S^1 -immersion and imbedding up to cobordism

Masato Nakamura

1. Introduction.

Being given a class $\alpha \in \Omega_n(S^1)$ in the oriented cobordism group of the oriented manifold with a semi-free S^1 -action, we define integers $\phi(\alpha)$, $\psi(\alpha)$ and $\eta(\alpha)$ by:

- (a) $\phi(\alpha)$ is the smallest integer r for which there is a representative (M^n, T) of which immerses equivariantly in $R^s \times C^r$ for some s, where $R^s \times C^r$ with the semi-free S^1 -action $1 \times (z)$, $z \in S^1$.
- (b) $\psi(\alpha)$ is the smallest integer r for which there is a representative (M^n, T) of α which imbeds equivariantly in $R^s \times C^r$ for some s.

Being given α , the fixed data of α consists of classes $\alpha_{j} \in \Omega_{n-2j}(BU(j))$.

(c) $\eta(\alpha)$ is the smallest integer k such that each α_j lies in the image of $\Omega_{n-2j}(G_{j,k})$, where $G_{j,k}$ is the complex Grassmanian of complex j planes in C^k .

We obtain the following theorem,

Theorem. $\phi(\alpha) = \psi(\alpha) = \eta(\alpha)$.

This is the analogy of the result of R. E. Stong in \mathbb{Z}_2 case [1].

2. Proof of the Theorem.

Clearly $\phi(\alpha) \leq \psi(\alpha)$ since an imbedding is an immersin, so it suffices to show that $\eta(\alpha) \leq \phi(\alpha)$ and $\psi(\alpha) \leq \eta(\alpha)$.

To see that $\eta(\alpha) \leq \phi(\alpha)$, suppose (M^n, T) represents α and $f: (M^n, T) \longrightarrow R^s \times C^r$ is an immersion. Then on the (n-2j)-dimensional component of the fixed set F^{n-2j} , the normal bundle in M^n , ν^j , has a complement ρ of dimension r-j, for F^{n-2j} immerses in $R^s \times O$ and ν^j is a subbundle of the pullback of the normal bundle of $R^s \times O$ in $R^s \times C^r$, which is a trivial complex r-plane bundle. Thus ν^j is classified by a map into $G_{j,r}$, and $\eta(\alpha) \leq r$.

To see that $\psi(\alpha) \leq \eta(\alpha)$, let α be given and represent α_j by maps $F^{n-2j} \longrightarrow G_{j,\eta(\alpha)}$. Then the F^{n-2j} may be imbedded in R^s for some larges (s > 2n+1) will suffice and the normal bundle ν^j has a complement ρ of dimension $\eta(\alpha)-j$ so that $D(\nu^j) \subset D(\nu^j \oplus \rho)$ imbeds (fiberwise) in the trivial bundle $R^s \times C^{\eta(\alpha)}$ (in fact in the space $R^s \times D^{2\eta(\alpha)}$). Letting N be the tubular neighborhood of the fixed data given by the union of the $D(\nu^j)$, ∂N imbeds equivariantly in $R^s \times S^{2\eta(\alpha)-1}$ or $\partial N/S^1$ imbeds in $R^s \times CP^{(\eta(\alpha)-1)}$. The map $g: \partial N/S^1 \longrightarrow R^s \times CP^{(\eta(\alpha)-1)}$ bounds in $R^s \times CP(\infty)$, that being the condition that the collection of α_j come from some α , and $\Omega_*(CP(n)) \longrightarrow \Omega_*(CP(\infty))$ is monic, because in the diagram

for element $[M] \otimes x$ of $\Omega_* \otimes H_*(CP(n); Z)$, $\theta_*(1 \otimes i_*)$ $(M \otimes x) = [M]\theta(i_*(x)) = [M]i_*(\theta(x))$. $\theta: H_*(X; Z) \longrightarrow \Omega_*$ (X) is the homomorphism satisfing $\mu \theta = id$ and $\mu: \Omega_*$ $(X) \longrightarrow H_*$ (X) is Thom homomorphism. i is inclusion. The above diagram commute and $1 \otimes i_*$ is monic so i_* is monic [Uchida 2]. So g bounds. For g sufficiently large (g > 2n + 1) being sufficiently g bounds an imbedded manifold with boundary g: g bounds and g a

3. Generator.

Acording N. Shimada [3], the generating set of the bordism group $\mathcal{Q}_*(S^1)$ is given in the following.

If T_0 is the standard S^1 -action on D^2 , then for a manifold (M^n, T) with a semi-free S^1 -action T, we form a manifold $(\tilde{M}^{n+2}, \tilde{T})$ from $(-D^2 \times M^n, T_0 \times 1)$ and $(D^2 \times M^n, T_0 \times T)$ by identifying the boundaries via the equivariant diffeomorphism $\varphi: (S^1 \times M^n, T_0 \times 1) \longrightarrow (S^1 \times M^n, T_0 \times T)$ which is defined by $\varphi(s, x) = (s, sx)$. We then define Γ by

$$\Gamma(M^n, T) = (\tilde{M}^{n+2}, T) = (-D^2 \times M^n, T_0 \times 1)_1 \cup_{\sigma} (D^2 \times M^n, T_0 \times T)_2$$

The generators then consists of all classes $\alpha = [\Gamma^j CP(n_1) \times CP(n_2) \times \cdots CP(n_k) \times M^n]$, with the diagonal action, M having the trivial action and [M] forming a generating set for Ω_* , each $n_j > 1$, and CP(n) have the S^1 -action $T([x_0, \dots, x_n]) = [zx_0, x_1, \dots, x_n]$, $z \in S^1$.

The fixed data of CP(n) is $CP(0) \longrightarrow G_{n,n}$, and $CP(n-1) \longrightarrow G_{1,n}$.

The fixed data of $\Gamma(M^n)$ is obtained by adding a trivial line bundle to the fixed set of M^n , i. e. if $F^{n-2J} \longrightarrow G_{j,k}$, one transformed to $G_{j+1,k+1}$ and by taking M^n with a trivial line bundle in $G_{1,1}$. For a product, the fixed data is classified via the whitney sum maps.

$$G_{j,k} \times G_{m,n} \longrightarrow G_{j+m,k+n}$$

It is then immediate that for $\alpha = [\Gamma^i CP(n_1) \times \cdots \times CP(n_k) \times M^n], \ \eta(\alpha) \leq i + n_1 + \cdots + n_k$.

The fixed component of least dimension in $\Gamma^i CP(n_1) \times \cdots \times CP(n_k) \times M^n$ is M^n with

trivial normal bundle of dimension $j=i+n_1+\cdots+n_k$, and if $(M^n)\neq 0$ in Ω_n , this gives a nontrivial class in $\Omega_n(G_{j,j})\subset\Omega_n(BU(j))$, so $\eta(\alpha)\geq i+n,+\cdots+n_k$. Thus, we have the theorem:

If
$$\alpha = \Gamma^i CP(n_1) \times CP(n_2) \times \cdots \times CP(n_k) \times M^n$$
 with $(M \neq 0)$ in Ω_n , then $\eta(\alpha) = i + n$, $+ \cdots + n_k$.

Reference

- 1. R. E. Stong, Equivariant immersion and imbedding up to cobordism, Proc. Amer. Math. Soc. 44 (1974), 479-481.
- 2. F. Uchida, Transformation Groups and Cobordism Theory (Japanese), Kinokuniyashoten.
- 3. N. Shimada and C. M. Wu, Bordism Algebras of Periodic Transformations, Osaka J. Math. 10 (1973), 25-32.

Department of Mathematics, Faculty of Liberal Arts, Shinshu University Matumoto 390 Japan