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This paper presents a natural and comfortable communication system between human and robot based on synchronization to 

human emotional state using human facial expression recognition. The system consists of three parts: human emotion recognition, 

robotic emotion generation, and robotic emotion expression. The robot recognizes human emotion through human facial 

expressions, and robotic emotion is generated and synchronized with human emotion dynamically using a vector field of 

dynamics. The robot makes dynamically varying facial expressions to express its own emotions to the human. We conducted a 

communication experiment to examine the effectiveness of the proposed system. We found that subjects became much more 

comfortable after communicating with the robot with synchronized emotions. Subjects felt somewhat uncomfortable after 

communicating with the robot with non-synchronized emotions. During emotional synchronization, subjects communicated much 

more with the robot, and the communication time was double that during non-synchronization. Furthermore, in the case of 

emotional synchronization, subjects had good impressions of the robot, much better than the impressions in the case of 

non-synchronization. It was confirmed in this study that emotional synchronization in human-robot communication can be 

effective in making humans comfortable, and makes the robot much more favorable and acceptable to humans.  

Keywords: Human-robot communication, facial expression recognition, emotional synchronization, vector field of dynamics. 

1. Introduction 

In the last few years, more and more robots have been created not only for the purpose of traditional industries 

but also for other fields such as medicine and education as well as daily living. We may use robots in the future 

for housekeeping, elderly care, and entertainment. Therefore, human-robot communication is a key issue. 

Natural and comfortable communication between humans and robots is attracting more and more attention. To 

naturally communicate, robots need to have not only intelligence but also affective behavior, such as emotions, 

feelings, impressions, sensitivity, and intuition. Humans communicate with one another through gaze direction, 

facial expression, body movement, speech, and language. To interact with humans in a human-like manner, 

robots must perceive and understand the richness and complexity of natural human social behavior. There are 

many studies on affective human-robot interaction that have explored how to make communication more natural 

and comfortable. For example, Kanda1 reported the importance of cooperative behavior in a humanoid robot 

pretending to listen to route guidance from a human. In addition, effective gestures for human-robot interactions 

have been studied.2,3  

Facial expressions are of vital importance in expressing our emotions. It is the most intuitional and fast way 

to transfer our inner emotions to other people. Therefore, many facial expression robots have been created for 

human-robot communication, such as SAYA4 and Kismet.5 However, most of these robots are designed as 

mechanical structures. It is not easy to make rich facial expressions. We developed a facial robot KAMIN6 using 

a curved surface display as a face. This technique allows a facial expression to be easily made, compared with 

other mechanical methods. We proposed how to generate a robot’s facial expressions based on the characteristic 

quantity in its emotional space.7 



In addition to facial expressions, emotional synchronization is an important concept in human 

communication. There are many phenomena of emotional synchronization that happen in our daily lives. Indeed, 

some synchronized phenomena are well-known and have been discussed related to human interaction.8,9 

Lundqvist10 found that synchronized reactions occur in happy, angry, and sad expressions during human 

communication when partners change their expressions. Ichikawa et al.11 reported that happy expressions are 

strengthened, whereas angry and sad expressions are weakened by synchronization. Jonsson et al.12 studied the 

influence of a car voice on a driver’s behavior and attitudes. The participants’ emotion was first induced by video 

clips. Then participants used a driving simulator and interacted with the car voice. They found that drivers who 

interacted with voices that matched their own emotional state had less than half as many accidents on average as 

drivers who interacted with mismatched voices. Furthermore, drivers paired with matched voices also 

communicated much more with the voice. Our previous study13 included experiments to evaluate the effects of 

emotional synchronization in human-robot communications using voice recognition. In the experiments, human 

emotion was recognized by the voice analysis software RobEsense. The robot KAMIN expressed its emotion by 

making different facial expressions. We found that subjects became more comfortable when the robot made 

synchronized facial expressions in response to human emotion. Therefore, emotional synchronization is an 

important issue and often has positive effects not only on human communication, but also on human-robot 

communication.  

Researchers have proposed utilizing nonverbal mirroring of learners’ behaviors including facial expressions 

to provide affective support to them, with the effect of a mimicking agent on a learners’ performance 

investigated.14,15 Riek et al.16 proposed a mimicking behavior of a human head gesture to enable human-robot 

rapport. They took methods to mimic only behaviors or facial expressions without concerning emotion. However, 

it is important to make emotional synchronization with the partner’s emotion for healing sadness or loneliness 

likely in human-human communications. There are relationships between expressions such as facial expression, 

body behavior, and voice at the same emotional state. If we can make synchronization in emotional state, we can 

express using some modalities at the emotional state.   

The emotion is a dynamical system not a static one35. The emotional state change dynamically. In order to 

change emotion naturally, it is important to make a dynamical system of robotic emotion. The former researches 

for mimicking interaction made just same expressions with the partner’s expressions. This mimicking method is 

a static system. Though mirroring can attract and give a friendship, it’s difficult to touch a person’s heart by 

sharing emotion each other.  

In our study, we propose a system for human-robot communication to synchronize the robot emotion with the 

human emotion to cause sympathy. Then we investigate how human emotions and impressions are affected by a 

robot that has emotional entrainment ability. Emotional recognition was implemented by processing facial 

expressions, and emotional entrainment was realized based on a dynamic vector field. We think that it can 

generate natural and continuous changing of the facial expression by entrainment in the vector field of emotion 

because the facial expression changes dynamically and continuously. In the case of mimicking, it’s just static.  

Therefore, our approach is different from the aforementioned mirroring technique because it is based on 

entrainment of emotions between human and robot, not behavioral mimicry.  

Many researchers17-20 have investigated emotion-generating methods for human-robot interactions. Kim et 

al.17 introduced a computer model of emotion generation based on cognitive appraisal theory. Interactive emotion 

recognition using a support vector machine has been conducted19. Kirby et al.20 proposed an affective model 

based on the use of expressive moods and emotions to realize human-robot interaction proceeding in a smooth, 

natural manner. However, those works did not involve emotional synchronization. 

In this study, we focused on communication between human and robot. To make natural and human-like 

communication, we proposed a communication system based on emotional synchronization using facial 

expression recognition in human-robot communication. The robot recognizes human emotion through human 

facial expressions. Robotic emotion is synchronized with human emotion dynamically using a vector field of 

dynamics. Then, the robot makes a facial expression to express its own emotion. We conducted experiments to 

evaluate the effectiveness of the proposed system by looking at how human emotion changes through interacting 

with a robot. The potential effect of emotional entrainment could be that a happy reaction induces a happier 

response compared to the original emotion expressed. A sad reaction could weaken the response of sadness 

compared to the original emotion expressed. Anger could be an exception, with an angry reaction escalating 

emotions and worsening the interaction. 



In the next section, we address the outline of the communication system. In section III, we discuss how to 

analyze human facial expressions. In section IV, we explain the emotional synchronization system and show the 

simulation results. In section V, we present the communication experiment. We show the main experimental 

results in section VI and offer conclusions in section VII. 

2. Overview of the Communication System 

The communication system consists of three parts: face recognition, robotic emotion generation, and robotic 

emotion expression, as shown in Fig. 1. The robot recognizes human emotion XH through human facial 

expression, and robotic emotion XR is created and synchronized with human emotion using the vector field of 

dynamics. The robot recognizes human emotion dynamically, and the robotic emotion is entrained to human 

emotion in the vector field of dynamics. In that way, the robot can have a dynamic emotional change like 

humans. In addition, it makes possible real-time communication between human and robot and also makes 

communication natural and human-like. In the emotion expression part, the robot expresses its emotion by facial 

expressions. For example, when the robot recognizes that the human is in a happy mood, it also feels happy and 

expresses it with a happy facial expression. This process is continuous, with communication between human and 

robot based on emotional synchronization. 

We established the relation of human emotion recognition and synchronization to robotic emotion expression 

using four spaces: emotion recognition space, emotion generation space, symbol space, and emotion expression 

space. Figure 2 shows the relationships among the four spaces. First, the human emotional state is recognized in 

the emotion recognition space. Second, the human emotional state is mapped into the emotion generation space, 

and the robot recognizes it and synchronizes its own emotion with it using the vector field of dynamics. The 

synchronized emotion of the robot is mapped into the symbol space to figure out the corresponding state vector 

for the synchronized robotic emotion. Finally, the determined state vector in the symbol space is mapped to the 

emotion expression space, and the robot expresses its synchronized emotion to the human using robotic facial 

expressions dynamically in the emotion expression space. Then the human changes emotion. By iterating the 

second to fourth steps, the robot communicates with the human continuously. Thus, real-time natural 

communication based on emotional synchronization is realized. 

3. Face Recognition 

Facial analysis is one of the key parameters for emotion recognition in human-robot interaction. It provides a 

natural and efficient way to communicate between human and robot. Much information about a person’s 

emotions and state of mind can be obtained from their facial expressions alone. Indeed, research in 

psychology21,22 has shown that facial expressions play a major role in human conversation coordination and have 

a greater influence on auditors than the textual content of a spoken message.  

A face recognition system generally consists of image acquisition, face detection and tracking, facial feature 

extraction, and emotional classification. Various approaches to face detection, facial feature extraction, and facial 

expression recognition have been reported in the literature over the last few decades such as the eigenface based 

on principal component analysis,23 geometric modeling,24 deformable template,25 neural networks,26 and color 

analysis.27 However, most computer vision-based approaches to facial expression analysis so far have somewhat 

complicated algorithms with a large amount of calculations attempting to recognize only a small set of 

prototypic expressions of emotion (i.e. happiness, surprise, anger, sadness, fear, and disgust). However, in human 

communication, we not only communicate with others with emotions in terms of categories (happiness, anger, 

fear, etc.) but also with emotions that span the relationship between different emotions (e.g. an elated emotion 

blends excited with joyful). Therefore, to make natural and human-like communication between human and 

robot, it is very important to consider such issues, although few studies have addressed them so far. Russell28 

proposed a circumplex model of affect, widely recognized and used, and argued that the human observer 

perceives two broad affective categories on the face: arousal and pleasantness. Yamada et al.29,30 proposed that a 

relationship exists between the relative displacement of facial expressions and basic affect categories, and can be 

indicated using two variables: curving and openness, and inclination. 

Generally speaking, facial expressions are the visual changes in the face due to the actions of facial muscles. 

Therefore, it is reasonable to describe facial expressions in terms of the changes in appearance of the face. In this 

study, to enhance efficiency, we used the least facial features for recognition of human emotion. We referred to 

Yamada’s theory to design a 2D continuous physical space to represent the emotional states for recognizing 



human emotion. The algorithm in this study has many advantages. First, it has the lowest dimension of the 

space-based recognition methods. Thus, recognition should be easier. Second, because it uses the least features to 

make a space, it reduces the amount of calculation and saves time, making it possible to establish a real-time 

communication system. Third, it can be implemented easily within a short period. Furthermore, because of the 

continuous space of emotion, it is possible to recognize not only a small set of prototypic expressions of 

emotions, but also additional ones (e.g. elated and relaxed), making the robot much more capable of 

understanding humans and enriching the emotion and expression in itself. 

3.1. Face detection and tracking 

In this study, we used the AdaBoost algorithm-based face detector31 that employs Haar-like classifiers arranged 

in a cascade structure, with high accuracy and robustness against observations with low resolutions or varying 

illumination conditions. We applied the AdaBoost algorithm-based face detector to our system to detect the face 

and facial features (brow, eye, and mouth). In our system, the face detector can run at a rapid speed of 25 frames 

per second with accuracy over 95%, making it possible to make real-time human-robot communication. 

3.2. Facial feature extraction 

Facial feature extraction refers to the capability of identifying facial images seen by a robot in detail. After 

detection and tracking of facial features such as the eye and mouth regions, we preprocessed each region with 

contrast and binarization, then divided the eye region into brow and eye and processed them again to make them 

much clearer and closer to the shape of the real eye and eyebrow on the face. Furthermore, we subdivided the 

brow and eye into left and right parts because the human face is not bilaterally symmetrical. As for the mouth, 

the color of the mouth is somewhat similar to the color of the face skin. It is not easy to extract it from the 

background using just contrast and binarization. Therefore, we converted the RGB (red, green, blue) color 

system to the HSV (hue, saturation, value) color system for the mouth region. The HSV color system has many 

advantages. For example, the hue and saturation of the space are insensitive to brightness, and this system has a 

better sense of color, making it easy to do the analysis. Figure 3 shows processed results of the brow, eye, and 

mouth online. Finally, we scanned the black pixel in each divided region to locate the exact position and get the 

details of each feature such as length, width, and angle (see Fig. 4). 

3.3. Facial expression recognition 

3.3.1. Yamada’s theory 

Yamada et al.29,30 attempted to identify a model concerning perceptual judgments of emotion from facial 

expressions. They found a relationship between basic emotional categories and structural variables of facial 

expression based on the displacement structure of the characteristic points in a facial expression. They proposed 

that the categorical judgments of emotions could be explained well by two canonical variables: bending and 

inclination. Bending involves displacement of feature points related to the amount of eyebrow curving and eye 

and mouth opening. Inclination involves displacement of the feature point concerned with the angles of the eyes 

and eyebrows, and the extent of the V or inverted V-formation of the mouth (see Fig. 5). 

3.3.2. Definition of bending and inclination 

As shown in the left part of Fig. 6, we drew a line from the outer brow point to the inner brow point and defined 

the inclination as the tangent of the angle between that line and a horizontal line. We drew two lines from the 

outer lip corner point and inner lip corner point to the middle lips point, and defined the inclination of the mouth 

as the average of the tangents of the included angle of both sides. We defined bending as the quotient of the 

height and length of each part, as shown in the right part of Fig. 6. We defined the inclination and bending for 

brow and eye as the average value of the left and right parts, and defined the inclination for mouth as the average 

value of the left and right parts. 

In addition, we considered the state of “normal” as the reference base, and defined the signs of inclination 

and bending as shown in Fig. 7. The inclination of each facial expression was defined as the sum of inclination 

of brow, eye, and mouth, and the bending of each facial expression was defined as the sum of bending of brow, 

eye, and mouth. Therefore, the practical inclination (I) and bending (B) of each facial expression can be 



computed using the following equations: 
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3.3.3. Emotion recognition space 

After defining inclination and bending for the facial expressions, we conducted an experiment to learn the 2D 

physical space. We used 43 subjects’ six basic expressions (happiness, surprise, fear, anger, disgust, and sadness) 

from three databases, as 10 subjects of the Japanese Female Facial Expression (JAFFE) database,36 32 subjects 

of the Bosphorus database37 and the author’s six basic expressions database. We preprocessed the images (with 

luminance, contrast, size, and position) and extracted the facial features of each expression by hand to get the 

inclination and bending. Because the facial expressions of ‘happiness’ and ‘anger’ had the maximum and 

minimum inclination, respectively, and the facial expression of ‘surprise’ and ‘sadness’ had the maximum and 

minimum bending, respectively, we used ‘happiness’ and ‘anger’ to normalize the inclination as 1 and -1 and 

used ‘surprise’ and ‘sadness’ to normalize the bending as 1 and -1 respectively. Figure 8 shows the normalized 

2D physical space for the six basic expressions. 

3.4. Experiment of facial expression recognition 

To examine the effectiveness of the facial expression recognition system, we conducted an experiment to check 

the recognition rate. We asked 12 college students (6 males and 6 females of Japanese and Chinese, with a 

average age of 23) to make the six basic expressions (happiness, surprise, fear, anger, sadness, and disgust) at 

random in front of the digital camera. To make the subjects’ facial expressions natural and consistent with their 

emotional state, no sample expression images were exposed to the subjects beforehand. When making each 

expression, each subject was induced by the same suggestions, pictures, and videos. For example, to make the 

expression of happiness, we suggested that the subject think about something that made them feel happy and also 

showed them some pictures portraying comfort and happiness. The same method was used for the other five 

expressions. Figure 9 shows an overview of the experiment. The subjects sat about 50 cm in front of the camera 

and were asked to maintain the position of their heads when making the expressions. The parameter of 

inclination and bending of the expression were extracted automatically by the image processing system online. 

Results were mapped into the emotion recognition space. Then, we computed the closest distances between the 

point we mapped and the points distributed in the space to find out the emotional state of the current facial 

expression. For each expression, we counted the number of frames that hit the right expression within about 40 

frames. We obtained an average recognition rate of 77% for the six basic facial expressions of the 12 subjects. 

Figure 10 shows the average distribution of the 12 subjects’ six basic expressions. We can see that the 

distribution is the same as the distribution of the 2D emotion recognition space we obtained, indicating that our 

online facial expression recognition system was capable of recognizing human emotion automatically, making it 

possible to realize human-robot communication in the following procedures. 

4. Emotional Synchronization and Expression 

4.1. KAMIN and Its affect model 

In this study, for Human-Robot communication, we used a head robot KAMIN6 as shown in Fig. 11 (a). The 

head mechanism is a facial image display, and it consists of a dome screen, a fish-eye lens, and a projector. The 

face image is projected to the dome screen from the inside. The fish-eye lens is installed on the front of the 

projector, and it projects the facial expressions on the dome screen. The neck movement is also possible with 

four degrees of freedom by using four motors. By using this head robot we can make various facial expressions 

easily compared with methods of mechanical facial expression. Also there is a three-dimensional effect caused 

by the curved surface, which is not in a plane image. Furthermore, in human communication, the movement of a 

head affects the impression of face expression. So more impressive face expression is also possible by this robot 

when a facial image display and a head movement mechanism are integrated and cooperate. 



We assumed that a facial expression is not static, it is a dynamic process (e.g. when we are happy, we will 

naturally have a happy expression, although the happy expression is not the same in appearance as time goes by). 

That is, even when the robotic emotion does not change, the facial expression of the emotion changes 

dynamically to a slight degree. Thus, the robot is much more attractive and lively, making itself more compatible 

with humans. Our previous study7 proposed making dynamical robotic facial expressions by changing the 

characteristic quantity in a 2D space defined by inclination and bending (see Fig. 11 (b)), using the vector field 

of dynamics.  

If we assume the robot has its own emotional state, it is necessary to consider the affect model of the robot. 

In this study, the robotic affect model was constructed based on a human affect model. From the numerous 

human affect models proposed, we chose the circumplex model (see Fig. 12) proposed by Russell28 because it is 

a simple 2D model, it is easy to construct the system with the same dimensional 2D facial expression space of 

the robot. And instead of viewing emotions in terms of categories (happiness, anger, fear, etc.), this viewpoint of 

the affect model conceptualizes the dimensions that can span the relationship between different emotions. This 

makes a lot of sense for human-robot communication if we apply it to the robotic affect model. 

4.2. Dynamic-based information processing 

We applied dynamic-based information processing32 to make emotional synchronization in human-robot 

communication. In this section, we will discuss the relationship between dynamic and robotic emotional 

synchronization.  

Consider human emotion E . The time sequence data of this motion is assumed to be ]k[ξ  (e.g. happiness, 

anger) that composes E as follows: 

]]m[]2[]1[[ ξξξE                                           (3) 
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where m  means a number of data and N means the number of parameters (or dimensions) of human emotion. 

Because E  composes a curved line in N dimensional space, when E composes a cyclic emotion, E shows the 

closed curved line. 

On the other hand, consider the dynamics represented by the following difference equation: 
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Suppose that E is an attractor of these dynamics, the state vector x[k] starts from the initial value x[0] and 

converges to the following equation: 
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where k0 depends on x0.  

In this case, the dynamics memorize and reproduce the whole emotion E . By picking up x[k] (k=0, 1, 2…), 

we can obtain ξ[k] (k=0, 1, 2…), which means that the dynamics reproduce time sequence data E  of emotion. 

4.2.1. Design algorithm of the dynamics 

As in (5), we can suppose that f(x[k]) defines the vector field in N dimensional space. By using the polynomial 

functional approximation of the vector field, the dynamics in (5) can be calculated. The algorithm design of the 

dynamics is as follows. 

Step 1: Draw the closed curved line E  in N dimensional space. 

Step 2: Set the basin D of attractor and define sample points iη and vector of f( iη )making the closed curved 

line E  be an attractor. Figure 13 shows the definition of the vector field. 

The vector field is formed around arbitrary curve E , which is supposed as an attractor, and region D is a 

basin of entrainment around the attractor. Curve E  is defined as in section 4.1.1. The number of sample points 

can be decided among the basin of entrainment around the attractor which is described as )m,1,2,i( iη , 



where m  is the number of sample points. ]k[ξ iη , located on the attractor, is the nearest point from iη , and 

][kiδ  is the connection vector between iη  and ][kiδ . Then, ][ 1ki δ  and ][kiδ  can be defined as 

follows: 
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The sufficient condition for convergence is 
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Step 3: The defined vector f( iη ) is approximated by the following equation by e–the order polynomial of x[k]. 
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Where a(p1p2...pN) is a constant.  

Here, defining )η(f  as: 
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  is calculated by the least squares method as follows.  

#

)...( F)(
21


Npppa                                                 (16) 

here 
#  means the pseudo inverse matrix of  . 
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  is a constant parameter matrix that defines the dynamics in (5). In this way, as long as we can well 

approximate to the vector field defined by  , any point x[0] from the basin D can entrain to the attractor E

when k . 

4.2.2. Online design of the dynamics 

In (16), which defines f(x[k]) is designed based on the least squares method. Online design of the dynamics 

is used to design the online least squares method, meaning the dynamics memorize the human emotion 

successively. The parameter matrix m  in time sequence m  is calculated by the iteration of the following 

online least squares algorithm using a non-singular matrix mP . 

)θ(ηP)(ηθ1

P)(ηθ)θ(ηP
P　P

1mm1m

T

m1m

T

1mm
m1m







                                    (19) 

)P)(ηθ)}f(η

)θ(η{ΦΦΦ

1m1m

T

1m

1mmm1m








.                                     (20) 



mP  is defined as 
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where  is defined in (18). 

By using (19) and (20), the dynamics defined by equation (5) that has an attractor can be gradually designed 

online. 

4.2.3. Robotic emotion generation and synchronization 

We designed the vector field of dynamics on Russell’s 2D space to realize the entrainment between human and 

robotic emotions. We call it the emotional generation space for the robot as shown in Fig. 14. The recognized 

human emotion is mapped into the vector field as one point, and an attractor (human emotion) is constructed in 

the vector field using the online design method of dynamics. The attractor is updated continuously according to 

the result of the recognition part. Then the robotic emotion is entrained to human emotion dynamically in the 

vector field. The emotional synchronization is realized.  

We find an interesting relation between the 2D physical space and Russell’s emotional space. We can see that 

the distribution of the 2D physical space is quite similar to the middle and upper part of Russell’s space except 

the origins are different (we suppose the position of ‘disgust’ in the emotion generation space is near ‘angry’ 

since they have the similar semantic meaning). If we pay attention only to the relationship between ‘surprise’ and 

‘sad’ in the Y axis direction and the ‘happy’ and ‘angry’ in the X axis direction on the 2D physical space and 

Russell’s space. And Yamada also discussed that the dimensions of visual information defined as inclination and 

bending are corresponding to those of semantic affective meanings found in earlier research as pleasantness and 

activity, respectively.38 It seems to suggest that the dimensions of the 2D physical space are corresponding to the 

dimensions of affective semantic meanings, i.e. inclination and bending of the 2D physical space are 

corresponding to the levels of pleasantness and arousal of Russell’s emotional space respectively. And then we 

get the affective meaning for the 2D physical space to represent human emotional states. So in such view, it is 

reasonable to use the facial expressions to map on the space to recognize human emotions. So in this study we  

translate the emotion recognition space to the emotion generation space as shown in Fig. 15 to map on the 

recognized human emotion. The basic emotions transferred to the results of the facial expression recognition 

experiment as seen in Fig. 10. 

4.3. Robotic emotion expression 

After recognizing and synchronizing with human emotion, the robot KAMIN expresses its synchronized emotion 

by its own facial expressions. We proposed to make the robotic facial expressions by changing the characteristic 

quantity in a 2D space defined by inclination and bending, using the vector field of dynamics. That is, the facial 

expression of the robotic emotion changes dynamically among different emotions which makes the robot 

humanoid. The change in inclination involves the displacement of the feature point concerned with the angles of 

the eyes and eyebrows, and the extent of the V or inverted V formation of the mouth. The change in bending 

involves the displacement of feature points related to the amount of eyebrow curving and eye and mouth opening. 

Figure 16 shows an example of five expressions for robotic emotional state (normal, happiness, anger, sadness, 

and surprise). 

4.4. Symbolization 

Because robots, such as a humanoid robot, can have many emotions like humans, we designed the robotic facial 

expressions as a dynamical process even for the same emotion. However, the vector field of emotion increases, 

and designing the dynamics takes a longer time. To enhance the efficiency of the information processing in real 

time, it is necessary to design the vector field based dynamics in the continuous symbol space. In this study, we 

referred to Okada’s method33 to symbolize the robotic expression space to a continuous symbol space. Figure 17 

shows the concept of the continuous symbol space. One point in the symbol space defines one dynamic in the 

emotion expression space. The state vector moves following the vector field of the dynamics in the emotion 

expression space, and the state vector in the symbol space moves following the dynamics, which changes the 

configuration of the dynamics in the emotion expression space. In this way, the emotion expression and 

transition of the robot is realized. 



4.5. Non-linear mapping 

Nonlinear mapping is a method often used to establish connection between two spaces, especially those with 

different dimensions. In this study, we designed nonlinear mapping based on the polynomial functional 

approximation34 to connect the emotion generation space to the symbol space of the robotic emotion expression 

space. Figure 18 shows the concept of the relation between the emotion generation space and the symbol space. 

One state vector in the emotion generation space corresponds to one state vector in the symbol space. 

4.6. Simulation of the communication system 

We did a simulation of the emotional synchronization-based communication system. We supposed that human 

emotion changes in an order of ‘normal-happiness-surprise-anger-sadness-normal’. The corresponding changes 

in the emotion generation space, symbol space, and emotion expression space are shown in Fig. 19. Figure 20 

shows some corresponding facial expressions of the states marked in the expression space. The robot recognizes 

each emotion dynamically and expresses the synchronized emotion dynamically in the emotion expression space. 

The results of the simulation suggested that the dynamic-based information processing system worked 

effectively in the proposed system. 

5. Communication Experiments 

5.1. Purpose and hypothesis 

To evaluate the effectiveness of the proposed system based on emotional synchronization, we have to examine 

the influence of emotional synchronization in communication between human and robot. We had three 

hypotheses: 1) the emotional synchronization-based communication would make humans feel comfortable, 2) 

humans would be willing to communicate with such a robot, and 3) humans would have positive impressions 

and become more accepting of a robot that can communicate by emotional synchronization. 

5.2. Method and condition 

We conducted a communication experiment between human and robot to examine the influence of emotional 

synchronization on human emotional state during human-robot communication. To evaluate the effect of 

synchronization, we designed synchronization and non-synchronization cases. In the synchronization case, the 

robotic emotional state was synchronized with the human emotional state (see Fig. 21). In the 

non-synchronization case, we designed it so the robotic emotion was the very reverse of the human emotional 

state (see Fig. 22). That is, if the human emotional state was pleasant or unpleasant, the robotic emotional state 

became reversely unpleasant or unpleasant. If the human emotional state was arousal or non-arousal, the robotic 

emotional state reversely became non-arousal or arousal. This series of experiments was designed to investigate 

the effect of emotion entrainment. Therefore, we compared different effects by implementing different emotions, 

one being synchronized emotion and the other the opposite emotion (non-synchronized) in the communication 

robot. If we gave the communication robot no emotion, we thought it highly likely that the participant’s 

impression would be determined  based on whether there was an emotional reaction. Therefore, to investigate 

the effect of emotion synchronization, it was necessary to provide a reaction emotion according to the 

participant’s emotion. In this study, we provided the opposite emotion to the participant’s emotion as the object 

for comparison.  

The methodology of the communication experiment was as follows. 

(a) Forty university students (20 males and 20 females) were asked to take part in the communication 

experiment. They were not familiar with robots. 

(b) The 40 subjects were divided into two groups. One group (20 subjects, 10 males and 10 females) was only 

asked to participate in the synchronization communication. The other group (20 subjects, 10 males and 10 

females) was only asked to participate in the non-synchronization communication. 

(c) Subjects sat about 50 cm in front of the robot KAMIN (see Fig. 23). The camera was set in front of the robot. 

Subjects were asked to communicate with the robot freely, just using their facial expressions to reflect their 

internal emotional states. That is, they expressed facial expressions consistent with their emotional state (e.g. 

subjects had happy facial expressions when they felt happy). They were asked not to make large head 

movements during the communication. 



(d) The length of the communication experiment was determined by each subject, with each saying ‘OK’ as a 

cue for ending the communication. 

(e) Subjects were asked to complete questionnaires before and after the experiment. 

(f) Subjects were not given information about synchronization or non-synchronization before the experiment.  

The procedure of the communication experiment was as follows. 

Step 1: Before the communication experiment, subjects were asked to complete a questionnaire about their 

emotional state based on two items: ‘discomfort-comfort’ and ‘sleepy-aroused’ in five degrees from -2 to 2. 

Step 2: Subjects were asked to sit in front of the robot and adjust the camera to fit correctly for them.  

Step 3: We modified the image processing system to fit the feature extraction for subjects by asking them to 

make some basic expressions (happiness, anger, surprise, etc.). Subjects communicated with the robot using their 

natural facial expressions. However, because some people have difficulty expressing emotions (as learned from 

the recognition experiment), to enhance the recognition accuracy for subjects, we rescaled the recognition space 

for each subject in this step. 

Step 4: Subjects were asked to communicate with the robot Kamin freely on a verbal cue of ‘Start’. 

Step 5: After the communication experiment, subjects were asked to complete the same questionnaire as in step 

1. 

Step 6: Subjects were asked to fill out an impression evaluation questionnaire for the robot Kamin using a 

semantic differential (SD) method with a 5-point scale, one of the most widely-used scales for the measurement 

of attitudes. The items of the questionnaire were determined by free discussion among researchers concerning 

communication robots.  

The semantic differential items were determined based on free discussion among the researchers about their 

impressions of a communication robot. The adjective items and their opposites from the discussion were used as 

the semantic differential items. A 5-point scale was used to measure participants’ impressions.  

6. Results and Discussion 

In the synchronization case, the robotic emotion was synchronized with the recognized human emotion, that is, 

when humans felt pleasant or unpleasant, the robot also felt pleasant or unpleasant. When human emotion was 

arousal or non-arousal, the robotic emotion became arousal or non-arousal. In non-synchronization, the robotic 

emotion was the reverse of the human emotion. This indicates that the robot was capable of recognizing human 

emotion correctly from facial expressions and responded properly, according to the human emotional state. This 

confirmed that the image processing system and dynamic-based information processing system worked 

effectively. Figures 24 and 25 show the average results of the questionnaires for the 40 subjects. In the case of 

synchronization, both comfort and arousal of human emotional state changed greatly after the experiment with a 

significant difference at the 1% level. We conducted t-tests and calculated the p-values and effect sizes. The 

p-values between before and after human/robot interaction in the case of synchronization were 3.0E-06 (comfort) 

and 4.5 E-06 (arousal), and effect sizes were 1.26 (comfort) and 1.31 (arousal). This suggests that emotional 

synchronization to human emotional state in human-robot communication can facilitate a comfortable state in 

humans and arouse enthusiasm. Subjects may have felt more interested and excited after the emotional 

synchronization-based communication with the robot. In the case of non-synchronization, although the average 

value for comfort became lower after the experiment, arousal became higher with a significant difference at the 1% 

level. The p-value for arousal in the case of non- synchronization was 6.4E-05, and the effect size was 1.03. 

These results suggest that non-synchronization of human emotional state in human-robot communication might 

lead to an uncomfortable state in humans. Increased arousal might indicate that uncomfortable communication 

makes humans feel tense and upset or just awakens them from a drowsy state. We can thus conclude that the 

emotional synchronization of human emotional state in human-robot communication had a positive influence on 

human emotional state. During emotional synchronization, subjects communicated much more with the robot, 

with communication time double that during non-synchronization (see Fig. 26). Furthermore, in the case of 

emotional synchronization, subjects had good impressions of the robot, much better than those in the case of 

non-synchronization (see Fig. 27). This suggests that humans are much more willing to communicate with and 

perhaps are more accepting of a robot that can synchronize with their emotions.  

7. Conclusions 

This paper proposed a communication system based on emotional synchronization to human emotion using 



facial expression recognition in human-robot communication. The robot recognized human emotion through 

human facial expressions. Robotic emotion was synchronized with human emotion using a vector field of 

dynamics, and the robot made facial expressions to express its own emotions. 

We proposed a method using the AdaBoost-based face detector to detect and track human facial features and 

developed a method to get the facial features in real-time using an image processing technique. The detector we 

developed can run at a speed of 25 frames per second, which allows enough time to do the following process. 

Based on Yamada’s theory, we used facial features to make a 2D continuous physical space defined by two 

parameters, inclination and bending, to represent human emotional state to recognize human emotions. This 

facial expression recognition system has the merits of performing at a rapid speed and recognizing a large set of 

emotional states, making it possible to use it in real-time communication between human and robot. In emotional 

synchronization, we proposed an approach using a dynamic-based information processing system to generate 

robotic emotion and synchronize it with recognized human emotion dynamically using a vector field. The robot 

could dynamically vary emotional states and generate its own emotion, synchronizing it with human emotion 

dynamically to ensure a timely and continuous reaction to humans during communication. 

In this study, we conducted experiments to evaluate the effectiveness of the proposed system based on 

emotional synchronization. We found that subjects became much more comfortable after emotionally 

synchronized communication with the robot. They communicated much more with the robot and had better 

impressions of it compared to non-synchronized communication. We confirmed that emotional synchronization 

in human-robot communication can be effective in making humans comfortable and making a robot much more 

favorable and acceptable to humans. 

In the future work, in order to make the communication much more natural, comfortable and intelligent 

between human and robot, we intend to improve the system to be capable to detect and express more different 

emotional queues, e.g. recognize and express more natural facial expressions with head motion or use more 

complex realistic facial expressions for the robot. And to make the degree of synchronization adjustable 

according to the human emotional state during the communication. 

We also plan to make an algorithm to integrate the facial expression recognition algorithm, voice recognition 

algorithm and head motion algorithm into the system which can more effectively make the human-like 

comfortable communication between human and robot.  
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Fig. 1. The structure of the communication system. 
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Fig. 2. Overview of the communication system. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Results of facial image processing. 

 
(a) Eyebrow                            (b) Eye 

Fig. 4. Example of feature extraction of brow and eye. 

 

Fig. 5. Facial expressions represented by bending and inclination variables. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Definition of bending and inclination of a facial expression. 
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Fig. 7. Definition of signs for bending and inclination. 

   

Fig. 8. 2D physical emotion recognition space. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Overview of the experiment for facial expression recognition. 

 

Fig. 10. Average distribution of the six basic expressions of the 12 subjects. 

 

Fig. 11. Overview of the head robot KAMIN. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Russell’s circumplex model of emotion. 

 

Fig. 13. Definition of the vector field. 

 

Fig. 14. Framework of the emotional synchronization. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Translation between emotion recognition space and emotion generation space. 

 

Fig. 16. An example of robotic facial expressions of basic emotions. 

 

Fig. 17. The dynamic-based symbol space and emotion expression space. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Nonlinear mapping between emotion generation space and symbol space. 

 

 

 

Fig. 19. Simulation of the communication system. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. The varying facial expressions of the robot. 

 

Fig. 21. An example of synchronization reaction. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. An example of non-synchronization reaction. 

 

Fig. 23. Overview of the communication experiment. 

 

Fig. 24. Results of subjects’ comfortableness and arousal after the communication experiment. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25. Results of subjects’ comfortableness and arousal after the communication experiment. 

 

Fig. 26. Average communication time in the communication experiment. 

 

Fig. 27. Impression of KAMIN in emotional synchronized and non-synchronized communication. 


