EQUIVARIANT BORDISM AND SEMI-FREE S1 -ACTION

Masato NAKAMURA

1. Introduction

Let X be a topological space with $A \subset X$ a subspace, and let $\tau \colon S^1 \times (X, A) \longrightarrow (X, A)$ be an S^1 -action such that $\tau(z, A) \subset A$ for $z \in S^1 = \{z \in C : \text{complex number } | |z| = 1\}$.

We consider the semi-free (free) bordism group $\mathcal{Q}_*(X,A,\tau)$ of S1-action (X,A,τ) by the analogue of R. E. Stong.

A semi-free (free) equivariant bordism class of (X, A, τ) is an equivariant class of triples (M, μ, f) with M a compact differentiable manifold with boundary, $\mu: S^1 \times M \longrightarrow M$ a differentiable semi-free (free) S^1 -action on M and $f: (M, \partial M) \longrightarrow (X, A)$ continuous equivariant map $[\tau f = f\mu]$ sending ∂M into A. Two triples (M, μ, f) and (M', μ', f') are equivariant, or bordant, if there is a 4 tuple (W, V, ν, \mathcal{G}) such that W and V are compact differentiable manifolds with boundary, $\partial V = \partial M \cup \partial M'$ and $\partial W = M \cup M' \cup V/\partial M \cup \partial M' \equiv \partial V$, $\nu: (W, V) \longrightarrow (W, V)$ is a differentiable semi-free (free) S^1 -action restricting to μ on M and μ' on M', and $\mathcal{G}: (W, V) \longrightarrow (X, A)$ is a continuous equivariant map $[\tau \mathcal{G} = \mathcal{G}\nu]$ restricting to f on M and f' on M'.

The disjoint union of triples induces an opration on the set of semi-free (free) equivariant bordism classes of (X, A, τ) making this set into an abelian graded group, where the grading is given by the dimension of the manifold M and lets $\Omega_*(X, A, \tau)$ be the group of the semi-free equivariant bordism classes of (X, A, τ) . And we let $\widehat{\Omega}_*(X, A, \tau)$ be the group of free equivariant bordism classes of (X, A, τ) . If A is empty, we write $\Omega_*(X, \tau)$ and $\widehat{\Omega}_*(X, \tau)$ for these groups. The purpose of this paper is to compute the groups $\Omega_*(X, \tau)$.

2. Calculation of free bordism

THEOREM. 1. $\widehat{\Omega}_*(X, A, \tau) \cong \Omega_*(X \times S^{\infty}/\tau \times \alpha, A \times S^{\infty}/\tau \times \alpha)$ where α is the S1-action on the infinite sphere: direct limit of $\alpha: S^1 \times S^{2n+1} \longrightarrow S^{2n+1}$, $\alpha(z, (z_0, z_1, \ldots, z_n)) = (zz_0, zz_1, \ldots, zz_n)$.

PROOF Let $\alpha \in \mathcal{Q}_n(X, A, \tau)$ be represented by (M, μ, f) . Then the principal S¹-

bundle $M \longrightarrow M/\mu$ is induced by a map $\overline{\varphi}: M/\mu \longrightarrow CP^{(\infty)}$ with equivariant covering map $\varphi: M \longrightarrow S^{\infty}$, S^{∞} being given the above S^1 -action. We then have an equivariant map $f \times \varphi: (M, \partial M) \longrightarrow (X \times S^{\infty}, A \times S^{\infty})$ and $\overline{f \times \varphi}: (M/\mu, \partial (M/\mu)) \longrightarrow (X \times S^{\infty}/\tau \times a, A \times S^{\infty}/\tau \times a)$.

The assignment

$$(M, \mu, f) \longrightarrow [M/\mu, \overline{f \times \varphi}] \in \Omega_n(X \times S^{\infty}/\tau \times a, A \times S^{\infty}/\tau \times a)$$

defines a homomorphism

$$\rho: \widehat{\Omega}_n(X, A, \tau) \longrightarrow \Omega_n(X \times S^{\infty}/\tau \times a, A \times S^{\infty}/\tau \times a).$$

Being given $\bar{g}: (N, \partial N) \longrightarrow (X \times S^{\infty}/\tau \times a, A \times S^{\infty}/\tau \times a)$ there is an induced

$$\begin{array}{ccc} \operatorname{cover} & \widetilde{N} = \bar{g}^*(\pi) \xrightarrow{g'} X \times S^{\infty} \\ & & \downarrow & & \downarrow \\ & N & \xrightarrow{\bar{g}} X \times S^{\infty} / \tau \times a, \end{array}$$

and letting $g=\pi_1$ o $g': \widetilde{N} \longrightarrow X$ and $\widetilde{\nu}: S^1 \times \widetilde{N} \longrightarrow \widetilde{N}$ being the S^1 -action: $\widetilde{\nu}$ $(z(x,z'))=(\tau(z,x),zz'), \ (\widetilde{N},\ \widetilde{\nu},\ g)$ is a free bordism element of $(X,\ A,\ \tau)$. The assignment $(N,\overline{g}) \longrightarrow (\widetilde{N},\ \widetilde{\nu},\ g) \in \widehat{\Omega}_n \ (X,\ A,\ \tau)$ induces a homomorphism inverse to σ . Notes. (1) If X is a point, $A=\phi$, this gives $\Omega_*(S^1)\cong \Omega_*(CP(\infty))$. For $\tau=1$, this is $\widehat{\Omega}_*(X,\ A,\ 1)\cong \Omega_*(X\times CP(\infty),\ A\times CP(\infty))$.

3. Calculation of semi-free bordism

Threre are the exact sequence of S1-action······ $\mathcal{Q}_n(A, \tau) \xrightarrow{\mathcal{Q}_n(i)} \mathcal{Q}_n(X, \tau) \xrightarrow{\mathcal{Q}_n(j)} \mathcal{Q}_n(X, \tau) \xrightarrow{\partial_n} \mathcal{Q}_n(X, \tau) \xrightarrow{\partial_n} \mathcal{Q}_n(X, \tau) \xrightarrow{i} (X, \phi, \tau) \xrightarrow{j} (X, A, \tau)$ the inclusion. (see Refference [1], [2])

THEOREM 2. The (semi-free) equivariant bordism exact sequence of the S1-action (X, F, τ) is split exact.

Proof. We have the homomorphisms

$$Q_n(X, \tau) \xrightarrow{Q_n(f)} Q_n(X, F_{\tau}, \tau) \xleftarrow{k_*} \widehat{Q}_n(X, F_{\tau}, \tau)$$
 and it suffices to de-

fine a homomorphism $q: \Omega_n(X, F, \tau) \longrightarrow \Omega_n(X, \tau)$ with $\Omega_n(j) \circ q(\alpha) = k_*(\alpha)$ for all α . Being given $\alpha \in \Omega_n(X, F, \tau)$ represented by (M, μ, f) , we have a closed manifold \overline{M} obtained from M by identifying each $m \in \partial M$ with $\mu(S^1 \times m) \subset \partial M$. (This is the manifold obtained from M by attaching the disc bundle D (ξ) of the line bundle ξ associated to the S^1 -principal fibration $\sigma: M \longrightarrow M/\mu$ along their comon boundary.) Since f is equivariant and f (∂M) $C = F_{\tau}$, $f(m) = f(\mu m)$ for $m \in \partial M$, and f factors through $\overline{f}: \overline{M} \longrightarrow X$, this being equivariant if \overline{M} is given the S^1 -action

induced by μ . Letting $q(\alpha)$ be the class of $(\overline{M}, \overline{\mu}, \overline{f})$ defines the homomorphism $q: \widehat{\Omega}_n(X, F_{\tau}, \tau) \longrightarrow \Omega_n(X, \tau)$.

Now $\kappa_*(\alpha)$ and $\Omega_n(j) \circ q(\alpha)$ are represented by (M, μ, f) and $(\overline{M}, \overline{\mu}, \overline{f})$ respectively, in $\Omega_n(X, F_\tau, \tau)$. Let $\overline{H}: M \times I \longrightarrow X$ be a homotopy of the map $\overline{f} = H(\cdot, 0)$ to a map $g = H(\cdot, 1)$ with $g|_{V} = \overline{f}|_{F_\mu \circ \pi}$ where $V \cong D(\nu)$ is a tubular neighborhood of F_μ , constructed by the standard radial deformation. Then $F_\mu = \partial M/\mu$ with $\nu \cong \mathcal{E}$, and we may find a map $h: M \longrightarrow \overline{M} \times I$ identifying M with $\overline{M} - V^\circ$ and such that gh = f. Then $(\overline{M} \times 1, V \times 1, \overline{\mu} \times I, H)$ is a bordism of $(\overline{M}, \overline{\mu}, \overline{f})$ and (M, μ, f) , so $\kappa_*(\alpha) = \Omega_n(j) \circ q(\alpha)$.

COROLLARY. $Q_*(X, \tau) \cong Q_*(F_{\tau}, 1) \oplus \widehat{Q}_*(X, F_{\tau}, \tau)$.

Refterence

1 R. E. Stong. Bordism and involution, Ann. of Math. 90 (1969).