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Abstract

We study the relationship between the family number of chiral fermions and
the Wilson line phases, based on the orbifold family unification. We find that fla-
vor numbers are independent of the Wilson line phases relating extra-dimensional
components of gauge bosons, as far as the standard model gauge symmetry is re-
spected. This feature originates from a hidden quantum-mechanical supersymme-
try.

1 Introduction

The origin of the chiral fermions and the family replication has been a big mystery. On a
higher-dimensional space-time including an orbifold as an extra space, the family uni-
fication based on a large gauge group or the structure of extra dimensions can provide a
possible solution [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Four-dimensional (4D) chiral fermions come from a higher-dimensional fermion, af-
ter the elimination of mirror particles by orbifolding upon compactification. The sym-
metry breaking mechanism on the orbifold has been originally used in superstring the-
ory [13, 14]. The family replication emerges from a few multiplets of a large gauge group
including the family group as a subgroup. Hence, it is interesting to explore a nature of
the family number based on the orbifold family unification, in the expectation that it
offers a hint on the origin of three families in the standard model (SM).
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In this paper, we study the relationship between the family number of chiral fermions
and the Wilson line phases, based on the orbifold family unification. We find that flavor
numbers are independent of the Wilson line phases relating extra-dimensional compo-
nents of gauge bosons, as far as the SM gauge symmetry is respected. This feature origi-
nates from a hidden quantum-mechanical supersymmetry (SUSY).

The contents of this paper are as follows. In Sec. II, we review a feature of the family
number in the orbifold family unification, and present a conjecture on flavor numbers.
In Sec. III, we give an example to support the conjecture and show that it is understood
from the viewpoint of the hidden SUSY. Section IV is devoted to conclusions. In Ap-
pendices A and B, we present several formulas concerning the combination nCl , derived
from the feature that flavor numbers are independent of the Wilson line phases.

2 Family number in orbifold family unification

2.1 A feature

In our previous work [11], we have studied the orbifold family unification in SU (N ) gauge
theory on 6D space-time, M 4 ×T 2/ZM (M = 2,3,4,6). Here, M 4 is the 4D Minkowski
space-time and T 2/ZM is the 2D orbifold. We have derived enormous numbers of mod-
els with three families of SU (5) multiplets and the SM multiplets from a pair of 6D Weyl
fermions with different chiralities, using the orbifold breaking mechanism, after the break-
down of gauge symmetry such that SU (N ) → SU (5)×SU (p2)×·· ·×SU (pn)×U (1)n−1−m

and SU (N ) → SU (3)×SU (2)×SU (p3)×·· ·×SU (pn)×U (1)n−1−m , respectively. Here and
hereafter, m is the number of zero in {pi } and “SU (1)” unconventionally stands for U (1),
SU (0) means nothing.

Through the analysis, we have found the feature that each flavor number obtained
from a 6D Weyl fermion with [N ,k] is invariant under the change {pi } into {p ′

i } among
the equivalent boundary conditions (BCs). Here, [N ,k] is the rank k totally antisymmetric
tensor representation whose dimension is N Ck .

Let us present several illustrations.
On T 2/Z2, the numbers of 4D left-handed Weyl fermions with the representations

5 and 10 obtained from the breaking pattern SU (N ) → SU (5)×SU (p2)×·· ·×SU (p8)×
U (1)7−m are same as those from SU (N ) → SU (5)×SU (p ′

2)×·· ·×SU (p ′
8)×U (1)7−m , if the

following relations are satisfied,

p ′
2 −p2 = p ′

7 −p7 = p3 −p ′
3 = p6 −p ′

6 ,

p ′
4 = p4 , p ′

5 = p5 , p ′
8 = p8 , (1)

or

p ′
2 −p2 = p ′

7 −p7 = p4 −p ′
4 = p5 −p ′

5 ,

p ′
3 = p3 , p ′

6 = p6 , p ′
8 = p8 , (2)

or

p ′
3 −p3 = p ′

6 −p6 = p4 −p ′
4 = p5 −p ′

5 ,
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p ′
2 = p2 , p ′

7 = p7 , p ′
8 = p8 . (3)

In the same way, the flavor numbers of the SM fermions obtained from SU (N ) →
SU (3)×SU (2)×SU (p3)×·· ·×SU (p8)×U (1)7−m are same as those from SU (N ) → SU (3)×
SU (2)×SU (p ′

3)×·· ·×SU (p ′
8)×U (1)7−m , if the following relations are satisfied,

p ′
3 −p3 = p ′

6 −p6 = p4 −p ′
4 = p5 −p ′

5 , p ′
7 = p7 , p ′

8 = p8 . (4)

On T 2/Z3, the numbers of 4D left-handed Weyl fermions with 5 and 10 obtained
from SU (N ) → SU (5)×SU (p2)×·· ·×SU (p9)×U (1)8−m are same as those from SU (N ) →
SU (5)×SU (p ′

2)×·· ·×SU (p ′
9)×U (1)8−m , if the following relations are satisfied,

p ′
2 −p2 = p ′

6 −p6 = p ′
7 −p7 = p3 −p ′

3 = p4 −p ′
4 = p8 −p ′

8 , p ′
5 = p5 , p ′

9 = p9 . (5)

2.2 A conjecture

In the above cases with the relations (1) – (5), the BCs relating {pi } are connected with
those relating {p ′

i } by singular gauge transformations, and they are regarded as equiva-
lent in the presence of the Wilson line phases relating extra-dimensional components
of gauge bosons. This equivalence originates from the dynamical rearrangement in the
Hosotani mechanism [15, 16, 17, 18].

For cases on T 2/Z2, the equivalence of BCs is shown by the following relations among
the diagonal representatives for 2×2 submatrices of (P0,P1,P2) [19],

(τ3,τ3,τ3) ∼ (τ3,τ3,−τ3) ∼ (τ3,−τ3,τ3) ∼ (τ3,−τ3,−τ3) , (6)

where P0, P1 and P2 are representation matrices for the Z2 reflections, and τ3 is the third
component of the Pauli matrices. For case on T 2/Z3, it is shown by the following rela-
tions among the diagonal representatives for 3×3 submatrices of (Θ0,Θ1) [19],

(X , X ) ∼ (X ,ωX ) ∼ (X ,ωX ) , (7)

where Θ0 and Θ1 are representation matrices for the Z3 rotations, and X = diag(1,ω,ω)
with ω= e2πi /3 and ω= e4πi /3.

In [11], we assume that the BCs are chosen as physical ones, i.e., the system with the
physical vacuum is realized with the vanishing Wilson line phases after a suitable gauge
transformation is performed. Then, the feature is expressed by

Nr|({pi },ak=0) = Nr|({p ′
i },ak=0) , (8)

where Nr is a net chiral fermion number (flavor number) for 4D fermions with the repre-
sentation r of the gauge group, unbroken even in the presence of the Wilson line phases
(2πak ), and it is defined by

Nr ≡ n0
Lr−n0

Rr−n0
Lr+n0

Rr . (9)

Here, n0
Lr, n0

Rr, n0
Lr and n0

Rr are the numbers of 4D left-handed massless fermions with
r, 4D right-handed one with r, 4D left-handed one with the complex conjugate repre-
sentation r and 4D right-handed one with r, respectively. Note that 4D right-handed
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fermion with r and 4D left-handed one with r are transformed into each other under
the charge conjugation.

On the other hand, the equivalence due to the dynamical rearrangement is expressed
by

Nr|({pi },ak ̸=0) = Nr|({p ′
i },ak=0) . (10)

From (8) and (10), we obtain the relation,

Nr|({pi },ak=0) = Nr|({pi },ak ̸=0) , (11)

and find that each flavor number obtained from [N ,k] does not change even though the
vacuum changes different ones in the presence of the Wilson line phases.

In this way, we arrive at the conjecture that each flavor number in the SM is indepen-
dent of the Wilson line phases that respect the SM gauge group. If there were a Wilson line
phase with a non-vanishing SM gauge quantum number, (a part of) the SM gauge sym-
metry can be broken down. Hence, we assume that such a Wilson line phase is vanishing
or switched off.

3 Fermion numbers and hidden supersymmetry

On a higher-dimensional space-time M 4×K D−4, a massless fermion Ψ=Ψ(x, y) satisfies
the equation,

iΓM DMΨ= 0 , (12)

where K D−4 is an (D −4)-dimensional extra space, ΓM (M = 0,1,2,3,5, · · · ,D) are matri-
ces that satisfy the Clifford algebra ΓMΓN +ΓNΓM = 2ηM N , DM ≡ ∂M + i g AM and Ψ is a
fermion with 2[D/2]-components. Here, g is a gauge coupling constant, AM (= Aα

M T α) are
gauge bosons, and [∗] is the Gauss symbol. The coordinates xµ (µ= 0,1,2,3) on M 4 and
xm (m = 5, · · · ,D) on K D−4 are denoted by x and y , respectively.

After the breakdown of gauge symmetry, Ψ is decomposed as

Ψ(x, y) =
∑
rH

∑
{ni }

[
ψ

{ni }
LrH

(x)ϕ{ni }
LrH

(y)+ψ
{ni }
RrH

(x)ϕ{ni }
RrH

(y)
]

, (13)

where ψ
{ni }
LrH

(x) and ψ
{ni }
RrH

(x) are 4D left-handed spinors and right-handed ones, respec-
tively. The subscript rH stands for some representation of the unbroken gauge group H ,
and the superscript {ni } represents a set of numbers relating massive modes and those
concerning components of multiplet rH . The functions ϕ{ni }

LrH
(y) and ϕ

{ni }
RrH

(y) form com-

plete sets on K D−4.
We define the chiral fermion number relating r as

nr ≡ n0
Lr−n0

Rr , (14)

where r is a representation of the subgroup unbroken in the presence of the Wilson line
phases. The net chiral fermion number Nr is given by Nr = nr−nr.
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In case that nr is independent of the Wilson line phases (2πak ), n0
Lr and n0

Rr must be
expressed as

n0
Lr = n′0

Lr+ fr(ak ) and n0
Rr = n′0

Rr+ fr(ak ) , (15)

respectively. Here, n′0
Lr and n′0

Rr are some constants irrelevant to ak and fr(ak ) is a func-
tion of ak .

3.1 An example

Let us calculate n0
Lr and n0

Rr, and verify the relations (15), using an SU (3) gauge theory
on M 4 ×S1/Z2.

On 5D space-time, Ψ is expressed as

Ψ=
(
ψL

ψR

)
, (16)

where ψL and ψR are components containing 4D left-handed fermions and 4D right-
handed ones, respectively.

The equation (12) is divided into two parts,

iσµDµψL −D yψR = 0 , iσµDµψR +D yψL = 0 , (17)

where D y ≡ ∂y + i g Ay . For ψL and ψR, the BCs are given by

ψL(x,−y) = η0P0ψL(x, y) , ψL(x,2πR − y) = η1P1ψL(x, y) , (18)

ψR(x,−y) =−η0P0ψR(x, y) , ψR(x,2πR − y) =−η1P1ψR(x, y) , (19)

where P0 and P1 are the representation matrices for the Z2 transformation y →−y and
the Z2 transformation y → 2πR−y , respectively. η0 and η1 are the intrinsic Z2 parities for
the left-handed component. Note that Z2 parities for the right-handed one are opposite
to those of the left-handed one. For the gauge bosons, the BCs are given by

Aµ(x,−y) = P0 Aµ(x, y)P †
0 , Aµ(x,2πR − y) = P1 Aµ(x, y)P †

1 , (20)

Ay (x,−y) =−P0 Ay (x, y)P †
0 , Ay (x,2πR − y) =−P1 Ay (x, y)P †

1 . (21)

We take the representation matrices,

P0 = diag(1,1,−1) , P1 = diag(1,1,−1) . (22)

Then SU (3) is broken down to SU (2)×U (1). We consider the fermion with the represen-
tation 3 of SU (3) and (η0,η1) = (1,1). Then, ψL and ψR are expanded as

ψL =


∞∑

n=0
ψ1

Ln(x)cos n
R y

∞∑
n=0

ψ2
Ln(x)cos n

R y
∞∑

n=1
ψ3

Ln(x)sin n
R y

 , ψR =


∞∑

n=1
ψ1

Rn(x)sin n
R y

∞∑
n=1

ψ2
Rn(x)sin n

R y
∞∑

n=0
ψ3

Rn(x)cos n
R y

 . (23)
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After a suitable SU (2) gauge transformation, the vacuum expectation value (VEV) of
Ay is parameterized as

〈Ay〉 = −i

g R

 0 0 a
0 0 0
−a 0 0

 , (24)

where 2πa is the Wilson line phase. From the periodicity, we limit the domain of defini-
tion for a as 0 ≤ a < 1. In case with a ̸= 0, SU (2) is broken down to U (1), and then every
4D fermion becomes a singlet.

Inserting (23) and (24) into (17), we obtain a set of 4D equations,

iσµDµψ
1
L0 −

a

R
ψ3

R0 = 0 , iσµDµψ
3
R0 −

a

R
ψ1

L0 = 0 , (25)

iσµDµψ
2
L0 = 0 , (26)

iσµDµψ
1
Ln − n

R
ψ1

Rn − a

R
ψ3

Rn = 0 (n = 1,2, · · · ) , (27)

iσµDµψ
2
Ln − n

R
ψ2

Rn = 0 (n = 1,2, · · · ) , (28)

iσµDµψ
3
Ln + n

R
ψ3

Rn + a

R
ψ1

Rn = 0 (n = 1,2, · · · ) , (29)

iσµDµψ
1
Rn − n

R
ψ1

Ln + a

R
ψ3

Ln = 0 (n = 1,2, · · · ) , (30)

iσµDµψ
2
Rn − n

R
ψ2

Ln = 0 (n = 1,2, · · · ) , (31)

iσµDµψ
3
Rn + n

R
ψ3

Ln − a

R
ψ1

Ln = 0 (n = 1,2, · · · ) . (32)

Using the equations (27), (29), (30) and (32), we derive a set of 4D equations,

iσµDµ(ψ1
Ln +ψ3

Ln)− n −a

R
(ψ1

Rn −ψ3
Rn) = 0 (n = 1,2, · · · ) , (33)

iσµDµ(ψ1
Ln −ψ3

Ln)− n +a

R
(ψ1

Rn +ψ3
Rn) = 0 (n = 1,2, · · · ) , (34)

iσµDµ(ψ1
Rn +ψ3

Rn)− n +a

R
(ψ1

Ln −ψ3
Ln) = 0 (n = 1,2, · · · ) , (35)

iσµDµ(ψ1
Rn −ψ3

Rn)− n −a

R
(ψ1

Ln +ψ3
Ln) = 0 (n = 1,2, · · · ) . (36)

From (25), ψ1
L0 and ψ3

R0 form a 4D Dirac fermion. In the same way, we find that
(ψ2

Ln ,ψ2
Rn), (ψ1

Ln +ψ3
Ln ,ψ1

Rn −ψ3
Rn) and (ψ1

Ln −ψ3
Ln ,ψ1

Rn +ψ3
Rn) form 4D Dirac fermions

for n = 1,2, · · · from (28) and (31), (33) and (36), and (34) and (35), respectively. .
The numbers of 4D massless fermions are evaluated as

n0
L = 1+δ0a , n0

R = δ0a , (37)

where δ0a represents the Kronecker delta. From (37), we confirm that the fermion num-
ber n(≡ n0

L −n0
R = 1) does not depend on the Wilson line phase. The mass spectrum for

4D fermions in this model is depicted as Figure 1. Strictly speaking, the figure describes
the case with 0 < a < 1/2.
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(a) a = 0
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(b) a ̸= 0

Figure 1: Mass spectrum of 4D fermions. The filled circles and the open ones represent
left-handed fermions and right-handed ones, respectively.

3.2 Hidden quantum-mechanical supersymmetry

We explore a physics behind the feature that the fermion numbers are independent of
the Wilson line phases.

From Figure 1, we anticipate that the feature originates from a hidden quantum-
mechanical SUSY. Here, the quantum-mechanical SUSY means the symmetry generated
by the supercharge Q that satisfies the algebraic relations [20, 21],

H =Q2 ,
{
Q, (−1)F }= 0 ,

(
(−1)F )2 = I , (38)

where H , F and I are the Hamiltonian, the “fermion” number operator and the identity
operator, respectively. The eigenvalue of (−1)F is given by +1 for “bosonic” states and −1
for “fermionic” states, and Tr (−1)F is a topological invariant, called the Witten index [22].

It is known that the system with 4D fermions has the hidden SUSY where the 4D Dirac
operator plays the role of Q [23, 24]. The correspondences are given by

Q ↔ iγµDµ =
(

0 iσµDµ

iσµDµ 0

)
, (−1)F ↔ γ5 , (39)

where γ5 is the chirality operator defined by γ5 ≡ iγ0γ1γ2γ3. The trace of γ5 is the index
of the 4D Dirac operator, and the following relations hold,

Tr γ5
∣∣
r = n0

Rr[Aµ]−n0
Lr[Aµ] = dimkerσµDµ|r−dimkerσµDµ|r

= 1

32π2

∫
trrϵµναβFµνFαβd 4x , (40)

from the Atiyah-Singer index theorem. Here, n0
Rr[Aµ] and n0

Lr[Aµ] are the numbers of
normalizable solutions (massless fermions) satisfying iσµDµψRr = 0 and iσµDµψLr = 0,
respectively. Note that massive fermions exist in pairs (ψRr and ψLr) and do not con-
tribute to the index. The integral quantity in (40) is called the Pontryagin number, and it
is deeply connected to the configuration of gauge bosons Aµ on 4D space-time.
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It is pointed out that higher-dimensional theories with extra dimensions also possess
the hidden SUSY [25, 26]. In the system with a 5D fermion, the Dirac operator relating
the fifth-coordinate plays the role of Q and there are the correspondences,

Q ↔ D̃ y =
(

0 D y

−D y 0

)
, (−1)F ↔ Γ̃≡

(
1 0
0 −1

)
. (41)

Note that Γ̃=−γ5. The counterpart of the Witten index is given by

Tr Γ̃
∣∣
r = ñ0

Rr(a)− ñ0
Lr(a) , (42)

where ñ0
Rr(a) and ñ0

Lr(a) are the numbers of eigenfunctions, that satisfy the equations,

D̃ y

(
0
ψR

)
=

(
D yψR

0

)
=

(
0
0

)
(43)

and

D̃ y

(
ψL

0

)
=

(
0

−D yψL

)
=

(
0
0

)
, (44)

respectively. Note that the eigenvalue equations are given by D yψR = λψR and D yψL =
λ′ψL, eigenfunctions with non-zero eigenvalues exist in pairs, which correspond to 4D
massive fermions as seen from (17), and they do not contribute to the index. From the
equations (17), there is a one-to-one correspondence such that

D yψR = 0 ↔ iσµDµψL = 0 , D yψL = 0 ↔ iσµDµψR = 0 . (45)

Let us generalize to a system with a fermion on a higher-dimensional space-time.
For the case that D = 2n (n = 3,4, · · · ), the correspondences are given by

Q ↔ D̃ ≡
D∑

m=5
iΓmDm , (−1)F ↔ Γ̃≡−ΓD+1 , (46)

where ΓD+1 is the chirality operator defined by ΓD+1 = (−i )n+1Γ0Γ1 · · ·ΓD .
For the case that D = 2n +1 (n = 2,3, · · · ), the correspondences are given by

Q ↔ D̃ ≡U †
D∑

m=5
iΓmDmU , (−1)F ↔ Γ̃≡ iΓD , (47)

where U is the unitary matrix that satisfies the relation iΓD =U †Γ1U , and iΓD is a diag-
onal matrix with the same form as the chirality operator on D(= 2n)-dimensions up to a
sign factor.

The equation (12) is written by

iΓµDµΨ+
D∑

m=5
iΓmDmΨ= 0 . (48)
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For the case that D = 2n + 1, after the unitary transformation Γ′M = U †ΓMU and Ψ′ =
U †Ψ is performed, Γ′M and Ψ′ are again denoted as ΓM and Ψ in (48). The counterpart
of the Witten index is given by

Tr Γ̃
∣∣
r = ñ0

Rr(ak )− ñ0
Lr(ak ) , (49)

where ñ0
Rr(ak ) and ñ0

Lr(ak ) are the numbers of eigenfunctions, which satisfy D̃ψR = 0
and D̃ψL = 0, respectively. Tr Γ̃

∣∣
r is a topological invariant. As seen from the Atiyah-

Singer index theorem relating the Dirac operator for extra-dimensions, fermion numbers
are deeply connected to the topological structure on K D−4 including the configurations
of Am on K D−4. From this point of view, the family number has been studied in the
Kaluza-Klein theory [27] and superstring theory [28].

From (48), there is a one-to-one correspondence such that

D̃ψR = 0 ↔ iΓµDµψL = 0 , D̃ψL = 0 ↔ iΓµDµψR = 0 . (50)

Here ψR and ψL are a 4D right-handed spinor component and a 4D left-handed one in
Ψ, that are eigenspinors of the 4D chirality operator Γ̃5 ≡ iΓ0Γ1Γ2Γ3 whose eigenvalues
are 1 and −1, respectively. Note that components with a different 4D chirality involve
each other through the equation (48), because Γ̃5 is anti-commutable to iΓµDµ but it is
commutable to D̃ .

In our orbifold family unification models, the extra space is flat and the Wilson line
phases determine the vacuum with 〈Fmn〉 = 0 globally. Then, we derive the relation,

Tr Γ̃
∣∣
r = ñ0

Rr(ak )− ñ0
Lr(ak ) = n0

Lr−n0
Rr . (51)

using the following relations coming from (50),

ñ0
Rr(ak ) = n0

Lr , ñ0
Lr(ak ) = n0

Rr . (52)

As a remnant of the topological invariance of Tr Γ̃
∣∣
r, we find that nr(= n0

Lr −n0
Rr) is in-

dependent of the Wilson line phases. Hence, Nr(= nr −nr) is also independent of the
Wilson line phases.

4 Conclusions

We have studied the relationship between the family number of chiral fermions and the
Wilson line phases, based on the orbifold family unification. We have found that flavor
numbers are independent of the Wilson line phases relating extra-dimensional compo-
nents of gauge bosons, as far as the SM gauge symmetry is respected. This feature origi-
nates from a hidden quantum-mechanical SUSY.

From our observation, the previous analyses [7, 9, 11], based on the assumption that
the BCs are physical ones, are justified in the orbifold family unification. Concretely,
even if the BCs are not physical, we can obtain the same result as that of the physical
ones, because the family number is invariant under the change from the original BCs to
the physical ones by singular gauge transformations.
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A Formulas based on equivalence relations

We present several formulas concerning the combination nCl , derived from the dynam-
ical rearrangement and the feature that fermion numbers are independent of the Wilson
line phases.

On S1/Z2, we consider the representation matrices given by

P0 = diag([+1]p1 , [+1]p2 , [−1]p3 , [−1]p4 ) , (53)

P1 = diag([+1]p1 , [−1]p2 , [+1]p3 , [−1]p4 ) , (54)

where [±1]pi represents ±1 for all pi elements. Then, the following breakdown of SU (N )
gauge symmetry occurs:

SU (N ) → SU (p1)×SU (p2)×SU (p3)×SU (p4)×U (1)3−m . (55)

The Z2 parities or BCs specified by integers {pi } are also denoted [p1; p2, p3; p4].
After the breakdown of SU (N ), [N ,k] is decomposed as [7]

[N ,k] =
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

(
p1Cl1 , p2Cl2 , p3Cl3 , p4Cl4

)
, (56)

where p4 = N − p1 − p2 − p3, l4 = k − l1 − l2 − l3, and we use pCl instead of [p, l ]. Our
notation is that pCl = 0 for l > p and l < 0.

The Z2 parities of
(

p1Cl1 , p2Cl2 , p3Cl3 , p4Cl4

)
for 4D left-handed fermions are given by

P0 = (−1)l3+l4η0
k = (−1)l1+l2 (−1)kη0

k = (−1)l1+l2+α , (57)

P1 = (−1)l2+l4η1
k = (−1)l1+l3 (−1)kη1

k = (−1)l1+l3+β , (58)

where the intrinsic Z2 parities (η0
k ,η1

k ) take a value +1 or −1 by definition and are param-

eterized as (−1)kη0
k = (−1)α and (−1)kη1

k = (−1)β.
Zero modes for the left-handed fermions and the right-handed ones are picked out

by operating the projection operators,

P (1,1) = 1+P0

2

1+P1

2
and P (−1,−1) = 1−P0

2

1−P1

2
, (59)

respectively. Note that the intrinsic Z2 parities for the right-handed fermions are oppo-
site to those for the left-handed ones.

Then, the fermion number is given by

n = n0
L −n0

R =
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

(
P (1,1) −P (−1,−1))

p1Cl1 p2Cl2 p3Cl3 p4Cl4 . (60)
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From the dynamical rearrangement, the following equivalence relations hold [18],

[p1; p2, p3; p4] ∼ [p1 −1; p2 +1, p3 +1; p4 −1] (for p1, p4 ≥ 1) ,

∼ [p1 +1; p2 −1, p3 −1; p4 +1] (for p2, p3 ≥ 1) . (61)

Using (61) and the feature that fermion numbers are independent of the Wilson line
phases, the following formula is derived,

k∑
l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

[
(−1)l1+l2+α+ (−1)l1+l3+β

]
p1Cl1 p2Cl2 p3Cl3 p4Cl4

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

[
(−1)l1+l2+α+ (−1)l1+l3+β

]
p1∓1Cl1 p2±1Cl2 p3±1Cl3 p4∓1Cl4 , (62)

where p4 = N −p1 −p2 −p3, l4 = k − l1 − l2 − l3, and we use the relation,

P (1,1) −P (−1,−1) = 1

2
(P0 +P1) = 1

2

[
(−1)l1+l2+α+ (−1)l1+l3+β

]
. (63)

Here and hereafter, we deal with the case that the inequality pi − 1 ≥ 0 is fulfilled in

pi−1Cli .
In the same way, the following formulas are derived from the feature of the fermion

number on T 2/Z2,

k∑
l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p1Cl1 p2Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p1∓1Cl1 p2±1Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7±1Cl7 p8∓1Cl8

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p1Cl1 p2∓1Cl2 p3±1Cl3 p4Cl4 p5Cl5 p6±1Cl6 p7∓1Cl7 p8Cl8

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p1Cl1 p2∓1Cl2 p3Cl3 p4±1Cl4 p5±1Cl5 p6Cl6 p7∓1Cl7 p8Cl8

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p1Cl1 p2Cl2 p3±1Cl3 p4∓1Cl4 p5∓1Cl5 p6±1Cl6 p7Cl7 p8Cl8 , (64)

where p8 = N − p1 − p2 − ·· ·− p7 and l8 = k − l1 − l2 − ·· ·− l7. P (a,b,c) are the projection
operators that pick out the Z2 parities (P0,P1,P2) = (a,b,c), defined by

P (a,b,c) ≡ 1+aP0

2

1+bP1

2

1+ cP2

2
. (65)
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Here, a, b and c take 1 or −1. P0, P1 and P2 are given by

P0 = (−1)l5+l6+l7+l8η0
k = (−1)l1+l2+l3+l4 (−1)kη0

k = (−1)l1+l2+l3+l4+α , (66)

P1 = (−1)l3+l4+l7+l8η1
k = (−1)l1+l2+l5+l6 (−1)kη1

k = (−1)l1+l2+l5+l6+β , (67)

P2 = (−1)l2+l4+l6+l8η2
k = (−1)l1+l3+l5+l7 (−1)kη2

k = (−1)l1+l3+l5+l7+γ , (68)

where α, β and γ take 0 or 1. Using (66), (67) and (68), P (1,1,1)−P (−1,−1,−1) is calculated as

P (1,1,1) −P (−1,−1,−1)

= 1

4

[
(−1)l1+l2+l3+l4+α+ (−1)l1+l2+l5+l6+β

+(−1)l1+l3+l5+l7+γ+ (−1)l1+l4+l6+l7+α+β+γ
]

. (69)

The following formulas are derived from the feature of the fermion numbers relating
representations p1Cl1 and (p1Cl1 , p2Cl2 ),

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p2Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=
k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p2∓1Cl2 p3±1Cl3 p4Cl4 p5Cl5 p6±1Cl6 p7∓1Cl7 p8Cl8

=
k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p2∓1Cl2 p3Cl3 p4±1Cl4 p5±1Cl5 p6Cl6 p7∓1Cl7 p8Cl8

=
k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p2Cl2 p3±1Cl3 p4∓1Cl4 p5∓1Cl5 p6±1Cl6 p7Cl7 p8Cl8 (70)

and
k−l1−l2∑

l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=
k−l1−l2∑

l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P (1,1,1) −P (−1,−1,−1))

× p3±1Cl3 p4∓1Cl4 p5∓1Cl5 p6±1Cl6 p7Cl7 p8Cl8 . (71)

Furthermore, by changing (p3, p4, p5, p6, p7, p8) into (p7, p8, p3, p4, p5, p6) in the or-
dering of the summation and relabeling (p7, p8, p3, p4, p5, p6) as (p3, p4, p5, p6, p7, p8),
the following formulas are derived from the feature of the fermion numbers relating rep-
resentations (p1Cl1 , p2Cl2 , p3Cl3 ) and (p1Cl1 , p2Cl2 , p3Cl3 , p4Cl4 ),

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) −P ′(−1,−1,−1))
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× p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8

=
k−l1−l2−l3∑

l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) −P ′(−1,−1,−1))

× p4Cl4 p5∓1Cl5 p6±1Cl6 p7±1Cl7 p8∓1Cl8 (72)

and

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) −P ′(−1,−1,−1))

p5Cl5 p6Cl6 p7Cl7 p8Cl8

=
k−l1−···−l4∑

l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

(
P ′(1,1,1) −P ′(−1,−1,−1))

p5∓1Cl5 p6±1Cl6 p7±1Cl7 p8∓1Cl8 , (73)

where P ′(1,1,1) −P ′(−1,−1,−1) is given by

P ′(1,1,1) −P ′(−1,−1,−1)

= 1

4

[
(−1)l1+l2+l5+l6+α+ (−1)l1+l2+l7+l8+β

+(−1)l1+l3+l5+l7+γ+ (−1)l1+l3+l6+l8+α+β+γ
]

. (74)

In the same way, the following formulas are derived from the feature of the fermion
number on T 2/Z3,

k∑
l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

k−l1−···−l7∑
l8=0

(
P (1,1) −P (ω,ω))

× p1Cl1 p2Cl2 p3Cl3 p4Cl4 p5Cl5 p6Cl6 p7Cl7 p8Cl8 p9Cl9

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

k−l1−···−l7∑
l8=0

(
P (1,1) −P (ω,ω))

× p1±1Cl1 p2Cl2 p3∓1Cl3 p4∓1Cl4 p5±1Cl5 p6Cl6 p7Cl7 p8∓1Cl8 p9±1Cl9

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

k−l1−···−l7∑
l8=0

(
P (1,1) −P (ω,ω))

× p1±1Cl1 p2∓1Cl2 p3Cl3 p4Cl4 p5±1Cl5 p6∓1Cl6 p7∓1Cl7 p8Cl8 p9±1Cl9

=
k∑

l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

k−l1−l2−l3∑
l4=0

k−l1−···−l4∑
l5=0

k−l1−···−l5∑
l6=0

k−l1−···−l6∑
l7=0

k−l1−···−l7∑
l8=0

(
P (1,1) −P (ω,ω))

× p1Cl1 p2±1Cl2 p3∓1Cl3 p4∓1Cl4 p5Cl5 p6±1Cl6 p7±1Cl7 p8∓1Cl8 p9Cl9 , (75)

where p9 = N − p1 − p2 − ·· · − p8 and l9 = k − l1 − l2 − ·· · − l8. P (ξ,η) are the projection
operators that pick out the Z3 elements (Θ0,Θ1) = (ξ,η), defined by

P (ξ,η) ≡ 1+ξΘ0 +ξ
2
Θ2

0

3

1+ηΘ1 +η2Θ2
1

3
. (76)

Here, ξ and η take 1, ω(= e2πi /3) or ω(= e4πi /3), and ξ and η are the complex conjugates
of ξ and η, respectively. Θ0 and Θ1 are given by

Θ0 =ωl4+l5+l6ωl7+l8+l9η0
k =ωl1+l2+l3+2(l4+l5+l6)ωkη0

k =ωl1+l2+l3+2(l4+l5+l6)+α , (77)
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Θ1 =ωl2+l5+l8ωl3+l6+l9η1
k =ωl1+l4+l7+2(l2+l5+l8)ωkη1

k =ωl1+l4+l7+2(l2+l5+l8)+β , (78)

where α and β take 0, 1 or 2.
In the same way, we can derive similar formulas from the feature of the fermion num-

bers relating representations p1Cl1 , (p1Cl1 , p2Cl2 ) and (p1Cl1 , p2Cl2 , p3Cl3 ) on T 2/Z3.

B Formulas based on independence from Wilson line phases

We derive other formulas concerning the combination nCl , counting the numbers of
fermions irrelevant to the Wilson line phases and using the independence of fermion
numbers from the Wilson line phases.

On S1/Z2, we consider the representation matrices given by

P0 = diag([+1]p , [−1]N−p ) , P1 = diag([+1]p , [−1]N−p ) . (79)

Then, the following breakdown of SU (N ) gauge symmetry occurs:

SU (N ) → SU (p)×SU (N −p)×U (1)1−m , (80)

and [N ,k] is decomposed as

[N ,k] =
k∑

l=0

(
pCl , N−pCk−l

)
. (81)

The Z2 parities of
(

pCl , sCk−l
)

for 4D left-handed fermions are given and parameter-
ized by

P0 = (−1)k−lη0
k = (−1)l+α , P1 = (−1)k−lη1

k = (−1)l+β , (82)

where α and β take 0 or 1. Then, the fermion number is given by

n = nL −nR =
k∑

l=0

1

2

[
(−1)l+α+ (−1)l+β

]
pCl N−pCk−l . (83)

The number of the Wilson line phases is m ≡ Min(p, N − p) and, after a suitable
SU (p)×SU (N −p) gauge transformation, 〈Ay〉 is parameterized as

〈Ay〉 = −i

g R

(
0 Θ

−ΘT 0

)
, (84)

where Θ is the p × (N −p) matrix such that

Θ=



a1

a2

0
0 0
...

...
0 0

0
. . .

am

· · · 0
. . .

...
· · · 0


(for p ≥ N −p) , (85)
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Θ=


a1

a2

0

0
. . .

am

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

 (for p ≤ N −p) . (86)

Here, 2πak (k = 1, · · · ,m;m ≡ Min(p, N −p)) are the Wilson line phases.
For the fermion with [N ,1], the number of components irrelevant to ak is p −m for

p ≥ N −p and N −p −m for p ≤ N −p, and it is expressed as

1∑
l ′=0

p−mCl ′ N−p−mC1−l ′

∣∣∣∣∣
m=Min(p,N−p)

. (87)

For the fermion with [N ,2], the number of components irrelevant to ak is p−mC2+m for
p ≥ N −p and N−p−mC2 +m for p ≤ N −p, and it is expressed as

2∑
l ′=0

p−mCl ′ N−p−mC2−l ′ +mC1

∣∣∣∣∣
m=Min(p,N−p)

, (88)

where mC1 comes from the components constructed from the tensor products between
components in [N ,1] with opposite values for the Wilson line phases, and the compo-
nents corresponding mC1 have odd Z2 parities. In the iterative fashion, we find that the
number of components irrelevant to ak is given by

[k/2]∑
n=0

k−2n∑
l ′=0

mCn p−mCl ′ N−p−mCk−2n−l ′

∣∣∣∣∣
m=Min(p,N−p)

(89)

for the fermion with [N ,k].
Using the independence of fermion numbers from the Wilson line phases, the num-

ber of fermions is also calculated by counting the fermions irrelevant to ak and the fol-
lowing formula is derived,

k∑
l=0

(−1)l
pCl N−pCk−l =

[k/2]∑
n=0

k−2n∑
l ′=0

(−1)n+l ′
mCn p−mCl ′ N−p−mCk−2n−l ′ , (90)

where we use the assignment of Z2 parities,

P0 = (−1)n+k−2n−l ′η0
k = (−1)n+l ′+α , P1 = (−1)n+k−2n−l ′η1

k = (−1)n+l ′+β (91)

for the component corresponding mCn p−mCl ′ N−p−mCk−2n−l ′ , and we take α = β. The
above formula (90) holds for the integer m satisfying 0 ≤ m ≤ Min(p, N −p), because the
above argument is valid for m as the number of non-vanishing ak even if some of ak

vanish.
Particularly, in case with m = p and m = N −p, (90) reduces to

k∑
l=0

(−1)l
pCl N−pCk−l =

[k/2]∑
n=0

k−2n∑
l ′=0

(−1)n+l ′
pCn N−2pCk−2n−l ′ , (92)
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and

k∑
l=0

(−1)l
pCl N−pCk−l =

[k/2]∑
n=0

k−2n∑
l ′=0

(−1)n+l ′
N−pCn 2p−NCk−2n−l ′ , (93)

respectively.
Based on the representation matrices (53) and (54), the following formula is derived,

k∑
l1=0

k−l1∑
l2=0

k−l1−l2∑
l3=0

[
(−1)l1+l2+α+ (−1)l1+l3+β

]
p1Cl1 p2Cl2 p3Cl3 p4Cl4

=
[k/2]∑
n=0

n∑
n1=0

k−2n∑
l ′1=0

k−2n−l ′1∑
l ′2=0

k−2n−l ′1−l ′2∑
l ′3=0

[
(−1)n+l ′1+l ′2+α+ (−1)n+l ′1+l ′3+β

]
×m1Cn1 m2Cn−n1 p1−m1Cl ′1 p2−m2Cl ′2 p3−m2Cl ′3 p4−m1Cl ′4 , (94)

where p4 = N −p1−p2−p3 and l ′4 = k −2n− l ′1− l ′2− l ′3. The above formula (94) holds for
the integers m1 and m2 satisfying 0 ≤ m1 ≤ Min(p1, p4) and 0 ≤ m2 ≤ Min(p2, p3).

In the same way, we can derive similar formulas using models on T 2/ZM .
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