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It has been known that an antiunitary symmetry such as time-reversal or charge conjugation is needed to
realize Z, topological phases in noninteracting systems. Topological insulators and superconducting nanowires
are representative examples of such Z, topological matters. Here we report the Z, topological phase protected
by only unitary symmetries. We show that the presence of a nonsymmorphic space group symmetry opens
a possibility to realize Z, topological phases without assuming any antiunitary symmetry. The Z, topological
phases are constructed in various dimensions, which are closely related to each other by Hamiltonian mapping.
In two and three dimensions, the Z, phases have a surface consistent with the nonsymmorphic space group
symmetry, and thus they support topological gapless surface states. Remarkably, the surface states have a unique
energy dispersion with the Mobius twist, which identifies the Z, phases experimentally. We also provide the

relevant structure in the K theory.
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I. INTRODUCTION

Symmetry is a key for recent developments on topological
phases. For instance, time-reversal symmetry and its resultant
Kramers degeneracy are essential for the stability of quantum
spin Hall states [1,2] and three-dimensional (3D) topological
insulators [3-5]. Also, the particle-hole symmetry (or charge
conjugation symmetry) in superconductors makes it possible
to realize topological superconductors [6—18] which support
exotic Majorana fermions on their boundary. Based on these
symmetries, many candidate systems for topological insulators
and superconductors have been proposed theoretically and
examined experimentally [19-24].

In addition to the general symmetries of time reversal
and charge conjugation, materials have their own symmetry
specific to the structures. In particular, crystals are invariant
under space group symmetry, like inversion, reflection, dis-
crete rotation, and so on. Such crystalline symmetries also
provide a new class of topological phases, which are dubbed
topological crystalline insulators [25,26] and topological
crystalline superconductors [27-30]. Surface states protected
by crystalline symmetry have been confirmed experimen-
tally [31-33]. Furthermore, a systematic classification of such
topological phases and topological defects has been done
theoretically [34-36].

In the study of topological crystalline insulators and
superconductors, much attention has been paid to those
protected by point group symmetries [37-39]. However, point
groups are not the only allowed crystalline symmetries.
Space groups contain a transformation which is not a simple
point group operation but a combination of a point group
operation and a nonprimitive lattice transformation. This class
of transformations is called nonsymmorphic. Despite that
many crystals have such nonsymmorphic symmetries, only
a few have been known for their influence on topological
phases [40,41].

PACS number(s): 73.20.—r, 71.20.—b, 73.22.—f

Z, phases need no antiunitary symmetry like time reversal or
charge conjugation. We present the Z, topological phases in
various dimensions, which are closely related to each other. In
two and three dimensions, the Z, phases may have a surface
consistent with the nonsymmorphic space group symmetry,
and thus they support topological gapless surface states. Unlike
helical surface Dirac modes in other Z, phases, the surface
states have a peculiar energy dispersion with Mobius twist,
which provides a distinct experimental signal for these phases.
The Z, topological stability of the surface states and a relevant
structure in the K theory are also discussed.

II. NONSYMMORPHIC CHIRAL SYMMETRY
IN ONE DIMENSION

As the simplest example, we first consider a one-
dimensional (1D) system. In one dimension, no nonsymmor-
phic operation is consistent with the existence of a boundary,
and thus no boundary zero energy state is topologically
protected by this symmetry. Nevertheless, we can show that
an interesting nontrivial Z, bulk topological structure appears
by a nonsymmorphic unitary symmetry. The 1D system is also
useful to construct Z, nontrivial topological phases in higher
dimensions, which have gapless boundary states protected by
nonsymmorphic symmetries.

The symmetry we consider is a nonsymmorphic version of

the chiral symmetry: Instead of the ordinary chiral symmetry,
(M.Hipk)} =0, T =1, (M

where ' is given by a k,-independent unitary matrix, we
consider a k,-dependent chiral symmetry with

{T'ip(ky),Hip(ky)} =0,

By imposing 27 periodicity in k, on I'(k,), the simplest

Tiyky) = ek 2)

- . [ip(ky) is
In this paper, we show that the presence of nonsymmorphic
space group symmetries provides unique Z, topological 0 e ik
phases: Being different from other known Z, phases, the new Fip(ky) = 1 0 ) 3)
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FIG. 1. (Color online) (a) Two inequivalent sites A and B in
the unit cell. (b)Topologically different trajectories (x(k,),y(ky)).
(c) Insulating states I (top) and II (bottom).

where I'jp(ky) acts on two inequivalent sites A and B in the
unit cell. As illustrated in Fig. 1(a), I'|p(k,) exchanges these
two sites, followed by a half translation in the lattice space.

The Hamiltonian with the nonsymmorphic chiral symmetry
has a generic form

ky
Hip(ky) = (iy(;;f)ei)kx/z

with real functions x(k,) and y(k,). The 2z periodicity of the
Hamiltonian, Hip(k, + 27) = Hp(k,), implies

x(ky +2m) = x(ky),  y(ke +2m) = —y(ky). ®)

Because the eigenvalues of the Hamiltonian are E(k,) =
:i:\/[)c(kx)]2 + [y(ky)]?, the system is gapped at E = 0 unless
the vector (x(k, ), y(k,)) passes through the origin (0,0) at some
ky.

Now we will show that the Hamiltonian (4) has two distinct
topological phases: As we show in Fig. 1(b), the Hamiltonian
defines a trajectory of (x(k.),y(ky)) in the xy plane, when
k, changes from 0 to 2m. From the constraint of Eq. (5),
the trajectory forms an open arc, not a closed circle, and the
end point (x(27), y(27)) must be the mirror image of the start
point (x(0), y(0)) with respect to the x axis. The open trajectory
passes the x axis an odd number of times. More precisely, we
have two different ways to cross the x axis; if the trajectory
passes the positive x axis an odd (even) number of times, then it
must pass the negative x axis an even (odd) number of times.
See trajectories T, and T. in Fig. 1(c). These two different
trajectories cannot be continuously deformed into each other
without gap closing, since the gap of the system closes if they
go across the origin. Therefore, by counting the parity of times
the trajectory passes the negative x axis, we can identify the
two distinct phases of the Hamiltonian (4). The Z, nature of
the topological phase is discussed in detail in the Appendix.

If the parity is odd (even), then the Hamiltonian is
adiabatically deformed into the k,-independent Hamiltonian
H, (H.) in the below, without gap closing,

He = Oy, (6)

—iy(kx)e”‘*/z)’ @

_x(kx)

Hy, = —0o,,

with the Pauli matrix o; [i = 0,x,y,z]. These Hamiltonians
suggest a simple physical realization of the nonsymmorphic
chiral symmetry. Consider a periodic potential with two
different local minima A and B in the unit cell [see Fig. 1(c)].
If the energy of the local minimum A (B) is much higher than
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B’s (A’s) and tunnelings between local minima are neglected,
we have an insulating phase I (II) in the half filling, for which
an effective Hamiltonian is given by H. (H,). Our argument
above implies that these insulating phases are topologically
distinct and they are separated by a topological quantum phase
transition as long as one keeps the symmetry (2). Such a
periodic system could be artificially created by cold atoms.

III. NONSYMMORPHIC Z, SYMMETRY
IN TWO DIMENSIONS

Much more interesting Z, topological phases protected
by nonsymmorphic symmetries appear in two and three
dimensions. In these dimensions, a class of nonsymmorphic
symmetries are consistent with the presence of a surface, and
thus the symmetry protected gapless edge states may appear.
Here we present a two-dimensional (2D) Z,-topological
nonsymmorphic insulator, which supports a unique edge state.

To obtain the Z, phase, we use a Hamiltonian map that
increases the dimension of the system. This map keeps the
topological structure by shifting symmetries, and is known to
be useful to classify the topological (or topological crystalline)
insulators/superconductors [36,42]. In particular, the periodic
structure of the topological table is explained by this map. The
details of the map in the present case and the relevant structure
in the K theory are given in the Appendix.

From the Hamiltonian mapping, we obtain a representative
Hamiltonian of a 2D Z, topological nonsymmorphic insulator,

Hop(ky,ky) = (m + cos k)T, ® Hip(ky) + sink, 7, ® op,
(N
which has a k,-dependent nonsymmorphic symmetry
(U (kx), Hyp(ky,ky)] =0, Ulky) = 7 @ Nip(ky),  (8)
and the additional chiral symmetry,

{T', Hop(ke ,ky)} =0, T =1, ® oo, &)

where 1; (i =0,1,2,3) is the Pauli matrix for the degrees
of freedom on which I' acts. These two symmetry operators
anticommute:

{I',Usp(k)} = 0. (10)

Here note that the nonsymmorphic symmetry Usp(k,) com-
mutes with Hop(ky,ky), although it is constructed from
I'ip(k,) anticommuting with Hjp(k,). Whereas any terms
consistent with the symmetries (8) and (9) can be added to the
Hamiltonian, the basic topological properties can be captured
by Eq. (7). For a gapped H p(k,), the system has a gap unless
m = %1. Using the symmetries (8) and (9), we can define a Z,
invariant, which is nontrivial (trivial) if —1 <m < 1 (m > 1
or m < —1) (see Appendix). Without loss of generality, we
assume in the following that the parity of H p(k,) is even, so
it is topologically equivalent to H, = o.

If we consider a boundary parallel to the x axis, we can keep
the symmetries (8) and (9). This boundary supports gapless
edge states when the system is topological (—1 < m < 1): To
demonstrate this, consider a semi-infinite system (y > 0) with
the edge at y = 0. Since H|p(k,) is topologically equivalent
to o,, we first consider the spatial case of the Hamiltonian (7)
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with Hip(k,) = o,. In this particular case, the Hamiltonian
Hop(ky,ky) does not depend on k,, and thus the topological
edge state should be a k,-independent zero energy state. The
edge state can be obtained analytically when the system is
close to the topological phase transition at m = £1. Near the
topological phase transition, say at m = —1, the low energy
physics is well described by the effective Hamiltonian obtained
by the expansion of Eq. (7) around k, = 0. Then, replacing k,
with —id,, we have the equation for the edge state,

[(m+1+82/2)1,®0. —idyr, ® o] (y) =0, (11)

with the boundary condition ¥(0) =0 and ¥(oco) =0. If
the system is in the topological side near the transition, i.e.,
dm = m + 1 > 0, the equation has two independent solutions
localized at y = O:

Y1) = (é) ® (?) e sinh(v/—28m + 1y),
T o (12)
(V) = (?) ® (é) e sinh(v/—28m + 1y).

On the other hand, in the nontopological side (§m < 0), the
solutions diverge, and the edge states disappear. A similar
result is found near another transition point at m = 1. We have
also confirmed numerically the existence of the zero energy
edge mode for the whole region of —1 <m < 1.

For a general k,-dependent Hp(k,), the zero energy edge
states have a k,-dependent energy dispersion. By diagonalizing
the mixing matrix (y;|(dm + 8y2/2)ty ® (Hip(ky) — o )|¥;),
the energy is evaluated as E(k,) o< &y(k,). Then, from the
constraint (5), there must be an odd number of zeros for y(k,)
ink, € [0,27], and thus the energy dispersion becomes helical
E(ky) ~ £c(k, — ko) around each zero ko, as illustrated in
Fig. 2(a).

Since the Hamiltonian Hop(k,,k,) commutes with U (k,),
the helical dispersion is decomposed into chiral and antichiral
ones, each of which is an eigenstate of U(k,). These two
chiral dispersions are mapped to each other by the chiral
symmetry I", because I" maps a gapless state to another one,
reversing the slope of the dispersion. Furthermore, they belong
to different eigensectors of U(k,), because I exchanges the

Sy
.............. \

v

FIG. 2. (Color online) Schematic illustration of edge states with
Mobius twist. (a) The red (blue) line is an edge state in the
eigensector of U (k,) with the eigenvalue u = e~ /2 (u = —e~"*+/2),
(b) An exchange process of the eigensectors, which is carried out by
changing the sign of y(k,) in Hp(k,) of Eq. (7).
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eigenvalues of U(k,) due to {I",U(k,)} = 0. Therefore, these
two chiral dispersions stay gapless without mixing, as far as
the symmetries (8) and (9) are retained.

Whereas the above edge state has a similarity to helical edge
modes in quantum spin Hall states, their overall structure in the
momentum space is completely different: As seen in Fig. 2(a),
the present edge state has a unique energy dispersion with the
Mobius twist, which is never seen in other Z, phases. This
twist occurs due to the multivaluedness of the eigenvalues u =
+e~%/2 of U(k,): When one goes round in the k, direction as
ky — k, + 2m, u changes the sign, so a chiral dispersion in an
eigensector of U (k,) turns smoothly into to an antichiral one
in another eigensector.

Another remarkable feature of our edge state is that the
constituent chiral dispersions can exchange their eigensectors
of U(k,), as illustrated in Fig. 2(b). This means that any pair
of helical dispersions is topologically unstable: When a pair of
helical dispersions exists, we can always realize the situation
where a chiral dispersion coexists with an antichiral one in the
same eigensector of U (k,), by exchanging the eigensectors
properly. Thus, we can open a gap of helical dispersion by
mixing between the chiral and antichiral ones.

The arguments above clearly indicate that helical edge
states in this system have a Z, stability like helical edge
states in quantum spin Hall systems, although no time-reversal
symmetry is required and the mechanism of the stability is
completely different from that in quantum spin Hall states.

IV. GLIDE REFLECTION SYMMETRY IN 3D

Finally, we consider the system with glide reflection
symmetry,

G(kx)H3D(kx vky’kz)G_l (kx) = HSD(kx ,ky’ _kz)

. T3
G (ky) = e, )

The glide reflection G (k) is the combination of reflection with
respect to the xy plane and translation along the x axis by a half
of the lattice spacing. Since G*(k, ) results in a translation by a
unit lattice spacing in the x direction, it provides the nontrivial
e~* factor. The Z, invariant defined by the glide reflection
symmetry is given in the Appendix.

A representative Hamiltonian with glide reflection symme-
try is given by

Hsp(k) = (m + cos k; 4 cos ky)t, @ Hip(ky)
+sink, 7, ® og + sink, 7, ® oo, (14)
G(ky) = 72 @ ['ip(ky).

The 3D system is gapped unless m = £2,0. The Z, invariant is
nontrivial (trivial) when —2 <m < QorO0 <m <2 (m < =2
or m > 2) (see Appendix).

A surface perpendicular to the y axis retains the glide
reflection symmetry, so it may support a gapless surface
state protected by this symmetry. For instance, consider a
semi-infinite 3D system (y > 0) with a surface at y = 0, which
preserves the glide reflection symmetry. In a manner similar to
the 2D system, for the special but topologically equivalent case
with H\p(k,) = o,, we can obtain the surface state analytically
near the topological phase transition at m = +2: Form ~ —2,
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Hsp(k) is well approximated by
Hp = (m + cosk. +1— 8}2,/2)ry ® o,
—10,T, ® 0g + sink, T, @ oy. (15)

We find that |{) and |y, ) in Eq. (12) with dm = m + cosk, +
1 satisfy the Schrodinger equation,

Hipyi(y) = Ei(k)¥i(y), (16)

with Ej(k;) =sink, and E,(k,) = —sink,, respectively.
When the system is in the topological side near the transition,
ie., —2 <m < 0, ém is positive (negative) at k, =0 (k, =
7). Thus, they meet the boundary condition ¥;(0) = 0 and
Yi(00) = 0 near k, = 0, while they diverge near k, = 7. This
means that they form surface states with the linear dispersion
E(k,) = £k, near k, = 0, which merge into bulk states near
k., = m. On the other hand, in the topologically trivial side,
i.e., m < —2, m is always negative, so |¢) and |¢,) are no
longer physical states anymore. A similar analysis works for
0 < m < 2, although the surface states appear near k, = 7 in
this case.

For a general H p(k,), the surface states have a dispersion in
the k, direction, as well as in the k, direction: Like the 2D case,
the two surface modes, |1 ) and |1,), are mixed. The spectrum
of the surface states becomes E (k. ,k,) = £/cy?(k,) + sin% k,
(¢ is a constant). From the constraint (5), y(k,) has an
odd number of zeros, and thus the surface states have the
corresponding odd number of Dirac cones in the spectrum, as
illustrated in Fig. 3.

In the glide invariant plane at k, = A (A = 0,7) in the
Brillouin zone, the Dirac cone has helical dispersions E ~
+c(k, — ko) in the k, direction. Since Hip(k) commutes with
G(k,) atk, = A, the helical dispersion can be divided into two
eigensectors of G(k,), which have chiral dispersion and an-
tichiral dispersion, respectively. These two chiral dispersions
cannot mix, so a single Dirac cone is topologically stable.
On the other hand, a pair of Dirac cones is topologically
unstable: From a process similar to Fig. 2(b), the eigensectors
can exchange without gap closing. Therefore, from a similar
argument in the 2D case, helical dispersions for a pair of Dirac
cones can be gapped.

As in the 2D case, the obtained surface state has the
following remarkable features: In the k, direction, which is the
direction of the translation for the glide, the surface state has an

FIG. 3. (Color online) A surface state protected by glide reflec-
tion symmetry. The spectrum at k, = A has a Mobius twist in the &,
direction: Along the k, direction, the red branch with the eigenvalue
e'*/2 of G(k,) turns into the blue one with the eigenvalue —e'**/2.
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energy dispersion with the Mobius twist. Furthermore, along
the same direction, the surface state is detached from the bulk
spectrum. [By adiabatically changing H)p(k,) as Hip = o,
the surface state becomes even completely flat at £ = 0 in the
k, direction.] The latter feature in the spectrum can be detected
by angle-resolved photoemission. The detachable surface state
is never seen in other Z, phases such as topological insulators.
Indeed, any stable Dirac mode in topological insulators bridges
the bulk conduction and valence bands in any direction in the
surface Brillouin zone. Therefore, this feature provides distinct
evidence of this novel Z, phase.

A variety of crystal structures like the rutile and diamond
ones have glide symmetry. Our consideration here implies
that such crystal structures allow an unidentified topological
gapless state on a surface keeping the glide symmetry.

We would like to end this section with a remark on an
earlier work. It was pointed out in Ref. [40] that there exists
a topological phase protected by coexisting mirror reflection
and glide symmetries. Despite that a Z, invariant is introduced
in Ref. [40], this phase is essentially a Z phase since the
mirror Chern number at a Brillouin zone boundary (k, = )
can characterize it as well. In this paper, we extend this result
for systems without mirror reflection symmetry by using a
different topological argument and a different Z, invarinat.

V. SUMMARY

We have revealed that nonsymmorphic crystalline symme-
tries such as glide reflection symmetry provide a class of novel
Z, phases. They are related to each other by Hamiltonian
mapping, which is justified by the K theory. These Z, phases
predict remarkable surface states that have the Mobius twist in
the spectrum, which can be detectable experimentally.

Note added. Recently, there appeared a complementary and
independent work [43] which also discusses a glide protected
topological phase.
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APPENDIX

1. Hamiltonian mapping

Here we introduce a Hamiltonian mapping which relates
topological phase in different dimensions. A similar map has
been used in the classification of topological insulators and
superconductors defined on a sphere k € S¢ in the momentum
space [36,42]. We generalize the idea to insulators with
nonsymmorphic symmetries.

First we review the Hamiltonian mapping used in topo-
logical insulators and superconductors. The map is given as
follows: If a Hamiltonian H (k) on a d-dimensional sphere
k € S¢ has chiral symmetry, {I", H(k)} = 0, with the chiral
operator I', then the map is

H(k,0) = sin0H(k) +cosOT, 0 e[0,x], (Al
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and if not, it is

H(k,0) =sinft, ® H(k) +cosbt, ®1, 6 €[0,7],

(A2)

where 1 is the unit matrix with the same dimension as H (k).
Since the mapped Hamiltonian H(k,0) is independent of
ke S at =0 and 7, the base space (k,0) € S¢ x [0,7]
of H(k,0) can be regarded as a (d + 1)-dimensional sphere
§9+1 by shrinking S¢ to a point at & = 0 and 7, respectively.
Thus the mapped Hamiltonian H(k,0) is defined on S¢+!.
Furthermore, it can be shown that the map is isomorphic
and thus the original H(k) and the mapped H(k,0) have
the same topological structures. This map relates topological
insulators in different dimensions, and it enables us to study
their topological phases systematically.

Using the above isomorphic map, we can construct the 2D
insulator

HZD(kkay) = (m+ COSky)ty ® HID(kx)
+ sink, 7, ® oy, (A3)

with symmetries
(U (kx), Hyp(ky,ky)] = 0,

{Fa HZD(kx ak_)')} = 07

U(kx) = Q FID(kx)s
F = TZ ® 607

(A4)

which is topologically nontrivial (trivial) for —1 <m < 1
(m>1lorm < —1).

The basic idea is as follows: For Hp(k) on k, € S!,
consider the following two Hamiltonians defined on (k,,0) €
St x [0,7],

Hg(ky,0) = sinfty, ® Hip(ky) + cos 01, @ 0y,
(A5)
Hi (ky,0) = sinfty, @ [—Hip(k,)] + cos 01, ® 0y,

which are obtained by the isomorphic map (A2). They have
the symmetry

(U (k:), Hr L(kx,0)] = 0, {I',Hg(ks,0)} =0, (A6)

with U(ky) = 7, @ I'ip(ky) and T = 7, ® 0y. Since Hip(ky)
and — Hp(k,) have different Z, numbers, either Hg(k,,6) or
Hy (k,,0), but not both, is topologically nontrivial. These two
Hamiltonians coincide at & = 0 and 7, respectively. Thus, by
sewing these two Hamiltonians at @ = 0 and =, as illustrated in
Fig. 4, we can obtain a system defined on a two-dimensional
torus 72. The resultant system has a nontrivial Z, number,
which is obtained as the total Z, numbers of Hg(k,,0) and
Hy (ky,0).

To obtain an explicit Hamiltonian of the system on 72,
we change the variable 6 as § = n/2 — ky in Hr(k,,0) and
0 =k, — m/21in Hy(k,,0), respectively. For the new variable,
Hg and H;, have the same form as Hop(ky,ky),

Hop(ky,ky) = coskyt, ® Hip(ky) +sink, 7, ® 19, (A7)

where Hy and Hg are smoothly connected at k, = /2 and
ky = —m /2, respectively. Equation (A7) is the Hamiltonian of
the sewn system. Note that we may adiabatically add a term
preserving the symmetries (A6) to the Hamiltonian without
changing its topological property unless the bulk gap of the
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H(d+1 JD,[Op(k’ kd+1)
06=0

Hi(k,0) Hr(k,0)

Hd[),mp(k)

A
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Td

HdD,lriv(k)

o o
Tc/

0=n
de SI

FIG. 4. Hamiltonian mapping. Two Hamiltonians Hg(k,0) and
Hy(k,0) defined on T x [0,7] are sewn at @ = 0 and 7.

system closes. Thus we can finally modify (A7) in the form of
Eq. (A3) with —1 <m < 1.

In a similar manner, we can obtain a system on 72 with
trivial Z, topology. In this case, we use the same Hamiltonian
for Hg(k,,0) and Hj (k,,0),

Hy(k, ,0) = HL(kx ,0)

= sinft, ® Hip(ky) + cosO1, ® 0y, (Al)

with 6 € [0,7]. Even when Hr and H; have nontrivial Z,
numbers, they are canceled by sewing them at 6 = 0 and 6 =
. An explicit form of the sewn Hamiltonian is obtained as
follows. Because sin6 > 0, we can add a positive constant m
to sin 6 in Eq. (A8) without gap closing,

Hg(ky,0) = Hy(k.,0)
= (m +sin0)t, ® Hip(ky) + cosOt, @ a9, (A9)

where we gradually increase m as it satisfies m > 1. Then we
can adiabatically change the coefficient of sin6 in Hy (k,,0)
as sinf — — sin#, without gap closing. As a result, Hg and
H; can be

Hg(ky,0) = (m + sin@)t, ® Hip(ky) + cos 1, ® 0y,
(A10)
Hy(ky,0) = (m — sin0)t, ® Hip(k,) + cos Ot ® oo,

with m > 1. Finally, by changing the variable 6 as 0 = 7 /2 —
ky in Hg(k,,0) and 6 =k, — /2 in H (k,,0), respectively,
we find that Hg and H| have the form of Eq. (A3) withm > 1,
where Hg and Hy are smoothly sewn up at k, = £7/2. We
note that if we take the starting Hamiltonians as

Hr(ky,0) = Hp(k,,0)
=sinft, @ [—Hp(k,)] + cosbt, ® o9, (All)

we can obtain Eq. (A3) with m < —1, in a similar manner.
The same idea is available to obtain the 3D insulators

H3p(k) = (m + cos k; 4 cos ky)t, @ Hip(ky)
+ sink, 7, ® 19 + sink,7; ® 70, (A12)

with the glide reflection symmetry,
G (k) Hyp (ke ky k)G~ (k) = Hap(ky,ky,—k.)

"(A13)
G(kx) =7, ® FID(kx)’
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which is Z, nontrivial (Z, trivial) for —2 <m <0 or
0<m<2 (m<—2orm>?2): Since Hyp in Eq. (A3) is
chiral symmetric, we use the isomorphic map (Al) to have
Hg(ky,ky,0) and Hy (k,,ky,0),

Hy(ky,ky,0) = sin0 Hop(ky,ky) + cos 0T,
(A14)
Hy (ky,ky,0) = sin @ Hyp (ky ,ky) + cos 0T,

where we denote Hyp in Hy, as H,p, as it can be different from
Hyp in Hg. Hg and Hy have the same Z; topological number
as Hpp and Hj,, respectively. By jointing Hr and Hy at® =0
and 7, we can have a Hamiltonian H;p defined on a 3D torus
T3. If either Hg or Hy, but not both, is Z, nontrivial, Hsp is
Z, nontrivial. In other cases, H;p is Z; trivial. Then, one can
show that with a suitable adiabatic deformation, H3p takes the
form of Eq. (A12) without gap closing.

2. Z, invariants for nonsymmorphic systems
1D case

Here we generalize the Z, invariant defined for the simplest
2 x 2 Hamiltonian (4) in the main text, to that for the general
Hamiltonian.

The nonsymmorphic chiral symmetry is given by

{T'ip(ky),Hip(ky)} =0,

By imposing 27 periodicity in k, on I'jp(k,), a general form
of I'1p(k,) is given by

Iipky) = e 5. (AL5)

0 —ik,
Ciptky) = <1 ¢ 0 ) ® Inxw,

with the N x N unit matrix 1y y. In this basis, the Hamilto-
nian Hp(k,) with the nonsymmorphic chiral symmetry takes
the form

(A16)

—iY (ky)e /2
— X (ky)

X(k,
HID(kX) = <ly(k)f)el)kx/2

where X (k,) and Y (k) are N x N Hermitian matrices. Since
Hp(k,) is 27 periodic in k,, X (k,) and Y (k,) satisfy

), (A17)

X(ky +2m) = X(ky), Y(ky +2m) = =Y (ky). (AlB)

Now we introduce the following N x N matrix Z(k,),

Z(ky) = X(ky) + 1Y (ky), (A19)
which has the constraint
Z(ky +27) = Z1(ky). (A20)
Because one can prove the relation
detHp(ky) = |detZ k)|, (A21)

detZ(k,) # O when Hp(k,)is gapped at E = 0 [namely, when
detHp(ky) # 0].

Denoting the real and imaginary parts of detZ(k,) as
x(ky) and y(k,), respectively, the relation (A21) implies
x2(ky) + y*(k,) # 0 for a gapped H;p(k,). Furthermore, from
Eq. (A20), we have

x(ky +2m) = x(ky),  y(ky +2m) = —y(ke). (A22)
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Since x(k,) and y(k,) defined here have the same property as
those in the main text, we can define the Z, invariant in the
same manner.

As shown in the main text, the simplest Hamiltonian
with the nontrivial Z, invariant is H, = —o;, which gives
[x(ky),y(ky)] = (—1,0). To confirm the Z, nature, consider
the direct sum H, @ H,. In the basis where I'jp(k,) takes
the form of Eq. (A16), H, ® H, gives X(k,) = —1,4, and
Y (k,) = 0. Thus, we find [x(k,),y(k,)] = (1,0) for H, & H,,
which implies that H, & H, is Z, trivial.

3. 2D case

In this section, we define the Z, invariant for the 2D
Hamiltonian which has the nonsymmorphic symmetry

[U (ko). Hop (ks k)] = 0, Uk)® = e™, (A23)
as well as the ordinary chiral symmetry,
{Hop(ky,ky), [} =0, TI?=1. (A24)
These symmetries anticommute,
{I,U(ky)} = 0. (A25)
Consider the Schrodinger equation given by
Hop (ks ky)un (ks ky)) = Ep(ky ky)lun (ks ky)),  (A26)

where n is the band index. We assume that the system is
gapped at E = 0, and the Fermi energy is inside the gap. It is
convenient here to use a positive (negative) n to represent a
positive (negative) energy band.
Since Hsp(ky,ky) commutes with U(k,), the solutions
lu,(ky,ky)) are taken as eigenstates of U (k)
U koluy, (ke ky)) = e uz (ke ky)). (A2
The chiral symmetry implies that if |u(k,,k,)) is a positive
(negative) energy band, Fluf(kx,ky)) is a negative (positive)
energy band. From the anticommutation relation (A25), it is
also found thatAF |u,jf(kx,ky)) is an eigenstate of U (k, ) with the
eigenvalue Fe'**/2. Therefore, we can place the relation
luy (ko ky)) = Tlu¥, (ky ky).

—n

(A28)

A key character of the nonsymmorphic symmetry U (k) is
that its eigenvalues ¢ ~**/2 do not have the same periodicity
as U (ky) itself: They change their sign when k, — k, + 2.
As aresult, |u; (ky,ky)) and |u; (ky + 27,k,)) have the same
eigenvalue of U (k, ), satisfying the same Schrodinger equation.
Thus, they are the same state up to a U(1) gauge factor,

(ke + 27, ky)) = PR (ke k). (A29)
This relation gives a nontrivial relation in Berry phases:
Introducing the gauge field in the momentum space,

Af e ky) =i Y (w3 (ke k) [, (ke k),

n<0

(A30)
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we define the Berry phases y*(k,) as

iyt _ .
¢V ) = exp <, ?{dkyAf(kx,ky)) )

Since Eq. (A29) implies

(A31)

AF (ke + 21 ky) = AF (ki oky) = > 01, 0u (ks ky). (A32)

n<0
the Berry phases satisfy

ei}/+(kx+277) = oV k)i Fdky 3,20 akye"(k"’ky). (A33)

From the periodicity in k,, the integral § dk,d 6, should be
27 N,, with an integer N,, and thus we have
eV ke t2m) iy (ko) (A34)

Now we use Eq. (A28). This equation implies
A?_(kx,ky) + Ai_(k)mky) =i Z<u:,r(kxaky)yakiu:,r(kx’ky))’

(A35)

where the summation in the right-hand side is taken for all
n. Therefore, from the completeness relation, we find that
A;"(kx,ky) + A; (ky,ky) is a total derivative of a function,
which yields

Tk +y (Rl (A36)
Combining this with Eq. (A34), we finally have
oV ke 2m) _ p—iv k) (A37)

Using this relation, we can define the Z, invariant in the
same manner as the 1D case: Denoting the real and imaginary
parts of ¢7'®) as x(k,) and y(k,), respectively, we can
introduce a nonzero two-dimensional vector [x(ky),y(k,)].
Then Eq. (A37) gives the constraint

x(ky +2m) = x(ke),  y(ke +2m) = —y(ks), (A38)

which is exactly the same as Eq. (5). Therefore, if the
trajectories [x(ky),y(k,)] passes the positive x axis an odd
(even) number of times, the system is topologically nontrivial
(trivial).

The Z, invariant of the Hamiltonian (7) is evaluated as
follows. It is sufficient to consider the case with Hip(k,) =
o, since Hp(k,) can deform into o, without gap closing.
Hop(k,,ky) is block diagonal in the diagonal basis of U (k,),
and in the sector with the eigenvalue u = +e~%/2 of U(k,),
it is given by

+ sink, i(m + cosky)
Hp = i(—i(m + cosky) —sink, )’ (A39)
From this, we obtain
0 for m<—1
yihk)={xr for —1<m<1 (A40)
0 for m>1,

which implies the Z, invariant is nontrivial (trivial) if —1 <
m<1l@m>1lorm < —1).
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4. 3D case

Finally, we define the Z, topological invariant associated
with glide symmetry

G(ky)Hsp(ky ky, k)G (k) = Hap(ky,ky,—k,),

G (k) = e ™%, (A41)
From solutions of the Schrodinger equation
Hip(k)|uy(k)) = E,(k)|uy(k)), (A42)

we introduce the gauge field A; (k) in the momentum space,

Ay =i Y (k)]0 un(k)),

E,(k)<Er

(A43)

where Ef is the Fermi energy. On the glide invariant plane at
k., = A (A = 0,m), the glide operator G(k,) commutes with
Hip,

[G(kx), H3p(ky,ky, A)] = 0, (A44)

and thus the solutions of the Schrodinger equation are
simultaneously eigenstates of G(k,),

Gk |uF (ky ky, A)) = £e 52 uE (ke ky, A)).  (A4S)

Correspondingly, we can decompose A;(k) into two parts,
Aj(kysky,T) = Af (ke ,ky, A) + A7 (ke ky, A) - (A46)
with
Af ek, Ay = i) (g (K ey, M) O, 1 ey, A))-
E,<Ef
(A47)
In a manner similar to U (k,) in 2D, the eigenvalues of G(k,)
do not have the same periodicity in &, as G(k,) itself, and they
change their sign when k, — k, + 2. As a result, we have a
twisted boundary condition,
3y (ke + 271 kg, A)) = €O ERe Dk, A)), - (A48)

where G,f(kx,ky,A) is a U(1) phase.

Now we consider the upper half region of the Brillouin
zone in Fig. 5. From the twisted boundary condition, the Berry
phases yi(ﬂ) along £ = a,b,c,d in Fig. 5,

V) = f dk, A% (ks ey A) (A49)
) dk A
b @
d
kz=1
A
a B kz
c ky
kz=0
kx
kx=0 kx=21r

FIG. 5. (Color online) Upper half Brillouin zone.

155120-7



KEN SHIOZAKI, MASATOSHI SATO, AND KIYONORI GOMI

satisfy
+ —_
(a) = y~(c¢) (mod 27),
y+ )/7 (A50)
Yy (b) =y~ (d) (mod 2m).
The Stokes’ theorem also leads to
y(a+b) = / Fy.dkydk, (mod 27),
A
yEc—a) = / FJdk.dk, (mod 27r),  (A51)
B

yEb —d) = /C Fdk.dk, (mod 27),

with y(£) = y+(€) + ¥~ (O), Fyz = 0, Az — O, Az, and F25 =
8kXA§F — Ok, AZ. The modular equality in the above equations
comes from the ambiguity of the Berry phases.

Using these relations, we find that the following v defines
the Z, invariant (—1)":

1 -
V= [ /A Fy.dkydk. + /B . nydkxdk)}

1
— —yT(a + b) (mod 2). (A52)
b4
Here note that the modulo-2 ambiguity from the Berry phase
y+(a + b) does not affect the Z, invariant (—1)". In order for

(—1)" to define the Z, invariant, v must be an integer. From
Egs. (A51) and (A50), we find that

1

— F_ dk.dk,
2 B Xy y

1
=—vy (c—a—b+d)
2

1
= 2—[3/_(6 +d)—y (a+Db)]
T
1
= Z[)ﬁ(a +b)—y (a+Db)] (mod1). (A53)

Therefore, v is recast into

1
V= [ / Fy.dkydk, — y(a + b)] (mod 1), (A54)
A

which takes an integer.

From the formula (A52), we can calculate the Z, invariant
(—1)¥ for Hsp(k) in Eq. (14). Since the Z, invariant takes the
same value unless the gap of the system closes, we can choose
the special case of Hp(k,) = o,. In this case, the first and
the second terms of the right-hand side of Eq. (A52) vanish,
and thus we only need to evaluate ¥ (a + b). On the glide
invariant plane at k; = A, Hip(ky,k,,A) is decomposed into
HZ, in the sector with the eigenvalue e~"%+/2 of G(k,),

Hipy (ky Ky, A)

_ :i:( sink,

i(m +cos A + cosky)
—i(m + cos A + cos ky) ’

—sink,

(AS5)
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From this, we find that

for m < =2
for —2<m<0
for m > 0,

YT =

(A56)
for m <0

for O0<m<?2
for m > 2,

yr(b) =

oy o oy o

which implies

for m < =2
for —2<m<0
for O0<m<?2
for m > 2,

(A57)

S == O

modulo 2. Therefore, Hip(k) in Eq. (14) is topologically
nontrivial (trivial) if -2 <m <0 orO0<m <2 (m > 1 or
m < —1).

5. K-theory analysis

We summarize relevant results in the K theory. Consider
a class of nonsymmorphic symmetries, {U |1, }, which consist
of a point group operation U accompanying a half translation
7, of the lattice spacing in the x direction. We assume that the
point group operation U is a Z; transformation (namely, order
two). The nonsymmorphic symmetry {U |z, } acts on the Bloch
Hamiltonian H (k) as a k,-dependent unitary transformation
U (k) with U%(k,) = e~*/2,

Letus denote the K group for d-dimensional insulators with
the nonsymmorphic symmetry U (k,) as K g;t‘r")(Td ). Here the
superscript (s,7,,) identifies the symmetries of the insulators:
s = 0,1 (mod 2) indicates the absence (s = 0) or the presence
(s = 1) of the additional chiral symmetry. Then ¢ = 0,1 (mod
2) determines how the point group operation of U (k, ) acts; for
s = 0, t specifies the action of U (k,) as [36]

H (k, k)

(r=0)
—Hko ) (AS8)

-1 _
U(ko)H (ke )U (ky)™" = { =1,

and fors =1,
{H(ky,k),T'} =0,

ruo - (U0,

where k — k represents a Z, transformation for 71, Finally,
7, represents the half translation in the x direction, as
mentioned above. (¢,7,) is an example of a twisting of the
twisted equivariant K theory for topological insulators and
superconductors [44].

From the Gysin exact sequence [45] in the K theory
(the twisted version follows from the Thom isomorphism
theorem [46]), for S! except in the k, direction, the following
isomorphism can be shown:

U (k) H (ke J)U (k)™ = H(ky k),

(r=0)

Y (A59)

K(ZS;I,TX)(Td % Sl) ~ K(ZS;I,‘L’,«)(Td)GBK(ZSZ—].I.‘L’X)(T(Z’)’ (A60)

if U(k,) for K (Zs;t’f*’) (T? x S')acts on S' as a global symmetry,
or

Ky ™ i(1d x 8 = kg1 @ Ky M TI(T), (A6)
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if U(k,) for K(Zs;t’f“)(T" x S1) acts on S! as a reflection
symmetry. By iterating Eqs. (A60) and (A61), any K group
in the present case reduces to that for a one-dimensional
nonsymmorphic insulator defined in the k, direction. The
Hamiltonian mapping d =1 - d =2 — d = 3 discussed
previously is based on the isomorphism (A60) and (A61). In

PHYSICAL REVIEW B 91, 155120 (2015)

Eq. (A60) or (A61), the first term K%;"T‘)(Td) in the right-hand
side represents a “weak” topological index of the left-hand
side, which is obtained by just neglecting the S' dependence
in the left-hand side, but the second term gives the “strong”
topological index.
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