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Rethinking the discovery function of proof within the context of proofs 

and refutations 

 

1. Introduction 

Proof and proving are characteristics of the discipline of mathematics and play multiple 

roles in mathematical practice. In addition to verifying the truth of a statement, De 

Villiers [1] points out other functions of proof such as explanation, systematisation, 

discovery, and communication. Hanna and Jahnke [2] add three functions: construction 

of an empirical theory, exploration of the meaning of a definition or the consequences 

of an assumption, and incorporation of a well-known fact into a new framework and 

thus viewing it from a fresh perspective. Recently, Hanna and Barbeau [3] argue that 

proofs can embody methods, tools, strategies and concepts for solving problems. 

Among these multiple functions of proof, this paper focuses on the discovery 

function that indicates ‘the discovery or invention of new results’ [1, p.18]. This 

function is important in school mathematics because it has a potential to improve an 

issue of learning of proof and proving. In school mathematics, it is typical that a 

statement is given by teachers or textbooks and the truth of the statement is obvious 

without proving it. This kind of learning may cause many students to feel that proof and 

proving are ritualistic [4,5]. In contrast, the discovery function of proof allows students 

to engage in a productive activity where they utilise a proof to generate a new result, by 

themselves, that is often surprising. Therefore, it is expected that the discovery function 

of proof will enable students to regard proof and proving as a productive tool for 

inventing new results, rather than as a ritual in which they verify a statement whose 

truth is already obvious. 
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Although mathematics educators have examined the meanings of the discovery 

function of proof in different settings and examples, this paper addresses the process of 

proofs and refutations described by Lakatos [6]. His research is well known in our 

research community, but there is no mathematics education literature that illustrates the 

discovery function of proof in this process (see Sections 2.1 and 2.2). Lakatos wrote his 

book Proofs and Refutations to demonstrate that, in informal and quasi-empirical 

mathematics, mathematical knowledge grew through continuous interaction between 

conjectures, proofs, and refutations. Therefore, if we can illustrate the discovery 

function of proof in the context of proofs and refutation using a school mathematics 

setting, it should become possible to provide students with an opportunity in which they 

can experience an authentic process that mirrors such mathematical growth. 

Consequently, this paper aims to illustrate how proofs can enable students to discover 

new results in their process of proofs and refutations, with two examples in which junior 

high school students participated. 

2. The meanings of the discovery function of proof 

2.1 The discovery function of proof 

When De Villiers refers to the discovery function of proof, he is mainly considering 

‘deductive discovery via deductive generalization’ [1, p.22]; he has illustrated this with 

several examples in many papers. In order to summarise his point, we illustrate this 

function with an example that is slightly different from one of his: if we connect the 

midpoints of each segment in a parallelogram, then we can make a parallelogram. 

In order to prove this statement, let P, Q, R, and S be the midpoints of sides AB, 

BC, CD, and DA of parallelogram ABCD, respectively. From the midpoint theorem in 

triangles ABD and BCD, diagonal BD is parallel to side PS, and this diagonal is also 
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parallel to side QR. This implies that the two sides PS and QR are parallel. Similar 

consideration regarding diagonal AC leads to deducing that two sides PQ and SR are 

parallel. Therefore, quadrilateral PQRS is a parallelogram because it satisfies a 

condition for parallelograms. 

Then, reflecting on this proof shows that it does not use a supposition of the 

above statement that quadrilateral ABCD is a parallelogram. Hence, it is possible to 

generalise the above statement such that even if parallelogram ABCD is replaced with 

quadrilateral ABCD, quadrilateral PQRS is still a parallelogram (Figure 1). 

 

 
Figure 1. Deductive discovery via deductive generalisation. 

 

When constructing a proof of a statement, a certain supposition of the statement 

may not be used in the proof. Deductive discovery via deductive guessing refers to 

inventing a more general statement by finding such supposition and removing it from 

the statement. This value of proof is discussed by Sugiyama [7] as well. 

As Hemmi and Löfwall [8] point out, because there are some misunderstandings 

regarding the meaning of the discovery function of proof in existing studies, it is 

important to clarify this meaning. For example, although Knuth [9] refers to the 

discovery function of proof, he does not consider proof as a method for inventing a new 

result. Rather, he thinks that such new result is discovered through induction or 

experiments, and that the discovery function of proof indicates to justifying that the 

discovered result is true. This interpretation is relevant to the verification function of 
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proof, rather than the discovery function, in classification by De Villiers [1]. Ding and 

Jones [10] attempt to investigate instructional strategies that enable students to see and 

appreciate the discovery function of proof in geometry. However, they do not mention 

prior research about this function (for example, [1]), and they consider discovery of 

properties that are necessary for constructing a proof, rather than discovery of a new 

result by reflecting on a constructed proof. 

De Villiers regards the meaning of the discovery function of proof as ‘the 

discovery or invention of new results’ [1, p.18] and mathematics educators have defined 

the meaning of these new results diversely. In the above parallelogram example, the 

discovered result is a statement or conjecture. On the other hand, De Villiers states that 

‘with the discovery function, it also means that a proof can reveal new, powerful 

methods of solving problems and creating new theories’ [11, p.3]. Furthermore, 

Miyazaki states that ‘the results include propositions, proofs, assumptions, concepts, 

counterexamples, definitions’ [12, p.2]. These studies address a global context in which 

students create new theories or refine existing concepts. Proof and proving in school 

mathematics, however, are learnt in a more localised context where students only prove 

statements and sometimes make conjectures, and they do not experience such creation 

of new theories. Therefore, in order to actualise the discovery function of proof in 

regular classrooms, this paper limits the meaning of new invented results to statements 

and conjectures. 

In addition, there are differences in the existing literature regarding how new 

results are invented. The above illustration is an example of ‘a discovery made after 

reflecting on a recently constructed proof’ [11, p.3]. On the other hand, De Villiers 

states differently that ‘it (discovery function of proof) also more broadly refers to 

situations where new results are discovered in a purely logical way by the application of 
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known theorems or algorithms without resorting to any experimentation, construction or 

measurement’ [11, p.3]. However, the latter citation is related to the function of 

deductive reasoning rather than a function of proof. Therefore, this paper restricts 

methods for inventing a new result to reflecting on or utilising a constructed proof. 

In summary, this paper defines the discovery function of proof as an invention 

of a new statement or conjecture by reflecting on or utilising a constructed proof. This 

definition does not intend to ignore the diverse meanings of the discovery function 

discussed above. Rather, this paper limits the meaning of this function in order to make 

our focus more clear. 

2.2 Illustrations of the discovery function of proof in existing studies 

Even if the meaning of the discovery function of proof is limited as stated above, four 

types of discovery function, other than deductive discovery via deductive generalisation, 

have been discussed in existing studies. The first is specialisation rather than 

generalisation. Though De Villiers [13] illustrates this type with an isosceles trapezoid, 

we continue the example from the previous section. The proof used the midpoint 

theorem, which also claims that sides PS and QR are equal to a half of diagonal BD, and 

that sides PQ and SR are equal to a half of diagonal AC. From this, it can be said that 

these four sides are equal to each other if the two diagonals are equal. This leads to a 

statement, ‘if we connect the midpoints of each segment in a quadrilateral whose two 

diagonals are equal, then we can make a rhombus’, which is a special case of the 

statement generalised in the previous section (Figure 2). 
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Figure 2. Specialisation. 

 

The second is relevant to an invention of a new statement by analysing some 

facts obtained in the middle of a constructed proof. De Villiers [14,15] illustrates this 

with a statement that the three medians in a triangle are concurrent. Let D and F be the 

midpoints of sides AB and CA, respectively, O be the point of intersection between 

medians CD and BF, and E be the point of intersection between line AO and side BC. In 

order to prove the above statement, it is enough to show that point E is the midpoint of 

side BC. Now, BE/EC = ∆ABO/∆ACO, CF/FA = ∆BCO/∆ABO, and AD/DB = 

∆ACO/∆BCO, irrespective of the positions of points D, E, and F. Since segment AD is 

equal to segment DB, the areas of triangles ACO and BCO are equal. Similarly, the 

areas of triangles BCO and ABO are equal. Therefore, it is proved that the areas of 

triangles ACO and ABO are equal and thus segment BE is equal to segment EC. Now, 

an analysis of the above three fractional expressions leads to finding that the 

multiplication of these expressions results in the reduction of the right-hand side to 1. 

That is, (BE/EC) ×(CF/FA) ×(AD/DB) = 1, which implies Ceva’s theorem (Figure 3). 
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Figure 3. Invention of Ceva’s theorem. 

 

The third illustration refers to discovery of a new statement by reflecting on the 

result obtained at the end of a proof [11,16]. For example, in order to prove that the sum 

of a two-digit integer and the integer whose digits are the reverse of the order of the 

original integer’s digits is always divisible by 11, students will represent the two 

numbers as 10a + b and 10b + a, and calculate the sum of the two numbers as 11(a + b). 

Examining this expression, they could notice that the other factor is the sum of the 

digits of the original number (for an example in geometry, see [17]). 

Finally, the fourth type is related to changing a supposition of a statement (often 

generalising) and utilising its proof to find a sufficient supposition. For example, 

students in an experiment by Miyazaki [12] tackled the following problems (Figure 4): 

Problem 1: Place an arbitrary point P on diagonal BD of rectangle ABCD. Draw a 

parallel line to segment AB through P, and let the line intersect with segment DA 

at E and segment BC at F, respectively. Draw another parallel line to segment BC 

through P. Let the line intersect with segment AB at G and segment CD at H, 

respectively. Prove that the area of quadrilateral AEPG is equal to the area of 

quadrilateral CFPH. 

Problem 2: Draw a segment BD in quadrilateral ABCD, and place an arbitrary 

point P on the segment. Draw a parallel line to segment AB through P, and let the 

line intersect with segment DA at E and segment BC at F, respectively. Draw 

another parallel line to segment BC through P. Let the line intersect with segment 

AB at G and segment CD at H, respectively. What conditions of quadrilateral 



9 
 

ABCD make the area of quadrilateral AEPG equal to the area of quadrilateral 

CFPH? Prove it. 

 

 
Figure 4. Changing a supposition of a statement. 

 

While solving the first problem, one of the students showed that triangle EDP 

was congruent to triangle HPD and that the areas of these two triangles were therefore 

equal. In the beginning of the second problem, she used dynamic geometry software and 

thought it sufficient to suppose that the area of triangle ABD was equal to the area of 

triangle CDB. However, she noticed that this supposition did not guarantee the 

congruence of triangles EDP and HPD used in her previous proof. Therefore, she 

changed this supposition to the congruence of triangles ABD and CDB in order to 

directly utilise the congruence of triangles EDP and HPD. 

In the first, second, and third illustrations, as well as the illustration shown in 

Section 2.1, discovering a new statement was initiated by reflecting on a constructed 

proof. On the other hand, a starting point for discovery in the fourth illustration 

consisted of changing a supposition of a statement and using the constructed proof to 

find a sufficient supposition. 

In contrast to these illustrations, facing a counterexample that refutes a statement 

has a potential to become an alternative starting point for discovery. In fact, Lakatos [6] 

described the process in which an imaginary teacher and students confronted a variety 
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of counterexamples after proving a primitive conjecture. Then, based on this and other 

proofs, they restricted the conjecture so that these counterexamples could be excluded, 

and invented more general conjectures that were true even for these counterexamples. 

Some of the studies reviewed in the above refer to Lakatos’s research in brief (for 

example, [12]); nevertheless, they do not describe a process in which facing a 

counterexample leads to discovering a new statement. Therefore, as a starting point for 

discovery, this paper addresses a case in which students are confronted with a 

counterexample of a statement, and demonstrates how a constructed proof can function 

to invent a statement that holds for such counterexample. 

3. Background of examples 

This paper illustrates the discovery function of proof with two cases in the context of 

proofs and refutations. The first example is taken from a larger study concerning proof 

and proving with manipulative objects [18]. A pair of Japanese ninth graders (14-15 

years old) took part in an experiment conducted by the first author. The second case is 

derived from a classroom teaching experiment conducted as part of another larger study 

that aims to develop a set of tasks and associated teachers’ guidance that can prompt 

students to engage in a process of proofs and refutations [19]. The third author 

conducted this experiment with Japanese eighth graders (13-14 years old). We were all 

involved in the design of the lessons, and the first author observed all the lessons. 

In Japan, eighth and ninth graders learn to prove geometric statements related to 

various properties of triangles, quadrilaterals, and circles, using conditions for 

congruent or similar triangles (for more details about proof and proving in the Japanese 

national curriculum and textbooks, see [20–22]). Because of the difference between the 

curriculums of their schools, the students in the first case had not yet learnt 

counterexamples; the students in the second had already known counterexamples. 
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All of the experiment and lessons were recorded and transcribed. In addition to 

these transcripts, data for analysis included what the students wrote on their worksheets, 

how they utilised manipulatives in the first case, and field notes taken during the lessons 

in the second example. These data were analysed with a focus on the students’ 

behaviour after the proof construction, in particular, how the students utilised their 

proofs to invent conjectures that held for counterexamples. We translated the problem 

sentences, the students’ words and proofs from Japanese to English. All of the students’ 

names are pseudonyms. 

4. The first case 

The participants of the first example were Sakura and Yuna. Procedures for choosing 

them were as follows. All of the ninth graders in their school completed a questionnaire 

presented by the first author. This investigated their basic knowledge and skill regarding 

proof. Then, among the students who obtained good results in the questionnaire, Sakura 

and Yuna were chosen as the participants because, according to their teacher, they had a 

good rapport and were therefore expected to give rich utterance data for analysing their 

thinking. These procedures indicate that the two students were strong in proof and 

proving. 

Sakura and Yuna tackled the following problems for about 55 minutes. Because 

this experiment was conducted as a part of the research relating to proving with 

manipulatives, they were required to use manipulatives of equilateral triangles made of 

translucent sheets. In contrast to existing studies on the discovery function of proof and 

to the second example shown below, it was a characteristic of this first case that the 

students made a conjecture by themselves. 
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Problem 1: We have two equilateral triangles, and place the smaller triangle on top 

of the bigger one as shown in Figure 5-a. If we join each vertex of the two triangles 

by a segment, we obtain two segments that are equal in length (thick lines in Figure 

5-b). When we rotate one of the two triangles around point O, how will the length 

relation of these two segments change? 

Problem 2: Prove your conjecture in Problem 1. 

 

 
Figure 5. Diagrams attached to the problems in the first episode. 

 

4.1 Primitive conjecture and its proof 

The meaning of these problems was ambiguous for Sakura and Yuna. In particular, they 

were confused as to which parts ‘two segments’ (thick lines in Figure 5-b) referred to 

when rotating one of the two equilateral triangles. In order to solve their confusion, the 

interviewer used manipulatives to show the meaning of the two segments in a case 

where the two triangles overlapped each other (hereafter, called the overlapping case). 

This intervention had a significant influence on the students, and they 

consistently examined only the overlapping case. Yuna first conjectured “(are the two 

segments) always equal in length?”, and Sakura agreed with her conjecture. However, 

they were not able to construct a proof for their conjecture. Therefore, the interviewer 

advised them to focus on triangles that included the two segments, and this advice 

enabled them to construct their proof as follows (Figure 6): 
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Proof by Sakura and Yuna: 

In ∆OAB and ∆OBD 

Since ∆OAB is an equilateral triangle, OA = OB … (1) 

Since ∆OCD is an equilateral triangle, CO = DO … (2) 

∠AOC = ∠AOB – ∠BOC 

∠BOD = ∠COD – ∠BOC 

Therefore, ∠AOC = ∠BOD … (3) 

From (1)–(3), since two pairs of sides and the included angles are equal, ∆OAC 

≡ ∆OBD 

Since corresponding sides of congruent figures are equal, AC = BD 

 

 
Figure 6. A diagram in the students’ proof. 

 

4.2 Counterexample and generalisation 

After completing their proof, Sakura and Yuna switched to a case in which two 

equilateral triangles did not overlap (non-overlapping case): 

609. Sakura: (The two segments are) equal even if we rotate continuously. (She 

rotated the manipulative of the smaller triangle to move from an 

overlapping case to a non-overlapping one.) 

612. Yuna:  It will be, for sure. 

615. Sakura: Wait, how about the case where this (smaller triangle) runs off 

(bigger one)? 

616. Yuna:  What? 

617. Sakura: What will happen after this? (She considered the two segments as 

thick lines in Figure 7-a.) Wait, wait. What? 
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618. Yuna:  We have to rethink this. 

635. Sakura: (The two segments are) not absolutely equal. 

 

 
Figure 7. A non-overlapping case. 

 

In this dialogue, although the students first conjectured that the two segments 

were still equal even in the non-overlapping case (609. Sakura and 612. Yuna), they 

then regarded the non-overlapping case as a counterexample of their conjecture (618. 

Yuna and 635. Sakura). Of course, if one appropriately grasps the correspondence 

between the vertices of the two equilateral triangles, the two segments stay equal in 

length (Figure. 7-b). However, Sakura and Yuna considered the two segments as shown 

in Figure 7-a, and this resulted in their conclusion that this non-overlapping case 

became a counterexample of their conjecture. Then, the students restricted their 

conjecture to only the overlapping case. 

Later, Sakura and Yuna revisited the non-overlapping case, and Yuna set the 

manipulatives as shown in Figure 8-a. In contrast to their previous consideration about 

the non-overlapping case (Figure 7-a), Sakura grasped the meaning of the two segments 

as thick lines in Figure 8-a. However, at this point, Yuna still believed that the two 

segments were not equal, as they had thought before, stating “there seems to be no 

relationship”. 
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Figure 8. A non-overlapping case revisited. 

 

Next, based on their proof for the overlapping case, Sakura labelled each vertex, 

A to D, and drew segments AC and BD (Figure 8-b). They then proceeded as follows: 

801. Sakura: This triangle (she pointed to triangle OBD in the diagram). 

802. Yuna:  This (triangle OBD). 

803. Sakura: And this (triangle OAC). 

806. Yuna:  It (these triangles are congruent) is still true, isn’t it? 

807. Sakura: This means, is it (the two segments are equal in length) true in any 

case? 

This interaction demonstrated that the students reflected on and utilised a part of 

their previous proof, namely the congruence of triangles OAC and OBD, to invent a 

more general conjecture, AC = BD in any case, including the counterexample. To be 

more exact, they were able to reconsider their initial conjecture, which had been 

restricted to only the overlapping case, as a more general one that held even in the non-

overlapping case. 

There may be an objection that Sakura and Yuna were able to generalise their 

conjecture because their interpretation of the two segments changed from Figures 7-a to 

8-a, and that their proof did not contribute to this change. However, when they 

reconsidered the two segments as in Figure 8-a, they still believed that their conjecture 

failed in the non-overlapping case; as Yuna said “there seems to be no relationship”. 
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After that, they found that the two segments were equal even in the non-overlapping 

case because a part of their proof (the congruence of triangles OAC and OBD) seemed 

to be applicable to this case. Thus, for the students, their proof functioned as a useful 

tool for inventing a more general conjecture in that they could generalise their initial 

conjecture to both the overlapping and non-overlapping cases by reflecting on and 

utilising this proof. 

After that, Sakura and Yuna examined whether the triangles OAC and OBD 

were actually congruent. They first thought that they could deduce this congruence from 

OA = OB, OC = OD and ∠AOC = ∠BOD = 60° – ∠AOD. Then, the interviewer asked 

them to re-examine the included angles, and Yuna noticed that these degrees were not 

60° – ∠AOD, but actually 60° + ∠AOD. 

5. The second case 

5.1 Primitive statement and its proof 

The second example is derived from a classroom teaching experiment that consisted of 

two lessons with 36 eighth graders (50 minutes per lesson). The average of their 

mathematical abilities was above standard, and they dealt with the following problem: 

Problem: As shown in Figure 9, we draw line l that passes point A of square 

ABCD, and perpendicular lines BP and DQ to line l from points B and D, 

respectively. Prove that PQ = DQ – BP. 

 



17 
 

 
Figure 9. A diagram attached to the problem in the second example. 

 

At the start of the first lesson, the teacher asked his students their plans for 

solving this problem. Rie and Miho proposed to show the congruence of triangles ABP 

and DAQ, and Tetsuya mentioned that the two triangles were right triangles. In addition, 

Ryo stated that showing this congruence led to deducing AQ = BP and AP = QD. 

After sharing these ideas, the students tackled this problem individually, and 

then the teacher had Emi write her proof on the blackboard. Her proof was examined in 

a classroom discussion, and the part which showed ∠BAP = ∠DAQ was complicated 

for other students. Therefore, the teacher had Mai give her complementary explanation 

with a different expression. 

Proof by Emi and Mai: 

In ∆ABP and ∆DAQ, 

From the supposition, ∠APB = ∠DQA = 90° 

Since quadrilateral ABCD is a square, AB = DA 

Let ∠BAP = a 

Since the sum of the interior angles of triangle ABP is 180 degrees, ∠ABP = 180° 

– ∠APB – ∠BAP = 90° – a 

Since an interior angle of a square is 90 degrees, ∠DAQ = 90° – ∠BAP = 90° – a 

Therefore, ∠ABP = ∠DAQ 

Thus, since the hypotenuses and a pair of corresponding angles in right triangles 

are equal, ∆ABP ≡ ∆DAQ 

Since the corresponding sides of congruent figures are equal, AP = DQ and BP = 

AQ 
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Therefore, PQ = AP – AQ = DQ – BP 

5.2 Counterexamples and new statements 

After this proof, the teacher asked his students “now, we drew line l which passed point 

A like this (Figure 9), but when the place of this line l is different from here (Figure 9), 

is it possible to say that this (PQ = DQ – BP) is true?”. A few students responded 

“maybe impossible”. Then, the teacher told his students “draw various lines, l, which 

pass point A and investigate by drawing your own diagrams”. The first lesson finished 

when the students drew diagrams individually on their worksheets. 

Analysing their worksheets after the lesson, we found that many students drew 

diagrams similar to those shown in Figures 10-a and b (these figures are the students’ 

actual drawings). In the case of Figure 10-a, the students wrote, “segment BP becomes 

longer than segment DQ” or “DQ – BP becomes negative”. For Figure 10-b, they wrote, 

“segment PQ is longer than segments DQ and BP” or “(DQ – BP) becomes negative as 

well”. Their worksheets evidenced that they grasped these cases as counterexamples 

that refuted the statement in the original problem (PQ = DQ – BP). 

 

 
Figure 10. Counterexamples drawn by the students. 
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In the second lesson, the students investigated what relationships between PQ, 

DQ, and BP held in the cases as Figures 10-a and b. At this point, the teacher told the 

students that they were allowed to utilise the previous proof by Emi and Mai. 

After the students investigated the problem individually, the teacher had Manabu 

and Ken write their ideas on the blackboard. Regarding the case represented by Figure 

10-b, Manabu wrote, “I prove ∆ABP ≡ ∆DAQ as we did in the last lesson, and from PQ 

= AQ + PA, it should be true that PQ = BP + QD”. Ken described his idea for Figure 

10-a as “since PQ = AQ – AP is true, a relationship between PQ, DQ, and BP is PQ = 

BP – DQ”. Thus, Manabu invented a new statement, PQ = BP + QD, by utilising the 

congruence of triangles ABP and DAQ that had been deduced by Emi and Mai. Ken 

also utilised implicitly this congruence to find a new statement, PQ = BP – DQ. 

Therefore, the students were able to reflect on and utilise the previous proof by Emi and 

Mai to invent these new statements for the cases as Figures 10-a and b, which had been 

counterexamples of the statement in the original problem. 

Next, the classroom discussion focused on whether the congruence of triangles 

ABP and DAQ could actually be deduced by the same proof as proposed by Emi and 

Mai. For example, in the case of Figure 10-b, the teacher asked his students to examine 

whether the proof by Emi and Mai was directly applicable to this case. Satoshi 

questioned the part of this proof that said “since an interior angle of a square is 90 

degrees, ∠DAQ = 90° – ∠BAP = 90° – a”, and stated that “because both angles DAQ 

and BAP are not inside it (angle BAD), I think it is not true”. Then, other students 

added that it was possible to deduce ‘∠DAQ = 180° – ∠BAP – ∠BDA = 90° – a’ by 

using the fact that ∠PAQ = 180°. 

As in the first example, before reflecting on the proof constructed by Emi and 

Mai, the students in this case were not able to find out the relationships between 
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segments PQ, DQ, and BP in the cases shown in Figures 10-a and b. In fact, Yuko wrote 

in her worksheet that “I had thought PQ = DQ – BP (in the case of Figure 10-a) similar 

(to the case shown in Figure 9), because the right and left were only reversed, but I 

found (PQ = DQ – BP was) not true through copying (the previous) proof”. Toru also 

wrote that “in the process of making proofs, I gradually understood that I could 

represent the relationships between PQ, DQ, and BP by using + and –” (emphases by 

the authors). Therefore, the proof functioned as a useful tool for inventing new 

statements in that the students were able to find the relationships between the three 

segments by reflecting on and utilising this proof. 

6. Discussion and conclusion 

This paper aimed to illustrate the discovery function of proof within the context of 

proofs and refutations [6] that existing studies regarding this function have not 

addressed explicitly. Though there have been diverse meanings related to this function 

in the existing studies, this paper defined it as an invention of a new statement or 

conjecture through reflecting on or utilizing a constructed proof. A characteristic of the 

discovery function of proof in this paper is in the starting point for discovery. In 

previous research, such starting points have been limited to reflecting on a constructed 

proof (for example, [1]) or to changing a supposition of a statement [12]. In contrast to 

these studies, the two examples referenced in this paper demonstrated that facing 

counterexamples of primitive statements encouraged students to investigate discovery, 

and that constructed proofs functioned as a useful tool for inventing conjectures that 

held for these counterexamples. 

The cases in this paper had two additional characteristics compared to the 

existing studies relating to the discovery function of proof. First, although the 

illustrations in these studies considered a situation in which primitive statements were 
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given by textbooks or teachers, the students in the first example of this paper made a 

conjecture by themselves. When conjecturing by themselves, students may consider 

implicitly only a part of the whole situation of a problem, and they may make a 

conjecture that holds for only the part. Therefore, even after proving the conjecture, 

students may find a counterexample of the conjecture by considering other cases, and 

the constructed proof may become an effective tool for exploring a new conjecture. In 

fact, in the beginning of the first case, Sakura and Yuna examined only the overlapping 

case, and encountered a counterexample of their conjecture after constructing its proof. 

Then, by utilising the proof, they were able to generate a more general conjecture that 

held even for the counterexample (for an arithmetic example at the primary school level, 

see [23]). 

Second, the problem in the second episode was presented with a diagram, and 

the problem sentence did not express all of the suppositions explicitly; a specific 

supposition, namely the position of line l, was implicitly embedded in the diagram. 

Although previous studies have dealt with problems whose suppositions are clearly 

stated in the problem sentences, most proof problems in school geometry include 

diagrams and some of such problems have implicit suppositions in the diagrams. Hence, 

transforming the diagram of the original problem may lead to finding a counterexample 

or non-example, and the proof of the problem may be helpful to investigating new 

conjectures for the transformed diagrams [19]. In fact, in the second case, Emi and Mai 

constructed the proof of the original problem, and then the students found out 

counterexamples by changing the position of line l. After that, they could utilise this 

proof to invent new conjectures that held for these counterexamples. 

The discovery function of proof in the first example is valuable from a 

viewpoint of Proofs and Refutations [6]. Lakatos formulated five heuristic rules as 
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normative actions that one should take when facing counterexamples. One of the rules 

referred to ‘increasing content by deductive guessing’, which insisted that ‘(i)f you have 

counterexamples of any type, try to find, by deductive guessing, a deeper theorem to 

which they are counterexamples no longer’ [6, p.76]. In the first example in this paper, 

Sakura and Yuna proved their conjecture and were then confronted with its 

counterexample (the non-overlapping case). Nevertheless, by utilising their proof, they 

were able to reconsider their conjecture as a deeper one which the non-overlapping case 

was no longer a counterexample. Thus, the discovery function of proof in this example 

mirrors a portion of proofs and refutations. 

In contrast to the first case, the students in the second example could not invent 

a general statement that included the three statements. In theory, it is possible to invent 

such a statement if we represent PQ = |BP+ DQ| [24]. However, the students in this 

example had learnt neither vector nor the expression of absolute value. For this reason, 

it was impossible for them to unify all cases, and the case analysis according to the 

positions of line l was sufficient for them. 

A point in common between the two examples is that the supposition of the 

primitive statement was not clear enough when the students undertook proving them. 

Nevertheless, whether the statement was conjectured by the students or given by the 

teacher, they engaged in the process of constructing its proof, facing counterexamples, 

and inventing a new statement through reflecting on or utilising the proof. If we 

examine this process purely logically, the ‘proof’ was not valid since the supposition of 

the target statement was not clear and it actually included counterexamples. However, 

for the students, the meaning of the statement depended on their interpretation and 

gradually changed as they engaged in the process. Existing studies on the discovery 

function have mentioned what can be discovered and how (see Sections 2.1 and 2.2), 
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but their considerations are based on a mathematically valid proposition and its proof. 

Considering our cases and the fact that similar situations often happened in 

mathematical history (for example, mathematicians’ efforts from the ancient Greek era 

and beyond toward Euclid’s Elements, see [25]), it is important to extend the meaning 

of a primitive statement in the study of the discovery function. More concretely, it is 

valuable to begin with a statement whose meaning is obscure and to provide students 

with an opportunity in which they explore the statement through proving, such as 

searching an implicit assumption and examining a possibility to generalize the statement. 

The cases in this paper also have an implication for developing tasks related to 

the discovery function of proof. Hanna and De Villiers point out that ‘another under-

explored research area encompasses the identification of good problems and the 

development of effective strategies to help students see and appreciate this “discovery” 

function of proof’ [26, p.10]. Both examples in this paper consisted of specific tasks in 

which primitive statements were denied when diagrams attached to the tasks were 

transformed. By utilising the constructed proofs with appropriate modification, the 

students were able to invent new statements for the cases in which the primitive 

statements had been invalidated. This paper therefore implies that a certain kind of tasks, 

in which primitive statements collapse when diagrams attached to the tasks are 

transformed, has a potential for students to experience the discovery function of proof. 

This paper did not aim to exhaust diverse meanings of the discovery function of 

proof. Rather, we aimed to illustrate this function within a context that existing studies 

have not addressed, with keeping the meaning ‘the discovery or invention of new results’ 

[1, p.18]. Therefore, it is necessary to explore other meanings of this function that have 

not been addressed or discussed in prior studies or this paper. Furthermore, though the 

students in both cases were able to utilise their proofs for discovery, they were strong in 
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mathematics and still needed teaching intervention. This fact implies that utilising a 

proof for discovery is difficult for many students in usual classrooms and careful 

instruction is essential. In the future, it will be necessary to develop effective 

instructional strategies that can facilitate students to engage in and appreciate the 

discovery function of proof. 
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