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/
In the present paper, we shall investigate the diverse types of linguistic

isomorphism. For the purpose, hefore preceding, we shall explain the notations
and terminology which are used in the Book [2] by S. Marcus.

Let I' be a given finite set — vocabulary. Elements of I' will be called
words. We denote by T the free semi-group generated by I'. By definition, the
elements of T will be finite strings (briefly, strings). Now let @ be a subset of T.
Then we shall call the strings which belong to @ marked strings. If P is a
given partition of 7', each set of P will be called a P-cell, and we denote by P(a)
a P-cell containing the word @. Moreover we notice that for two distinct words
a, b we have either P(a) = P(b) or Pla) } P(b) = ¢ (where ¢ is the
empty set). Now consider a triple {I’, P, #}, and we shall call such a triple a
language with paradigmatic structure (briefly, language). Let x ¢ I', and »
¢ I' We shall say that x dominates v, and we shall write x = ¥, if for each
pair of strings p and g such that the string pxq is marked, then the string pyq is
also marked. Thus for any x ¢ I', y ¢ I', the set S(x) = {y ;x5 = y and y = x}
determines a partition of I’ into disjoint sets and such a partition is called a
family S. Furthermore, the unit partition of T is, by definition that partition for
which E(x) = {x} when x ¢ 7.

The above partitions S and E are the most useful in the study of linguistics.
The notion of marked strings and family has been introduced by O. Kouladgina
in his paper [1]. The notions of domination and of family have been studied in
detail by S. Marcus in his papers (for example, [3]). A finite sequence P (x3),
P (x2), -+ ,P (x4) of the cells of a partition P of 7', is called a P-gtructure, and
we shall say that this P-structure is marked if there exists a marked string y;
yg oo+ yu such that vy e P(x)), v2 ¢ P(xa), -+, ¥n ¢ P(xn). Let P(x) and P(y) be
two cells of P. Then we shall say that P(x) and P{y) are P-equivalent and we
shall write P(x) « P(y), if for each pair of P-structures Pi and Pj, the P-
structure Py P(x) Pg and Py P(y) Pz are either both marked or both unmarked.
Let us consider a language {I', P, @}. Put, for each x ¢ I,

Pr{x) = U P(y)
P®)OP ()



Then the set P/{x) determines a partition of I' into disjoint sets. The parti-
tion P’ is called the derivative of the partition P.

Now let us consider two languages L1 = {{'1, P, @1} and Ls = {I's, P, @23.

In the Book [2] by S. Marcus already referred to, various types of isomor-
phism of L; and Ls are introduced as follows :

P O-isomorphism : there exists a 1 : 1 mapping f of I'y onto [, such that
Po(f(x) = f(Py(x)) for each x ¢ I'y and such that the string f(x;) f{x2) - f(xn)
e @5 if and only if the string x; X2 -+ xn ¢ @1 (x; ¢ 'y, 1 =i < n).

P’ S-isomorphism : there exists a | : 1 mapping g of I'y onto {'», such that
Polg(x) = g{P1(x)) and Seo(g(x)) = g (81 (x)) for each x ¢ I'y, where S; and
S, are the partitions into families in L; and La, respectively.

PP’ S-isomorphism : there exists a 1 : 1 mapping # of I'1 onto I's, such that
Poh(x) = APy (x)), P/h{x) = R(P1/(x)} and S (h(x)) = k(Sy(x)) for any x
e [y,

Now we shall also define the new types of isomorphism, as follows.

P’ @-isomorphism : there exists a 1 : 1 mapping » of I'; onto Iy, such that
Py (r(x)) = r(Py(x)) for each x ¢ I'1 and such that the string 7 (x;) 7 (x2) - (xn) ¢
@, if and only if the string x; %2 - xn ¢ @1 (x; ¢ 'y, 1 i< n).

PP’ @-isomorphism : there exists a I : 1 mapping v of I'y onto I's, Pa(v(x))
= Py (%)), P’ (w(x) = v{Py(x)) for any x ¢ I';, and such that the string v (x;)
v {xs) - v(xn) ¢ Py if and only if the string x; %2 --2n ¢ @1 (x; ¢ [, 1=<i<n).

Thus we shall have some results on the above described types of isomorphism
of L; and Ls. In the first place, we have the following proposition.

Proposition 1. If two languages Ly and Ls are P’ @-isomorphic, they are alsc
P’ S-isomorphic.

Proof. Let y ¢ S;(x). By definition, for any pair of strings p and g we have
either pxq ¢ @1, pyg <« @, or pxqg § @i, pvg § Pi. Hence, by hypothese, there
exists a 1 : I mapping » of I'; onto I's such that P2 (r(x)) = 7(P1(x)) and such
that the string pxg e @i, if and only if the string r(p) v(y) r(g) ¢ @3. The
latter means v(y) ¢ Sz (r(x)). Thus all of the required conditions of P’ S-iso-
morphic languages Ly and Lg are fulfilled.

Proposition 2. There exist two P’ S-isomorphic languages L; and Ls which
are not P’ @-isomorphic.

Proof. Let I'y = {a, b, ¢} = I's, Pt = E = Py, @, = {ab, ac}, and @, =
{aab, aac}. Then we have S;(a) = Pi’(a) = {a¢} = Ss(a) = Py (a), S1(b) =
P (b) = {b, c} = So'(b) = Po'(b). By taking as ¢ the identical mapping of 'y,
it follows that for any x ¢ ['1.

oP1(x)) = Po'{p(x)) and ¢(S1(x)) = S2(p(x)).

Hence L1 and L; are P’ S-isomorphic. On the other hand, L and Ls are not
P’ @-isomorphic, since the length of each string of L; is equal to 2, whereas the
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length of each string of Ls is equal to 3.

Now we shall have the following propositions.

Proposition 3. There exist tow P’ @-isomorphic languages Li and Ls which
are not P @-isomorphic.

Proof. Let I'y = {a, b, ¢, d} = I's, P1 = E, &3 = {aa, ab, ba, cc, cd, dc} =
Dy, Pa(a) = {a, b}, Pa(c) = {c, d}. Then we have Pi'(a) = {q, 0}, P'(c) =
{c, d}, Py’ (a) = {a, b}, Po’'(¢) = {c¢, d}. By taking as ¢ the identical mapping
of I'y, it follows that for each x ¢ I’y Po/{o(x)) = ¢ (P1/(x)) and the string x; x»
¢ @1 if and only if ¢ (x;) ¢ {(x2) ¢ P2 for any x; x».

Hence L; and L2 are P’ ®-isomorphic. On the other hand, Li and L2 are not
P @-isomorphic, since P is the unit partition E, whereas Py 5= Pj.

Proposition 4. There exist two P @-isomorphic languages Li and L which
are not P’ @-isomorphic.

Proof. Let I'y = {a, b, ¢, d} = I'y, P1 = E = Py, &; = {ab, ac, ¢, d} and
@y = {ba, bd, d, ¢}, Then we have Pi(a) = {a}, P'(b) = {b ¢} P(d) =
{d}, Py(a) = {a d}, Pa’(b) = {b3}, Po’{c¢) = {¢}. Now define a | : | mapping
¥ of I'y onto I’ as follows : ¥ (a) = b, ¥ (b) = a, ¥(c)=d, ¥(d) = c. Thus
using the mapping ¥, we see easily that L; and Ls are P @-isomorphic, but these
languages are not P’ @-isomorphic, since ¥ (P1/(x)) = P/ (¥ (x)) for any x ¢ I'y.

By V. A. Uspenskii. a language is said to be adeqguate if we have S(x) &
P'(x) for any x ¢ I (see, [5]). Then we obtain the following proposition.

Proposition 5. If L; and Ly are P’ @-isomorphic and L; is adequate, then L,
is also adequate.

Proof. If L: and L. are P’ @-isomorphic, in view of proposition 1, these
languages are P’ S-isomorphic. Moreover, since L, is adequate, by Proposition 57
of (2], L is also adequate.

By S. Marcus (see [4]), a language is said to be completely adequate, if
for any two words x and y such that x dominates ¥ we have y ¢ P/(x).

Proposition 6. If L; and L. are P’ @-isomorphic and L; is completely
adequate, Ly is also completely adequate.

Proof. Since Li is completely adequate, for any pair of the strings p and g
we have v ¢ Py/(x), pxq ¢ @1 and pyq & ;. By hypothese, there existsa l: 1
mapping » of Iy onto ['s such that Po/(r(x)) = (P (x)) and such that r(p)
v{x) v(gq) ¢ @5 if and only if pxq ¢ @P1. Hence we have r(y) ¢ 7(Pi/(x)) =
P/ (r(x), v(p)r(x)r(gqg)ec @y v(p)r{y)r(qg)e Ps. That is Lg is completely
adequate.

Now we shall have the following statements.

Proposition 7. If L; and Ls are PP’ @-isomorphic, these languages are also
PP’ S-isomorphic.

Proof. This proof follows immediately from both the proof of proposition 1



and the definitions of PP’/ @-isomorphism and PP’ S-isomorphism.

Proposition 8. There exist two PP’ S-isomorphic languages which are not
PP’ @-isomorphic.

Proof. Let I'y = {a, b, ¢, d} = 'y, Pi(a) = {a} = Ps(a), P1(b) = {6}
= Py (b), Pi{(c) = {c, d¥ = Pa(c), 91 = {ac, bc, ad, bd} and 92 = {acd,
bcd, cab, dab}. Then we have Pi'(a) = {a, 6} = Si(a), P(c) = {¢c, d} =
Si(c), P’(a) = {a, 8} = Sz (a) and Po'(c¢) = {c, d} = So(c¢). Taking for &
the identical mapping of ['y, it is easy to see that Ly and Lg are PP’ S-iso-
morphic. However, these languages are not PP’ @-isomorphic, since the length of
each string of L; is equal to 2 whereas the length of each string of Ls is equal
to 3.

Proposition 9. If Ly and Lg are PP’ @-isomorphic, these languages are also P
@-isomorphic.

Proof. This proof follows immediately from the definitions of PP’ @-
isomorphism and P @-isomorphism. '

Proposition 10. There exist two P ®@-isomorphic languages L; and Ls which
are not PP’ @-isomorphic.

Proof. Let [’y = {a, b, ¢}, I'ys = {x, v, 2}, P, = E = Ps, @1 = {ab, ac, ¢}
and @2 = {x ¥, xz, z} Then we have Py (a) = {a}, P/ (b)) = {b, ¢}, P2’ (x) =
{x, 2z}, and P2’(b) = {y}. Now define a I : 1 mapping ¢ of I'y onto I's as
follows : p{a) = v, ¢(b) = x, ¢(c) = z. Thus using the mapping ¢, it is easy
to see that L; and L. are P &-isomorphic, but these languages are not PP’ &-
isomorphic, since ¢ (P1/(x)) == Po/(p(x)) for any x ¢ I'y.

Proposition 11, If Ly and Ly are PP’ @-isomorphic. theses languages are also
P’ @-isomorphic.

Proof. This proof follows immediately from the definitions of PP’ ©-
isomorphism and P’ ®-isomorphism.

Proposition 12. There exist two P’ @-isomorphic languages Lj and Lz which
are not PP’ @-isomorphic.

Proof. Let I'1 = {a, b, ¢} = I's, Py = E, Py(a) = {a}, P2(b) = {b, ¢} and
@, = {ab, ac, aa} = @3. Then we have P1'(a) = {a}, Pi/(d) = {b, ¢}, Py (a)
= {a} and P2’ (b)
it follows that Ly and L» are P @-isomorphic. However, these languages are not

{b, ¢}. Now by taking as ¢ the identical mapping of I';,

PP’ @-isomorphic, since P1 is the unit partition E, whereas Py = P,.
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