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1 Introduction

As a complex analogue to the Weyl conformal curvature tensor, Bochner and Yano [1], [15]
(See also, Tachibana [13]) introduced a Bochner curvature tensor in a Kéhlerian manifold.
Many subjects for vanishing Bochner curvature tensors with constant scalar curvature
have been studied by Ki and Kim [6], Kubo [8], Matsumoto [9], Matsumoto and Tanno
[11], Yano and Ishihara [16] and so on. One of those, done by Ki and Kim, asserts that
the following theorem:

THEOREM A ([6]) Let M be a Kdhlerian manifold with vanishing Bochner curvature
tensor. Then the scalar curvature is constant if and only if Tr Ric(™) is constant for a
positive integer m (> 2).

In a Sasakian manifold, a C-Bochner curvature tensor is constructed from the Bochner
curvature tensor in a Kéhlerian manifold by the fibering of Boothby-Wang. Recently,
the Sasakian manifold with vanishing C-Bochner curvature tensor and the constant scalar
curvature is studied, and in [12], the following theorem was proved

THEOREM B Let M"™ (n > 5) be a Sasakian manifold with constant scalar curvature
whose C-Bochner curvature tensor vanishes. If the Ricci tensor is positive semi-definite,
then M 1is a space of constant ¢-holomorphic sectional curvature.

Also, when M is compact, the following theorems were proved:

THEOREM C ([4]) Let M™ (n > 5) be a compact Sasakian manifold with vanishing C-

Bochner curvature tensor. If the length of the Ricci tensor is constant and the length of the
V2(R—n+1)

, then M is a space of constant ¢-holomorphic
(n—1)(n—3)

n-Einstein tensor is less than

sectional curvature.

THEOREM D ([10]) Let M™ (n > 5) be a compact Sasakian manifold with vanishing C-
Bochner curvature tensor and the constant scalar curvature. If the smallest Ricci curvature
greater than —2, then M is a space of constant ¢-holomorphic sectional curvature.

We shall prove Theorem A as a Sasakian analogue in §3. Moreover in §4 we shall discuss
when the smallest Ricci curvature is greater than or equal to —2 in a Sasakian manifold
with vanishing C-Bochner curvature tensor and Tr Ric(™ is constant for a positive integer
m.
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2 Preliminaries

Let M be an n-dimensional Riemannian manifold. Throughout this paper, we assume that
manifolds are connected and of class C°°. Denoting respectively by g;;, Rkjih, R;i=R.;"

T
and R the metric tensor, the curvature tensor, the Ricci tensor and the scalar curvature of
M in terms of local coordinates {z"}, where Latin indices run over the range {1,2,...,n}.

An n (= 2{+1)-dimensional Riemannian manifold is called a Sasakian manifold if there
exists a unit Killing vector field ¢" satisfying

(2.1) ni =g, bji=Vni, Gji+oy=0, ¢l =0, ¢/n =0,
¢, = =0, + migh, Vidji = —grini + grinj,
where V denotes the operator of the Riemannian covariant derivative.

It is well known that in a Sasakian manifold the following equations hold:
(2.2) Rjp€" = (n—1)n;,
(2.3) Hj; + Hij =0,
(24) Rji = Rys®j"¢;" + (n — 1)m;mi,
(2.5) ViRji — ViR = (VeRir)d) ¢, — ni{ Hyi — (n — D} — 20 {Hyj — (n — 1)},
(2.6) ViRji — (ViRrs)¢; 6" = —ni{ Hiy — (n — 1)dr;} — nj{Hii — (n — 1) i},
(2.7) €'V, Ryt =0,
where we put Hj; = gberm-.

m)

We denote a tensor field Ric(™) with components Rjg and a function R, as follows:

71 ()

Then, from (2.2) and (2.3), we get

(2.8) R™Me = (n— 1),
(2.9) Rjgm)éf)ir + Rir(m)ﬁbjr =0.

Also, we define the 7-Eintein tensor T}; by

R R
(2.10) Tj; = Rj; — <n—1 - 1> 9ji + <n—1 - ”) 57

If the n-Einstein tensor vanishes, then M is called an 7-Einstein manifold. From (2.2) and
(2.3), we have

(2.11) Tr T =0,
(2.12) T =0,
(2.13) Tjr¢;" + Tirgp)” =0



A Sasakian manifold M is called a space of constant ¢-holomorphic sectional curvature
c if the curvature tensor of M has the form:

+T(gkmj§h — g€ + memid)" — nnidy" — ot + bty — 20n;0;").

Matsumoto and Chuman ([10]) introduced the C-Bochner curvature tensor Bkjih de-
fined by

1
(2.14) By" = Ry + m(Rkiéjh — Rji6y" + griR" — g Ry + Hyi¢)"
—Hjiy" + ¢riH}" — djiHy" + 2Hyj ;" + 26 H,"

—Reini&" + Ryimi€" — mini R} + nymi Ry")

k+n—1
_W(¢ki¢jh - ¢ji¢kh + 2¢k;j¢ih)
k—4
ThE3 (gri6,;" — gji0y")
k
+m(gki77j§h — g€ 4 memid " — nymisy),
where k = %. It is well-known that if a Sasakian manifold with vanishing C-Bochner

curvature tensor is an 7n-Finstein manifold, then it is a space of constant ¢-holomorphic
sectional curvature.

3 A Sasakian manifold with vanishing C-Bochner curvature
tensor.

Let M™ (n > 5) be a Sasakain manifold with vanishing C-Bochner curvature tensor. By
a straitforward computation, we can prove

n+3
n—1

(3.1) ViByi" = ViRji — ViR — me{ Hji — (n — 1)y}

+nj{Hgi — (n — V)@pi} + 2ni{Hi; — (n — 1)y}
1 T T
+m{(gm —mkmi)0;" — (g5i — nmi) 0y,
+orid; — Gjidr + 20k, e,
where we put R; = V,R.
By virtue of (2.1), (2.2), (2.5) - (2.7) and (3.1), we obtain
(3.2) ViRji = {Rir — (n — 1) gy (&5 mi + &' ;)
1
+ CEY) {2Ry(gji — njni) + Bj(gri — i)
+Ri(grj — mkng) — Gkid; Rr — Gridd; R}

and consequently from (2.7), we find

(3.3) (n+1)(ViR;)RIR' = 2)\* Ry,



where we put \?> = R, R".
The following lemma is needed for the later use.

LEMMA 3.1 Let M™ (n > 5) be a Sasakian manifold with vanishing C-Bochner curvature
(m)

tensor. Then Rjr

R is constant.

Proof. If Rjgm)RT = 0 holds, then we get ijm*?)Rr = 0 which implies that |
Rjgmfl)RT 2 = 0. Accordingly, we obtain Rjg,m*l)R" = 0. By the inductive method,
we get Rj,R" = 0. Operating V}, to this, we find (VR;,)R'R" = 0. By means of (3.3),
we see that the scalar curvature R is constant. The converse is trivial.

R"™ = 0 holds for a positive integer m if and only if the scalar curvature

For the sake of brevity, we shall define a function a(m) as follows:
a(m) = Rjgm)RjRi.
Then, it is clear from (3.2) that
(3.42(n + 1)(Vi R ) R (R R,) = MR, "™ R" + 3a(m) Ry,

(3.52(n + 1)(ViR;o) (RO R,)(R*™R,) = a(O)R™ R" + a(m)ROR" + 20(£ + m) Ry,
where we have used (2.7), (2.8) and (2.9).
Operating R7*™) to (3.2) and owing to (2.1), (2.7), (2.8) and (2.9), we find

(36)  (n+ D)ViRimi1) = (m+ DRRR + (R — (n = 1)} Ry,

-
Therefore, if the scalar curvature R is constant, then R, is constant for any integer
m (> 2).

Now, we shall prove that the scalar curvature R is constant if R,,) is constant for any
fixed integer m (> 2).

At first, suppose that Rpy3) (¢ =0,1,2,...) is constant. Then, from (3.6), we can get

(2642
T

2R, "R+ {Ripp19) — (n— 1) 2Ry, = 0,

which yields that 20(2¢ + 2) + A*{R(a¢49) — (n — 1)272} = 0, that is,
41 +1
2 \Rji, +Dpgr \2 +)\? \Rjg +1) _ (n— 1)“177]-771- ]2: 0.
Thus, from Lemma 3.1, the scalar curvature R is constant.

In the next place, we shall consider when Ry19y (¢ = 0,1,2,...) is constant. From
(3.6), we have

(3.7) 2R\ VR 4+ {Riyen) — (n = ) 1}R; = 0.

T

Operating Vj, to this and owing to (3.7), we get
(3.8) 2(ViR,TVRIR™ + A2V Riap i1y = 0.

T

From (3.3) and (3.8), we find the scalar curvature R is constant if £ = 0. Because of (3.4),
(3.5) and (3.6), equation (3.8) is rewritten as follows:

20—1
(3.9) 4+ DNRIR + 23 a@)R TR
=1

AL+ Da20) Ry + (20 + )22 | R, — (n— V)i [2 Ry = 0.
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By virtue of (3.9) and Lemma 3.1, it is clear that the scalar curvature R is constant if
(=1

On the other hand, we have
(3.10) Ma(20) + 22X a(s)a(20 — s) + Ma(2s)a (20 — 2s)
=X | XRYR +a(s)RTIR 2 +a(20 - 25) |NRRT — a(s)R; .
Because of (3.9) and (3.10), it is to see that the following equations hold:
if £ =2,6,10,...,

(70 +8)A\%a(26) + (20 + 1)A® | R, — (n — 1) |2

(¢=2)/4
+A Y a4i)a(20 — 4i)
=1
0/2
20Y VR OB (i - DR R
=1
€/2
+23 " (20— 4i+2) [N2RP VRS — a(2i - 1)R; =0
=1
if 0 =4,812,...,
(T€+8)A0a(26) + (20 + 1A* [ R — (n — 1) 2
(¢-4)/4
+A YT a(di)a(2f — 4i) + 2X\ ()
=1
¢/2
+2)\QZ ‘)\2 )RS +a( )R (- 21+1)Rs’2
=1
0/2
+23 a(20 — 40 +2) [N2RP VR — a(2i - 1)R; 2=
=1
and if £ =3,5,7,...,

(70 +9)A%(26) + (20 + 1)A® | R, — (n — 1)y 2
(e=1)/2
+20 ) a(2i)a(20 - 2i) + 23 a(0)’
=1
(e—-1)/2
+2A2 Z ‘)\2 (Z)RS + Oé( )R (£~ 21+1)R8 ’2
i=1
(t=1)/2 ,
+2 3 a2 4i+2) |NRPTVR —a(2i - 1)R; =
i=1

Thus we find from Lemma 3.1 that the scalar curvature R is constant if Rpi0) (£ =
2,3,4,...) is constant. Hence, we have

THEOREM 3.2 Let M™ (n > 5) be a Sasakian manifold with vanishing C-Bochner cur-
vature tensor. Then the scalar curvature R is constant if and only if Tr Ric™) is constant
for an integer m (> 2).



REMARK. In the proof of Theorem 3.2, we use only equation (3.1). Thus Theorem 3.2
is valid for the parallel C-Bochner curvature tensor.

Also, we have from Theorems B and 3.2

THEOREM 3.3 Let M™ (n > 5) be a Sasakian manifold whose C-Bochner curvature
tensor vanishes. If the Ricci tensor is positive semi-definite and Tr Ric™ is constant for
a positive integer m, then M is a space of constant ¢-holomorphic sectional curvature.

Furthermore, it is easy to see from the proof of Theorem C and Theorem 3.2 that the
following theorem hold:

THEOREM 3.4 Let M™ (n > 5) be a Sasakian manifold with vanishing C-Bochner

curvature tensor. If TrRic™ is constant for a positive integer m and the length of the
V2(R—n+1)

n-Einstein tensor is less than
(n—1)(n—3)

, then M is a space of constant ¢-holomorphic

sectional curvature.

4 The smallest Ricci curvature.

Let M be an n (> 5)-dimensional Sasakian manifold with vanishing C-Bochner curvature
tensor. Suppose that R(,,) is constant for any positive integer m. By Theorem 3.2,
equation (3.2) is reduced to

(4.1) ViRji = {Rer — (n — 1)gr }(&5"mi + 3" 15),

which implies Vi Rj; + VR, + V;R; = 0, namely, the Ricci tensor is cyclic parallel.
Therefore, using the Ricci formula, we find

VEVER;: = 2(RyjisR™ — R,).
Applying V* to (4.1) and owing to (2.1) and (2.2), we get
VEVRRji = =2[Rji — (n = 1)gji — {R — n(n — 1)}nni].
On the other hand, by virtue of (2.1) - (2.4) and (2.14), it is clear that the following
equation holds:

(n+3)RyjisR™ = 4R,*) — (4n — R+ 2k)Rj; + {Rg) — (k — R+ (n — )k} gz
—{R(g) + (n —1)* = (n — 1)k — kR}n;mn;.

From the last three equations, we have

(4.2) Ry? = BRji +gji +{(n —1)* = (n—1)8 — 7}njm:
where constants 5 and v are given by

(4.3) (n+1)f=R—3n-25,

(4.4) (n—1)y = R — L opar— "L 2 a0 10,

n—+1 n—+1

Thus, equation (4.2) tells us that M has at most three constant Ricci curvatures n — 1,
z1 and xo, where we have put

(5) m=5B-VD)., wm=5@+VD),  D=F+i(20),
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moreover, the multiplicities of x; and z2 denote by s and n—1 — s, respectively. Therefore
we have (cf. [7])

LEMMA 4.1 Let M™ (n > 5) be a Sasakian manifold with vanishing C-Bochner curvature
tensor such that Tr Ric(™) is constant for a positive integer m. Then M has at most three
constant Ricci curvatures.

Now, we shall prove the following theorem.

THEOREM 4.2 Let M™ (n > 5) be a Sasakian manifold with vanishing C-Bochner cur-
vature tensor such that Tr Ric™ is constant for a positive integer m. If the smallest Ricci
curvature is greater than or equal to —2, then M 1is a space of constant ¢-holomorphic
sectional curvature —3.

Proof. By means of (4.3), (4.5) and Lemma 4.1, we find

n—+1

n+3(n—1—2s)\/5.

(4.6) R+n—1=

Because of (4.3), (4.4) and (4.6), we have

n—1 n—1-2s\*| . 1 ) )

which yields that

(4.7) (n+ 1Ry > R* = 2(n+3)R+ (n —1)*(n + 2).

Let x; be the smallest Ricci curvature. Then, by virtue of (4.5), we obtain v < 23 + 4
which means from (4.4) that

(n+1)Rpy < R? —2(n+3)R+ (n —1)*(n +2).

Combining this with (4.7), we get D vanishes identically, which implies that equation (4.6)
gives R = —n + 1. We find | Rj; + 2gj; — (n + 1)n;n; |*= 0 which yields that M is an 7-
Einstein manifold. Thus, it is easy to see from (2.14) that M is of constant ¢-holomorphic
sectional curvature —3.

REMARK. In [10], this theorem was proved under the condition that M is compact.
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