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Abstract: This study attempted to measure forest resources at the individual tree level 

using high-resolution images by combining GPS, RS, and Geographic Information System 

(GIS) technologies. The images were acquired by the WorldView-2 satellite with a 

resolution of 0.5 m in the panchromatic band and 2.0 m in the multispectral bands. Field 

data of 90 plots were used to verify the interpreted accuracy. The tops of trees in three 

groups, namely ≥10 cm, ≥15 cm, and ≥20 cm DBH (diameter at breast height), were 

extracted by the individual tree crown (ITC) approach using filters with moving windows 

of 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels, respectively. In the study area, there were 

1,203,970 trees of DBH over 10 cm, and the interpreted accuracy was 73.68 ± 15.14% 

averaged over the 90 plots. The numbers of the trees that were ≥15 cm and ≥20 cm  

DBH were 727,887 and 548,919, with an average accuracy of 68.74 ± 17.21% and  

71.92 ± 18.03%, respectively. The pixel-based classification showed that the classified 

accuracies of the 16 classes obtained using the eight multispectral bands were higher than 

those obtained using only the four standard bands. The increments ranged from 0.1% for 

the water class to 17.0% for Metasequoia glyptostroboides, with an average value of 4.8% 

for the 16 classes. In addition, to overcome the “mixed pixels” problem, a crown-based 

supervised classification, which can improve the classified accuracy of both dominant 
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species and smaller classes, was used for generating a thematic map of tree species. The 
improvements of the crown- to pixel-based classification ranged from −1.6% for the open 

forest class to 34.3% for Metasequoia glyptostroboides, with an average value of 20.3% for 

the 10 classes. All tree tops were then annotated with the species attributes from the map, 

and a tree count of different species indicated that the forest of Purple Mountain is mainly 

dominated by Quercus acutissima, Liquidambar formosana and Pinus massoniana. The 

findings from this study lead to the recommendation of using the crown-based instead of 

the pixel-based classification approach in classifying mixed forests. 

Keywords: 3S technology; forest resource measurement; individual tree crown approach; 

object-based classification; Purple Mountain 

 

1. Introduction 

Forest resource information, such as species composition, stem density and DBH, is the basis of 

sustainable forest management. Traditional field surveys for forest resource management include the 

number of trees, species and measurements of DBH and tree height in small sample plots. Three to five 

plots are usually established in each compartment (the minimum unit of forest management). The 

structure of the entire forest resource is estimated by multiplying these measured values by the total 

forest area. However, this method is less accurate for large forests in which stand conditions, species 

and stem densities vary [1]. It is nearly impossible to obtain spatially-explicit stand information on tree 

species composition and distribution patterns over large areas purely on the basis of field assessments [2]. 

However, because the forests of China are vast, with a total area of approximately 195.45 million 

hectares in 2008 [3], conducting national forest inventories by the sample plot method every five years 

is too costly and time-consuming. Therefore, the acquisition of spatially detailed forest information 

over large areas by other enhanced methods has become an urgent topic of study [4,5]. 

This task has been enabled by the advent of remote sensing techniques, which can obtain various 

types of spatial information simultaneously, such as the coverage type of the ground surface, position, 

and DEM data. The launch of the LANDSAT satellite in 1972 enabled the study of forests at a global 

scale. For tree species classification at the crown scale in forests with high species diversity, data with 

both high spatial and spectral resolution that can identify objects of small sizes, such as cars and tree 

crowns, are required [6–8]. Since the 1990s, airborne digital sensors with four multispectral bands and 

very high spatial resolution have been applied successfully for forest studies in developed countries, 

such as the USA, Canada, Germany and Japan [9–12]. However, due to their wide field of view, aerial 

photos are subject to strong effects caused by the bi-directional reflectance characteristics of most land 

cover types [2]. Depending on the sun-view-geometry, which varies with the position of the object 

within the image, the spectral signature of an object can differ significantly [2]. Although these effects 

can be useful in special image analysis techniques [13], they are usually regarded as a limiting factor in 

the automated analysis of aerial images. Due to high costs and their limited availability, airborne data 

have gained only limited acceptance for operational use. 
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Commercial satellites, including IKONOS, QuickBird, GeoEye-1 and WorldView-2, were launched 

successfully in 1999, 2001, 2008 and 2009, respectively. These satellites can obtain imagery at low 

cost for several areas simultaneously with a very high resolution of 1 m or less in panchromatic mode, 

enabling the measurement of forest resources at the individual tree level by satellite remote sensing 

and computer technology [14–16]. In recent years, the damaged ecological environment of China has 

required forest conservation instead of wood harvest. For the purpose of forest protection, many forest 

parks and nature reserves have been established in China, and most of them have been transformed 

from state-owned forest farms whose goal of operation in the past was the production of wood. 

However, because of little management, there were many problems in these young man-made forests, 

such as low species richness and diversity, simple structure and poor growth because of high density. 

The management of these areas requires spatially detailed information concerning the forest on a large 

scale. In addition, in modern forest management, the selective thinning approach was used to replace 

the traditional clear-cutting of trees. Accurate forest information at the individual tree level is of high 

importance for the selection of target trees. Therefore, individual tree crown delineation methods have 

received greater attention from researchers in the forest remote sensing field [17–20]. 

Several algorithms can automate tree crown delineation. Extraction methods for delineating tree 

crowns include three main approaches: bottom-up, top-down and template matching algorithms. The 

valley-following method is a bottom-up algorithm. Top-down algorithms can be divided into 

watershed, multiple-scale edge segments, threshold-based spatial clustering and double-aspect 

methods. The template-matching algorithms match a synthetic image model or template of a tree 

crown to radiometric values [21–23]. The valley-following method, developed by Gougeon [24], has 

been successfully used to extract tree crowns and tops of man-made coniferous forests in temperate 

zones by using aerial photographs [18–20]. Additionally, the individual tree crown (ITC) approach 

using the valley-following method has been successfully programmed by the Pacific Forestry Centre of 

the Canadian Forest Service, which made it possible to delineate tree crowns and tops on a large scale. 

This approach can be used to gather detailed crown information at the stand level over a large area for 

forest inventories [14]. However, the usefulness of this method for various types of vegetation remains 

to be verified. In addition, few studies of the semi-automatic extraction of tree tops, the delineation of 

tree crowns, and tree quantifications of forests using satellite images with high resolution have  

been reported [2,25]. 

The WorldView-2, a new satellite-borne sensor, was launched by DigitalGlobe in 2009. Its very high 

spatial resolution (0.5 m in the panchromatic band and 2.0 m in multispectral bands) and four new 

multispectral bands (Coastal, Yellow, Red-Edge and NIR2) in addition to the four standard bands (Blue, 

Green, Red and NIR1) were expected to have high potential for forest studies, because the satellite 

provides more abundant multispectral information compared to traditional optical sensors [2,26,27]. In 

this study, using WorldView-2 data, we attempt to first quantify the forest resources of the Purple 

Mountain in Nanjing at the tree level by applying the ITC approach, a semi-automatic approach of tree 

crown delineation with a valley-following algorithm, and tree top extraction with a local maxima 

filtering technique [28]. We also hope to clarify the validity of this method for various forest types with 

complicated spatial structures in the transitional zone between subtropical and warm-temperate forests. 

Therefore, the entire mountain, which is mainly composed of man-made single forests, secondary 

deciduous forest and coniferous-broadleaved mixed forest dominated by Pinus massoniana, 
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Liquidambar formosana and Quercus acutissima, was the object of interest in this study. Finally, we 

focus on the question of whether the four additional bands of WorldView-2 can improve the 

classification accuracy significantly compared to the four standard bands. 

2. Materials and Methods 

2.1. Study Area 

The study area, Purple Mountain National Park (32°01′–32°06′N, 118°48′–118°53′E), has 

an area of approximately 4,500 ha and is situated in the center of Nanjing City, southeastern Jiangsu 

Province, China (Figure 1). The altitudes above sea level at the top and foot of the mountain are 

approximately 449 m and 20 m, respectively. The annual average precipitation is 1,000 mm to 

1,050 mm, and the average sunshine hours are approximately 2,213 h per year. The annual mean 

temperature is 15.4 °C, with a high temperature of 40.7 °C in August and a low temperature of  
−14.0 °C in January [29]. The zonal soil color is yellow brown [30], with purple forest soil found on 

the northern mountain with a steep slope [29]. 

The zonal vegetation type in Nanjing is deciduous broad-leaved mixed forest with some evergreen 

trees. However, because of long-term wars and human disturbances, all of the natural forest in Purple 

Mountain has been damaged, with the exception of some areas around Linggu Temple and Ming 

Xiaoling Mausoleum. Since the 1930s, more attention has been paid to afforestation in the study area. 

The mountain was covered completely by manmade forest until the 1960s. In the late 1970s, many 

coniferous trees died from pine wilt disease. Many broad-leaved trees, such as Quercus acutissima and 

Pistacia chinensis, invaded the gaps successfully and had good growth. At the same time, the 

surviving zonal vegetation recovered favorably, because cutting was forbidden. Today, the forest of 

Purple Mountain is mainly composed of manmade single forest approximately 60 to 80 years of age, as 

well as secondary deciduous forest and coniferous—broadleaved mixed forest dominated by Pinus 

massoniana, Quercus fabri, Liquidambar formosana and Quercus acutissima [31]. 

2.2. Field Measurements 

In this study, we selected the entire mountain, with an area of approximately 30 km2, as the research 

object. A total of 90 plots with sizes of 15 × 15 m, 20 × 20 m or 25 × 25 m were established in 

September 2011, for testing the accuracy of the interpretation of the tree tops and the supervised 

classification of tree species (Figure 1). In the heterogeneous areas, the plots had a large size for 

improving the representativeness, whereas the plots of homogeneous forests were set with small sizes. 

These plots were chosen on the basis of forest conditions, various terrains and accessibility for 

measurement and were distributed in different forest types. The number of the 15 × 15 m, 20 × 20 m 

and 25 × 25 m plots was 33, 49 and 8, respectively. 

All trees with a DBH larger than 5 cm were surveyed, as well as their species, DBH and height. 

Each tree was tagged with a label and noted as either live or dead. In addition, the center of each plot 

was measured by GPS (Garmin MAP 60CS; accuracy: ±3 m). All central points of the 90 plots were 

recorded when the GPS steadily displayed the highest accuracy of ±3 m. The average DBH, tree height 

and stem density in each plot were calculated, and the plots were divided into three stand types:  
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broad-leaved (B in Table 1), coniferous (C) and mixed (M) forest. Finally, we verified the 

correspondence of the observed and estimated tree densities in the central point of each plot and 

calculated the accuracy of the interpretation of the tree tops. The conditions of the 90 plots are 

documented in Table 1. 

Figure 1. Location map of the study area with vegetation types in 2002 and the plot 

positions investigated in September, 2011. The location map was cited from Google Earth, 

and the vegetation map was from the ArcGIS (GIS, Geographic Information System) 

database established in 2002. 
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Table 1. The condition of the 90 plots surveyed in September, 2011. DBH, diameter at 

breast height. B, broad-leaved; M, mixed; C, coniferous. 

NO. 
Density 

(Stem/ha) 

Average 

DBH (cm) 

Average 

Height (m) 

Forest 

Type 
NO. 

Density 

(Stem/ha) 

Average 

DBH (cm) 

Average 

Height (m) 

Forest 

Type 

1 311  36.2  12.0  B 46 2,000  11.9  8.8  M 

2 1,956  10.1  8.6  B 47 1,422  12.9  9.6  M 

3 1,467  13.0  10.0  M 48 711  18.0  11.0  B 

4 1,289  12.4  9.5  C 49 1,022  12.5  9.4  M 

5 1,378  16.2  10.8  C 50 2,178  11.2  8.8  M 

6 844  16.6  11.2  B 51 2,178  10.1  8.4  M 

7 1,644  12.2  9.4  M 52 1,378  12.6  9.4  M 

8 1,956  12.7  9.5  M 53 1,422  15.4  10.4  M 

9 1,100  17.2  11.4  M 54 1,778  12.1  9.2  M 

10 1,156  16.5  11.1  M 55 1,067  13.6  10.1  M 

11 1,375  14.0  10.0  M 56 1,111  15.3  11.0  C 

12 1,244  13.2  9.4  C 57 1,200  11.0  8.9  B 

13 2,075  10.7  8.4  C 58 1,156  14.8  10.3  B 

14 1,822  11.6  8.9  M 59 1,689  11.9  9.7  B 

15 844  17.8  11.3  B 60 1,911  10.8  8.6  M 

16 1,644  11.9  8.6  M 61 1,067  10.0  8.0  M 

17 1,650  13.6  10.4  B 62 1,467  10.6  8.7  B 

18 650  15.7  11.1  M 63 1,111  14.6  10.4  B 

19 1,333  13.0  9.2  M 64 1,644  13.5  9.8  C 

20 1,125  13.4  9.3  B 65 1,175  11.5  8.6  B 

21 1,400  10.2  7.9  B 66 1,250  13.2  9.5  B 

22 1,325  15.4  10.3  B 67 533  11.3  9.0  B 

23 1,156  13.5  9.6  B 68 533  17.5  11.1  B 

24 978  19.4  12.4  B 69 889  9.9  8.4  B 

25 1,289  12.2  9.2  B 70 1,556  10.0  8.2  M 

26 800  16.1  10.3  M 71 1,111  11.4  8.6  B 

27 1,689  10.8  8.7  B 72 1,778  10.2  8.3  B 

28 1,689  10.3  8.9  M 73 1,378  15.2  9.9  B 

29 1,378  11.9  9.3  B 74 933  17.7  10.9  B 

30 1,467  12.2  9.2  B 75 1,956  10.1  8.4  B 

31 1,422  15.5  10.8  M 76 1,911  10.6  8.7  B 

32 1,467  15.9  10.8  M 77 1,289  13.8  10.4  B 

33 550  27.9  14.4  M 78 1,467  13.5  10.1  B 

34 1,067  16.6  10.0  B 79 2,000  11.6  9.4  C 

35 889  20.4  11.6  B 80 978  8.6  7.7  B 

36 1,200  13.4  9.6  B 81 1,556  14.1  10.5  C 

37 1,333  11.1  9.4  B 82 978  20.6  12.7  B 

38 1,911  8.4  7.9  B 83 1,289  14.9  10.6  B 

39 1,800  11.4  9.2  M 84 1,022  21.0  12.4  B 

40 800  17.2  11.2  M 85 800  16.1  11.3  B 

41 933  14.9  10.7  B 86 933  15.8  10.7  B 
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Table 1. Cont. 

NO. 
Density 

(Stem/ha) 

Average 

DBH (cm) 

Average 

Height (m) 

Forest 

Type 
NO. 

Density 

(Stem/ha) 

Average 

DBH (cm) 

Average 

Height (m) 

Forest 

Type 

42 2,533  9.5  8.0  M 87 400  10.1  8.5  B 

43 2,711  9.3  7.9  M 88 356  15.4  11.1  B 

44 1,556  12.6  9.5  M 89 1,156  18.0  11.7  B 

45 1,600  12.5  9.4  M 90 1,200  17.8  11.3  B 

2.3. Satellite Imagery and GIS Data 

The image data used in this study were acquired by the WorldView-2 satellite on 10 December 2011, 

during good weather and clear skies. At this time of the year, the leaves of some deciduous tree species 

had fallen, and some trees were turning yellow, while evergreen tree leaves were fully alive, providing 

good conditions for tree species identification and classification. The satellite has a panchromatic band 

(0.46–0.80 μm) with 0.5-m ground resolution at nadir and eight multispectral bands with 2.0-m 

resolution [32]. In addition to the four standard colors, Blue (0.45–0.51 μm), Green (0.51–0.58 μm), 

Red (0.63–0.69 μm) and Near Infrared 1 (0.77–0.90 μm), four new, additional bands are available: 

Coastal Blue (0.40–0.45 μm), Yellow (0.59–0.63 μm), Red-Edge (0.71–0.75 μm) and Near Infrared 2 

(0.86–1.04 μm). The size of the image was 8,868 lines × 9,358 pixels at the nadir with 16-bit data 

stored, and the geometric projection was UTM WGS 84 Zone 50 North. The image data were ordered 

as the premium product level, suggesting that the data had been sensor-corrected, ortho-rectified and 

geo-corrected by the data provider, DigitalGlobe Inc. [33]. The data were atmospherically corrected 

using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm built 

in the ENVI 4.8 software. According to DigitalGlobe, the geolocation accuracy of the delivered image 

ranges from 4.6 m to 10.7 m (CE90) [33]. This accuracy was checked by comparing the data to the 

standard map of the mountain created by an infrared airborne photograph taken in 1991 with an 

accuracy of 5 m. The two datasets were in good agreement, as verified by matching the special 

positions, such as the intersections of roads, single buildings and water areas. Consequently, the 

horizontal accuracy of the WorldView-2 dataset is approximately 5 m. 

In this study, geographic data, such as the boundary line of the mountain, forest compartment 

boundaries, roads and forest base maps were from the ArcGIS (GIS, Geographic Information System) 

database, which was established in 2002 based on the forest inventory data of 662 plots investigated by 

a special project in 2001 [34]. The field data for the 90 plots surveyed in September 2011, were 

inputted into the above database, including stem density, average DBH, average tree height, forest 

type, dominant species, volume and GPS data for the plot center. These data were used to test the 

accuracy of the interpreted tree tops and to perform a supervised classification of tree species. 

2.4. Data Analysis 

2.4.1. Interpretation of Tree Tops 

The research flow chart in Figure 2 provides an overview of the methods. Tree tops were 

interpreted with the ITC approach using WorldView-2 imagery in PCI Geomatica v9.1 software with 
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the ITC Suite [18,28,35]. First, preprocessing for tree top interpretations was necessary to normalize 

the panchromatic band based on its own range in the illumination image, which was performed twice 

to smooth using an averaging filter of 5 × 5 pixels (2.5 by 2.5 m) [18,28]. Second, an NDVI 

(Normalized Difference Vegetation Index) image was generated using the Vegetation Index Image 

function. Third, a bitmap of the non-vegetation area was automatically created using the NVEG 

MASK function of the ITC Suite by comparing (normalized or not) the NIR and the visible values [28]. 

In this step, man-made structures, such as buildings and roads, soil and water zones, were extracted 

with good results, but some grass areas composed of herbs could not be extracted, because the grasses 

had similar multispectral characteristics to the forest area; an error in which some forest area was 

identified as non-vegetation area was generated from the automatic extraction, due to the image 

acquired in December 2011. These two problems were solved by the following approach: first, the 

minimum and maximum values of the NDVI and/or panchromatic band were found for the grass and 

misclassified forest areas (in this study, the panchromatic value of 40 to 80 and the NDVI value of 170 

to 195 could be used to separate the grass areas and to correct the misclassified forests, respectively); 

second, two bitmaps for these areas were established by the THR (Thresholding Image to Bitmap) 

function; finally, the correct non-forested regions of the image were extracted by the non-vegetation 

zone plus grass and minus misclassified forest area by the BLO function (Bitmap Logical Operation). 

Figure 2. Research flow chart. ITC, individual tree crown. 

 

The ITC isolation image was produced by using the valley-following algorithm. Using the 

normalized panchromatic band and the non-forested mask, this method treats the spectral values as 

topography, with shaded and darker areas representing valleys and bright pixels delineating the tree 

crowns [18]. This method produces a bitmap of segments of valley and crown materials in forest areas. 

A rule-based system follows the boundary of each segment of crown material to create isolations, 

which are taken to represent tree crowns, while the pixel with the highest gray value at each tree crown 

is interpreted as the tree top by the local maxima filtering technique [28]. Because of the coverage of 

canopy trees, small trees in the understory were difficult to interpret [1,11]. Therefore, based on the 

present condition of the surveyed plots, all forests at Purple Mountain were divided into three groups: 

trees ≥ 10 cm DBH, ≥ 15 cm DBH and ≥ 20 cm DBH. We attempted to extract the tops of trees in 



Remote Sens. 2014, 6 95 

 

these three groups by using filters with a moving window of 3 × 3 pixels (1.5 × 1.5 m), 5 × 5 pixels  

(2.5 × 2.5 m) and 7 × 7 pixels (3.5 × 3.5 m), respectively, which, in theory, may extract trees with 

crown diameters of more than 1.5 m, 2.5 m and 3.5 m, respectively. 

The interpreted accuracy of tree tops can be calculated by the following formula: 

100)D1( I ×−−= SS DDΦ  (1)

where Φ is the interpreted accuracy (%), DI is the stem density of trees interpreted by the ITC method 
and DS is the stem density of trees in the surveyed plot. The field data for the 90 plots were used to test 

the accuracy. 

2.4.2. Supervised Classification and Counting for Different Tree Species 

Based on forest inventory data and other information, including photos linked in Google Earth and 

existing thematic maps, the WorldView-2 imagery of the study area was classified into 16 classes by 

using a supervised classification process of eight multispectral bands with the Maximum Likelihood 

algorithm in ERDAS Imagine v8.6 and in MultiSpec Win32. In spite of having attempted to define an 

exhaustive list of classes and having enhanced the statistics, there will still be some pixels that have a 

low likelihood of being members of even the most likely class. Though the probability results map will 

show where these pixels are, the MultiSpec thresholding capability can provide quantitative 

information about them. For example, if a threshold of 2% is selected, the threshold level will be 

calculated, such that 2% of an ideal Gaussian distribution with the same mean vector and covariance 

matrix will be thresholded in each class [36]. The lower the threshold value is, the higher the rate of 

classified pixels, whereas the lower the classified accuracy. The threshold was set at the 2% default in 

our study, because the 2% level had the best classification results compared to other values. 

Additionally, to overcome the “mixed pixels” problem of the pixel-based classification (i.e., some 

pixels within a tree crown may be classified into two or more different classes), an object-based 

supervised classifier (called crown-based classification) was designed for tree species classification in 

the ITC Suite [28], which was used to generate another thematic map of the tree species in this study. 

This crown-based classification was completed by the ITCSC (Individual Tree Crown Supervised 

Classifier) function of the ITC Suite. The ITCSC classified the individual tree crowns (ITCs) of the 

image into different species using a Maximum-Likelihood (ML) decision rule [28]. The classification 

was based on comparing the signature of each ITC, one by one, with the ITC-based signatures of the 

various species. The species signatures were produced by the ITCSSG (Individual Tree Crown Species 

Signatures Generation) program using the training areas created at the section of the pixel-based 

classification. Finally, when the tree tops interpretation and the supervised classification processes 

were completed, all tree tops were annotated with a species attribute from the species thematic map 

delineated by the crown-based classification using an overlay by the extraction function in ArcGIS 

v9.2. The total number of trees of different species at Purple Mountain was counted using the 

summarize function. 
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3. Results 

3.1. Interpretation of Tree Tops 

In this study, the tree tops of the three groups, ≥10 cm DBH, ≥15 cm DBH and ≥20 cm DBH, were 

extracted using filters with moving windows of 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels, respectively. 

For the total mountain, there were 1,203,970 trees of DBH over 10 cm, and the accuracy of 

interpretation was 73.68 ± 15.14% (average value and standard deviation) averaged for the 90 plots. 

The number of trees ≥15 cm and ≥20 cm DBH is 727,887 and 548,919, with an average accuracy of 

68.74 ± 17.21% and 71.92 ± 18.03%, respectively. 

According to the composition of tree species, the 90 plots were divided into three types:  

broad-leaved forest, coniferous forest and mixed forest. The average interpretation accuracies of the 

different forest types in the three groups were calculated as shown in Figure 3 (average value and 

standard deviation). In the broad-leaved forest, the accuracy in the DBH ≥10 cm layer was higher than 

that in the DBH ≥15 cm layer and the DBH ≥20 cm layer, indicating that with the growth of  

broad-leaved trees, the tree tops become difficult to identify, in contrast to coniferous forests [18]. 

There is no significant difference in accuracy between the three groups for mixed forest. 

Figure 3. The difference in accuracy between forest types for the three groups. 

 

Figure 4. Regression of accuracy and stem density of the surveyed plots. (a) 3 × 3 pixels 

for DBH ≥ 10 cm; (b) 5 × 5 pixels for DBH ≥ 15 cm; (c) 7 × 7 pixels for DBH ≥ 20 cm. 
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Figure 4. Cont. 
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In addition, the effects of stem density in the surveyed plots on interpretation accuracy were 

analyzed. The regressions of stem density and interpreted accuracy were performed as shown in  

Figure 4. The results indicate that the accuracy decreases as the stem density increases, because the 

chance of overlap between crowns increases with incremental stem density. 

3.2. Pixel-Based Supervised Classification of Tree Species 

Based on forest inventory data and other information, a supervised classification was performed on 

the WorldView-2 imagery with eight multispectral bands in the MultiSpec Win32 software. The 

imagery was classified into two types of land cover with a total of 16 classes. One of these types was 

non-forested area with five classes: building, water, soil, road and grass; and the other was forest area: 

open forest, eight main tree species, bamboo and shadow (Figure 5). The open forest was defined as 

the zones composed of nursery, shrubland or sparse trees. The shadow class mainly formed from the 

northern regions neighboring mountain ridges, where the abrupt slope and trees with fallen leaves with 

small sizes and low density led to the shaded and darker areas. 
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Figure 5. Distribution of 16 classes classified by MultiSpec Win32 for eight multispectral 

bands. Of: open forest; Cd: Cedrus deodara; Mg: Metasequoia glyptostroboides;  

Pco: Platycladus orientalis; Pm: Pinus massoniana; Pe: Pinus elliottii; Pno: Platanus 

orientalis; Ba: bamboo; Lf: Liquidambar formosana; Qa: Quercus acutissima; Sh: shadow. 

 

In the process of classification, 282 training areas with a total number of 194,117 pixels  

(4.0 m2/pixel) were created for the 16 classes (for a detailed number of each class, see Table 2). Using 

the mean digital number (DN, representing the reflectance of the objects on sunshine) of the test pixels 

of each class for all multi-color bands, a straight-line map was used to compare the spectral 

characteristics of the different classes (Figure 6). Band DNs for the spectral values were highest for 
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Green (ranging 0.51–0.58 μm), either in non-forested areas or forest areas, and lowest for Red  

(0.63–0.69 μm) for most of the classes. The mean DNs of the Blue band (0.45–0.51 μm) for most of 

the classes in non-forest regions were higher than those of other bands. However, most tree species had 

nearly equal spectral values in the Blue, Red-Edge, NIR1 and NIR2 bands. In addition, the water and 

shadow classes had similar trend lines, with the lowest DN value in band NIR2. The DN values of 

broad-leaved trees were greater than those of conifers, and Platanus orientalis was the highest for most 

bands. Although the DNs of most bands differed markedly between broad-leaved and coniferous trees, 

little discrepancy was found in some conifers, such as Platycladus orientalis and Pinus massoniana, 

which was disadvantageous for classifying them. Additionally, the statistical test of separability using 

the Transformed Divergence method indicated a good separability between most of the classes (Table 3). 

Figure 6. Comparison of the mean digital number (DN) values of different classes using a 

line chart. The abbreviations are the same as in Figure 5. (a) Non-forest area; (b) Forest area. 

(a) (b) 

The confusion matrix for the test areas for the 16 classes using WorldView-2 imagery with eight 

bands by MultiSpec Win32 is shown in Table 2. Non-forested areas are typically classified with high 

accuracy, with the exception of road type, because the spectral signatures of many road pixels are 

similar to those of buildings and were misclassified as buildings. Regarding tree species, the confusion 

matrix indicated the dominant species in the canopy layer, Pinus massoniana and Quercus acutissima, 

which were classified at 80.6% and 93.0%, respectively. However, the accuracy of another dominant 

species, Liquidambar formosana, was relatively low at 67.5%, because it was in the subdominant layer 

and many individuals were covered by Quercus acutissima. By contrast, some species were misclassified 

with low accuracy. For example, Platycladus orientalis and Platanus orientalis were misclassified into 

Pinus massoniana and open forest, respectively, mainly due to their low proportion and because most 

of the forest in the study area was composed of uneven-aged mixed forest with a complex spatial structure. 
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Table 2. Confusion matrix for the 16 classes using WorldView-2 imagery with eight bands by MultiSpec Win32. 

Class  

Name* 

Class 

NO. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number

Samples 

Producer’s  

Accuracy  

(%) 

Building 1 12,819 49 103 6,930 3 36 10 2 0 0 1 1 2 3 6 0 22,966 55.8 

Water 2 4 81,143 0 5 0 0 0 0 611 8 82 0 5 0 0 0 83,059 97.7 

Soil 3 185 0 11,067 23 17 20 0 0 0 0 0 4 0 0 0 0 11,774 94.0 

Road 4 424 6 38 8,299 2 2 0 0 0 0 0 0 0 0 0 0 9,037 91.8 

Grass 5 4 0 6 0 2,739 237 52 6 0 0 86 192 33 9 106 0 3,607 75.9 

Of 6 5 5 170 14 965 8,688 526 96 145 159 708 2,883 1,140 1,580 120 0 17,875 48.6 

Cd 7 0 0 0 1 5 13 1,132 0 80 31 27 0 118 3 0 0 1,419 79.8 

Mg 8 0 1 0 0 0 4 0 1,215 0 5 0 49 4 132 93 0 1,543 78.7 

Pco 9 0 2 0 0 3 6 33 2 829 300 103 0 48 9 3 0 1,352 61.3 

Pm 10 0 8 0 0 3 55 445 3 664 4,306 144 1 89 73 40 15 5,902 73.0 

Pe 11 1 0 0 0 68 50 441 7 289 190 1,144 0 267 7 33 0 2,570 44.5 

Pno 12 1 0 5 2 27 102 0 116 0 0 0 2,583 1 164 52 0 3,099 83.3 

Ba 13 0 1 0 0 30 87 239 4 135 107 152 0 2,365 11 29 0 3,178 74.4 

Lf 14 10 2 0 0 2 233 0 415 12 86 1 141 27 6,427 136 24 7,694 83.5 

Qa 15 8 0 0 0 37 137 0 1,076 30 68 37 548 29 1061 8,265 0 11,662 70.9 

Sh 16 0 10 0 0 0 0 0 0 4 84 0 0 0 39 2 7,033 7,380 95.3 

Total  13,461 81,227 11,389 15,274 3,901 9,670 2,878 2,942 2,799 5,344 2,485 6,402 4,128 9,518 8,885 7,072 194,117  

User’s Accuracy 

(%) 
 95.2 99.9 97.2 54.3 70.2 89.8 39.3 41.3 29.6 80.6 46.0 40.3 57.3 67.5 93.0 99.4   

Notes: Overall Class Performance (160054/194117) = 82.5%; Kappa Statistic (X100) = 77.9%; Kappa Variance = 0.000001. * Of: open forest; Cd: Cedrus deodara; Mg: Metasequoia 

glyptostroboides; Pco: Platycladus orientalis; Pm: Pinus massoniana; Pe: Pinus elliottii; Pno: Platanus orientalis; Ba: bamboo; Lf: Liquidambar formosana; Qa: Quercus acutissima; Sh: shadow. 
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Table 3. The statistical test of the Signature Separability for the 16 classes using the Transformed Divergence method. 

Signature Name* Class NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Building 1 0  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  

Water 2 2,000  0  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  

Soil 3 2,000  2,000  0  1,998  1,974  1,988  2,000  2,000  2,000  2,000  2,000  1,991  2,000  2,000  1,999  2,000  

Road 4 2,000  2,000  1,998  0  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  

Grass 5 2,000  2,000  1,974  2,000  0  1,663  1,996  1,997  2,000  1,999  1,911  1,953  1,972  1,998  1,924  2,000  

Of 6 2,000  2,000  1,988  2,000  1,663  0  1,943  1,870  1,994  1,986  1,776  1,619  1,775  1,775  1,810  2,000  

Cd 7 2,000  2,000  2,000  2,000  1,996  1,943  0  2,000  1,702  1,566  1,364  2,000  1,102  1,990  1,997  2,000  

Mg 8 2,000  2,000  2,000  2,000  1,997  1,870  2,000  0  2,000  1,999  1,999  1,643  1,997  1,410  1,430  2,000  

Pco 9 2,000  2,000  2,000  2,000  2,000  1,994  1,702  2,000  0  902  1,346  2,000  1,518  1,985  1,998  2,000  

Pm 10 2,000  2,000  2,000  2,000  1,999  1,986  1,566  1,999  902  0  1,543  2,000  1,599  1,946  1,994  2,000  

Pe 11 2,000  2,000  2,000  2,000  1,911  1,776  1,364  1,999  1,346  1,543  0  2,000  968  1,991  1,977  2,000  

Pno 12 2,000  2,000  1,991  2,000  1,953  1,619  2,000  1,643  2,000  2,000  2,000  0  2,000  1,629  1,633  2,000  

Ba 13 2,000  2,000  2,000  2,000  1,972  1,775  1,102  1,997  1,518  1,599  968  2,000  0  1,971  1,984  2,000  

Lf 14 2,000  2,000  2,000  2,000  1,998  1,775  1,990  1,410  1,985  1,946  1,991  1,629  1,971  0  1,730  2,000  

Qa 15 2,000  2,000  1,999  2,000  1,924  1,810  1,997  1,430  1,998  1,994  1,977  1,633  1,984  1,730  0  2,000  

Sh 16 2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  2,000  0  

Notes: Distance measure: Transformed Divergence; using layers: 1, 2, 3, 4, 5, 6, 7, 8; best average separability: 1,906.84; combination: 1, 2, 3, 4, 5, 6, 7, 8. 

* Of: open forest; Cd: Cedrus deodara; Mg: Metasequoia glyptostroboides; Pco: Platycladus orientalis; Pm: Pinus massoniana; Pe: Pinus elliottii; Pno: Platanus orientalis; Ba: bamboo; Lf: 

Liquidambar formosana; Qa: Quercus acutissima; Sh: shadow. 
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MultiSpec Win32 is the common software for land cover and forest classification and has been used 

for forest studies worldwide free of charge. ERDAS Imagine is the comprehensive software available 

for processing remote sensing images, such as geometric and ortho correction, image enhancement and 

classification and integration with GIS (Geographic Information System). In this study, using the same 

training areas, a supervised classification on the same WorldView-2 image with eight multispectral 

bands was completed by ERDAS Imagine 8.6. Although the classified accuracies of Cedrus deodara 

and Metasequoia glyptostroboides obtained by ERDAS were higher than those determined by 

MultiSpec, most of the class accuracies determined by MultiSpec were better than those determined by 

ERDAS, with an average increment of 1.8% for the 16 classes (Figure 7). Therefore, we selected the 

results classified by MultiSpec Win32 for the output thematic map and to conduct the subsequent study. 

In addition, to clarify whether the four additional bands of WorldView-2 could improve the 

classification accuracy significantly compared to the four standard bands, the object image with the 

four standard bands (Blue, Green, Red, and NIR1) was classified again using the same test pixels by 

MultiSpec. The results indicated that the classified accuracies of the 16 classes obtained by using all of 

the multispectral bands were higher than those obtained by using only the four standard bands. The 

increments ranged from 0.1% for the water class to 17.0% for Metasequoia glyptostroboides, with an 

average value of 4.8% for the 16 classes (Figure 7). 

Figure 7. Spider chart representing the user accuracies for different classification 

approaches. The abbreviations are the same as in Figure 5. 

 

3.3. Object-Based Supervised Classification of Tree Species 

For the purpose of avoiding the “mixed pixels” effect of the pixel-based classification, a crown-based 

supervised classification was performed on the forest areas with eight multispectral bands in PCI 

Geomatica v9.1 with the ITC Suite. As a consequence, with a magnified area, the crown-based 

thematic map of tree species was generated and documented in Figure 8 by overlaying the non-forest 

classes produced by the pixel-based classification. When the object-based classification was completed, 

a total number of 500 random sample trees were used for the accuracy assessment. The 500 sample 
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points were generated by the stratified random rule, and the minimum number of each species was 30. 

Then, all sample trees were assigned their reference classes based on forest inventory data and other 

additional information, including photos linked in Google Earth and existing thematic maps. Finally, 

an accuracy report was generated and displayed in Table 4. The results indicated that the ITC-based 

classification was much better than the pixel-based classification for the forested area, although the 

overall accuracy of the latter was slightly higher than that of the former, because the overall accuracy 

for the pixel-based classification included the non-forested classes, such as water, building and soil, 

with very good classified results. The improvements of the object- to pixel-based classification ranged 

from −1.6% for the open forest class to 34.3% for Metasequoia glyptostroboides, with an average 

value of 20.3% for the 10 classes. 

Figure 8. Distribution of tree species classified by the crown-based approach for eight 

multispectral bands. (a) the magnified area displayed by delineated tree crowns overlaying 

the panchromatic band; (b) the magnified area displayed by R: G: B = 7(NIR1): 5(Red): 

2(Blue); (c) the magnified area displayed by object-based classified tree crowns overlaying 

the panchromatic band; (d) the crown-based classification map of tree species at Purple 

Mountain by overlaying the non-forested classes. The abbreviations are the same as in 

Figure 5. 
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Table 4. Error matrix for the 10 classes classified by the ITC-based classification approach. 

Class Name * Of Cd Mg Pco Pm Pe Pno Ba Lf Qa 
Number 

Samples 

Producer’s 

Accuracy (%) 

Of 30 0 1 0 0 0 1 0 1 0 33 90.9 

Cd 0 27 1 2 2 2 1 2 0 0 37 73.0 

Mg 1 0 34 0 0 0 5 0 5 0 45 75.6 

Pco 0 5 0 19 1 4 0 1 0 0 30 63.3 

Pm 0 1 0 2 57 2 0 2 0 1 65 87.7 

Pe 0 1 1 3 3 33 0 1 0 0 42 78.6 

Pno 2 2 4 0 0 0 34 0 8 0 50 68.0 

Ba 0 2 0 1 2 2 1 22 0 1 31 71.0 

Lf 1 1 4 3 1 0 4 0 71 2 87 81.6 

Qa 0 0 0 1 0 0 0 0 1 78 80 97.5 

Total 34 39 45 31 66 43 46 28 86 82 500  

User’s 

Accuracy (%) 
88.2 69.2 75.6 61.3 86.4 76.7 73.9 78.6 82.6 95.1   

Notes: Overall classification accuracy (405/500) = 81.0%; Kappa Statistic (X100) = 76.3%; Kappa Variance = 0.000001. 

* Of: open forest; Cd: Cedrus deodara; Mg: Metasequoia glyptostroboides; Pco: Platycladus orientalis; Pm: Pinus massoniana; 

Pe: Pinus elliottii; Pno: Platanus orientalis; Ba: bamboo; Lf: Liquidambar formosana; Qa: Quercus acutissima. 

3.4. Counting Trees of Different Species in the Study Area 

In this study, using an overlay from the extraction function in ArcGIS v9.2, all tree tops extracted 

by the ITC method were annotated with species attributes from the thematic map classified by the 

crown-based approach using the WorldView-2 image with eight multispectral bands. The total number 

of trees of different species at Purple Mountain was counted using the summarize function (Figure 9). 

Figure 9. Tree count of different species at Purple Mountain. 

 

The count indicated that the density of the forest in the study area was mainly dominated  

by Liquidambar formosana and Quercus acutissima in three layers. Pinus massoniana was the 

dominant species compared with other coniferous species. The results were in accordance with forest 

inventory data. 
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4. Discussions 

In modern forest management, pure stands are replaced by heterogeneous, mixed stands. Therefore, 

spatially detailed forest information over large areas is of great importance. The traditional forest 

inventory method using sample plotting is nearly impossible to accomplish due to its low accuracy and 

scale limitation. Therefore, enhanced methods are required to obtain spatially explicit information on 

tree species composition and distribution patterns [2]. This study attempted to acquire forest resource 

information at the individual tree level by using remote sensing techniques on a large scale. 

Tree tops were first interpreted by the ITC method. This approach is very effective for extracting 

tree tops of even-aged single forests using a filter of a moving window with a single size. For a large 

forest composed of uneven-aged stands with different tree crown sizes, the homogeneity function of 

the ITC Suite can be used to separate young tree areas from mature forests [1,24]; the tops of small and 

large-sized trees can then be interpreted by using filters with different moving window sizes on small 

and large tree areas, respectively. However, because cutting has been forbidden since the 1980s, there 

are few stands of a single species or size distributed at Purple Mountain today, and most forests have a 

complex spatial structure that is difficult to interpret using a filter with a fixed moving window. 

Therefore, the forests in the study area were divided into three groups: trees ≥10 cm DBH,  

≥15 cm DBH and ≥20 cm DBH. The tree tops in the three groups were then extracted by using filters 

with a moving window of 3 × 3 pixels (1.5 × 1.5 m), 5 × 5 pixels (2.5 × 2.5 m) and 7 × 7 pixels  

(3.5 × 3.5 m), respectively, which, in theory, should extract trees with crown diameters of greater than 

1.5 m, 2.5 m and 3.5 m, respectively. 

Although the tree crowns were delineated using the individual tree crown approach based on the DBH 

knowledge of the 90 plots, the interpreted results of the tree crowns and tree tops are independent of the 

DBH information. Consequently, this approach can also be used to delineate the trees in the areas with 

no DBH information. In the even-aged forests, the trees can be easily mapped using a fixed moving 

window, because of the approximately same crown sizes. Additionally, the trees in the areas having a 

mixed DBH class can be delineated using a similar method as our study. The filter window size(s) can be 

determined by roughly estimating the tree crown sizes combining the spatial resolution of the remotely 

sensed data. When the tree crown delineations were completed, the DBH inversion of the interpreted 

trees may be true using the correlations between the tree crowns and DBHs of observed trees. This topic 

will be verified in the next study using the 10 large-sized plots investigated in May 2012, in which the 

detailed position information of the individual trees was recorded in addition to the crown sizes. 

In addition, we selected the entire mountain, which has an area of approximately 30 km2, as the 

research study area and established 90 plots distributed in different forest types to test accuracy. Due to 

time limitations and the large number of plots, we only measured DBH and the height of the trees  

≥5 cm DBH and did not include the coordinates of every tree. The center of every plot was noted by 

GPS (Garmin MAP 60CS, accuracy ± 3 m) and as sample points. We considered that the observed 

stem density in sample points could represent the condition of forest stands around sample points. For 

extracted trees, the densities in every central point were calculated by the buffer function in  

ArcGIS v9.2. Finally, we verified the agreement of the observed and estimated tree densities in every 

central point and calculated the interpreted accuracy. We plan to verify the agreement of the observed 

and estimated trees individually by creating some large size plots in our next study. 
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WorldView-2 was expected to have great potential for forest studies, because the satellite has 

higher spatial resolution and can provide more abundant multispectral information compared with 

traditional sensors. The findings of our study suggested that the four new bands (Coastal, Yellow,  

Red-Edge and NIR2) of the WorldView-2 have a positive effect on the species classification. The 

classified accuracies of the 16 classes obtained using all of the eight multispectral bands were higher 

than those obtained using only the four standard bands. The improvements ranged from 0.1% for the 

water class to 17.0% for Metasequoia glyptostroboides, with an average value of 4.8% for the  

16 classes. 

At Purple Mountain, most stands have a complex spatial structure, with more than two layers and 

many regenerated species that differ from those of the canopy trees distributed in understories and the 

gaps between tree crowns, complicating the identification of individual tree crowns and species. The 

broad-leaved species, Quercus acutissima, the most dominant species in the canopy layer, was 

classified with good user accuracy. In the late 1970s, many large Pinus massoniana trees, the dominant 

coniferous species, were damaged by pine wilt disease. Broad-leaved trees, including  

Quercus acutissima and Pistacia chinensis, successfully invaded the gaps and had good growth. As a 

result, Pinus massoniana has been classified with an accuracy of 80.6%. Another dominant species, 

Liquidambar formosana, had relatively lower classification performance, because it was in a 

subdominant layer and many individuals were covered by Quercus acutissima. However, some species 

were misclassified by the pixel-based classification with low accuracy, due mainly to their low 

proportion. The season in which the images were acquired also had negative effects on tree species 

classification in some cases. In winter, the leaves of some deciduous tree species had fallen, and some 

trees were turning yellow or dying off, which would lead to a change in forest reflectance in the 

spectrum. Therefore, it is essential to classify forests by combining the data acquired in summer with 

those acquired in winter using other classification methods in future studies. 

For the classification analysis of images with very high spatial resolution, object-based approaches 

are superior over pixel-based approaches when the pixel size is significantly smaller than the average 

size of the objects of interest [37,38]. Immitzer et al also found that by classifying objects instead of 

pixels, the user accuracies could increase significantly for most tree species in a forest study of a 

temperate zone [2], and the positive impact was higher for conifers than broadleaved trees. 

Additionally, there may be a “mixed pixels” issue in the pixel-based classification, i.e., the pixels 

within the tree crowns of large sizes might be classified into two or more different classes. The  

ITC-based classifier presented by Gougeon [28] can overcome this “mixed pixels” problem, which 

classifies the pixels within the single crown into the same species by comparing the signature of each 

tree crown with the ITC-based signatures of the various species using the Maximum-Likelihood 

algorithm. The results of the present study indicated that the crown-based classification improves the 

classified accuracy of both dominant species and smaller classes. This result is because the ITC-based 

classification cannot only avoid the pixels within tree crowns being classified into non-forested classes, 

such as building and road, but it can also mitigate the effect of the shadows between tree crowns on 

species classification. Therefore, the findings from this study lead to the recommendation of using the 

ITC-based instead of the pixel-based classification approach in classifying highly mixed forests. 

Generally, the DN values of forestland in NIR bands were higher than those in other bands, such as 

Blue, Green and Red [39–41]. However, we determined that the band with the highest DN values was 
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Green (0.51–0.58 μm) for all of the species rather than the NIRs in this study, and the spectral values 

of forest areas in NIR bands were much lower than those of other published studies [2,18,42]. It is 

likely that the reflectances of forestland on NIRs were mainly affected by the structure of tree cells, 

and the image used in this study was taken in December 2011, when the low temperature in the study 

area inhibited the growth of trees and induced dormancy, thus resulting in changes in cell structure, 

such as a decrease in water content. The details of the influencing mechanisms require further study. 

All of the extracted tree tops were annotated with species attributes from the thematic map 

established by the ITC-based supervised classifications, and the numbers of trees of different species 

were counted in this study. We studied how to interpret other parameters of forest resources, such as 

tree height, DBH and volume at the individual level, automatically by remote sensing. An available 

method to measure tree height using DSM (Digital Surface Model) minus DTM (Digital Terrain 

Model), which might be extracted from airborne LiDAR data, was reported by Katoh [43]. However, it 

is very difficult to interpret DBH information directly using satellite or airborne imagery. It has 

become possible to measure the DBHs of individual trees by regression models of DBH as the 

dependent variable and tree height as the independent variable and combining the location information 

of the extracted tree tops. Moreover, with the development of computer technology, some software, 

such as E3De v3.1, can automatically create three-dimensional models of individual trees using 

airborne LiDAR data with high point-densities, potentially enabling the interpretation of DBH. 

However, its usefulness needs to be verified in future studies. 

5. Conclusion 

The present study has measured the forest resources at Purple Mountain at the individual tree level 

using the WorldView-2 data by combining GPS, RS, and Geographic Information System (GIS) 

technologies. The tree tops were first interpreted by the ITC approach. Second, the study area was 

classified into two types of land cover with a total of 16 classes using the pixel-based classification. 

The results of our study suggested that the four new bands (Coastal, Yellow, Red-Edge and NIR2) of 

the WorldView-2 have a positive effect on the species classification. To overcome the “mixed pixels” 

problem of the pixel-based approach, a crown-based supervised classification was used for generating 

a thematic map of tree species. The findings from this study lead to the recommendation of using the 

crown-based instead of the pixel-based classification approach in classifying mixed forests. Finally, all 

tree tops were annotated with the species attributes from the thematic map, and a tree count of different 

species indicated that the forest of Purple Mountain is mainly dominated by Quercus acutissima, 

Liquidambar formosana and Pinus massoniana. 
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