying levels of proof validation and modification. 
After specifying the research questions, this paper reports on a classroom-based intervention 
implemented to explore how secondary school students work on proof validation and modification. 

PROOF VALIDATION AND MODIFICATION IN SECONDARY SCHOOL GEOMETRY 

This study uses proof problems with diagrams (Komatsu, Tsujiyama, Sakamaki, & Koike, 2014) as 
tasks to introduce proof validation into secondary school geometry. A proof problem with a 
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diagram is a problem where a statement is described with reference to a particular diagram with 
symbols. An example of the tasks is shown in Figure 1, where the statement can be proved by 
showing ∠QAC = ∠PBD and ∠QCA = ∠PDB from the inscribed angle theorem. 

As shown in the diagram to the right, two circles O and 
O’ intersect at points P and Q, and two points A and B 
are located on circle O. Point C is the intersection point 
of line AP and circle O’, and point D is the intersection 
point of line BQ and circle O’. Prove that ∆AQC is 
similar to ∆BPD.	  

Figure 1: An example of proof problem with diagram 

We adopt the specific interpretation of this task where the relevant statement is considered under a 
certain general class to which the attached diagram belongs, rather than only for the diagram given. 
For instance, we regard that the statement in Figure 1 argues that ∆AQC is always similar to ∆BPD 
if point A is located on circle O as shown in Figure 2. This interpretation often enables students to 
use examples for proof validation, where they draw diagrams satisfying the assumption of the 
statement and inspect whether a constructed proof is applicable to these diagrams. In the above 
example, the proof for Figure 1 is invalidated by Figure 2b, which rejects the inscribed angle 
theorem used to deduce ∠QCA = ∠PDB, and the proof needs to be modified by changing the 
reason to the inscribed quadrilateral theorem. Following Lakatos (1976), we use the term ‘local 
counterexamples’ to refer to examples that reject a constructed proof but not a statement itself. 

 

Figure 2: Diagrams that satisfy the assumption of the statement 

Based on the above illustration, this study constructs the framework shown in Table 1 to classify 
levels of proof validation and modification. Level 0 refers to failure in discovering a local 
counterexample, whereas level 1 refers to success in the discovery but failure in modifying a proof 
to cope with the local counterexample. Level 2 refers to success in the proof modification, and level 
3 refers to reaching level 2 and further finding other kinds of local counterexamples. 

 Level 0 Level 1 Level 2 Level 3 

Proof validation X ✓ ✓ ✓ (multiple) 

Proof modification X X ✓ ✓ 

Table 1: A framework to classify levels of proof validation and modification 
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Note that the meaning of proof validation in this study is peculiar in contrast with existing research. 
The previous studies focused on identifying faults in invalid proofs, such as the falsehood of the 
reason used to deduce a specific claim, the mismatch of an argument where the converse of a target 
proposition is proved, and the inappropriateness of the counterexample used to show the falsehood 
of a proposition (e.g., Alcock & Weber, 2005; Ko & Knuth, 2013; Selden & Selden, 2003). In 
contrast, this study does not deal with completely invalid proofs, but rather consider proofs that are 
valid only for certain classes, investigating whether students can discover the cases for which the 
proofs are not applicable.  

Based on the above discussion, this study addresses the following research questions: 

• To what extent can secondary school students discover a local counterexample that 
invalidates their proof? 

• To what extent can secondary school students modify their proof so that the modified 
proof can be valid for the local counterexample that they have discovered? 

METHODS 

We decided to investigate student behaviour after classroom-based intervention (Stylianides & 
Stylianides, 2013) regarding proof validation and modification. Although students may regularly, 
but implicitly, scrutinise the validity of their own as well as others’ proofs, instruction focusing on 
proof validation would be uncommon. It implies that students’ ability to validate and modify a 
proof would be limited in ordinary environments. However, some studies suggest that student 
comprehension and validation of proofs can be improved by relevant instruction (Alcock & Weber, 
2005; Hodds, Alcock, & Inglis, 2014; Powers et al., 2010; Selden & Selden, 2003). Hence, more 
students would succeed in proof validation and modification with explicit instruction, which 
supports the introduction of this activity into ordinary classrooms. 

The classroom-based intervention examined in this paper was implemented under a larger study on 
curriculum development for explorative proving (Miyazaki & Fujita, 2015). This intervention 
aimed at fostering proof validation and modification in secondary school geometry with the theory 
of hypothetical leaning trajectory (Simon, 1995; Simon & Tzur, 2004) to develop a set of tasks and 
relevant instructional actions with close collaboration between researchers and teachers. The second 
author of this paper implemented a three-hour teaching experiment in his classroom at a lower 
secondary public school, with 29 Japanese ninth graders (14–15 years old). In the latter half of the 
third lesson, the students undertook assessment tests designed specifically to address the above 
research questions. The used tests, which related to Figure 1, will be described later in detail. Prior 
to the intervention, the participating students had learnt proofs using the conditions for similar 
triangles and the inscribed angle theorem. Although they had learnt the inscribed quadrilateral 
theorem, they had not worked on a proof problem that required this theorem. We expected the first 
lesson to be an effective setting for the students to experience the problem for the first time.  

Due to the page limitation, this paper focuses on the analysis of the students’ responses to the 
assessment tasks, and omits the description of the hypothetical learning trajectory and detailed 
reports of the implemented lessons. These omissions are to lend focus to the purpose of this paper 
which is not to evaluate the effectiveness of the teaching experiments for the facilitation of proof 
validation and modification; such evaluation needs a deep analysis into the relationship between the 
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teaching experiments and the students’ performance on the assessment tasks. Instead, this paper 
aims to describe to what extent the students can perform proof validation and modification. 

All the teaching experiments were videotaped and transcribed, and the students’ worksheets were 
collected. The first author observed all the lessons and took field notes. To analyse the students’ 
answers to the assessment tests, the first author initially created the category shown in Table 1 for 
classifying these answers. Subsequently, the first author and third author independently classified 
each student’s answers according to this category. We synthesised our classifications and discussed 
the discrepancies until we reached a consensus. 

RESULTS 

The first and second lessons 

The first lesson involved the problem shown in Figure 3, in which the students constructed a proof 
by showing ∠BPA = ∠CPD and ∠BAP = ∠CDP from the equality of the vertical angles and the 
inscribed angle theorem, respectively. The teacher then used GeoGebra to move point A and 
present the diagram shown in Figure 3b, which the students recognised as a local counterexample of 
their proof because both of the reasons for ∠BPA = ∠CPD and ∠BAP = ∠CDP were invalidated. 
Then, the teacher prompted the students to modify their proof, and the students responded by 
changing the reasons, such as from the equality of the vertical angles to the identity of the angles. 

As shown in the right diagram, there 
are four points A, B, C, and D on 
circle O. Point P is the intersection 
point of lines AC and BD. Prove that 
∆PAB is similar to ∆PDC.	   

Figure 3: The proof problem and the local counterexample shown by the teacher (the first lesson) 

The second lesson involved the problem in Figure 4, where the students proved the statement by 
showing ∠PAC = ∠PBD and ∠PCA = ∠PDB from the inscribed angle theorem. Contrary to the 
first lesson, the teacher then prompted the students to find local counterexamples of their proof by 
drawing various diagrams by themselves. The local counterexample typically discovered by the 
students was that shown in Figure 5a, where they found that the reason for ∠PAC = ∠PBD was 
invalidated and needed to be changed to the inscribed quadrilateral theorem. The teacher introduced 
another local counterexample from a certain student’s work (Figure 5b) where line AQ was a 
tangent line to circle O’. However, the class did not examine this case further because modification 
of the proof required the alternate angle theorem, which the students had not learnt. 

As shown in the diagram on the right, two circles O and 
O’ intersect at points P and Q, and two points A and B 
are located on circle O. Point C is the intersection point 
of line AQ and circle O’, and point D is the intersection 
point of line BQ and circle O’. Prove that ∆PAC is 
similar to ∆PBD.	  

Figure 4: The proof problem (the second lesson) 
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Figure 5: The local counterexamples from the students’ worksheets (the second lesson) 

The third lesson 

The third lesson involved the proof problem in Figure 1, which differs slightly from the problem 
examined in the second lesson (Figure 4). We designed the assessment tasks, shown in Figure 6, to 
explore the research questions of this paper. These tasks have a hierarchical relationship; for 
example, students who cannot solve task 2 cannot give a correct answer to task 3. These tasks 
correspond to the levels in the framework summarised in Table 1. Students are regarded at level 0 if 
they cannot solve any task or can solve task 1 only. Students are regarded at levels 1 and 2 if they 
can solve tasks 1–2 and tasks 1–3, respectively. Students are regarded at level 3 if they can solve 
tasks 1–3, and further discover other kinds of local counterexamples. 

Task 1: Take point A on various places on circle O and find 
a case that rejects your proof. 

Task 2: Which part of your proof is rejected by this case? 

Task 3: Modify your proof to show the similarity of ∆AQC 
and ∆BPD even in this case.  

Figure 6: The assessment tasks 

In the beginning of the third lesson, all the students proved the statement in Figure 1 by showing 
∠QAC = ∠PBD and ∠QCA = ∠PDB from the inscribed angle theorem; students who found the 
proof difficult obtained help from other students. After that, the students worked individually at the 
tasks described in Figure 6 for twenty minutes. We obtained 27 students’ responses, the 
classifications for which are shown in Table 2. 

 Level 0 Level 1 Level 2 Level 3 

The number of students 11 (41%) 6 (22%) 4 (15%) 6 (22%) 

Table 2: The classification of the students’ responses to the assessment tasks 

Regarding the first research question in this paper, 16 students (59% at levels 1–3) succeeded in 
proof validation, where they could draw diagrams that they recognised as local counterexamples 
invalidating their proof. The number of students at level 0 who failed in proof validation accounted 
for 41%, which indicates that finding a local counterexample by drawing a diagram is difficult for 
many students even after explicit instruction. 

The local counterexample discovered by the most students (12 students) was the case where point A 
was on arc PQ of circle O (Figure 7a). Five students drew the diagram where point C was on arc PQ 
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of circle O’ (Figure 2b). Some students found specific local counterexamples; e.g., three of the 
above 12 students put point A to be the intersection point of segment DP and circle O (Figure 7b), 
and three students drew the cases where line AC was a tangent line to circle O or O’ (Figure 7c). 
These answers seemed to be influenced by the second lesson, where specific diagrams such as 
Figure 5b had been similarly presented. The number of local counterexamples discovered was 
larger than the number of students at levels 1–3 because several students discovered two or three 
local counterexamples. 

 

Figure 7: The local counterexamples from the students’ worksheets (the assessment tasks) 

Regarding the second research question in this paper, 10 students at levels 2 and 3 achieved proof 
modification, where they could adjust their proof to the local counterexamples they had discovered. 
This number accounts for 37% of all the students (10/27) and 63% of the students who succeeded in 
proof validation (10/16). Typical modification was an alteration in the reason for ∠QAC = ∠PBD 
in Figure 7a from the inscribed angle theorem to the inscribed quadrilateral theorem. All the three 
students who drew Figure 7b performed the same alteration and further changed the reason for 
∠QCA = ∠PDB from the inscribed angle theorem to the identity of these angles. The number of 
students at level 3 was larger than that at level 2, which indicates that discovering several local 
counterexamples might not be difficult for students who are successful in proof validation and 
modification. 

Six students at level 2 achieved proof validation but not proof modification. Among them, three 
students drew the case in Figure 7a, where they attempted to prove by changing the pair of angles 
from ∠QAC and ∠PBD. For example, a student wrote incorrectly, “Since 4 points P, B, Q, and A 
are inscribed in circle O, ∠BPA = ∠AQC”. One of the students at level 2 discovered the case in 
Figure 7c, but failed in proof modification due to lack of knowledge of the alternate angle theorem. 
Other three students who drew the case in Figure 7c were regarded at level 4 because they found 
other local counterexamples wherein they succeeded in proof modification. 

DISCUSSION 

Contrary to the previous research focusing on graduate students, teachers, and mathematicians (e.g., 
Alcock & Weber, 2005; Knuth, 2002; Weber, 2008), this paper investigated proof validation and 
modification by secondary school students. In the assessment tasks, 59% of the students succeeded 
in proof validation and 37% of the students succeeded in both proof validation and modification. 
Given the difficulty of the assessment tasks, the results are not disappointing. Japan has the national 
curriculum, which specifies that the inscribed quadrilateral theorem, which was necessary for proof 
modification in the tasks, be learnt in the tenth grade in upper secondary schools; the classroom-
based intervention in this study was implemented in the ninth grade in a lower secondary school. In 
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addition, the results obtained by this intervention were better than those of our previous one-hour 
teaching experiment, implemented with a similar task (Komatsu & Makino, 2014). In the future, a 
large-scale survey is necessary to scrutinise the possibility of generalising the results of this study 
derived from a single classroom. 

The type of proof validation proposed in this paper, namely the discovery of local counterexamples 
by drawing diagrams, is an important activity in school mathematics. De Villiers (2010) examines 
the functions of experimentation that includes diagrammatic evaluation of conjectures and proofs, 
arguing that “we need to explore authentic, exciting and meaningful ways of incorporating 
experimentation and proof in mathematics education, in order to provide students with a deeper, 
more holistic insight into the nature of our subject” (p. 220). Lakatos (1976) rationally 
reconstructed the actual history of mathematics to demonstrate that “informal, quasi-empirical, 
mathematics does not grow through a monotonous increase of the number of indubitably 
established theorems but through the incessant improvement of guesses by speculation and criticism, 
by the logic of proofs and refutations” (p. 5). Therefore, proof validation and modification by 
example generation are essential in school mathematics to allow students to experience how 
mathematical knowledge progresses within its discipline. 

As an implication for teaching, teachers may use proof problems with diagrams as tasks to 
introduce proof validation and modification into their classrooms in secondary schools. Although 
existing studies suggest that undergraduates’ ability to comprehend and validate proofs could be 
improved by relevant instruction (e.g., Alcock & Weber, 2005; Hodds, et al., 2014), they do not 
explore the kinds of tasks that were appropriate for the instruction. Our previous study 
demonstrated that proof problems with diagrams could provide students with an opportunity to 
experience refutation and generalisation of statements (Komatsu, et al, 2014). This paper 
complements the study by illustrating that these tasks can be used not only for the mathematical 
activity related to statements, but also for proof validation and modification. 

There are two future research issues. First, the number of students at level 0 accounted for 41% in 
this study, indicating that the framework depicted in Table 1 has large meshes. If a case that 
constituted a local counterexample had been shown, some of the students could have pointed out 
and modified the refuted parts of their proof. It is necessary to develop a more fine-grained 
framework and assessment tasks for minutely capturing student proof validation and modification. 
Second, this study focuses on a peculiar type of proof validation in secondary school geometry. It is 
well known that some students make invalid proofs, such as a circular argument employing the 
conclusion as a hypothesis and overreliance on the appearance of a diagram to use conditions that 
are not given as hypotheses. It is necessary to present such invalid proofs and investigate whether 
students can invalidate and improve them. 
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